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Abstract In this article, we derive accurate Horner methods in real and complex floating-point arithmetic.
In particular, we show that these methods are as accurate as if computed in k-fold precision, where k ≥ 2,
and then rounded into the working precision. When k = 2, our methods are comparable or faster than
the existing compensated Horner routines. When compared to multi-precision software, such as MPFR
and MPC, our methods are significantly faster for k ≤ 8, that is, up to 489 bits in the significand.
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1 Introduction

The use of error-free transformations to produce compensated arithmetic routines has a long and interesting
history, which includes the works of Dekker, Gill, Goldberg, Kahan, Knuth, and Møller [4,7,8,12,13,
15]. These works were the first to extend the working precision of a computation without the use of a
hardware or software implementation of a high precision format [5,6]. More recently, Rump, Ogita, and
Oishi have developed algorithms for the summation (SumK) and dot product (DotK) as accurate as if
computed in k-fold precision and then rounded into the working precision [17]. Throughout this article,
whenever k-fold precision is referenced, it is implicitly assumed that k ≥ 2, unless otherwise stated.

Even more recently, Rump developed algorithms for the summation (SumKK) and dot product
(DotKK) as accurate as if computed in k-fold precision and stored in k parts, which he then used to
develop methods for inverting arbitrary ill-conditioned matrices [18]. While Rump only focused on real
arithmetic, it is straightforward to extend these methods to complex arithmetic. In this article, we use a
similar strategy to develop Horner methods in real and complex arithmetic as accurate as if computed
in k-fold precision and then rounded into the working precision. Specifically, we compute each iteration
of Horner’s method as accurate as if computed in k-fold precision and stored in k parts. After the final
iteration, we return the SumK value of the k parts.

The outline of this article is as follows: In Section 2 we recall the basic properties of real and complex
floating-point arithmetic, error-free transformations, and the SumK method from [17]. Then, in Section 3,
we derive the accurate real and complex Horner methods, which we denote HornerK and HornerKCmplx,
respectively. Moreover, we prove forward error bounds on these methods that imply each method is
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CNRS, LIP6
F-75005 Paris, France
E-mail: stef.graillat@sorbonne-universite.fr



2 Thomas R. Cameron, Stef Graillat

as accurate as if computed in k-fold precision and then rounded into the working precision. Finally, in
Section 4, we present the results of several numerical experiments to demonstrate the relative forward
error bound and computational time of the HornerK and HornerKCmplx methods.

Note that, when k = 2, the HornerK method is comparable to the CompensatedHorner method
from [9]. Also, the HornerKCmplx method is comparable to the CompHorner method from [3], though
we show that the HornerKCmplx method is significantly faster, especially for large degree polynomials.
Finally, we are not the first to develop a Horner’s method as accurate as if computed in k-fold precision
and then rounded into the working precision, see [14]. However, their method requires 2k − 1 evaluations
of the EFTHorner method from [9]. For this reason, our method is significantly faster, especially for large
values of k.

2 Floating-Point Arithmetic

Throughout this article, we assume that the computer arithmetic satisfies the IEEE 754 standard [2],
and that no underflow nor overflow occurs. We denote by F the set of floating-point numbers and by µ
the unit roundoff. Note that for single precision, µ = 2−24 and for double precision, µ = 2−53, where the
exponent corresponds to the precision of this floating-point format. Finally, we use the standard notation
fl (·) to denote floating-point operations in working precision.

2.1 Real Floating-Point Arithmetic

For operations ◦ ∈ {+,−, ·}, the IEEE 754 standard requires the result of fl (a ◦ b) to be correctly rounded,
that is, as accurate as if computed exactly and then rounded to the working precision [8]. In this article,
we assume that all the computations are performed with rounding to nearest, using round to even in the
case of a tie. As a result, for a, b ∈ F , floating-point operations satisfy

fl (a ◦ b) = (a ◦ b)(1 + ϵ),

where |ϵ| ≤ µ. This further implies that

|fl (a ◦ b)− a ◦ b| ≤ µ |a ◦ b| and |a ◦ b− fl (a ◦ b)| ≤ µ |fl (a ◦ b)| .

Throughout this article, we make use of the quantity:

γn =
nµ

1− nµ
,

where n ∈ N is assumed to satisfy nµ < 1. In addition, for x,y ∈ Fn, we make use of the following error
bound on the floating-point summation:∣∣∣∣∣fl

(
n∑

i=1

xi

)
−

n∑
i=1

xi

∣∣∣∣∣ ≤ γn−1

n∑
i=1

|xi|

and the following error bound on the floating-point dot-product:

|fl (x · y)− x · y| ≤ γn |x| · |y| .

Both bounds are proven in [11] and from their proofs it is clear that similar bounds hold for the complex
floating-point summation and the complex floating-point dot-product.

For each x = fl (a ◦ b), there exists a y ∈ F such that x + y = a ◦ b. The pair (x, y) is called the
error-free transformation of (a, b) for the operation ◦. For instance, Algorithm 1 is attributed to Knuth [13]
and returns the error-free transformation of (a, b) for addition.

Algorithm 1 Error-free transformation of (a, b) ∈ F2 for addition [13, Thm B, p.236].

function [x, y] = TwoSum (a, b) :
x = fl (a+ b)
z = fl (x− a)
y = fl ((a− (x− z)) + (b− z))
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The fused multiply-add operation, denoted FMA(a, b, c), results in the floating-point number nearest
to a · b+ c ∈ R. We make use of the FMA operation to perform the error-free transformation of (a, b) for
multiplication, see Algorithm 2. Note that the fused multiply-add operation was added to the IEEE 754
standard in 2008 and since 2003 has been supported by many modern processors [16].

Algorithm 2 Error-free transformation of (a, b) ∈ F2 for multiplication [16, Thm 2].

function [x, y] = TwoProd (a, b) :
x = fl (a · b)
y = FMA(a, b,−x)

Theorem 1 summarizes the properties of Algorithm 1 and Algorithm 2. Note that we are able to
reduce the 17 flops for the TwoProd function, as stated in [17, Theorem 3.4], to 2 flops since we use the
FMA operation rather than the Split function from [4].

Theorem 1 ([17, Thm 3.4]) Let a, b ∈ F . Then, [x, y] = TwoSum (a, b) requires 6 flops and satisfies

a+ b = x+ y, x = fl (a+ b) , |y| ≤ µ |x| , |y| ≤ µ |a+ b| .

Also, [x, y] = TwoProd (a, b) requires 2 flops and satisfies

a · b = x+ y, x = fl (a · b) , |y| ≤ µ |x| , |y| ≤ µ |a · b| .

Next, we state the vector transformation from [17], also known as the distillation algorithm [13], see
Algorithm 3, where we do not overwrite the input vector for clarity in the analysis of the algorithm.
Theorem 2 summarizes several important properties of Algorithm 3. Note that a similar result holds in
complex floating-point arithmetic, see Theorem 6.

Algorithm 3 Transformation of the vector p ∈ Fn without changing the vector sum of p ([17, Alg 4.3])

function q = VecSum (p) :
q1 = p1
for i = 2, . . . , n do

[qi, qi−1] = TwoSum (pi, qi−1)
end for

Theorem 2 ([17, Lemma 4.2]) Let p ∈ Fn. Then, q = VecSum (p) requires 6(n−1) flops and satisfies

n∑
i=1

qi =

n∑
i=1

pi,

qn = fl (
∑n

i=1 pi), and
n−1∑
i=1

|qi| ≤ γn−1

n∑
i=1

|pi| .

We conclude this section with the k-fold summation from [17], see Algorithm 4. Theorem 3 summarizes
the properties of Algorithm 4. Note that 3γ2

n−1 is negligible compared with µ. So, the result of Theorem 3
tells us that the result s = SumK(p, k) is as accurate as if computed in k-fold precision and then rounded
into the working precision.

Algorithm 4 Vector Summation of p ∈ Fn in k-fold precision and rounded into the working precision
[17, Alg 4.8]

function s = SumK(p, k) :
for i = 1, . . . , k − 1 do

p = VecSum (p)
end for
s = fl

((∑n−1
i=1 pi

)
+ pn

)
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Theorem 3 ([17, Prop 4.5 and 4.10]) Let p ∈ Fn, 4nµ ≤ 1, and k ≥ 2. Then, s = SumK(p, k)
requires (n− 1)(6k − 5) flops and satisfies∣∣∣∣∣s−

n∑
i=1

pi

∣∣∣∣∣ ≤ (µ+ 3γ2
n−1

) ∣∣∣∣∣
n∑

i=1

pi

∣∣∣∣∣+ γk
2n−2

n∑
i=1

|pi| .

2.2 Complex Floating-Point Arithmetic

We define C = F + iF to be the set of complex floating-point numbers, where i =
√
−1 is the imaginary

unit. Also, we use the operators Re (·) and Im (·) to denote the real and imaginary part of a complex
number, respectively. As in the real case, we denote by fl (·) the operations that are done in floating-point
working precision. The following holds for all a, b ∈ C and ◦ ∈ {+,−}:

fl (a ◦ b) = (a ◦ b)(1 + ϵ),

where |ϵ| ≤ µ. In addition, we have
fl (a · b) = (a · b)(1 + ϵ),

where |ϵ| ≤
√
2γ2. This further implies that for ◦ ∈ {+,−}, we have

|fl (a ◦ b)− a ◦ b| ≤ µ |a ◦ b| and |a ◦ b− fl (a ◦ b)| ≤ µ |fl (a ◦ b)| ,

and
|a · b− fl (a · b)| ≤

√
2γ2 |a · b| .

Throughout this article, we make use of the quantity

γ̃n =
n
√
2γ2

1− n
√
2γ2

,

where n ∈ N is assumed to satisfy n
√
2γ2 < 1. In addition, for x,y ∈ Cn, we make use of the following

error bound on the complex floating-point summation:∣∣∣∣∣fl
(

n∑
i=1

xi

)
−

n∑
i=1

xi

∣∣∣∣∣ ≤ γn−1

n∑
i=1

|xi|

and the following error bound on the floating-point dot-product:

|fl (x · y)− x · y| ≤ γ̃n |x| · |y| .

As in the real case, the error-free transformation of the pair of complex floating-point numbers (a, b)
for the operation ◦ is a pair (x, y) such that x = fl (a ◦ b) and x+y = a◦b. The error-free transformation of
(a, b) ∈ C2 for complex addition is a straightforward extension of Algorithm 1 and is shown in Algorithm 5.
In contrast, the error-free transformation of (a, b) ∈ C2 for complex multiplication requires multiple

Algorithm 5 Error-free transformation of (a, b) ∈ C2 for addition ([10, Alg 3.1]).

function [x, y] = TwoSumCmplx (a, b) :
[Re (x) ,Re (y)] = TwoSum (Re (a) ,Re (b))
[Im (x) , Im (y)] = TwoSum (Im (a) , Im (b))

products of the real and imaginary parts of a and b as shown in Algorithm 6. Note that Theorem 4

Algorithm 6 Error-free transformation of (a, b) ∈ C2 for multiplication ([10, Alg 3.2]).

function [w, x, y, z] = TwoProdCmplx (a, b) :
[g1, h1] = TwoProd (Re (a) ,Re (b)); [g2, h2] = TwoProd (Im (a) , Im (b))
[g3, h3] = TwoProd (Re (a) , Im (b)); [g4, h4] = TwoProd (Im (a) ,Re (b))
[g5, h5] = TwoSum (g1,−g2); [g6, h6] = TwoSum (g3, g4)
w = g5 + ig6; x = h1 + ih3; y = −h2 + ih4; z = h5 + ih6

summarizes the properties of Algorithm 5 and Algorithm 6.
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Theorem 4 ([10, Thm 3.1 and 3.2]) Let a, b ∈ C. Then, [x, y] = TwoSumCmplx (a, b) requires 12
flops and satisfies

a+ b = x+ y, x = fl (a+ b) , |y| ≤ µ |x| , |y| ≤ µ |a+ b| .

Also, [w, x, y, z] = TwoProdCmplx (a, b) requires 20 flops and satisfies

a · b = w + x+ y + z, w = fl (a · b) , |x+ y + z| ≤
√
2γ2 |a · b| .

In addition, we have the following result for Algorithm 6.

Theorem 5 Let a, b ∈ C and let [w, x, y, z] = TwoProdCmplx (a, b). Then,

|x|+ |y|+ |z| ≤ µ
(
3 +

√
2γ2

)
|a| |b| .

Proof Note that x = h1+ih3, where [g1, h1] = TwoProd (Re (a) ,Re (b)) and [g3, h3] = TwoProd (Re (a) , Im (b)).
Therefore, by Theorem 1, we have

|x| =
√
h2
1 + h2

3

≤
√
µ2 Re (a)

2
Re (b)

2
+ µ2 Re (a)

2
Im (b)

2

= µ |Re (a)| |b| ≤ µ |a| |b| .

A similar argument shows that |y| ≤ µ |a| |b|. Finally, for z = h5+ ih6, where [g5, h5] = TwoSum (g1,−g2)
and [g6, h6] = TwoSum (g3, g4). Theorem 1 implies that |h5| ≤ µ |g5| and |h6| ≤ µ |g6|. Therefore, we have

|z| =
√
h2
5 + h2

6

≤
√
µ2g25 + µ2g26

= µ
√
g25 + g26

= µ |w|
= µ |fl (a · b)|

≤ µ
(
1 +

√
2γ2

)
|a| |b| .

Next, we state the complex vector transformation, see Algorithm 7 where we do not overwrite the input
vector for clarity in the analysis of the algorithm. Theorem 6 summarizes several important properties of
Algorithm 7. Note that the proof of Theorem 6 follows from Theorem 2 since the properties of TwoSum
and TwoSumCmplx are identical.

Algorithm 7 Transformation of the vector p ∈ Cn without changing the vector sum of p.
function q = VecSumCmplx (p) :

q1 = p1
for i = 2, . . . , n do

[qi, qi−1] = TwoSumCmplx (pi, qi−1)
end for

Theorem 6 Let p ∈ Cn. Then, q = VecSumCmplx (p) requires 12(n− 1) flops and satisfies

n∑
i=1

qi =

n∑
i=1

pi,

qn = fl (
∑n

i=1 pi), and
n−1∑
i=1

|qi| ≤ γn−1

n∑
i=1

|pi| .
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Algorithm 8 Vector Summation of p ∈ Cn in k-fold precision and rounded into the working precision.
function s = SumKCmplx (p, k) :

for i = 1, . . . , k − 1 do
p = VecSumCmplx (p)

end for
s = fl

((∑n−1
i=1 pi

)
+ pn

)

We conclude this section with the complex k-fold summation, see Algorithm 8. Theorem 7 summarizes
the properties of Algorithm 8. Note that the proof of Theorem 7 follows from Theorem 3 since the
properties of VecSumCmplx and VecSum are identical. Also, the 3γ2

n−1 is negligible compared with µ.
So, the result of Theorem 7 tells us that the result s = SumKCmplx (p, k) is as accurate as if computed
in k-fold precision and then rounded into the working precision.

Theorem 7 Let p ∈ Cn, 4nµ ≤ 1, and k ≥ 2. Then, s = SumKCmplx (p, k) requires 2(n − 1)(6k − 5)
flops and satisfies ∣∣∣∣∣s−

n∑
i=1

pi

∣∣∣∣∣ ≤ (µ+ 3γ2
n−1

) ∣∣∣∣∣
n∑

i=1

pi

∣∣∣∣∣+ γk
2n−2

n∑
i=1

|pi| .

3 Horner’s Method

Consider the polynomial of degree m in the variable z defined by

p(z) = amzm + · · ·+ a1z + a0, (1)

where a0, a1, . . . , am are real or complex floating-point numbers, and am ̸= 0. If all coefficients are real,
then we write p ∈ F [z], and if any of the coeeficients are complex, then we write p ∈ C[z]. Given a real
or complex floating-point number z, Algorithm 9 defines Horner’s method, which is used to compute
the polynomial evaluation p(z). For i = 0, 1, . . . ,m, we use hi to denote the ith step of Horner’s method
computed in exact arithmetic, and we use Hi to denote the value obtained when all operands are replaced
by their respective absolute value. For example, h0 = p(z) and H0 = p̃(|z|), where p̃(z) =

∑m
i=0 |ai| zi.

Algorithm 9 Horner’s method in exact arithmetic [11, p.94].

function h0 = Horner (p, z) :
hm = am
for i = m− 1 to i = 0 do

hi = z · hi+1 + ai
end for

If real or complex floating-point arithmetic in the working precision is used, then we denote the result
of each step of Horner’s method by fl (hi), for i = 0, 1, . . . ,m. It is well-know that in real floating-point
arithmetic, we have the following error bound for h0 [11]:

|h0 − fl (h0)| ≤ γ2mp̃(|z|). (2)

Similarly, in complex floating-point arithmetic, we have [10]:

|h0 − fl (h0)| ≤ γ̃2mp̃(|z|). (3)

In what follows, we derive methods for the real and complex Horner’s method as accurate as if computed
in k-fold precision and then rounded into the working precision.

3.1 Real HornerK Method

The real Horner’s method in k-fold precision and then rounded into the working precision is shown in
Algorithm 10. Note that {h(i)} is a list of floating-point numbers that denote the k-fold result of Horner’s
method on the i-th iteration. Starting with {h(m)} = {am, 0, . . . , 0}, we let {h(i)} denote the k-fold result

of Horner’s method on the i-the iteration stored in k parts, for i = m− 1, . . . , 0. In particular, h
(i)
1 is the
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Algorithm 10 Horner’s method in k-fold precision and rounded into the working precision.
1: function h = HornerK (p, z, k) :
2: {h(m)} = {am, 0, . . . , 0}, vector of size k
3: for i = m− 1 to i = 0 do

4: [r, e1] = TwoProd
(
z, h

(i+1)
1

)
5: for j = 2 to j = k do

6: [s, ej ] = TwoProd
(
z, h

(i+1)
j

)
7: [r, ek+j−1] = TwoSum (r, s)
8: end for
9: [h

(i)
1 , e2k] = TwoSum (r, ai)

10: Set e(0) = e
11: for j = 0 to j = k − 3 do
12: e(j+1) = VecSum

(
e(j)

)
13: h

(i)
j+2 = e

(j+1)
2k−j

14: Delete entry e
(j+1)
2k−j from e(j+1)

15: end for
16: h

(i)
k = fl

(∑k+2
j=1 e

(k−2)
j

)
17: end for
18: h = SumK

(
{h(0)}, k

)

floating-point result of Horner’s method on the i-th iteration and e(0) is a vector of size 2k that stores the

errors in that computation. Then, for j = 0, . . . , k− 3, we set h
(i)
j+2 to the floating-point sum of the entries

in e(j), and we set e(j+1) to be a vector of size 2k − (j + 1) that stores the errors in that computation.

In what follows, we prove bounds on the forward error of the floating-point result from Algorithm 10.
To begin, Lemma 1 gives a bound on the sum of the absolute value of the entries of e.

Lemma 1 The vector e in Algorithm 10 satisfies

2k∑
j=1

|ej | ≤ γk+1

|z|
k∑

j=1

∣∣∣h(i+1)
j

∣∣∣+ |ai|

 ,

for i = m− 1, . . . , 0.

Proof By Theorem 1, we have
k∑

j=1

|ej | ≤ µ

k∑
j=1

∣∣∣z · h(i+1)
j

∣∣∣ .
Also, by Theorem 2, we have

2k∑
j=k+1

|ej | ≤ γk

 k∑
j=1

∣∣∣fl(z · h(i+1)
j

)∣∣∣+ |ai|


≤ γk

(1 + µ)

k∑
j=1

∣∣∣z · h(i+1)
j

∣∣∣+ |ai|


≤ γk(1 + µ)

 k∑
j=1

∣∣∣z · h(i+1)
j

∣∣∣+ |ai|

 .

Since µ+ (1 + µ)γk ≤ γk+1, we have

2k∑
j=1

|ej | ≤ γk+1

|z|
k∑

j=1

∣∣∣h(i+1)
j

∣∣∣+ |ai|

 .

Next, Lemma 2 shows that the collection {h(i)} stores the floating-point result of z
∑k

j=1 h
(i+1)
j + ai

computed as if in k-fold precision and stored in k-parts.
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Lemma 2 The floating-point collection {h(i)} in Algorithm 10 satisfies∣∣∣∣∣∣
k∑

j=1

h
(i)
j −

z

k∑
j=1

h
(i+1)
j + ai

∣∣∣∣∣∣ ≤ γk
2k−1

|z|
k∑

j=1

∣∣∣h(i+1)
j

∣∣∣+ |ai|


and

k∑
j=1

∣∣∣h(i)
j

∣∣∣ ≤ (1 + 2γ2k−1 + · · ·+ 2γk−1
2k−1 + γk

2k−1

)|z|
k∑

j=1

∣∣∣h(i+1)
j

∣∣∣+ |ai|

 ,

for i = m− 1, . . . , 0.

Proof By successive application of Theorem 1, we have from line 4− 9 of Algorithm 10 that

h
(i)
1 +

2k∑
j=1

ej = z

k∑
j=1

h
(i+1)
j + ai.

Furthermore, by successive application of Theorem 2, we have from line 10− 15 of Algorithm 10 that

2k∑
j=1

ej =

k−1∑
j=2

h
(i)
j +

k+2∑
j=1

e
(k−2)
j ,

where
k+2∑
j=1

∣∣∣e(k−2)
j

∣∣∣ ≤ γk+2

k+3∑
j=1

∣∣∣e(k−3)
j

∣∣∣ ≤ · · · ≤

 2k−1∏
j=k+2

γj

 2k∑
j=1

|ej | ≤ γk−2
2k−1

2k∑
j=1

|ej | .

Also, in line 16 of Algorithm 10, the error in the floating-point summation satisfies∣∣∣∣∣∣h(i)
k −

k+2∑
j=1

e
(k−2)
j

∣∣∣∣∣∣ ≤ γk+1

k+2∑
j=1

∣∣∣e(k−2)
j

∣∣∣ .
Combining these observations with Lemma 1 gives∣∣∣∣∣∣

k∑
j=1

h
(i)
j −

z

k∑
j=1

h
(i+1)
j + ai

∣∣∣∣∣∣ =
∣∣∣∣∣∣h(i)

k −
k+2∑
j=1

e
(k−2)
j

∣∣∣∣∣∣
≤ γk+1

k+2∑
j=1

∣∣∣e(k−2)
j

∣∣∣
≤ γk+1γ

k−2
2k−1

2k∑
j=1

|ej |

≤ γk+1γ
k−2
2k−1γk+1

|z|
k∑

j=1

∣∣∣h(i+1)
j

∣∣∣+ |ai|


≤ γk

2k−1

|z|
k∑

j=1

∣∣∣h(i+1)
j

∣∣∣+ |ai|

 .

Note that Theorem 1 implies that h
(i)
1 = fl

(
z
∑k

j=1 h
(i+1)
j + ai

)
and Theorem 2 implies that

h
(i)
l = fl

2k−l+2∑
j=1

e
(l−2)
j

 ,
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for l = 2, . . . , k. Therefore, the error in floating-point dot product gives us the following bound

∣∣∣h(i)
1

∣∣∣ ≤ (1 + γk+1)

|z|
k∑

j=1

∣∣∣h(i+1)
j

∣∣∣+ |ai|


≤ (1 + γ2k−1)

|z|
k∑

j=1

∣∣∣h(i+1)
j

∣∣∣+ |ai|

 .

Similarly, the error in floating-point summation gives us the following bound∣∣∣h(i)
l

∣∣∣ ≤ (1 + γ2k−l+1)

2k−l+2∑
j=1

∣∣∣e(l−2)
j

∣∣∣
≤ (1 + γ2k−l+1) γ2k−l+2 · · · γ2k−1

2k∑
j=1

|ej |

≤
(
γl−1
2k−1 + γl

2k−1

)|z|
k∑

j=1

∣∣∣h(i+1)
j

∣∣∣+ |ai|

 ,

where the last line follows from Lemma 1.

Next, Theorem 8 provides an error bound on the sum of the entries in the collection {h(i)} versus the
exact value of Horner’s method on the i-th iteration. To that end, let ρ = 1+2γ2k−1+ · · ·+2γk−1

2k−1+γk
2k−1.

Also, recall that for i = 0, 1, . . . ,m, hi denotes the exact value from Algorithm 9 and Hi denotes the
exact value when all operands are replaced by their respective absolute value.

Theorem 8 The floating-point collection {h(m−i)} in Algorithm 10 satisfies∣∣∣∣∣∣
k∑

j=1

h
(m−i)
j − hm−i

∣∣∣∣∣∣ ≤ γk
2k−1

(
1 + ρ+ · · ·+ ρi−1

)
Hm−i

and
k∑

j=1

∣∣∣h(m−i)
j

∣∣∣ ≤ ρiHm−i,

for i = 0, . . . ,m.

Proof We proceed via induction on i. The base case, when i = 0, is clear. Now, suppose the result holds
for some i ≥ 0, and note that the triangle inequality implies∣∣∣∣∣∣

k∑
j=1

h
(m−i−1)
j − hm−i−1

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

k∑
j=1

h
(m−i−1)
j −

z

k∑
j=1

h
(m−i)
j + am−i−1

∣∣∣∣∣∣+ |z|

∣∣∣∣∣∣
k∑

j=1

h
(m−i)
j − hm−i

∣∣∣∣∣∣ .
Applying Lemma 2 and the induction hypothesis gives us∣∣∣∣∣∣

k∑
j=1

h
(m−i−1)
j − hm−i−1

∣∣∣∣∣∣ ≤ γk
2k−1

|z|
k∑

j=1

∣∣∣h(m−i)
j

∣∣∣+ |am−i−1|

+ |z| γk
2k−1

(
1 + ρ+ · · ·+ ρi−1

)
Hm−i

≤ γk
2k−1

(
|z| ρiHm−i + |am−i−1|

)
+ |z| γk

2k−1

(
1 + ρ+ · · ·+ ρi−1

)
Hm−i

≤ γk
2k−1

(
1 + ρ+ · · ·+ ρi

)
Hm−i−1.

Moreover, by Lemma 2, we have

k∑
j=1

∣∣∣h(m−i−1)
j

∣∣∣ ≤ ρ

|z|
k∑

j=1

∣∣∣h(m−i)
j

∣∣∣+ |am−i−1|


≤ ρ

(
|z| ρiHm−i + |am−i−1|

)
≤ ρi+1Hm−i−1,

and so the result holds for i+ 1.
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Finally, Corollary 1 gives a forward error bound and the flop count for Algorithm 10. Note that when
k = 2, the flop count is 19m+7, which is slightly greater than the 11m−1 flops for the CompensatedHorner
method from [9].

Corollary 1 Let p ∈ F [z] be a degree m polynomial, z ∈ F , 4nµ ≤ 1, and k ≥ 2. Then, h =
HornerK (p, z, k) requires m

(
9k2 − 6k − 5

)
+
(
6k2 − 11k + 5

)
flops and satisfies

|h− p(z)| ≤
(
µ+ 3γ2

k−1

)
|p(z)|+ 2γk

2k−1 (1 + ρ+ · · ·+ ρm) p̃(|z|).

Proof The flop count is left to the reader. For the error bound, note that the triangle inequality implies

|h− p(z)| ≤

∣∣∣∣∣∣h−
k∑

j=1

h
(0)
j

∣∣∣∣∣∣+
∣∣∣∣∣∣

k∑
j=1

h
(0)
j − h0

∣∣∣∣∣∣ .
Applying Theorem 3 and Theorem 8 gives us

|h− p(z)| ≤
(
µ+ 3γ2

k−1

) ∣∣∣∣∣∣
k∑

j=1

h
(0)
j

∣∣∣∣∣∣+ γk
2k−2

k∑
j=1

∣∣∣h(0)
j

∣∣∣+ γk
2k−1

(
1 + ρ+ · · ·+ ρm−1

)
H0

≤
(
µ+ 3γ2

k−1

) (
|h0|+ γk

2k−1

(
1 + ρ+ · · ·+ ρm−1

)
H0

)
+ γk

2k−1 (1 + ρ+ · · ·+ ρm)H0

≤
(
µ+ 3γ2

k−1

)
|p(z)|+ 2γk

2k−1 (1 + ρ+ · · ·+ ρm) p̃(|z|).

It may be unsettling to see the error bound in Corollary 1 have the term (1 + ρ+ · · ·+ ρm); however,
the following proposition shows that this term can be replaced by (m+ 4) for reasonably sized k and m

Proposition 1 For 2 ≤ k ≤ 10 and 1 ≤ m ≤ 105, we have

1 + ρ+ · · ·+ ρm ≤ (m+ 4).

Proof Note that

1 + ρ+ · · ·+ ρm =
ρm+1 − 1

ρ− 1
,

where ρ = 1 + 2γ2k−1 + · · ·+ 2γk−1
2k−1 + γk

2k−1. Define θ = 2γ2k−1 + · · ·+ 2γk−1
2k−1 + γk

2k−1, then ρ = 1 + θ

and ρm+1 =
∑m+1

j=0

(
m+1
j

)
θj . Now, it is true that

(
m+1
j

)
θj >

(
m+1
j+1

)
θj+1, for j = 0, 1, . . . ,m; otherwise,

there is a j for which θ ≥ j+1
m+1 , which contradicts the reasonably sized k and m. Therefore, we have

ρm+1 = 1 + (m+ 1)θ +

m+1∑
j=2

(
m+ 1

j

)
θj

≤ 1 + (m+ 1)θ +

m+1∑
j=2

(m+ 1)!

2(m− 1)!
θ2

= 1 + (m+ 1)θ +
m2(m+ 1)

2
θ2

≤ 1 + (m+ 4)θ,

where the last line follows from m2(m + 1)θ2 ≤ 6θ; otherwise, θ > 6
m2(m+1) , which contradicts the

reasonably sized k and m. Finally, we have

1 + ρ+ · · ·+ ρm =
ρm+1 − 1

ρ− 1
≤ (m+ 4)θ

θ
= (m+ 4).

Now, we can re-write the error bound from Corollary 1. Note that 3γ2
n−1 is negligible compared with µ.

So, the result of Corollary 2 tells us that the result h = HornerK (p, z, k) is as accurate as if computed in
k-fold precision and then rounded into the working precision.

Corollary 2 Let p ∈ F [z] be a degree m polynomial, where 1 ≤ m ≤ 105. Also, let z ∈ F and 2 ≤ k ≤ 10.
Then, h = HornerK (p, z, k) satisfies

|h− p(z)| ≤
(
µ+ 3γ2

k−1

)
|p(z)|+ 2(m+ 4)γk

2k−1p̃(|z|).
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3.2 Complex HornerK Method

The complex Horner’s method in k-fold precision and then rounded into the working precision is shown in
Algorithm 11. As in the real case, the vector of floating-point numbers {h(i)} denotes the k-fold result of

Horner’s method on the i-th iteration. In particular, h
(i)
1 is the floating-point result of the i-th iteration

of Horner’s method and e(0) is a vector of size 4k that stores the errors in that computation. Then, for

j = 0, . . . , k − 3, we set h
(i)
j+2 to the floating-point sum of the entries in e(j), and we set e(j+1) to the

vector of size 4k − (j + 1) that stores the error in that computation.

Algorithm 11 Complex Horner’s method in k-fold precision and rounded into the working precision.
1: function h = HornerKCmplx (p, z, k) :
2: {h(m)} = {am, 0, . . . , 0}, vector of size k
3: for i = m− 1 to i = 0 do

4: [r, e1, e2, e3] = TwoProdCmplx
(
z, h

(i+1)
1

)
5: for j = 2 to j = k do

6: [s, e3j−2, e3j−1, e3j ] = TwoProdCmplx
(
z, h

(i+1)
j

)
7: [r, e3k+j−1] = TwoSumCmplx (r, s)
8: end for
9: [h

(i)
1 , e4k] = TwoSumCmplx (r, ai)

10: Set e(0) = e
11: for j = 0 to j = k − 3 do
12: e(j+1) = VecSumCmplx

(
e(j)

)
13: h

(i)
j+2 = e

(j+1)
4k−j

14: Delete entry e
(j+1)
4k−j from e(j+1)

15: end for
16: h

(i)
k = fl

(∑3k+2
j=1 e

(k−2)
j

)
17: end for
18: h = SumKCmplx

(
{h(0)}, k

)

In what follows, we prove bounds on the forward error of the floating-point result from Algorithm 11.
To begin, Lemma 3 gives a bound on the sum of the absolute value of the entries of e.

Lemma 3 The vector e in Algorithm 11 satisfies

4k∑
j=1

|ej | ≤ γ̃k+2

|z|
k∑

j=1

∣∣∣h(i+1)
j

∣∣∣+ |ai|


Proof By Theorem 5, for j = 1, . . . , k, we have

|e3j−2|+ |e3j−1|+ |e3j | ≤
(
3µ+

√
2γ2µ

)
|z|
∣∣∣h(i+1)

j

∣∣∣ ,
which implies that

3k∑
j=1

|ej | ≤ µ
(
3 +

√
(2)γ2

)
|z|

k∑
j=1

∣∣∣h(i+1)
j

∣∣∣ .
Also, by Theorem 6, we have

4k∑
j=3k+1

≤ γk

 k∑
j=1

∣∣∣fl(z · h(i+1)
j

)∣∣∣+ |ai|


≤ γk

(
1 +

√
2γ2

)|z|
k∑

j=1

∣∣∣h(i+1)
j

∣∣∣+ |ai|

 .

Since 3µ+
√
2γ2µ+ γk

(
1 +

√
2γ2
)
≤ γ̃k+2, it follows that

4k∑
j=1

|ej | ≤ γ̃k+2

|z|
k∑

j=1

∣∣∣h(i+1)
j

∣∣∣+ |ai|

 .
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Next, Lemma 4 shows that the collection {h(i)} stores the floating-point result of z
∑k

j=1 h
(i+1)
j + ai

computed as if in k-fold precision and stored in k-parts.

Lemma 4 The floating-point collection {h(i)} in Algorithm 11 satisfies∣∣∣∣∣∣
k∑

j=1

h
(i)
j −

z

k∑
j=1

h
(i+1)
j + ai

∣∣∣∣∣∣ ≤ γ̃k
4k−1

|z|
k∑

j=1

∣∣∣h(i+1)
j

∣∣∣+ |ai|


and

k∑
j=1

∣∣∣h(i)
j

∣∣∣ ≤ (1 + 2γ̃4k−1 + · · ·+ 2γ̃k−1
4k−1 + γ̃k

4k−1

)|z|
k∑

j=1

∣∣∣h(i+1)
j

∣∣∣+ |ai|

 .

Proof By successive application of Theorem 4, we have from lines 4− 9 of Algorithm 11 that

h
(i)
1 +

4k∑
j=1

ej = z

k∑
j=1

h
(i+1)
j + ai.

Furthermore, by successive application of Theorem 6, we have from lines 10− 15 of Algorithm 11 that

4k∑
j=1

ej =

k−1∑
j=2

h
(i)
j +

3k+2∑
j=1

e
(k−2)
j ,

where
3k+2∑
j=1

∣∣∣e(k−2)
j

∣∣∣ ≤ γ3k+2

3k+3∑
j=1

∣∣∣e(k−3)
j

∣∣∣ ≤ · · · ≤

 4k−1∏
j=3k+2

γj

 4k∑
j=1

|ej | ≤ γk−2
4k−1

4k∑
j=1

|ej | .

Also, in line 16 of Algorithm 11, the error in the floating-point summation satisfies∣∣∣∣∣∣h(i)
k −

3k+2∑
j=1

e
(k−2)
j

∣∣∣∣∣∣ ≤ γ3k+1

3k+2∑
j=1

∣∣∣e(k−2)
j

∣∣∣ .
Combining these observations with Lemma 3 gives∣∣∣∣∣∣

k∑
j=1

h
(i)
j −

z

k∑
j=1

h
(i+1)
j + ai

∣∣∣∣∣∣ =
∣∣∣∣∣∣h(i)

k −
3k+2∑
j=1

e
(k−2)
j

∣∣∣∣∣∣
≤ γ3k+1

3k+2∑
j=1

∣∣∣e(k−2)
j

∣∣∣
≤ γ3k+1γ

k−2
4k−1

4k∑
j=1

|ej |

≤ γ3k+1γ
k−2
4k−1γ̃k+2

|z|
k∑

j=1

∣∣∣h(i+1)
j

∣∣∣+ |ai|


≤ γ̃k

4k−1

|z|
k∑

j=1

∣∣∣h(i+1)
j

∣∣∣+ |ai|

 .

Note that Theorem 4 implies that h
(i)
1 = fl

(
z
∑k

j=1 h
(i+1)
j + ai

)
and Theorem 6 implies that

h
(i)
l = fl

4k−l+2∑
j=1

e
(l−2)
j

 ,
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for l = 2, . . . , k. Therefore, the error in the complex floating-point dot product gives us the following
bound ∣∣∣h(i)

1

∣∣∣ ≤ (1 + γ̃k+1)

|z|
k∑

j=1

∣∣∣h(i+1)
j

∣∣∣+ |ai|

 .

Similarly, for l = 2, . . . , k, the error in the complex floating-point summation gives us the following bound∣∣∣h(i)
l

∣∣∣ ≤ (1 + γ4k−l+1)

4k−l+2∑
j=1

∣∣∣e(l−2)
j

∣∣∣
≤ (1 + γ4k−l+1) γ4k−l+2 · · · γ4k−1

4k∑
j=1

|ej |

≤
(
γ̃l−1
4k−1 + γ̃l

4k−1

)|z|
k∑

j=1

∣∣∣h(i+1)
j

∣∣∣+ |ai|

 ,

where the last line follows from Lemma 3.

Next, Theorem 9 provides an error bound on the sum of the entries in the collection {h(i)} versus the
exact value of Horner’s method on the i-th iteration. To that end, let ρ̃ = 1+2γ̃4k−1+ · · ·+2γ̃k−1

4k−1+ γ̃k
4k−1.

Also, recall that for i = 0, 1, . . . ,m, hi denotes the exact value from Algorithm 9 and Hi denotes the
exact value when all operands are replaced by their respective absolute value.

Theorem 9 The floating-point collection {h(m−i)} in Algorithm 11 satisfies∣∣∣∣∣∣
k∑

j=1

h
(m−i)
j − hm−i

∣∣∣∣∣∣ ≤ γ̃k
4k−1

(
1 + ρ̃+ · · ·+ ρ̃i−1

)
Hm−i,

and
k∑

j=1

∣∣∣h(m−i)
j

∣∣∣ ≤ ρ̃iHm−i,

for i = 0, 1, . . . ,m.

Proof We proceed via induction on i. The base case, when i = 0, is clear. Now, suppose the result holds
for some i ≥ 0, and note that the triangle inequality implies∣∣∣∣∣∣

k∑
j=1

h
(m−i−1)
j − hm−i−1

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

k∑
j=1

h
(m−i−1)
j −

z

k∑
j=1

h
(m−i)
j + am−i−1

∣∣∣∣∣∣+ |z|

∣∣∣∣∣∣
k∑

j=1

h
(m−i)
j − hm−i

∣∣∣∣∣∣ .
Applying Lemma 4 and the induction hypothesis gives us∣∣∣∣∣∣

k∑
j=1

h
(m−i−1)
j − hm−i−1

∣∣∣∣∣∣ ≤ γ̃k
4k−1

|z|
k∑

j=1

∣∣∣h(m−i)
j

∣∣∣+ |am−i−1|

+ |z| γ̃k
4k−1

(
1 + ρ̃+ · · ·+ ρ̃i−1

)
Hm−i

≤ γ̃k
4k−1

(
|z| ρ̃iHm−i + |am−i−1|

)
+ |z| γ̃k

4k−1

(
1 + ρ̃+ · · ·+ ρ̃i−1

)
Hm−i

≤ γ̃k
4k−1

(
1 + ρ̃+ · · ·+ ρ̃i

)
Hm−i−1.

Moreover, by Lemma 4, we have

k∑
j=1

∣∣∣h(m−i−1)
j

∣∣∣ ≤ ρ̃

|z|
k∑

j=1

∣∣∣h(m−i)
j

∣∣∣+ |am−i−1|


≤ ρ̃

(
|z| ρ̃iHm−i + |am−i−1|

)
≤ ρ̃i+1Hm−i−1,

and so the result holds for i+ 1.

Finally, Corollary 3 gives a forward error bound and flop count for Algorithm 11. Note that when
k = 2, the flop count is 71m+ 14, which is significantly less than the 100m− 7 flops for the CompHorner
method from [3].
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Corollary 3 Let p ∈ C[z] be a degree m polynomial, z ∈ C, 4nµ ≤ 1, and k ≥ 2. Then, h =
HornerKCmplx (p, z, k) requires m

(
42k2 − 43k − 11

)
+
(
12k2 − 22k + 10

)
flops and satisfies

|h− p(z)| ≤
(
µ+ 3γ2

k−1

)
|p(z)|+ 2γ̃k

4k−1 (1 + ρ̃+ · · ·+ ρ̃m) p̃(|z|).

Proof The flop count is left to the reader. For the error bound, note that the triangle inequality implies

|h− p(z)| ≤

∣∣∣∣∣∣h−
k∑

j=1

h
(0)
j

∣∣∣∣∣∣+
∣∣∣∣∣∣

k∑
j=1

h
(0)
j − h0

∣∣∣∣∣∣ .
Applying Theorem 7 and Theorem 9 gives us

|h− p(z)| ≤
(
µ+ 3γ2

k−1

) ∣∣∣∣∣∣
k∑

j=1

h
(0)
j

∣∣∣∣∣∣+ γk
2k−2

k∑
j=1

∣∣∣h(0)
j

∣∣∣+ γ̃k
4k−1

(
1 + ρ̃+ · · ·+ ρ̃m−1

)
H0

≤
(
µ+ 3γ2

k−1

) (
|h0|+ γ̃k

4k−1

(
1 + ρ̃+ · · ·+ ρ̃m−1

)
H0

)
+ γ̃k

4k−1 (1 + ρ̃+ · · ·+ ρ̃m)H0

≤
(
µ+ 3γ2

k−1

)
|p(z)|+ 2γ̃k

4k−1 (1 + ρ̃+ · · ·+ ρ̃m) p̃(|z|).

Similar to the real case, see Proposition 1, we can simplify the error bound in Corollary 3 by replacing
the term (1 + ρ̃+ · · ·+ ρ̃m) with (m+ 8), for reasonably sized k and m.

Proposition 2 For 2 ≤ k ≤ 10 and 1 ≤ m ≤ 105, we have

1 + ρ̃+ · · ·+ ρ̃m ≤ (m+ 8).

Proof Note that

1 + ρ̃+ · · ·+ ρ̃m =
ρ̃m+1 − 1

ρ̃− 1
,

where ρ̃ = 1 + 2γ̃4k−1 + · · ·+ 2γ̃k−1
4k−1 + γ̃k

4k−1. Define θ̃ = 2γ̃4k−1 + · · ·+ 2γ̃k−1
4k−1 + γ̃k

4k−1, then ρ̃ = 1 + θ̃

and ρ̃m+1 =
∑m+1

j=0

(
m+1
j

)
θ̃j . Now, it is true that

(
m+1
j

)
θ̃j >

(
m+1
j+1

)
θ̃j+1, for j = 0, 1, . . . ,m; otherwise,

there is a j for which θ̃ ≥ j+1
m+1 , which contradicts the reasonably sized k and m. Therefore, we have

ρ̃m+1 = 1 + (m+ 1)θ̃ +

m+1∑
j=2

(
m+ 1

j

)
θ̃j

≤ 1 + (m+ 1)θ̃ +

m+1∑
j=2

(m+ 1)!

2(m− 1)!
θ̃2

= 1 + (m+ 1)θ̃ +
m2(m+ 1)

2
θ̃2

≤ 1 + (m+ 8)θ̃,

where the last line follows from m2(m + 1)θ̃2 ≤ 14θ̃; otherwise, θ̃ > 14
m2(m+1) , which contradicts the

reasonably sized k and m. Finally, we have

1 + ρ̃+ · · ·+ ρ̃m =
ρ̃m+1 − 1

ρ̃− 1
≤ (m+ 8)θ̃

θ̃
= (m+ 8).

Now, we can re-write the error bound from Corollary 3. Note that 3γ2
n−1 is negligible compared with

µ. So, the result of Corollary 4 tells us that the result h = HornerKCmplx (p, z, k) is as accurate as if
computed in k-fold precision and then rounded into the working precision.

Corollary 4 Let p ∈ F [z] be a degree m polynomial, where 1 ≤ m ≤ 105. Also, let z ∈ F and 2 ≤ k ≤ 10.
Then, h = HornerKCmplx (p, z, k) satisfies

|h− p(z)| ≤
(
µ+ 3γ2

k−1

)
|p(z)|+ 2(m+ 8)γ̃k

4k−1p̃(|z|).
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4 Numerical Experiments

In this section, we present the results of several numerical experiments to demonstrate the error bound
and computational time of the HornerK method in Algorithm 10 and the HornerKCmplx method in
Algorithm 11. Note that all higher precision computations are implemented using the GNU MPC and
MPFR libraries [5,6]. All code is written in C and compiled using Apple clang version 13.0.0 and is
available at https://github.com/trcameron/HornerK.

4.1 Error Bound

In this section, we demonstrate the relative forward error bound for HornerK, see Corollary 2, and
HornerKCmplx, see Corollary 4. For HornerK, we test on the expanded form of pm(z) = (z − 1)

m
. Note

that

pm(z) =

m∑
k=0

(
m

k

)
(−1)m−kzk,

which allows us to compute the coefficients of pm(z) exactly for reasonably sized m. Furthermore,

p̃m(|z|) =
m∑

k=0

(
m

k

)
|z|k = (|z|+ 1)

m
,

which means that the condition number of pm(z) can be written as

cond (pm(z)) =
p̃m(|z|)
|pm(z)|

=

(
|z|+ 1

|z − 1|

)m

For the experiment reported in Figure 1, we select z = fl (220/119). So, as m ranges from 2 to 50, the
condition number of pm(z) ranges from 104 to 10132. For each m, the value of pm(z) is computed with high
accuracy using the MPFR library. In addition, we compute the value of pm(z) using the HornerK method,
for k = 1, 2, . . . , 8, where k = 1 corresponds to the standard Horner method shown in Algorithm 9. For
each k, we report the relative error in the HornerK computation, as compared to the high accuracy
MPFR computation. For viewing purposes, if the relative error is less than µ then we replace its value by
µ, and if the relative error is greater than 1 then we replace its value by 1. The results of this experiment
are shown in Figure 1 on a log-log axis, where the x-axis corresponds to the condition number of pm(z)
and the y-axis corresponds to the relative error in the computation of pm(z). This experiment clearly
illustrates the result in Corollary 2. That is, the relative error in HornerK is on the order of µ until the
condition number is on the order of µ1−k. The tick marks on the x-axis are on the order of µ1−k, for
k = 1, . . . , 8.
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Fig. 1 Accuracy of HornerK for k = 1, 2, . . . , 8

For HornerKCmplx, we test on the expanded form of pm(z) = (z − i)
m
. Note that

pm(z) =

m∑
k=0

(
m

k

)
(−i)m−kzk,

https://github.com/trcameron/HornerK
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which allows us to compute the coefficients of pm(z) exactly for reasonably sized m. Furthermore,

p̃m(|z|) =
m∑

k=0

(
m

k

)
|z|k = (|z|+ 1)

m
,

which means that the condition number of pm(z) can be written as

cond (pm(z)) =
p̃m(|z|)
|pm(z)|

=

(
|z|+ 1

|z − i|

)m

For the experiment reported in Figure 2, we select z = fl (220/119) i. So, as m ranges from 2 to 50, the
condition number of pm(z) ranges from 104 to 10132. For each m, the value of pm(z) is computed with high
accuracy using the MPC library. In addition, we compute the value of pm(z) using the HornerKCmplx
method, for k = 1, 2, . . . , 8, where k = 1 corresponds to the standard Horner method shown in Algorithm 9.
For each k, we report the relative error in the HornerKCmplx computation, as compared to the high
accuracy MPC computation. For viewing purposes, if the relative error is less than mu then we replace
its value by µ, and if the relative error is greater than 1 then we replace its value by 1. The results of this
experiment are shown in Figure 1 on a log-log axis, where the x-axis corresponds to the condition number
of pm(z) and the y-axis corresponds to the relative error in the computation of pm(z). This experiment
clearly illustrates the result in Corollary 4. That is, the relative error in HornerKCmplx is on the order of
µ until the condition number is on the order of µ1−k. The tick marks on the x-axis are on the order of
µ1−k, for k = 1, . . . , 8.
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Fig. 2 Accuracy of HornerKCmplx for k = 1, 2, . . . , 8

4.2 Computation Time

In this section, we compare the time required for HornerK (HornerKCmplx) and MPFR (MPC) to
evaluate a random polynomial at a random value. Each time MPFR (MPC) is used, the precision of the
floating-point format must be specified. The IEEE 754 standard, see [1, Section 3.6], recommends that
for a floating-point format of 64k bits, where k ≥ 2, we use the following precision (number of bits in the
significand):

prec = 64k − 4⌊log2(64k)⌉+ 13,

where ⌊·⌉ denotes rounding to the nearest integer.
For k = 2, . . . , 8, m = 20, 40, . . . , 81920, we construct 100 real random polynomials of degree m whose

coefficients are selected from the uniform distribution U[−1,1]. We evaluate each polynomial at a random
value, selected from the uniform distribution U[−1,1], using HornerK and MPFR and we record the elapsed
time for both methods. The average time for each k is reported in Table 1.

For k = 2, . . . , 8, m = 20, 40, . . . , 81920, we construct 100 complex random polynomials of degree
m whose coefficients have real and imaginary parts selected from the uniform distribution U[−1,1]. We
evaluate each polynomial at a random value, whose real and imaginary part is selected from the uniform
distribution U[−1,1], using HornerKCmplx and MPC and we record the elapsed time for both methods.
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k/prec 2/113 3/175 4/237 5/300 6/363 7/426 8/489
HornerK 2.60E-04 4.35E-04 6.51E-04 9.86E-04 1.38E-03 1.85E-03 2.43E-03
MPFR 2.51E-03 2.62E-03 2.50E-03 2.57E-03 2.59E-03 2.62E-03 2.65E-03
Ratio 9.63 6.03 3.85 2.61 1.88 1.42 1.09

Table 1 Average elapsed time for real random polynomials.

k/prec 2/113 3/175 4/237 5/300 6/363 7/426 8/489
HornerKCmplx 7.52E-04 1.63E-03 2.96E-03 4.73E-03 6.91E-03 9.59E-03 1.25E-02

MPC 1.42E-02 1.43E-02 1.48E-02 1.56E-02 1.64E-02 1.76E-02 1.82E-02
Ratio 18.9 8.78 4.99 3.29 2.38 1.83 1.45

Table 2 Average elapsed time for complex random polynomials.

Note that the random value is normalized to avoid overflow in Horner’s method, which occurs frequently
for very high-degree polynomials. The average time for each k is reported in Table 2.

Finally, we compare the elapsed time of HornerKCmplx (for k = 2), MPC (for prec = 113), and
the CompHorner method from [3]. Note that all methods have a similar relative forward error bound,
that is, they are as accurate as if computed in twice the working precision and then rounded into the
working precision. For m = 20, 40, . . . , 81920, we construct 100 complex random polynomials of degree
m whose coefficients have real and imaginary parts selected from the uniform distribution U[−1,1]. We
evaluate each polynomial at a random value, whose real and imaginary part is selected from the uniform
distribution U[−1,1], using HornerKCmplx, CompHorner, and MPC and we record the elapsed time for all
three methods. Note that the random value is normalized to avoid overflow in Horner’s method. The
average eleapsed time for each degree m is reported in Figure 3.
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Fig. 3 Elapsed time for complex random polynomials

5 Conclusion

The HornerK and HornerKCmplx methods are effective for the accurate evaluation of a polynomial in
real and complex floating-point arithmetic, respectively. These methods are as accurate as if computed in
k-fold precision and then rounded into the work precision, see Corollary 2 and Corollary 4, respectively.
In Section 4, we illustrate the accuracy of both methods and demonstrate that they are significantly
faster than multi-precision software MPFR and MPC, respectively, for k ≤ 8. Moreover, when k = 2,
we show that HornerKCmplx is faster than the CompHorner method from [3]. In future work, we will
use HornerK and HornerKCmplx to derive efficient methods for computing the roots of a polynomial as
accurate as if computed in k-fold precision and then rounded into the working precision.
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