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PACS 45.70.-n – Granular systems
PACS 45.50.Ht – Avalanches

Abstract. - We present here experimental results on the effect of a forest of cylinder obstacles
(nails) on the stability of a granular layer over a rough incline, in a so-called “fakir plane” con-
figuration. The nail forest is found to increase the stability of the layer, the more for the densest
array, and such an effect is recovered by a simple model taking into account the additional friction
force exerted by the pillar forest onto the granular layer.

Introduction. – The flow and stability of granular
layers on inclined planes have been widely studied in the
last few years because it has a great interest from both
practical and fundamental point of view [1]. From a prac-
tical point of view, there is for instance an important need
in risk management of rocks and snow avalanches for a
better prediction of the stability and flow rules of gran-
ular media on rough inclines [2, 3]. From a fundamental
point of view, the transition from the “solid” to the “liq-
uid” state of granular media is still an open question, and
the inclined plane is a widely useful tool for investigating
the unknown rheology of such complex matter [1]. Numer-
ous studies have been done concerning the stability of such
a granular layer close to the flow transition [5–14]. A key
result is that the stability of a layer of height h on a rough
incline of slope θ is characterised by two limiting curves
in the (h, θ) parameter space corresponding respectively
to the spontaneous starting and stopping of the flow. Be-
low the stopping curve, the granular layer is stable and no
avalanche can develop. Above the starting curve, the layer
is unstable and must flow. In between the two curves, the
granular layer can be either in a “liquid” (flowing) or a
“solid” (at rest) state, and avalanches can be triggered by
small perturbations, that have to be larger when closer to
the stopping curve [5]. The key point is that tan θ, which
corresponds to the ratio of the tangential to the normal
forces, is related to the effective friction coefficient of the
granular layer with the bottom plate. Thus exploring such
stability and flow of a granular layer on an incline gives ac-

cess to the effective granular friction forces [7,15]. The two
starting and stopping curves follow the same trend with
a shift of only a few degrees in θ. For large h values, the
two curves go asymptotically to the values corresponding
to the two characteristic angles of stability of “infinite”
granular piles: the maximum angle of stability and the
angle of repose. The typical shape of the two curves are
qualitatively the same whatever the experimental config-
uration, such as the roughness of the plane (velvet clothe
[5], sand paper [13], glued beads [6,9]) or the flowing gran-
ular material (spherical beads [5, 6, 9, 13], sand [6, 13], or
even more anisotropic material such as copper [13]). These
starting and stopping curves have been recovered by dis-
crete numerical simulations with collisional and frictional
forces [8, 14] and different theoretical approaches based
on physical arguments [11,16]. The theoretical prediction
[17] for the link between the stopping height at a given
angle θ and the correlation length between flowing grains
have been put in light both experimentally [10] and with
discrete numerical simulations [14]. In this Letter, we in-
vestigate the influence of a forest of cylindrical obstacles,
experimentally a forest of nails, on the stability of a gran-
ular layer onto a so-called “fakir plane”. We present first
experimental results and then a model that allows one
to recover the essential of the experimental observations.
The findings may be of importance in risk management
for the possible stabilisation of snow avalanches or rocks
for example by a forest of trees.
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Fig. 1: (a) Sketch of the experimental setup and notations
used. (b) Sketch of the fakir plane (top view).

Experimental setup. – The experimental setup con-
sists of a plane that can be inclined by an angle θ from
the horizontal up to about 45 degrees [fig. 1(a)]. The
plane is covered by a velvet clothe which is chosen so
that the grains have a larger friction with it than be-
tween themselves. Nails of diameter D = 2mm and length
H = 35mm are hammered in the plane (perpendicular and
tips up) along a square lattice with a distance ∆ between
the nearest neighbours as shown in fig. 1(b), leading to
a so-called “fakir plane”. Two different fakir planes have
been built with ∆ = 10

√
2mm ≃ 14mm and ∆ = 5

√
2mm

≃ 7mm (∆/D = 7 and 3.5). The particles used in the
experiments are sieved glass beads (density ρ ≃ 2500 kg
m−3) of diameter dg ranging from 0.13mm to 1.2mm with
a relative dispersion in diameter of order 0.1. The cor-
responding diameter values have been measured with a
particle analyser (Morphologi G3, Malvern). The dimen-
sions of the fakir planes used in the present study, with
a length L = 300mm and width l = 180mm, are sig-
nificantly smaller than the ones used in previous studies
[5, 6, 9, 12, 13]. Nevertheless, we have checked this does
not change significantly the results in the “non-fakir” case
(∆ = ∞) and believe that the results would not be af-
fected significantly with larger dimensions in the “fakir”
cases. It is worth noting that the granular layer deposit on
the plane is never higher than the nails so that the height
H of the nails can be considered as infinite and does not
play any role here. Note also that the “fakir plane” just
refers to the used plane hammered with nails but does not
refer to any possible “fakir” state of materials laying at the
top of nails rather than on the bottom of the plate as ex-
hibited by liquids drops in an induced “hydrophobic” state
by a forest of microscopic pillars [18]. The different exper-
iments presented here correspond to the following ranges
for the cylinder/grain size ratio D/dg and the number of
grains between two nails (∆ − D)/dg: 1.5 ≲ D/dg ≲ 15
and 4 ≲ (∆−D)/dg ≲ 100.

The experimental procedure consists in pouring a
known amount of grains onto the horizontal plane of sur-
face S = L× l, and then slowly inclining it to trig succes-
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Fig. 2: Dimensionless layer thickness h/dg as a function of
the angle θ for the non-fakir plane and different grain sizes dg
with open (solid) symbols for the starting (stopping) curves:
(▽,▼) dg = 0.33mm, (◦, •) dg = 0.75mm and (△,▲) dg =
1.2mm. (– –) Best fits of starting data by eq. (1) with fitting
parameter values (▽) θ1m ≃ 27.6◦, θ2m ≃ 59.1◦ and λm ≃
0.31mm, (◦) θ1m ≃ 25.4◦, θ2m ≃ 46.9◦ and λm ≃ 0.71mm,
(△) θ1m ≃ 19.1◦, θ2m ≃ 36.4◦ and λm ≃ 1.1mm. (—) Best
fits of stopping data by eq. (1) with the fitting parameters:
(▼) θ1r ≃ 23.1◦, θ2r ≃ 58.8◦ and λr ≃ 0.31mm, (•) θ1r ≃
22.7◦, θ2r ≃ 46.3◦ and λr ≃ 0.79mm, (▲) θ1r ≃ 17.3◦, θ2r ≃
35.5◦ and λr ≃ 1.1mm.

sive avalanches that affect the entire surface, following the
procedure described in [5]. The weighting of the grains
that have flowed out of the plane after each avalanche at
an angle θ allows one to infer the thickness h of the re-
maining layer assuming a constant solid fraction ϕ of the
grain layer (ϕ ≃ 0.6). This procedure allows to reconstruct
the two curves (h, θ) that characterise the stability of the
granular layer on the inclined plane: the starting curve at
which the layer starts flowing and the stopping curve at
which the layer stops flowing.

Experimental Results. –

Inclined plane without pillars. Let us first present our
measurements for the “non-fakir” case (∆ = ∞). Fig-
ure 2 shows the starting and stopping curves in the (h,
θ) parameter space obtained for different grain diameters.
These curves can be fitted by the following equation where
the indexes m (for “motion”) and r (for “repose”) refer to
the starting and stopping cases respectively:

tan θm,r(h) = tan θ1m,r +
tan θ2m,r − tan θ1m,r

1 + h/λm,r
. (1)

In this equation θ1m,r corresponds to the characteristic
starting or stopping angle of the granular pile (layer of in-
finite height h → ∞), θ2m,r corresponds to the characteris-
tic starting or stopping angle for vanishing layer thickness
h (h → 0), and λm,r is the characteristic height of influence
of the bottom rough condition for the starting or stopping
case respectively. The indexes m, r will be dropped in
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Fig. 3: Fitting parameters of eq. (1): (a) tan θ1m,r (△,▲) and
tan θ2m,r (◦, •), and (b) λm,r as a function of the grain diameter
dg for starting (open symbols) and stopping (solid symbols)
cases. (- - -) Guidelines for the eyes. (—) Linear fit λm,r = dg.

the following to avoid too heavy notation but one have to
keep in mind that θ1, θ2 and λ are not the same for the
starting and stopping cases. Such an equation was already
used by [7,12] for example, but an exponential dependence
exp(−h/λ) instead of the (1+h/λ)−1 dependence has also
been used by [5,6,9,14]. Both functional dependences co-
incide at low h/λ values, giving a linear decrease of tan θ
as a function of h, but differ in the asymptotic relaxation
of θ towards θ1 for large h values. The fits of our data by
eq. (1) appearing in solid and dashed lines in fig. 2 for the
stopping and starting curves respectively are quite close
to the experimental data. The fitting values of the three
parameters tan θ1, tan θ2 and λ are shown in fig. 3 for all
the used grain sizes dg from 0.13 to 1.2 mm. The tan θ1
value lies in the range 0.3 ≲ tan θ1 ≲ 0.5 (17◦ ≲ θ1 ≲ 28◦)
with the starting value θ1m above the stopping one θ1r
by about 2 degrees. No systematic variation is observed
for tan θ1 with dg. By contrast, the tan θ2 value decreases
significantly with increasing dg from about 2 down to 0.7
(35◦ ≲ θ2 ≲ 65◦) with the starting value θ2m above the
stopping one θ2r by also about 2 degrees. This mono-
tonic dependence of θ2 found here for glass beads on vel-
vet clothe is different from the non-monotonic dependence
observed by [9] for glass beads on a plane with glued beads
of a given size. The difference between tan θ2 and tan θ1
here decreases which means that the effective friction co-
efficient between the grains and the rough plane is less
different than the effective friction coefficient between the
grains when the grain size is larger. The parameter λm,r

is found to increase linearly with the grain diameter dg
with no significant difference between λm (starting case)
and λr (stopping case) values. Note that the fitting value
λm,r/dg ≃ 1 we find here for our case of glass beads can
be significantly different for non-spherical particles [13].

Inclined plane with pillars. The influence of a forest of
cylindrical obstacles (pillars) on the starting and stopping
curves has been studied by performing similar experiments
on the fakir planes with two nail spacings ∆ and different
grain sizes dg. Figure 4 shows the typical effect of the nail
forest on the (a) starting and (b) stopping curves for grains
of diameter dg = 0.75mm. The (h, θ) curves obtained for
the fakir planes present the same trend evolution as the
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Fig. 4: Dimensionless layer thickness h/dg for (a) starting and
(b) stopping cases as a function of the angle θ for grains of
diameter dg = 0.75mm and for (◦, •) ∆ = ∞, (□,■) ∆ =
14mm and (♢,♦) ∆ = 7mm. (– –) Best fits of starting data by
eq. (1) with the fitting parameters: λm ≃ dg, θ2m ≃ 46.9◦ and
(◦) θ∞1m ≃ 25.4◦, (□) θ1m ≃ 26.7◦, (♢) θ1m ≃ 31.1◦. (—) Best
fits of stopping data by eq. (1) with fitting parameters values
λr ≃ dg, θ2r ≃ 46.3◦ and (•) θ∞1r ≃ 22.7◦, (■) θ1r ≃ 24.8◦,
(♦) θ1r ≃ 29.8◦.

non-fakir plane. Nevertheless, for thick enough layers at
small enough angles, a significant shift of the curves is
observed: for a given layer thickness h, a higher θ value
is measured for the fakir case with a greater shift for the
denser network (smaller spacing ∆); and for a given angle
θ, a thicker layer h is measured for a smaller ∆. This
clearly shows the stabilising effect of the nail forest. This
stabilising effect vanishes for vanishing layer thickness at
large angles where the different curves collapse. In order
to quantify the influence of the nail forest on the layer
stability, we fit the different curves for the different planes
with the same eq. (1) by keeping about constant the two
parameters θ2 and λ that are related to the influence of
the bottom wall and already extracted in the case without
obstacles. The obtained fitting curves, shown in fig. 4
by dashed (a) or solid (b) lines for the starting (a) or
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Fig. 5: Evolution of tan θ1 relative to its value without pillars
tan θ∞1 (∆ = ∞) as a function of the grain diameter dg for
the two fakir planes with nail spacing ∆ ≃ 14mm (□,■) and
7mm (♢,♦). Open and solid symbols are related respectively
to the starting and stopping cases. (—) Linear fits with slopes
0.07mm−1 for ∆ ≃ 14mm and 0.22mm−1 for ∆ ≃ 7mm.

stopping (b) data, with the only one remaining free fitting
parameter θ1 are quite good. The effect of the pillar forest
on the layer stability thus reduces to the modification of
the θ1 value. The dependence of tan θ1 for the starting
and stopping cases relative to its value tan θ∞1 without
any pillars (at ∆ = ∞) is plotted in fig. 5 for the different
grain diameters dg and the two pillar networks ∆. One can
see that the difference tan θ1(∆)− tan θ∞1 is proportional
to dg with a slope that increases for decreasing ∆, with no
significant differences between the starting (open symbols)
and stopping (solid symbols) cases.

Modelling. – Let us now model the stabilisation
played by the forest of pillars. It is known that a granu-
lar flow around one cylinder of diameter D induces a drag
force Fc on this cylinder [19, 20]. For a quasi-stationary
regime, the force exerted by the cylinder forest on the
granular flow should be opposite to the force exerted by
the granular flow on the cylinder forest, and we shall con-
sider it to be equal to the one-cylinder force times the
number of cylinders by neglecting any strong flow inter-
action between the cylinders. The stress field of the grain
contact network around a cylinder in relative motion has
not been yet investigated, but the granular flow pertur-
bation has been shown to be localised in a radial exten-
sion zone of about one cylinder diameter whatever the
grain size [20]. The one-cylinder force Fc is known to
be Fc = αρϕgDh2

s independent of velocity, where ρϕ is
the effective density of the granular medium (ϕ refers to
the grain packing fraction), hs is the vertical penetration
depth of the cylinder from the granular free surface, and
α is a dimensionless coefficient depending on geometrical
shape, and on friction and restitution coefficients of the
grain/cylinder couple [19]. Note that some weak depen-
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Fig. 6: Same data as in fig. 5 but as a function of the ratio
Ddg/∆

2. (—) Linear fit with slope 5.5.

dence of Fc with the grain diameter dg (or the size ratio
dg/D) has been observed by some authors [19, 20], which
will here be neglected in a first approximation. As for
a forest of cylinders in a square array of spacing ∆ the
number of cylinders per unit area is 1/∆2, the force per
unit surface exerted by the cylinder forest onto the gran-
ular layer is Fcf = Fc/∆

2 = αρϕgDh2
s/∆

2. If one now
considers the stability of a layer of thickness hs close to
the surface of a granular pile and far away from any bot-
tom, the stability of such a layer of length L and width l
when it just starts or stops at the characteristic starting
or stopping angle θ1 can thus be written as

0 = ρϕghslL sin θ1−µgρϕghslL cos θ1−
lL

∆2
αρϕgDh2

s cos θ1,

(2)
where µg = tan θ∞1 corresponds to the internal friction of
the granular packing and thus to the characteristic angle of
the pile for the starting or stopping avalanche flow referred
usually as the “maximum angle of stability” (θ∞1m) and
“angle of repose” (θ∞1r) of the pile. Equation (2) leads
thus simply to

tan θ1(∆) = tan θ∞1 + α
Dhs

∆2
. (3)

The additional friction term [second term in the right hand
side of eq. (3)] coming from the cylinder forest increases
thus the characteristic starting and stopping pile angles
θ1m,r.

If one now considers the configuration of a granular layer
of thickness h on a fakir plane, its stability can thus be
written as

tan θ(h,∆) = tan θ1(∆) +
tan θ2 − tan θ1(∆)

1 + h/λ
. (4)

This equation is the same as eq. (1) but with the effect
of cylinder forest encoded here in the tan θ1 term which
is a function of the cylinder spacing ∆ (and diameter D)
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given by eq. (3). The experimental results plotted in fig. 5
shows that tan θ1 − tan θ∞1 scales with dg and thus the
additional friction term in eq. (3) scales with dg. This
means that the characteristic flowing thickness hs consid-
ered in model equation (3) scales with dg and does not
correspond to the entire layer height h. By considering
thus that hs ∝ dg, model equation (3) predicts that the
difference tan θ1 − tan θ∞1 is proportional to the size ra-
tio Ddg/∆

2. The plot of our experimental data corre-
sponding to tan θ1 − tan θ∞1 as a function of Ddg/∆

2 in
fig. 6 appears about linear with the slope 5.5. This slope
value gives thus αhs ≃ 5.5dg which gives in turn hs ≃ dg
when considering the value α ≃ 5 ± 1 measured in [19].
The fact that the found characteristic flowing thickness
hs scales with the grain diameter dg is not very surprising
as granular matter is known to exhibit complex fluid be-
haviour with flow localisation [1]. In particular flows are
very localised in a thin surface layer as already visualised
by [21] for unsteady “spontaneous” avalanches or by [22]
and references herein for forced flows: in the first case,
the velocity profile exhibits an exponential decrease in the
depth with a characteristic flowing layer that corresponds
to about (2±1)dg [21] ; in the second case, the linear part
of the velocity profile related to the high granular flow is
followed by an exponential decreasing part with a charac-
teristic thickness (1.1 ± 0.1)dg [22]. Besides, the typical
flowing thickness deduced from the modelling of the pile
stabilisation by close lateral walls have also been shown to
be of about (2± 1)dg for the range of grain diameter used
in the present study where the grain size is not too small
to be hardly influenced by van der Waals interaction forces
[23, 24]. It is worth noting that hs is found here similar
to λ, as λ ≃ dg and hs ≃ dg. This means that the effec-
tive friction and thus the stability of a granular layer on
a rough plane may be related to the avalanche flow locali-
sation. The granular flow may reach the bottom plane for
low enough h and not for high enough h. This may explain
the shape of the h(θ) curves of figs. 2 and 4 where tan θ
varies strongly at low h/dg and weakly at large h/dg. Note
that this would imply that the angle of the surface granu-
lar layer θs may be different from the plane angle for large
enough granular layer h/dg as the granular flow does not
“feel” the bottom anymore: the granular layer would be
no more homogeneous along the plane but would exhibit
a streamwise negative gradient ∂h/∂x = − tan(θs − θ).
In the present study, we restrict to h/dg ≲ 20, where no
significant thickness gradient is observed along the plane.
For very large h/dg values (h/dg ≳ 20), we indeed observe
such a thickness gradient. In such a case, we believe that
eq. (4) still holds but with the angle of the surface layer
θs instead of the plane angle θ. Such a regime have al-
ready be seen between two close lateral walls for which
the pile angle is stabilised by the additional friction forces
at the walls [23] and may lead to the so-called “super sta-
ble heap” for a large enough forced flow [25]. The effect of
the pillar forest on the pile stabilisation appears to be very
similar to the effect of close lateral walls, both cases lead-

ing to an effective additional frictional term. Note that in
the explored range of parameters, we always observed an
angle θ1 smaller than θ2 but the contrary may be imag-
ined for a high enough value of the additional friction term
due to the pillar forest in eq. (3). Note also that when h
is smaller than hs, the additional stabilising term of the
cylinder forest in eq. (3) is thus overestimated, but this
term is negligible as the stabilising effect of the bottom
is much larger and governs the layer stability in such a
case. Moreover, since the measured drag force on a cylin-
der has been reported by [19, 20] to increase weakly with
decreasing grain size dg (or with the size ratio dg/D), the
variation of tan θ1(∆) − tan θ1 with dg and also Ddg/∆

2

would be perhaps weakly sublinear.
The critical granular thickness necessary to observe a

significant increase of its stability by a given pillar network
can be estimated by the cross-over between the regime
dominated by the bottom friction given by the second term
of the right hand side of eq. (4) and the regime dominated
by pillar forest friction given by the second term of the
right hand side of eq. (3). As the variations of tan θ1
are small compared to the difference tan θ2 − tan θ1, this
critical height value hc is given by

tan θ2 − tan θ1
1 + hc/λ

∼ α
Dhs

∆2
. (5)

As this happens typically when h/λ ≳ 1, and as λ ∼ dg
and hs ∼ dg, the previous equation leads approximately
to

hc

dg
∼ tan θ2 − tan θ1

α

∆2

Ddg
. (6)

This predicts that the critical dimensionless layer thick-
ness hc/dg scales linearly with the dimensionless size ra-
tio ∆2/(Ddg) for a constant ratio (tan θ2− tan θ1)/α, and
thus that the critical layer thickness hc scales linearly with
∆2/D. Note that (tan θ2 − tan θ1)/α should not be con-
stant but vary only weakly with dg as both tan θ2− tan θ1
and α decrease with increasing dg.
In this paper, we show a clear stabilising effect of an ar-

ray of pillars for a granular layer on a rough incline. The
experimental results are well fitted by a model equation
taking into account the additional friction arising from the
pillar forest when compared to the usual bottom friction
on the rough incline. The key parameter appears to be
the dimensionless size ratio ∆2/(Ddg). Additional exper-
iments would be necessary to verify the dependence on
the pillar diameter D and the model prediction that the
real flowing thickness hs should be smaller than the layer
thickness h for high enough h and should scale with the
grain diameter dg. In forthcoming experiments, we in-
tend to look at continuous feeding flows where stationary
regimes may be reached. Finally, the present study may
be useful for risk management as it predicts that a forest
of trees characterised by a typical spacing ∆ and diameter
D may stabilise some layer of discrete materials such as
rocks or even snow on a slope. It is also related to the
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possible stabilisation of soil slopes by vegetation and its
root system.
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[18] Quéré D., Nature Materials, 1 (2002) 14.
[19] Albert R., Pfeifer M. A., Barabásk A.-L. and

Schiffer P., Phys. Rev. Lett., 82 (1999) 205.
[20] Seguin A., Bertho Y., Gondret P. and Crassous J.,

Phys. Rev. Lett., 107 (2011) 048001.
[21] Courrech du Pont S., Fischer R., Gondret P.,

Perrin B. and Rabaud M., Phys. Rev. Lett., 94 (2005)
048003.

[22] Crassous J., Métayer J.-F., Richard P. and
Laroche C., J. Stat. Mech., (2008) P03009.

[23] Courrech du Pont S., Gondret P., Perrin B. and
Rabaud M., Europhys. Lett., 61 (2003) 492.

[24] Courrech du Pont S., PhD Thesis 2003.
[25] Taberlet N., Richard P.,Valance A., Losert W.,

Pasini J.M., Jenkins J.T. and Delannay R., Phys. Rev.
Lett., 91 (2003) 264301.

p-6


