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Structural identifiability of linear Port Hamiltonian systems

Silviu MEDIANUa, Laurent LEFÈVREa

aUniv. Grenoble Alpes, Grenoble INP, LCIS, 26000 Valence, France

Abstract

This paper, puts in discussion the structural identifiability of LTI Port-Controlled Hamiltonian (PCH) systems, in order
to develop a specific identification and control theory. This is due to their remarkable properties of power conservation
and stability under power preserving interconnection. The main part of the paper, presents a power based identifiability
approach, with specific propositions and definitions. It is based on the power knowledge associated with the system
ports, interconnected by a Dirac structure, for selected input signals. In a preliminary section, corresponding transfer
functions, system outputs, Markov parameters, observability conditions, port-observability or infinite Grammians are
defined for each port. Beside this, a port-identifiability concept is introduced for the identifiability analysis of one port.
It is proved that between the input and system ports, a specific model can be determined for identification analysis,
preserving in the same time the PCH structure. As examples to demonstrate the theory, a controlled LC circuit and a
DC motor are selected for the lossless and lossy cases, respectively.

Keywords: Port Hamiltonian systems, LTI systems, structural identifiability, port-observability, admissible input,
global-local identifiability, port-identifiability .

1. Introduction

In the literature, the following related notions have
been developed for identifiability analysis: theoretical or
structural identifiability, practical identifiability (being used
when experimental data is perturbed with noise) or sensi-
tivity analysis, which is used in mathematical modeling, to
evaluate the sensitivity of the output variables to param-
eter values and input variables [1]. This paper deals with
the structural identifiability of LTI PCH systems, which
form a class of models very useful for multi-physics sys-
tems modeling and control (see [2] for an extensive in-
troduction overview). The notion of structural identifi-
ability was initially defined by Bellman and Åström [3],
where the identifiability is analyzed by exploring the model
structure, so that the unknown system parameters can be
uniquely determined (globally or locally), using the input-
output measurements (see for instance [4], [5] or [6], for
application-oriented papers, or [7], [8], [9], [10] and [11]
for theoretical contributions on structural identifiability).
Some of the main structural identifiability techniques for
linear systems make use of: the Laplace transform [3],
[12],[13],[1], the power series expansion proposed by Po-
hjanpalo [14], [13], [15], [1] or the similarity transforma-
tion, proposed by Walter and Lecourtier [13], [15], [16],[1].
Another approach used for the structural identifiability, is
the direct test. The latter test, makes use directly of the
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global or local identifiability definitions, to analyze the
structural identifiability analytically [17], [18],[1] or nu-
merically [19], [1]. Although PCH systems are basically
knowledge based models which may be described using
only a limited number of physical parameters, quite sur-
prisingly enough, very few studies investigate issues related
with their identifiability, even the structural identifiabil-
ity analysis. We should however mention the noticeable
exceptions of [20], [21], [22]. The first paper [20] is dedi-
cated to the identifiability analysis of a heat exchanger, by
proposing a bond-graph model representing the heat con-
duction and convection, using the Prediction Error (PE)
identification method. The second paper [21], makes an
identifiability analysis for lossless PCH systems, using a
minimal (observable canonical form) representation, that
gives the possibility of an ARMAX description for the
system model. The third paper [22], makes a structural
identifiability analysis of lossy PCH systems, making use
of the observability-controllability concepts, introducing a
general result on observability.

The novelty element of the paper, is represented by the
introduction of a power based framework for the structural
identifiability analysis of LTI PCH systems, which makes
use of the input-power knowledge (corresponding to the
ports), by adopting specific propositions and definitions
for the main necessary concepts: transfer functions, sys-
tem outputs, Markov parameters, observability conditions,
port-observability, infinite Grammians, admissible input,
global-local identifiability, global-local port-identifiability.

Section 2 presents some necessary PCH system no-
tions, for the structural identifiability analysis. As exam-
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ples for the proposed theory, a controlled LC circuit and a
DC motor PCH models, are considered for the lossless or
lossy cases.

Section 3 introduces a power based approach for the
structural identifiability analysis of LTI PCH systems, mak-
ing use of the input-power knowledge corresponding to the
ports. First, specific propositions and definitions are pro-
posed for each port, to describe the identifiability frame-
work. Then, definitions are introduced for an admissi-
ble input, global-local identifiability, together with a port-
identifiability concept (specific to one port).

Section 4 demonstrates the power based identifiability
framework of section 3, using two PCH models (controlled
LC circuit and DC motor) from section 2.

The paper ends with a summary of the main results
and some possible directions of future development, re-
lated with PCH systems identifiability.

2. Definitions

2.1. Port Controlled Hamiltonian systems

This section introduces some basic notions and defini-
tions about PCH systems, together with two models for
the lossless or lossy cases. A PCH system (represented in
Fig. 2.1), has a Dirac interconnection structure (D) as
central element, with the main property of instantaneous
power conservation.

Figure 2.1: Port Hamiltonian system.

This means that the Dirac structure can link different
port elements, in such a way that the total power corre-
sponding to the ports, is always zero [2], [23]. The port ele-
ments connected to the Dirac structure are separated into:
energy-storage elements (S), dissipation (or resistive) ele-
ments (R) and control (or controller) port (C) elements.
We assume a power pairing:

P =< e|f >, (2.1)

defined on the bond space F× F∗, i.e. for all (f, e) ∈ F× F∗,
where F represents a linear space of flows (f), and F∗ a
dual linear space of efforts (e). For the storage port, the
flow variables are given by the rate ẋ of energy variables,
while the effort variables are given by the co-energy vari-
ables, as follows:

fS = −ẋ, eS =
∂H

∂x
, (2.2)

where H(x) =
1

2
xTQx represents the total energy (Hamil-

tonian) of the PCH system, where Q is symmetric positive
definite (i.e. Q = QT > 0).

The resistive port, with resistive port variables (fR, eR)
corresponds to the internal energy dissipation elements
and (fC , eC) are the flow and effort corresponding to the
control port. The general power-balance equation, of a
PCH system, has the following form:

eTSfS + eTRfR + eTCfC = 0. (2.3)

The explicit (input-state-output) representation of PCH
systems is:

Σ :

{
ẋ = (J −Rd)∂H∂x +Bu,

y = BT ∂H∂x ,
(2.4)

where (u, y) is the input-output pair, corresponding to
the control port (C), J is skew-symmetric (i.e. J = −JT ),
Rd is symmetric positive semi-definite (i.e. Rd = RTd ≥ 0).
Equivalently, we can write the previous state-space form
as:

Σ :

{
ẋ = Ax+Bu,

y = Cx,
(2.5)

for linear PCH systems, where A , (J −Rd)Q ∈ Rn×n,
B ∈ Rn×m and C , BTQ ∈ Rm×n.

2.2. PCH models

This section presents two PCH models represented by
a controlled LC circuit and a DC motor, for the lossless
and lossy cases.

2.2.1. Lossless PCH model

This example considers a controlled LC circuit with
two inductors (see Fig. 2.2) of magnetic energies H1(φ1)
and H2(φ2) (φ1 and φ2 being the magnetic flux linkages)
and a capacitor (C) with electric energy H3(QC) (QC be-
ing the charge).

Figure 2.2: Controlled LC circuit.

Considering a voltage source (V = u) and applying the
Kirchoff laws, it results the following input-state-output
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PCH form: Q̇C
φ̇1

φ̇2

 =

 0 1 −1
−1 0 0
1 0 0




∂H
∂QC
∂H
∂φ1
∂H
∂φ2

+

 0
1
0

u,
(2.6)

y =
∂H

∂φ1
. (2.7)

The total energy of the system is:

H(QC , φ1, φ2) =
1

2C
QC

2 +
1

2L1
φ1

2 +
1

2L2
φ2

2. (2.8)

2.2.2. Lossy PCH model

The DC motor PCH model (see Fig. 2.3), has the
following system of equations [2]:

Figure 2.3: DC motor.

[
φ̇
ṗ

]
=

([
0 −K
K 0

]
−
[
R 0
0 b

])[
φ
L
p
JE

]
+

[
1
0

]
V,

(2.9)

I =
[

1 0
] [ φ

L
p
JE

]
, (2.10)

where the following interconnected sub-systems may be
distinguished: two energy-storing elements: an ideal in-
ductor L with state energy variable φ (flux-linkage) and a
rotational inertia JE with state energy variable p (angular
momentum); two energy-dissipating elements: the electri-
cal resistor R and viscous mechanical friction b; a gyrator
K and an ideal voltage source V . The total energy of the
system is:

H(p, φ) =
1

2L
φ2 +

1

2JE
p2. (2.11)

3. Power based identifiability

This section comes with a new approach for the struc-
tural identifiability of LTI PCH systems, where the input
and powers (corresponding to the ports) are considered
known (measured), while the unknown parameters to be
identified are: the symmetric positive definite Q ∈ Rn×n
matrix, the symmetric semi-positive definite Rd ∈ Rn×n

matrix and the input B ∈ Rn×m matrix from (2.5). In
the first part, some preliminary notions are defined, use-
ful for the power based identifiability analysis. In a sec-
ond part, a detailed presentation is realized for the power
based approach, by introducing specific definitions for an
admissible input, global-local identifiability. Also, a port-
identifiability concept is proposed for the identifiability
analysis of one port.

3.1. Preliminary notions

For the results that follow, we will consider that the
continuous-time dynamic system (2.5), is initially time-
invariant, causal and smooth [24]. Using (A.1) and (A.2),
(see Appendix A) the Laplace transform of the continuous-
time powers corresponding to the ports is:

PC(s) = 1
2πj limΓ→∞

´ β+jΓ

β−jΓ Y TC (τ)U(s− τ)dτ,

PS(s) = 1
2πj limΓ→∞

´ β+jΓ

β−jΓ Y TS (τ)U(s− τ)dτ,

PR(s) = 1
2πj limΓ→∞

´ β+jΓ

β−jΓ Y TR (τ)U(s− τ)dτ,

(3.1)

where s represents the complex variable.
In (3.1) we have defined the system outputs YC(s), YS(s), YR(s)
corresponding to the ports, as follows:

YC(s) , HC(s)U(s),

YS(s) , HS(s)U(s),

YR(s) , HR(s)U(s),

(3.2)

where HC(s) ∈ Rm×m, HS(s) ∈ Rm×m, HR(s) ∈ Rm×m,
are transfer functions from the input to the ports, defined
by (see equation (A.5) in Appendix A):
HC(s) , C(sI −A)−1B,

HS(s) , −(QRdQA
−1B)T (sI −A)−1B − C(sI −A)−1B,

HR(s) , (QRdQA
−1B)T (sI −A)−1B.

(3.3)
Remark: Due to (3.3), in the results that follow in section
3, we will consider that the matrix A or (J −Rd)Q is non-
singular (non-degenerate) for the power based approach in
the lossy case, while for the lossless case (Rd = 0) this con-
dition disappears in (3.3), as we have no dissipation ele-
ments.
Using (3.3), we observe that the transfer functions corre-
sponding to the ports, satisfy the balance equation:

HC(s) = −HS(s)−HR(s). (3.4)

Remark: The previous relations prove that between the
input and ports, we can define distinct transfer functions
which satisfy the balance equation (3.4) and thus, gives the
possibility to develop a specific PCH identification frame-
work.
Multiplying (3.4) to the right with the Laplace transform
of the system input (U(s)), we can rewrite:

YC(s) = −YS(s)− YR(s). (3.5)

3



From further computations (see (A.13), (A.14) in Appendix
A), we can determine the continuous-time impulse responses
corresponding to the ports, as follows:

hC(t) , hS′′ (t); t ≥ 0,

hS(t) , hS′ (t)− hS′′ (t); t ≥ 0,

hR(t) , −hS′ (t); t ≥ 0,

(3.6)

where:

hS′ , C
′
eAtB, hS′′ , CeAtB; t ≥ 0, (3.7)

with C
′
, −(QRdQA

−1B)T . Further (see (A.11),(A.16)
and (A.17) in Appendix A), we propose the definition
of specific Markov parameter series corresponding to the
ports, as follows:

ΣC , ( CB, CAB, ... CAk−1B, ...),

ΣS , ( C
′′
B, C

′′
AB, ... C

′′
Ak−1B, ...),

ΣR , ( −C ′B, −C ′AB, ... − C ′Ak−1B, ...),

(3.8)

where C
′′

is defined as C
′′
, C

′
− C for simplicity of com-

putations. Equation (3.8) satisfies (as expected), the bal-
ance equation:

ΣC + ΣS + ΣR = (0, 0, ... 0, ...). (3.9)

The following specific proposition follows for PCH systems.

Proposition 3.1. Considering a time-invariant, causal
and smooth continuous-time PCH system (2.5), with m
inputs and outputs, it can be described by an infinite se-
quence of m×m matrices:

ΣC , ( hC1, hC2, ... hCk, ...),

ΣS , ( hS1, hS2, ... hSk, ...),

ΣR , ( hR1, hR2, ... hRk, ...),

corresponding to the control (C), storage (S) and dissipa-
tion (R) ports as in (3.8), which satisfy the balance equa-
tion (3.9). The matrices hCk, hSk, hRk with k ≥ 1, will
be denoted as the Markov parameters of the PCH system
(2.5).

Further we define the continuous-time system outputs
corresponding to the ports:

yC(t) , hC(t) ∗ u(t) = Cx(t); t ≥ 0,

yS(t) , hS(t) ∗ u(t) = C
′′
x(t); t ≥ 0,

yR(t) , hR(t) ∗ u(t) = −C ′x(t); t ≥ 0.

(3.10)

Using (3.1), the continuous-time powers corresponding to
the ports, can be defined as:

PC(t) , yC(t)Tu(t) = (Cx(t))Tu(t); t ≥ 0,

PS(t) , yS(t)Tu(t) = (C
′′
x(t))Tu(t); t ≥ 0,

PR(t) , yR(t)Tu(t) = (−C ′x(t))Tu(t); t ≥ 0.

(3.11)

Using (3.11), we can write the power balance equation:

PC(t) + PS(t) + PR(t) = 0; t ≥ 0, (3.12)

for the PCH system (2.5). From (3.10), (3.11) and (3.12),
we propose the following specific proposition for the pow-
ers of a PCH system, defined by means of the input and
outputs (corresponding to the ports).

Proposition 3.2. The powers corresponding to the con-
trol (C), storage (S) or dissipation (R) ports of a lossy
PCH system (2.5), can be defined as in (3.11), by means
of the input u and corresponding system outputs yC , yS , yR
in (3.10), which satisfy the power balance equation (3.12).

The proof of previous proposition can be found in Ap-
pendix A. In the following proposition, we present an ex-
tension of the observability concept [22] for the power
based identifiability approach.

Proposition 3.3. Consider the linear lossy PCH system
(2.5), defining A

′′
, (J +Rd)Q,B

′′
, (RdQA

−1B):
a) If (2.5) is observable for the control (C), storage (S)
and dissipation (R) ports, then detQ 6= 0 and the pairs

(A
′′
, B), (A

′′
, B +B

′′
), (A

′′
, B
′′
) are controllable;

b) Assume detQ 6= 0, then (2.5) is observable for the con-

trol (C), storage (S) and dissipation (R) ports, if (A
′′
, B),

(A
′′
, B +B

′′
), (A

′′
, B
′′
) are controllable.

The proof of this proposition can be found in Ap-
pendix A. From the previous proposition we adopt a port-
observability definition, for the observability analysis of
one port (Pα) where α ∈ {C,S,R}.

Definition 3.4. Port-observability
The port Pα of a lossy PCH system (2.5), is called ob-

servable on [t0, t1] if for all inputs u(t) and outputs yα(t),
t ∈ [t0, t1], the state x(t0) = x0 can be uniquely determined.
Otherwise the port Pα is called unobservable.

Further we define infinite Grammians corresponding to
the PCH system ports:

P
′

C(t) ,
´∞

0
eAτBBT eA

T τdτ,

P
′

C(t) = P
′

S(t) = P
′

R(t),

OC(t) ,
´∞

0
eA

T τCTCeAτdτ,

OS(t) ,
´∞

0
eA

T τCT
′′
C
′′
eAτdτ,

OR(t) ,
´∞

0
eA

T τCT
′
C
′
eAτdτ.

(3.13)

Next we propose the following proposition, for the Lya-
punov equations of PCH systems.

Proposition 3.5. Considering the stable, continuous-time
PCH system (2.5), the corresponding infinite reachability
Grammians associated with the control (C), storage (S)
and dissipation (R) ports, satisfy the continuous-time Lya-
punov equations:

AP
′

C + P
′

CA
T +BBT = 0,

AP
′

S + P
′

SA
T +BBT = 0,

AP
′

R + P
′

RA
T +BBT = 0,
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while the infinite observability Grammians OC , OS , OR sat-
isfy: 

ATOC +OCA+ CTC = 0,

ATOS +OSA+ CT
′′
C
′′

= 0,

ATOR +ORA+ CT
′
C
′

= 0.

The proof corresponding to the previous proposition,
can be found in appendix A.

3.2. Definitions

This section investigates the global and local structural
identifiability of LTI PCH systems using the results of
section 3.1, considering known (measured) input-powers
through the ports. Beside this, a new port-identifiability
concept is proposed, for the identifiability analysis of one
port. The power based identifiability analysis, is realized
starting from the observation that the powers correspond-
ing to the ports, are related with the unknown parameters
of the dynamic system.
Remark: The main idea of known (measured) input-powers,
proposed for the power based approach, can be analyzed also
in the nonlinear case, where the model structure is more
complex but the interconnection structure is still a Dirac
one.

First we assume the observability and controllability
as necessary conditions for identifiability, before perform-
ing this approach [25],[1]. These conditions can be checked
for (2.5), using for instance: Proposition 3.3 for observabil-
ity and the rank condition rank[B,AB, ..., An−1B] = n for
controllability. Using the usual input-output pairs of con-
jugate variables (efforts and flows), the powers associated
with each port of a PCH system, may be explicitly deter-
mined. These powers, are the variables which can effec-
tively result from measurements and this justifies specific
definitions for PCH systems.

The semi-positive definite dissipation matrix Rd in-

cludes (at most)
n2 + n

2
unknown real parameters, the

positive definite Q matrix includes
n2 + n

2
(at most) un-

known real parameters and the input matrix B (at most)
n×m unknown real parameters. The skew-symmetric in-
terconnection matrix J is generally known in the linear
case and built only with elements in {−1, 0, 1} or any other
non parametric finite set of numbers.

Remark: The powers corresponding to the storage,
control and dissipation ports, can be effectively determined
in practice from the measurement of the flows and efforts
components (fS , eS , fC , eC , fR, eR), which represent phys-
ical measurable values. In case of practical difficulties,
the input-power measurements may be omitted for one of
the PCH system ports by using the power balance equation
(2.3), if the rest of powers are already known (measured).

Now we will perform the direct test identifiability anal-
ysis from [17] and consider two independent sets of param-
eters (θS1 and θS2) for the storage port (S) of the PCH

system (2.5). Using (3.1) and (3.2), the corresponding
powers are:

PS1(s) =
1

2πj
lim

Γ→∞

ˆ β+jΓ

β−jΓ
(HS1(τ, θS1)U(τ))TU(s− τ)dτ,

(3.14)

PS2(s) =
1

2πj
lim

Γ→∞

ˆ β+jΓ

β−jΓ
(HS2(τ, θS2)U(τ))TU(s− τ)dτ.

(3.15)
Since the powers PS1 and PS2 are considered known (mea-
sured) variables, using the direct test identifiability anal-
ysis from [17], we assume that PS1(s, θS1) = PS2(s, θS2),
which is equivalent with:

HS1(τ, θS1) = HS2(τ, θS2), (3.16)

where τ is the complex variable. Further we can write:
∑l1,1
k=0 θS1c1,1,k

τk−n∑n−1
p=0 θS1dpτ

p−n+1
...

∑l1,m
k=0 θS1c1,m,k

τk−n∑n−1
p=0 θS1dpτ

p−n+1

... ...∑lm,1
k=0 θS1cm,1,k

τk−n∑n−1
p=0 θS1dpτ

p−n+1
...

∑lm,m
k=0 θS1cm,m,k

τk−n∑n−1
p=0 θS1dpτ

p−n+1

 =

(3.17)
∑l1,1
k=0 θS2c1,1,k

τk−n∑n−1
p=0 θS2dpτ

p−n+1
...

∑l1,m
k=0 θS2c1,m,k

τk−n∑n−1
p=0 θS2dpτ

p−n+1

... ...∑lm,1
k=0 θP2cm,1,k

τk−n∑n−1
p=0 θS2dpτ

p−n+1
...

∑lm,m
k=0 θS2cm,m,k

τk−n∑n−1
p=0 θS2dpτ

p−n+1

 ,
using model representations of the form∑li,j

k=0 θSci,j,kτ
k−n∑n−1

p=0 θSdpτ
p−n + 1

, where the numerator and denomina-

tor are coprime polynomials, with i ∈ [1,m], j ∈ [1,m],
li,j ∈ [0, n], k ∈ [0, li,j ], p ∈ [0, n− 1]. From straight calcu-
lus, it results that (3.17) holds for:

θS1ci,j,k = θS2ci,j,k , θS1dp = θS2dp , (3.18)

which is equivalent to θS1 = θS2. Applying the direct test
identifiability analysis from [17], for two independent sets
of parameters (θC1 and θC2) on the control port (C ) using
(3.1) and (3.2), the corresponding powers are:

PC1(s) =
1

2πj
lim

Γ→∞

ˆ β+jΓ

β−jΓ
(HC1(τ, θC1)U(τ))TU(s− τ)dτ,

(3.19)

PC2(s) =
1

2πj
lim

Γ→∞

ˆ β+jΓ

β−jΓ
(HC2(τ, θC2)U(τ))TU(s− τ)dτ.

(3.20)
As PC1 and PC2 are considered known(measured) vari-
ables, we assume that PC1(s, θC1) = PC2(s, θC2), which is
equivalent to:

HC1(τ, θC1) = HC2(τ, θC2), (3.21)
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where τ is the complex variable. Also we can write (3.21)
as:

∑l1,1
k=0 θC1c1,1,k

τk−n∑n−1
p=0 θC1dpτ

p−n+1
...

∑l1,m
k=0 θC1c1,m,k

τk−n∑n−1
p=0 θC1dpτ

p−n+1

... ...∑lm,1
k=0 θC1cm,1,k

τk−n∑n−1
p=0 θC1dpτ

p−n+1
...

∑lm,m
k=0 θC1cm,m,k

τk−n∑n−1
p=0 θC1dpτ

p−n+1

 =

(3.22)
∑l1,1
k=0 θC2c1,1,k

τk−n∑n−1
p=0 θC2dpτ

p−n+1
...

∑l1,m
k=0 θC2c1,m,k

τk−n∑n−1
p=0 θC2dpτ

p−n+1

... ...∑lm,1
k=0 θC2cm,1,k

τk−n∑n−1
p=0 θC2dpτ

p−n+1
...

∑lm,m
k=0 θC2cm,m,k

τk−n∑n−1
p=0 θC2dpτ

p−n+1

 ,
using transfer functions representations of the form∑li,j

k=0 θCci,j,kτ
k−n∑n−1

p=0 θCdpτ
p−n + 1

, where the numerator and denomina-

tor are coprime polynomials, with i ∈ [1,m], j ∈ [1,m],
li,j ∈ [0, n], k ∈ [0, li,j ], p ∈ [0, n− 1]. From direct calcu-
lus, it results that (3.22) holds for:

θC1ci,j,k = θC2ci,j,k , θC1dp = θC2dp , (3.23)

or more general θC1 = θC2. Considering also the direct
test identifiability analysis from [17], for two independent
sets of parameters (θR1 and θR2) on the dissipation port
(R) using (3.1) and (3.2), the corresponding powers are:

PR1(s) =
1

2πj
lim

Γ→∞

ˆ β+jΓ

β−jΓ
(HR1(τ, θR1)U(τ))TU(s− τ)dτ,

(3.24)

PR2(s) =
1

2πj
lim

Γ→∞

ˆ β+jΓ

β−jΓ
(HR2(τ, θR2)U(τ))TU(s− τ)dτ.

(3.25)
As PR1 and PR2 are assumed known(measured) variables,
using the direct test identifiability analysis
PR1(s, θR1) = PR2(s, θR2), which is equivalent to:

HR1(τ, θR1) = HR2(τ, θR2), (3.26)

where τ is the complex variable. Further we can develop
(3.26) as:

∑l1,1
k=0 θR1c1,1,k

τk−n∑n−1
p=0 θR1dpτ

p−n+1
...

∑l1,m
k=0 θR1c1,m,k

τk−n∑n−1
p=0 θR1dpτ

p−n+1

... ...∑lm,1
k=0 θR1cm,1,k

τk−n∑n−1
p=0 θR1dpτ

p−n+1
...

∑lm,m
k=0 θR1cm,m,k

τk−n∑n−1
p=0 θR1dpτ

p−n+1

 =

(3.27)
∑l1,1
k=0 θR2c1,1,k

τk−n∑n−1
p=0 θR2dpτ

p−n+1
...

∑l1,m
k=0 θR2c1,m,k

τk−n∑n−1
p=0 θR2dpτ

p−n+1

... ...∑lm,1
k=0 θR2cm,1,k

τk−n∑n−1
p=0 θR2dpτ

p−n+1
...

∑lm,m
k=0 θR2cm,m,k

τk−n∑n−1
p=0 θR2dpτ

p−n+1

 ,
using model representations of the form∑li,j

k=0 θRci,j,kτ
k−n∑n−1

p=0 θRdpτ
p−n + 1

, where the numerator and denomina-

tor are coprime polynomials, with i ∈ [1,m], j ∈ [1,m],
li,j ∈ [0, n], k ∈ [0, li,j ], p ∈ [0, n− 1].

From direct relations, it results that (3.27) holds for:

θR1ci,j,k = θR2ci,j,k , θR1dp = θR2dp , (3.28)

or equivalently θR1 = θR2.
Remark: The unknown parameters of the PCH system

(2.5) from the dissipation matrix Rd, the positive definite
Q matrix and the input matrix B, can be determined from
the unknown sets of parameters θS , θC , θR, corresponding
to the storage (S), control (C) and dissipation (R) ports,
as the transfer functions HS(s), HC(s), HR(s) in (3.3), are
directly related with Rd, Q,B.
Using Proposition 3.2, we can write more generally the
powers as a function of the input (u) and unknown system
parameters (θ):

PS = PS(u, θS), PC = PC(u, θC), PR = PR(u, θR), (3.29)

where θS , θC , θR ∈ Θ represent the unknown parameters
corresponding to the storage (S), control (C) or dissipation
(R) port transfer functions (HS(s), HC(s), HR(s)) models,
defined in (3.3). For an admissible input u [25],[17], [1]
necessary for system identification of PCH systems, we
introduce the following definition.

Definition 3.6. Admissible input
The input u applied for system identification to a lossy

PCH system represented in state-space form in (2.5), is
said to be admissible, if the data sets:

ζNS , {u(1), PS(1), ..., u(N), PS(N)},
ζNC , {u(1), PC(1), ..., u(N), PC(N)},
ζNR , {u(1), PR(1), ..., u(N), PR(N)},

of input-power measurements corresponding to the storage
(S), control (C) and dissipation (R) ports, are informative
in order to distinguish between different PCH models.

Remark: The parameter N in Definition 3.6, repre-
sents the length of the data sets ζNS , ζ

N
C , ζ

N
R , which result

from input-power measurements on the storage (S), con-
trol (C) and dissipation (R) ports. The data sets in the
previous definition are called informative, if the estimated
models from system identification: accurately approximate
the real (analytical) PCH models and we can differentiate
between them.

Using the previous results, we will now formulate spe-
cific definitions for the global-local identifiability of PCH
systems.

Definition 3.7. Global identifiability
A lossy PCH system represented in state-space form in

(2.5), is said to be globally identifiable, if for any admissi-
ble input u and two sets of parameters θS1, θS2, θC1, θC2,
θR1, θR2 in the parameter space Θ, corresponding to the
storage (S), control (C) and dissipation (R) ports, the fol-
lowing relations:

PS(u, θS1) = PS(u, θS2),

PC(u, θC1) = PC(u, θC2),

PR(u, θR1) = PR(u, θR2),
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hold between the powers, if and only if
θS1 = θS2, θC1 = θC2, θR1 = θR2.

Definition 3.8. Local identifiability
A lossy PCH system represented in state-space form in

(2.5), is said to be locally identifiable, if for any admissible
input u and any θS , θC , θR within an open neighborhood of
some points θ∗S , θ

∗
C , θ

∗
R in the parameter space Θ, corre-

sponding to the storage (S), control (C) and
dissipation (R) ports, the following relations:

PS(u, θS1) = PS(u, θS2),

PC(u, θC1) = PC(u, θC2),

PR(u, θR1) = PR(u, θR2),

hold between the powers, if and only if
θS1 = θS2, θC1 = θC2, θR1 = θR2.

Remark: θS1, θS2, θC1, θC2 and θR1, θR2 represent
two unknown sets of parameters from the parameter space
Θ, corresponding to the storage (PS), control (PC) or dis-
sipation (PR) powers, determined from input-power mea-
surements.
More appropriate definitions can be formulated further
only for a particular port of a PCH system, introducing a
new concept of port-identifiability.

Definition 3.9. Global port-identifiability
The port Pα of a lossy PCH system represented in

state-space form in (2.5), is said to be globally identifiable,
if for any admissible input u and two sets of parameters
θα1, θα2 in the parameter space Θ, corresponding to the
port Pα, the following relation: Pα(u, θα1) = Pα(u, θα2)
holds between the powers, if and only if θα1 = θα2.

Definition 3.10. Local port-identifiability
The port Pα of a lossy PCH system represented in

state-space form in (2.5), is said to be locally identifiable,
if for any admissible input u and any θα within an open
neighborhood of some point θ∗α in the parameter space Θ,
corresponding to the port Pα, the following relation:
Pα(u, θα1) = Pα(u, θα2) holds between the powers, if and
only if θα1 = θα2.

θα1, θα2 represent two unknown sets of parameters from
the parameter space Θ, corresponding to one of the PCH
system (2.5) ports with power Pα, which result from input-
power measurements.

Remark: As compared to the classical identifica-
tion approach which describes a dynamic system using only
input-output measurements (which are in correspondence
to the control port of PCH systems), the power based ap-
proach has the following advantages: the analysis can be
realized using input-power measurements from the control
(C), storage (S) or dissipation (R) ports;due to the Dirac
interconnection structure (D), the identifiability analysis
can be splitted in sub-parts corresponding to the system
ports; the parameters corresponding to one port can be
identified without performing the analysis on all ports; the

power based identifiability can be an improved solution (see
the DC motor example) as compared to the classical one
[17] (which is in correspondence to the control port of PCH
systems), as it offers identifiability results of the unknown
parameters also on the storage and dissipation ports (for
instance: when some of the system parameters are not
properly identifiable for the control port, but identifiable
for the storage or dissipation ports; in case of autonomous
systems). A disadvantage of the proposed power based ap-
proach, is that it requires advanced mathematical skills for
PCH systems with a higher complexity and computer alge-
bra tools may be necessary.

4. Structural identifiability examples

This section presents some structural identifiability ex-
amples for the theoretical results of sections 3, using the
power based approach. As PCH models, the controlled
LC circuit and DC motor from section 2, are used for the
lossless and lossy cases.

4.1. Lossless PCH example

For the controlled LC circuit PCH model, the necessary
conditions of controllability and observability are satisfied
for the power based structural identifiability analysis.

Remark: The lossless form represents a particular
case of lossy PCH systems with Rd = 0. From a practi-
cal point of view, the powers of the ports can be deter-
mined from the measurement of the flows and efforts com-
ponents: the voltage source (fC = V ), the current on the

first inductor (eC =
φ1

L1
) for the control port; the current

on the capacitor Q̇C , the voltages on the inductors φ̇1, φ̇2

(fS = −(Q̇C , φ̇1, φ̇2)T ), the voltage on the capacitor
QC
C

and the currents on the inductors
φ1

L1
,
φ2

L2

(eS = (
QC
C
,
φ1

L1
,
φ2

L2
)T ), for the storage port.

Computing the transfer functions HC(s), HS(s) corre-
sponding to the control and storage ports, we obtain:

HC(s) =
1
L1

(s−1+ 1
CL2

s−3)

1+ 1
C ( 1

L1 + 1
L2

)s−2 ,

HS(s) = −
1
L1

(s−1+ 1
CL2

s−3)

1+ 1
C ( 1

L1 + 1
L2

)s−2 ,
(4.1)

where the conditions L1 6= 0, C 6= 0, L2 6= 0 need to be sat-
isfied before the identifiability analysis. Using the global
identifiability Definition 3.7 with (3.22), (3.23) and (3.17),
(3.18) for the control and storage ports, it results:{

1
L11

= 1
L12

, 1
L11C1L21

= 1
L12C2L22

,
1
C1

( 1
L11

+ 1
L21

) = 1
C2

( 1
L12

+ 1
L22

),
(4.2)

{
1
L11

= 1
L12

, 1
L11C1L21

= 1
L12C2L22

,
1
C1

( 1
L11

+ 1
L21

) = 1
C2

( 1
L12

+ 1
L22

).
(4.3)
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Using the first two relations from (4.2) or (4.3), it results

that L11 = L12,
1

C1L21
=

1

C2L22
and replacing in the third

relation of (4.2) or (4.3), we get:

1

C1L11
=

1

C2L12
. (4.4)

Then the unknown parameters L1, C, L2, result as global
identifiable for the proposed definition. Applying Defini-
tion 3.9 for the port-identifiability analysis, it results also
from similar relations with the previous results, that the
unknown parameters L1, C, L2 are global identifiable for
the control or storage ports, taken separately. The ex-
ponential value of matrix A (eAt), can be determined as
follows:

eAt = f3(t)A2 + f2(t)A+ f1(t)I3, (4.5)

with:
f1(t) = eλ1t + CL1L2

L1+L2
eλ3t,

f2(t) = − j2
√

CL1L2

L1+L2
eλ2t − 1

2
CL1L2

L1+L2
eλ3t,

f3(t) = j
2

√
CL1L2

L1+L2
eλ2t − 1

2
CL1L2

L1+L2
eλ3t,

(4.6)

where λ1, λ2, λ3 (λ1 = 0, λ2,3 = ±j
√
L1 + L2

CL1L2
) represent

the eigenvalues of matrix A, I3 is the identity matrix and
j is the imaginary unit of a complex number. From (4.5)
and (4.6), we observe that eAt 9 0 for t→∞, as the LC
circuit is marginally stable (the real part of λ1,2,3 is zero)
in this case and thus, the Lyapunov equations defined in
Proposition 3.5 for the infinite Grammians are not satis-
fied.

Remark: For the computation of the matrix expo-
nential eAt, we have used the following formula [24]:
eAt = fn(t)An−1 + fn−1(t)An−2...+ f2(t)A+ f1(t)In,
with [f1(t)...fn(t)] = [η1(t), ...ηn(t)]V (λ1, ..., λn)−1 where:
n is the dimension of the PCH system (2.5), λi(i = 1, ..., n)
represent the eigenvalues of matrix A, ηi(t) = eλit,
(i = 1, ..., n), V (λ1, ..., λn) is a Vandermonde matrix and
In the identity matrix.

4.2. Lossy PCH example

For the DC motor model, the PCH system satisfies the
necessary conditions of observability and controlability, for
the identifiability analysis in the case with K = 1, while
in the case with K = 0, the system is not observable or
controllable. The analysis will be thus considered for the
case with K = 1.

Remark: In practice the powers of the ports, can be
determined from the measurement of the flows and efforts
components: the voltage source (fC = V ) and the current

on the inductor (eC =
φ

L
) for the control port; the voltage

on the inductor φ̇, the rotational torque ṗ (fS = −(φ̇, ṗ)T ),

the current on the inductor
φ

L
, the rotational speed

p

JE

(eS = (
φ

L
,
p

JE
)T ), for the storage port; the current on the

inductor
φ

L
, the rotational speed

p

JE
(eR = (

φ

L
,
p

JE
)T ), the

voltage on the resistor R
φ

L
and the mechanical friction

force b
p

JE
(fR = −RdeR), for the dissipation port.

Computing the transfer functions HC(s),HS(s),HR(s)
corresponding to the system ports using (3.3), we obtain:

HC(s) =
1
L (s−1+bs−2)

1+(R+b)s−1+(Rb+1)s−2 ,

HS(s) =
1

Rb+1 [(Rb
L2−

Rb+1
L )s−1+(Rb

2

L2 + b

J2
E

− (Rb+1)
L b)s−2]

1+(R+b)s−1+(Rb+1)s−2 ,

HR(s) = −
1

Rb+1 [Rb
L2 s

−1+(Rb
2

L2 + b

J2
E

)s−2]

1+(R+b)s−1+(Rb+1)s−2 .

(4.7)
An initial condition before applying the identifiability anal-
ysis of this section, is that Rb 6= −1, L 6= 0, JE 6= 0.

Applying the global identifiability Definition 3.7 using
(3.22), (3.23), (3.17), (3.18), (3.27) and (3.28) for the con-
trol, storage and dissipation ports, we can write:{

1
L1

= 1
L2
, b1L1

= b2
L2
, R1 + b1 = R2 + b2,

R1b1 + 1 = R2b2 + 1,
(4.8)



1
R1b1+1 (R1b1

L2
1
− R1b1+1

L1
) = 1

R2b2+1 (R2b2
L2

2
− R2b2+1

L2
),

1
R1b1+1 (

R1b
2
1

L2
1

+ b1
J2
E1
− (R1b1+1)

L1
b1) =

1
R2b2+1 (

R2b
2
2

L2
2

+ b2
J2
E2
− (R2b2+1)

L2
b2),

R1 + b1 = R2 + b2, R1b1 + 1 = R2b2 + 1,

(4.9)
R1b1

(R1b1+1)L2
1

= R2b2
(R2b2+1)L2

2
,

1
R1b1+1 (

R1b
2
1

L2
1

+ b1
J2
E1

) = 1
R2b2+1 (

R2b
2
2

L2
2

+ b2
J2
E2

),

R1 + b1 = R2 + b2, R1b1 + 1 = R2b2 + 1.

(4.10)

Using (4.8) it results L1 = L2, b1 = b2, R1 = R2 and re-
placing in the second relation of (4.9), we obtain:

b1
(R1b1 + 1)J2

E1

=
b1

(R1b1 + 1)J2
E2

. (4.11)

Thus the unknown parameters (R, b, L, JE) result as global
identifiable for Definition 3.7. Further we perform the
global port-identifiability analysis of the DC motor accord-
ing to Definition 3.9, for each port separately. Using (3.23)
and (4.8) for the control port, it results from calculus that
L1 = L2, b1 = b2, R1 = R2, which proves that the parame-
ters R, b, L are global identifiable.
Remark: The parameter JE cannot be analyzed for iden-
tifiability using the control port, for the DC motor. Only
the storage or dissipation ports, can determine if JE is
identifiable.
For the storage port, using the last two relations of (4.9),
we can write equivalently:

R2(b2 − b1) = b1(b2 − b1), (4.12)
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which holds for b1 = b2. Further using R1 + b1 = R2 + b1,
it results that R1 = R2. From the first relation of (4.9), it
results:

R1b1(
1

L1
− 1

L2
)(

1

L1
+

1

L2
) = (R1b1 + 1)(

1

L1
− 1

L2
),

(4.13)
which is satisfied for L1 = L2. Using the second relation
of (4.9), it results that JE1 = JE2 from:

b1
(R1b1 + 1)J2

E1

=
b1

(R1b1 + 1)J2
E2

. (4.14)

Thus the parameters R, b, L, JE are global identifiable for
the storage port according to definition Definition 3.9. In
the case of the dissipation port, using the last two relations
of (4.10), similarly to the storage port we can determine
that the parameters R, b are global identifiable. Using the
first relation of (4.10):

R1b1
(R1b1 + 1)L2

1

=
R1b1

(R1b1 + 1)L2
2

, (4.15)

from which L1 = L2. Replacing in the second relation of
(4.10), we can write:

b1
(R1b1 + 1)J2

E1

=
b1

(R1b1 + 1)J2
E2

, (4.16)

from which JE is global identifiable. Thus the parameters
R, b, L, JE are global identifiable for the dissipation port.
Computing the exponential of A (eAt), we can write:

eAt = f2(t)A+ f1(t)I2, (4.17)

for:f1(t) = 1
2e
λ1t( R+b√

(R−b)2−4
+ 1) + eλ2t√

(R−b)2−4
,

f2(t) = 1
2e
λ1t( −(R+b)√

(R−b)2−4
+ 1)− eλ2t√

(R−b)2−4
,

(4.18)

where λ1, λ2 (λ1,2 = −R+ b

2
± 1

2

√
(R− b)2 − 4) are the

eigenvalues of matrix A, R 6= b± 2 and I2 is the identity
matrix. As R > 0, b > 0 for the DC motor, the stability
condition (λ1,2 have negative real part) is always satis-
fied. Using (4.17) and (4.18), we observe that for t→∞,
eAt → 0 and the Lyapunov equations from Proposition 3.5
are satisfied for the infinite Grammians, on each port. In
the same manner with the global identifiability, the iden-
tifiability analysis can be realized also for the local identi-
fiability given by Definition 3.8 and Definition 3.10.

5. Conclusions

The aim of the current paper, was the structural iden-
tifiability analysis of LTI PCH systems, in view of their
utility for the development of necessary theoretical no-
tions. A power based identifiability approach was pro-
posed, which makes use of the powers knowledge corre-
sponding to the system ports, by defining a specific iden-
tification framework. It was proved that for the system

ports, specific transfer functions, system outputs, Markov
parameters, observability conditions, port-observability or
infinite Grammians can be defined. Beside this, a port-
identifiability concept was introduced, corresponding to
one port of the PCH system. The last part of the pa-
per, came to present a set of examples to prove the pro-
posed theory of section 3, using two PCH models (con-
trolled LC circuit and DC motor), for the lossless or lossy
cases. The power based approach of section 3, opens new
questions and possibilities of study, for identifiability or
control purpose. The results of the current paper may be
extended to: the analysis of the power-based identification
framework with different scenarios of powers knowledge or
new identifiability methodologies; the development of dif-
ferent structural identifiability techniques using: the flows
and efforts, the Hamiltonian, the Markov parameters or
others; the identifiability analysis of LTI PCH systems in
the presence of a perturbation model; the development
of proper identification algorithms in continuous or dis-
crete time (power based subspace, recursive or other tech-
niques); the selection of appropriate control solutions like
IDA-PBC control, optimal control, MPC control, based on
the identified models.

6. Appendix

Proof: Proposition 3.1
The initial continuous-time powers corresponding to the
PCH system (2.5) ports, can be also written as follows [2]:

PC(t) = eTCfC = (Qx)TBu,

PS(t) = eTSfS = (Qx)TRd(Qx)− (Qx)TBu,

PR(t) = eTRfR = −(Qx)TRd(Qx),

(A.1)

where:{
eC = BTQx, fC = u, eS = Qx, fS = −ẋ,
eR = Qx, fR = −RdQx,

(A.2)

are the efforts and flows corresponding to the control (C),
storage (S) or dissipation ports (R). Converting to the
Laplace transform representation the powers from (A.1)
using (A.2), we get:
PC(s) = 1

2πj limΓ→∞
´ β+jΓ

β−jΓ (HC(τ)U(τ))TU(s− τ)dτ,

PS(s) = 1
2πj limΓ→∞

´ β+jΓ

β−jΓ (HS(τ)U(τ))TU(s− τ)dτ,

PR(s) = 1
2πj limΓ→∞

´ β+jΓ

β−jΓ (HR(τ)U(τ))TU(s− τ)dτ,

(A.3)
where the transfer functions corresponding to the ports
are:
HC(τ) = C(τI −A)−1B,

HS(τ) = BT ((s− τ)I −A)−TQRdQ(τI −A)−1B

−C(τI −A)−1B,

HR(τ) = −BT ((s− τ)I −A)−TQRdQ(τI −A)−1B.

(A.4)
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Remark: In (A.3) we have used the Laplace transform for
the multiplication of two continuous-time functions f(t), g(t):

L{f(t)g(t)}(s) =
1

2πj
F (s) ∗G(s) =

1

2πj
lim

Γ→∞

ˆ β+jΓ

β−jΓ
F (τ)G(s− τ)dτ, which makes use of the

convolution product, where f(t) is one of the port system
outputs yTC(t), yTS (t), yTR(t) and g(t) = u(t). The integra-
tion is done along the vertical line Re(τ) = β, that lies
entirely within the region of convergence of F .
Replacing τ = s in (A.4), in order to determine the transfer
functions HC(s), HS(s), HR(s) corresponding to the pow-
ers from (A.3), it results:

HC(s) , C(sI −A)−1B,

HS(s) , −(QRdQA
−1B)T (sI −A)−1B

−C(sI −A)−1B,

HR(s) , (QRdQA
−1B)T (sI −A)−1B.

(A.5)

By defining corresponding system outputs for each port:
YC(τ) , HC(τ)U(τ),

YS(τ) , HS(τ)U(τ),

YR(τ) , HR(τ)U(τ),

(A.6)

we can write (A.3) equivalently as:
PC(s) = 1

2πj limΓ→∞
´ β+jΓ

β−jΓ (YC(τ))TU(s− τ)dτ,

PS(s) = 1
2πj limΓ→∞

´ β+jΓ

β−jΓ (YS(τ))TU(s− τ)dτ,

PR(s) = 1
2πj limΓ→∞

´ β+jΓ

β−jΓ (YR(τ))TU(s− τ)dτ.

(A.7)
Expanding the transfer functions from (A.5) in Laurent
series for large s (in the neighborhood of∞), we can write:

HC(s) = CBs−1 + CABs−2 + ...+ CAk−1Bs−k + ...,

HS(s) = C
′
Bs−1 + C

′
ABs−2 + ...+ C

′
Ak−1Bs−k + ...

−(CBs−1 + CABs−2 + ...+ CAk−1Bs−k + ...),

HR(s) = −(C
′
Bs−1 + C

′
ABs−2 + ...

+C
′
Ak−1Bs−k + ...),

(A.8)

where C
′
, −(QRdQA

−1B)T . Equivalently we can write
(A.8) as:

HC(s) = CBs−1 + CABs−2 + ...+ CAk−1Bs−k + ...,

HS(s) = C
′′
Bs−1 + C

′′
ABs−2 + ...

+C
′′
Ak−1Bs−k + ...,

HR(s) = −(C
′
Bs−1 + C

′
ABs−2 + ...

+C
′
Ak−1Bs−k + ...),

(A.9)

where C
′′
, C

′
− C. Using the formulas L−1{1

s
} = 1(t),

L−1{ n!

sn+1
} = tn(n ≥ 1) for the inverse Laplace transform,

we obtain the following continuous-time forms for the in-
pulse responses corresponding to the transfer functions

HC(s), HS(s), HR(s):
hC(t) = CB + CAB t

1! + ...+ CAk−1B tk−1

(k−1)! + ...,

hS(t) = C
′′
B + C

′′
AB t

1! + ...+ C
′′
Ak−1B tk−1

(k−1)! + ...,

hR(t) = −(C
′
B + C

′
AB t

1! + ...+ C
′
Ak−1B tk−1

(k−1)! + ...).

(A.10)
Equivalently we can write (A.10) as:

hC(t) , hC1 + hC2
t
1! + ...+ hCk

tk−1

(k−1)! + ...,

hS(t) , hS1 + hS2
t
1! + ...+ hSk

tk−1

(k−1)! + ...,

hR(t) , hR1 + hR2
t
1! + ...+ hRk

tk−1

(k−1)! + ...,

(A.11)

where: 
hCk = CAk−1B, k ≥ 1,

hSk = C
′′
Ak−1B, k ≥ 1,

hRk = −C ′Ak−1B, k ≥ 1.

(A.12)

We denote hCk, hSk, hRk with k ≥ 1, as the Markov param-
eters of the PCH system (2.5). We can also write (A.10)
as: 

hC(t) = CeAtB; t ≥ 0,

hS(t) = hS′ (t)− hS′′ (t); t ≥ 0,

hR(t) = −C ′eAt; t ≥ 0,

(A.13)

using the matrix exponential series of eAt, where:

hS′ (t) , C
′
eAtB, hS′′ (t) , CeAtB; t ≥ 0. (A.14)

We observe also in (A.13) that hC(t), hS(t), hR(t) satisfy
the balance equation:

hC(t) + hS(t) + hR(t) = 0; t ≥ 0, (A.15)

and thus the PCH system (2.5) can be described by an
infinite sequence of m×m matrices:

ΣC , ( hC1, hC2, ... hCk, ...),

ΣS , ( hS1, hS2, ... hSk, ...),

ΣR , ( hR1, hR2, ... hRk, ...),

(A.16)

which satisfy the balance equation:

ΣC + ΣS + ΣR = (0, 0, ... 0, ...). (A.17)

Thus the proof of Proposition 3.1 is finished.
Proof: Proposition 3.2
Applying the inverse Laplace transform formula
L−1{F (s)G(s)} = (f ∗ g)(t) for the convolution product of
two functions f(t), g(t) in (A.6), the continuous-time forms
of the outputs corresponding to the ports can be defined
as: 

yC(t) , hC(t) ∗ u(t) = Cx(t); t ≥ 0,

yS(t) , hS(t) ∗ u(t) = C
′′
x(t); t ≥ 0,

yR(t) , hR(t) ∗ u(t) = −C ′x(t); t ≥ 0,

(A.18)

where x(t) = L−1{X(s)} = L−1{(sI−A)−1BU(s)} repre-
sents the PCH system (2.5) states. From (A.6), (A.7) and
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(A.18), the continuous-time powers corresponding to the
system ports, can be defined as:

PC(t) , yC(t)Tu(t) = (Cx(t))Tu(t); t ≥ 0,

PS(t) , yS(t)Tu(t) = (C
′′
x(t))Tu(t); t ≥ 0,

PR(t) , yR(t)Tu(t) = −(C
′
x(t))Tu(t); t ≥ 0.

(A.19)

The powers from (A.19) satisfy also the power balance
equation (3.12) and thus the proof of Proposition 3.2 is
finished.
Proof: Proposition 3.3
Using (A.5), the observability matrices TC , TS , TR corre-
sponding to the control, storage and dissipation ports, can
be defined as:

TC , [C,CA, ...CAn−1]T ,

TS , [C
′′
, C
′′
A, ...C

′′
An−1]T ,

TR , −[C
′
, C
′
A, ...C

′
An−1]T .

(A.20)

Using the PCH system (2.5) properties J = −JT , Q = QT ,
Rd = RTd together with the matrix transpose properties,
we can write (A.20) equivalently as:

TC = [BTQ,BT (−1)1((J +Rd)Q)TQ, ...

BT (−1)n−1(((J +Rd)Q)T )n−1Q]T ,

TS = −[(B +B
′′
)TQ, (B +B

′′
)T (−1)1((J +Rd)Q)TQ,

...(B +B
′′
)T (−1)n−1(((J +Rd)Q)T )n−1Q]T ,

TR = [B
′′TQ,B

′′T (−1)1((J +Rd)Q)TQ, ...

B
′′T (−1)n−1(((J +Rd)Q)T )n−1Q]T ,

(A.21)

where B
′′
, RdQA

−1B.
Introducing the notationA

′′
, (J +Rd)Q, (A.21) becomes:

TC = [BTQ,BT (−1)1A
′′TQ, ...

BT (−1)n−1(A
′′T )n−1Q]T ,

TS = −[(B +B
′′
)TQ, (B +B

′′
)T (−1)1A

′′TQ, ...

(B +B
′′
)T (−1)n−1(A

′′T )n−1Q]T ,

TR = [B
′′TQ,B

′′T (−1)1A
′′TQ, ...

B
′′T (−1)n−1(A

′′T )n−1Q]T ,

(A.22)
and using the matrix transpose properties, it results:

TC = Q[B, (−1)A
′′
B, ...(−1)n−1A

′′n−1B],

TS = −Q[B +B
′′
, (−1)A

′′
(B +B

′′
), ...

(−1)n−1A
′′n−1(B +B

′′
)],

TR = Q[B
′′
, (−1)A

′′
B
′′
, ...(−1)n−1A

′′n−1B
′′
].

(A.23)
From (A.23) the observability condition is satisfied for the
control, storage and dissipation ports if TC , TS , TR are full
rank ( detQ 6= 0 and the pairs (A

′′
, B), (A

′′
, B +B

′′
),

(A
′′
, B
′′
) are controllable). Thus the proof for the first

part of Proposition 3.3 ends. Assuming detQ 6= 0, the ob-
servability conditions (TC , TS , TR full rank) are satisfied

for the ports, if the pairs (A
′′
, B), (A

′′
, B +B

′′
), (A

′′
, B
′′
)

are controllable and thus, the proof of the second part and
of the whole Proposition 3.3 ends.

Proof: Proposition 3.5
Due to the initial condition of stability, it results:{
AP

′

C + P
′

CA
T =
´∞

0
[AeAτBBT eA

T τ + eAτBBT eA
T τAT dτ ]

=
´∞

0
d(eAτBBT eA

T τ ) = −BBT ,
(A.24){

AP
′

S + P
′

SA
T =
´∞

0
[AeAτBBT eA

T τ + eAτBBT eA
T τAT dτ ]

=
´∞

0
d(eAτBBT eA

T τ ) = −BBT ,
(A.25){

AP
′

R + P
′

RA
T =
´∞

0
[AeAτBBT eA

T τ + eAτBBT eA
T τAT dτ ]

=
´∞

0
d(eAτBBT eA

T τ ) = −BBT .
(A.26)

Following the same principle as for the infinite reachability
Grammians (P

′

C , P
′

S , P
′

R), in (A.24), (A.25), (A.26), we
can write for the infinite observability Grammians:{
ATOC +OCA =

´∞
0

[AT eA
T τCTCeAτ + eA

T τCTCeAτAdτ ]

=
´∞

0
d(eA

T τCTCeAτ ) = −CTC,
(A.27){

ATOS +OSA =
´∞

0
[AT eA

T τC
′′TC

′′
eAτ+

eA
T τC

′′TC
′′
eAτAdτ ] =

´∞
0
d(eA

T τC
′′TC

′′
eAτ ) = −C ′′TC ′′ ,

(A.28){
ATOR +ORA =

´∞
0

[AT eA
T τC

′TC
′
eAτ+

eA
T τC

′TC
′
eAτAdτ ] =

´∞
0
d(eA

T τC
′TC

′
eAτ ) = −C ′TC ′ ,

(A.29)
and the proof of Proposition 3.5 ends.

7. Acknowledgements

The authors would like to thank to Grenoble INP Foun-
dation for funding the work project (Identification of Port
Hamiltonian systems).

References

[1] H. Miao, X. Xia, A. S. Perelson, H. Wu, On identifiability
of nonlinear ODE models and applications in viral dynamics,
SIAM Review 53 (2011) 3–39.

[2] A. Van Der Schaft, D. Jeltsema, Port Hamiltonian systems
theory: An introductory overview, Foundations and Trends in
Systems and Control 1 (2014) 173–378.
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