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Abstract

This paper proposes a Control by Interconnection design, for a class of constrained Port-Hamiltonian systems, which is
based on an associated Model Predictive Control optimization problem. This associated optimization problem allows
to consider both state and input constraints simultaneously. Based on the first order Karush-Kuhn-Tucker optimality
condition, the primal-dual gradient method is then used to build a passive feedback controller from the MPC-induced
optimization problem. The resulting passive controller is coupled with the original Port-Hamiltonian system through
a power-preserving interconnection, in order to guarantee the closed-loop stability. Comments on parameters tuning
for the proposed control design, together with validations of the approach through simulations on a LC circuit, the
simplified model of a DC-DC buck converter, and comparisons with a classical MPC design, are provided to discuss the
effectiveness of the approach.

Keywords: Constrained port-Hamiltonian systems, Control by Interconnection, Model Predictive Control, primal-dual
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1. Introduction

Port-Hamiltonian (PH) modeling is often a fruitful
approach for the stability analysis and control design of
nonlinear multiphysics systems [1, 2]. The approach is
based on the modular power-preserving interconnection
of passive subsystems (and external power supplies).
Therefore, a PH system is intrinsically passive and the
Hamiltonian function (energy, entropy, etc.) may be
interpreted as a Lyapunov function to tackle the stability
issue. Many control methods from the literature are
developed based on this property [3], e.g. Control
by Interconnection (CbI, [4]), Energy Shaping [5] or
Interconnection and Damping Assignment Passivity-Based
Control (IDA PBC, [6]).

Recently, various industrial applications which make use
of this formalism have been shown to require constraints
handling [7, 8, 9]. On the other hand, investigations
on the connections between feedback and optimal control
designs have a long history [10]. The Inverse problem
of optimal control is investigated for dissipative affine
nonlinear system in [11]. More recently, optimization-
based control designs for PH systems without constraints
are developed as linear quadratic (LQ) design in [12] or
linear quadratic Gaussian (LQG) control design in [13]. In
[7], an H∞ control law is proposed for a class of switched
PH systems where the input saturation is considered. In
[8, 9], the authors investigate the benefits of a passive
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dynamical controller, designed by applying the primal-
dual gradient method to finite-dimensional optimization
problems. This construction guarantees the constraint
satisfactions of the instantaneous input and the steady
state. Furthermore, an off-line optimal controller for PH
systems is designed in [14]. In [15], the optimization
problem is solved by a numerical tool equivalent to a
Model Predictive Control (MPC) solver which, however,
does not take advantage of the PH formalism. Note that,
in all these approaches except for [15], no prediction of
the states is taken into account. Therefore, they can only
deal with input constraints and not with state constraints
which should be satisfied at all times.

To deal with this issue, a well-known method is the
MPC [16]. Although the theory on linear MPC gained
ground over the last decades, stability analysis and high
computation effort of nonlinear MPC are still challenging.
Furthermore, finding a Lyapunov function to analyze the
stability of the closed loop system is one of those popular
questions which is relatively simple to formulate but not
trivial to solve. A possible solution for this issue is
exploiting the passivity property of the closed-loop system
as studied in [17, 18], where constraints on the supplied
energy are added to the MPC formulation to facilitate
the stability illustration. However, this technique reduces
the feasibility region of the MPC optimization problem,
and thus, the controller may have no solution. Moreover,
MPC solves an optimization problem at each time instant,
which requires a suitable optimizer and a considerable
computational effort. The authors in [19] proposed an
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instant-MPC to deal with this drawback by using the
primal-dual gradient method to solve online the MPC
optimization problem. As a result, the computation time
can be drastically reduced, about hundred times faster.
Nevertheless, in the aforementioned work, the supply rate
determination for the dissipativity condition is not trivial,
and the stability is not generally guaranteed.

This work aims at a control design methodology for PH
systems with constraints using the advantages of MPC in
combination with the PH formalism. Our work inspires
from a result developed in [20] where the application of
the primal-dual gradient method to a convex optimization
problem leads to a passive dynamical controller. The
main contribution of this work is to propose a Control by
Interconnection (CbI) method combined with the MPC
principles, leading to the following advantages:

• the system state constraints are taken into account.
It is important to note that we do not try to find
the exact MPC law with the same optimization
problem, rather we are concentrating on enforcing
state and input constraints satisfaction for the
controlled systems.

• the proposed dynamical controller provides the
instant control action without any iterative optimizer
as used in MPC. This significantly reduces the
computational effort.

• the stability analysis is facilitated, and the
convergence of the closed-loop system is guaranteed
thanks to the passivity property of the PH
formulation.

The paper is organized as follows. In Sec. 2,
we briefly remind the finite dimensional Port-Controlled
Hamiltonian (PCH) systems definition, the primal-dual
gradient method to solve optimization problems, and the
problem formulation with MPC technique. In Sec. 3,
we propose a dynamical feedback control design, discuss
the closed-loop system stability and comment the control
tuning parameters. Numerical demonstrations are shown
in Sec. 4. Finally, we conclude the paper with some
prospects for future work in Sec. 5.

2. Prerequisites

In this section, we briefly recall the definition of finite
dimensional port-controlled Hamiltonian systems and the
passivity with respect to the Hamiltonian function and the
power conjugate input-output variables. Then the primal-
dual gradient method for solving finite dimensional convex
optimization problems and the MPC principle to deal with
system constraints are shortly presented.

2.1. Finite dimensional port-controlled Hamiltonian
system

In this work, we consider finite dimensional port-
controlled Hamiltonian (PCH) systems described in the

following explicit input-state-output form:{
ẋ(t) = [Jx (x)−Rx (x)]∇Hx (x) + Gx (x)u(t),

y(t) = G>x (x)∇Hx (x) ,
(1)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and
input vectors, respectively, Jx (x) = −J>x (x) ∈ Rn×n
is the skew-symmetric interconnection matrix, Rx (x) =
R>x (x) ∈ Rn×n is the symmetric and non-negative
dissipation matrix, Gx (x) ∈ Rn×m is the input matrix and
Hx (x) ∈ R is the positive Hamiltonian, e.g. the system’s
energy. As one of the main properties of PH systems,
the plant (1), with conjugate input u(t) and output y(t),
is passive with respect to the storage function Hx (x),
since dHx (x) /dt ≤ u>(t)y(t). We will therefore take into
account the following assumption.

Assumption 1. The Hamiltonian Hx (x) is bounded from
below, strictly convex, and minimized at the origin xe =
0, which is the equilibrium of the autonomous system
corresponding to u(t) = 0.

Also note that system (1) is completely integrable when
Jx (x) satisfies the Jacobi identities [3].

2.2. Primal-dual gradient method

We recall hereafter the primal-dual gradient method
[21] which is used to solve the following finite-dimensional
optimization problem:

z∗ = argmin
z

f (z)

s.t. Azz + bz = 0,
g (z) ≤ 0,

(2)

where z ∈ Rnz , f (z) ∈ R, Az ∈ Rnλ×nz , bz ∈
Rnλ , g (z) ∈ Rnµ , and nz, nλ, nµ ∈ N. The following
assumption is necessary for a feasible optimization
problem in (2).

Assumption 2. The cost function f (z) is strictly
convex and continuously differentiable, g (z) is convex,
continuously differentiable and g (0) < 0.

Let L (z, λ, µ) ∈ R denote the Lagrangian function
associated to problem (2), i.e.

L (z, λ, µ) = f (z) + λ> (Azz + bz) + µ>g (z) , (3)

with λ ∈ Rnλ and µ ∈ [0,+∞)nµ . For all optimal
solutions z∗ of (2), there exist λ∗ and µ∗ satisfying the
first-order Karush-Kuhn-Tucker (KKT) conditions [22]:

∇L (z, λ, µ) = 0

⇔


∇f (z∗) + A>z λ

∗ +∇g> (z∗)µ∗ = 0,

Azz
∗ + bz = 0,

g (z∗) ≤ 0, µ∗ ≥ 0, µ∗Tg (z∗) = 0.

(4)

Based on the previous KKT conditions, the primal-dual
gradient algorithm is described by the following dynamical
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system (similar to the one proposed in [20]):
τz ż(t) = −∇f (z)−A>z λ(t)−∇g> (z)µ(t),

τλλ̇(t) = Azz(t) + bz,

τµµ̇(t) = [g (z)]+µ ,

(5)

where the ith element (i ∈ {1, . . . , nµ}) of the vector

[g (z)]
+
µ ∈ Rnµ is defined as:

[gi (z)]+µ =

{
gi (z) , if µi > 0,

max {0, gi (z)} , if µi = 0,
(6)

and where τz ∈ R+
nz×nz , τλ ∈ R+

nλ×nλ and τµ ∈
R+

nµ×nµ are symmetric positive matrices, characterizing
the different timescales appearing in the dynamics.

Proposition 1. The states of the dynamics (5) converge
to the set of equilibrium points.

Proof. See Appendix A.

Since the equilibrium points of the dynamics (5) are also
the solutions of the KKT equations (4), any numerical
integration method for (5) can be used to solve the
optimization problem (2). Moreover, the autonomous
system (5) may be cast as a closed loop PH system, which
simplifies the demonstration of the convergence of the
states to the equilibrium [20].

2.3. Model predictive control

In the following, we briefly recall the general
optimization problem formulation for constrained systems
using MPC technique. We also show how the optimization
problem is transformed to fit into the finite dimensional
framework studied in this work.

Let U(t) = {u(·|t) : [t, t+ h]→ Rm : τ 7→ u(τ |t)} and
X(t) = {x(·|t) : [t, t+ h]→ Rn : τ 7→ x(τ |t)} denote
respectively the sets of input and state functions for
current time τ ∈ [t, t+h] (i.e. over a prediction horizon h),
where x(τ |t) and u(τ |t) are respectively the values of the
system states and inputs at the time instant τ ∈ [t, t+ h]
which are predicted at time t. Then consider the following
constrained optimization problem:

{U∗(t),X∗(t)} = argmin
U(t),X(t)

Vf (x (t+ h|t)) +

∫ t+h

t
lxu (x,u) dτ

(7a)

s.t. ẋ (τ |t) = [Jx (x)−Rx (x)]∇Hx (x)

+ Gx (x)u (τ |t) , ∀τ ∈ [t, t+ h], (7b)

g (x,u) ≤ 0, ∀τ ∈ [t, t+ h], (7c)

The MPC feedback control at time t, is then defined as
uMPC(t) = u∗(t|t) where u∗(t|t) denotes the value of the
optimal input trajectory u∗(τ |t) for the current time value
τ = t. In (7), the stage and final cost functions lxu (x,u)
and Vf (x (t+ h|t)) penalize the state error and the control
deviation.

Problem linearization. Note that (7) is an infinite-
dimensional optimization problem which is not the case
of the problem (2) solved by the primal-dual gradient

method described in section 2.2. Therefore it is
necessary to approximate (7) by a finite-dimensional
optimization problem. In this work, simple piecewise-
constant approximations are used for the state and control
time profiles on the prediction horizon [t, t + h]. Hence,

we will consider x (τ |t) =
∑N
k=1 x (k|t)βk(τ), u (τ |t) =∑N

k=1 u (k|t)βk(τ), where βk(τ) are the window functions
described as:

βk(τ) =

{
1, if t+ (k − 1)∆t ≤ τ < t+ k∆t,

0, else ,∀k ∈ {1, . . . , N},
(8)

with time step ∆t and N = h
∆t ∈ N. Existence of

the solution of the MPC formulation defined in (7) also
requires that the plant states x(t) are fully observable [23].

Problem discretization. On the other hand, regarding the
linear equality constraint in (2), the plant (1) or (7b) also
needs to be represented in a linearized discrete-time form:

x (k + 1|t) = Ax (k|t) + Bu (k|t) , (9)

where the matrices A ∈ Rn×n and B ∈ Rn×m are
constants and where x (k|t) and u (k|t) (with k ∈ N)
denote respectively the predicted values of the state and
input variables at instant t+k∆t. This linear discrete-time
model is obtained through linearization and subsequent
structure-preserving time discretization. The latter is
a symplectic Runge-Kutta method defined in order to
preserve the intrinsic geometric interconnection (Dirac)
structure of the original PCH system [24]. In this
approach, the local error of the stored energy is consistent
with the numerical integration scheme [24, Theorem 2].
This discrete scheme is briefly recalled in Appendix B.

We consider hereafter the recursive construction of a
discrete-time optimal open-loop state and control sequence
z(t) ∈ R(m+n)N :

z(t) = [u> (0|t) ,u> (1|t) , . . . ,u> (N − 1|t) ,
x> (1|t) , . . . ,x> (N |t)]> (10)

at each time instant t over a finite prediction horizon
[t, t+ ∆t, ..., t+N∆t], N ∈ Z+. The feedback control law
of the plant is thus the first element of z (t):

u(t) = u (0|t) = Ez(t), (11)

with E = [Im 0] ∈ Rm×(m+n)N . Moreover, the equivalent
MPC law is:

uMPC(t) = Ez∗(t), (12)

where z∗(t) is the optimal solution of the following
optimization problem:

z∗(t) = argmin
z(t)

f (z) (13a)

s.t. Azz(t) + Bzx(t) = 0, (13b)

g (z) ≤ 0. (13c)

The matrices Az ∈ RnN×(m+n)N and Bz ∈ RnN×n are
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defined as:

Az =


B 0 ... 0
0 B ... 0

...
0 ... 0 B

∣∣∣∣∣
−In 0 ... 0
A −In ... 0

...
0 ... A −In

 , (14a)

Bz =

[
A
0

]
, (14b)

where the matrices A and B are defined in (9). The cost
function f (z) now corresponds to the discrete-time form
of the cost in (7a), i.e.:

f (z) = Vf (x (N |t)) + ∆t

N−1∑
k=0

lxu (x (k|t) ,u (k|t)) . (15)

Remark 1. Usually, the cost functions
lxu (x (k|t) ,u (k|t)) and Vf (x (N |t)) are chosen
quadratic, i.e., lxu = x>Qxx+u>Quu and Vf = x>Qfx,
where the weight matrices Qx ∈ Rn×n, Qu ∈ Rm×m and
Qf ∈ Rn×n are symmetric and positive. Hence, the cost
function f (z) in (13a) is also quadratic, i.e., f (z) =
z>Qzz, where the weight matrix Qz ∈ R(m+n)N×(m+n)N

has the block-diagonal form:

Qz = diag

{
Qu, . . . ,Qu,Qx, . . . ,Qx,

Qf

∆t

}
. (16)

Remark 2. More linear equality constraints can easily
be taken into account in the optimization problem (13) by
adding more rows in the matrices Az and Bz.

3. Main idea

3.1. Controller design

This work focuses on the design of a dynamic feedback
control law, named CbI-MPC, which on the one hand
stabilizes the state vector x(t) of system (1) to the origin
xe = 0 (using Control-by-Interconnection (CbI) technique
[2]), and on the other hand respects inequality constraints
g (x,u) ≤ 0, both on the system state and input (using
MPC technique).

The controller dynamics are derived from the primal-
dual gradient method for the MPC optimization problem
(13) (see also Fig. 1). Note that step reference tracking
is a particular case of this work. However, time-varying
reference tracking or economic MPC are excluded.

From (5) and (13), the controller dynamics are derived
as: 

τz ż(t) = −∇f (z)−A>z λ(t)−∇g> (z)µ(t),

τλλ̇(t) = Azz(t) + Bzx(t),

τµµ̇(t) = [g (z)]+µ ,

(17)

Unlike the autonomous system (5), the controller system
(17) has an input uc(t) to get the plant information
and consequently a corresponding output yc(t) for the
control action. To apply the CbI technique, the controller
dynamics (17) must be a passive system where its
input uc(t) and the output yc(t) are power-conjugate
variables, i.e., their product is the supplied power to
the controller system. The plant (1) and the controller

Figure 1: Dynamic controller coupled to the PH system using CbI

(17) is then coupled together using a power-preserving
interconnection, in order to form a passive closed loop
system. A simple form of such interconnection is defined
as: {

uc(t) = y(t),

u(t) = −yc(t).
(18)

According to (11), (17) and (18), the input uc(t) and the
output yc(t) should respect two following conditions:

uc(t) = x(t), (19)

yc(t) = −Ez(t). (20)

Remark 3. Condition (19) requires a direct construction
of the plant state x(t) from the plant output y(t), which
is, in general, not trivial, for instance in the case of under
actuated systems (where the input dimension is smaller
than the state one). However, this issue can be tackled
using an additional state observer defined in such a way
that the augmented system, including the plant and the
observer, is also passive (see [25, 26, 27] and the references
therein). As a result, the main principle of the presented
CbI-MPC controller design will not be affected. However,
some parameter tuning may need to be adapted according
to the augmented system. This will be discussed with more
details in Sec. 3.3.

In this work, for the sake of simplicity, such observer
is not considered and thus the following assumption is
admitted in order to derive the state x(t) from the plant
output y(t) in (1).

Assumption 3. There exists an invertible constant
matrix M ∈ Rn×n such that:

y(t) = G>x (x)∇Hx (x) = Mx(t). (21)

This assumption implies that the plant input, output
and state have the same dimension, i.e., m = n.

Similar to Appendix A, the Hamiltonian functionHr (r)
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of the controller dynamics (5) is simply chosen as:

Hr (r) =
1

2
r>z (t)τ−1

z rz(t) +
1

2
r>λ (t)τ−1

λ rλ(t)

+
1

2
r>µ (t)τ−1

µ rµ(t),
(22)

with the transformed state vector r(t) ∈ R3nN+nµ defined
by:

r(t) =

 rz(t)
rλ(t)
rµ(t)

 =

 τzz(t)
τλλ(t)
τµµ(t)

 . (23)

Based on (17)-(18), and (21)-(23), the controller dynamics
are rewritten as:

ṙ(t) = fr (r) +

 0

Bz

0

M−1uc(t),

yc(t) = M−>
[
0 B>z 0

]
∇Hr (r) ,

(24)

with

fr (r) =

 −A>z ∂rλHr (r)−∇f (z)−∇>g (z)µ(t)
Az∂rzHr (r)

[g (z)]+µ

 . (25)

It is important to note that the requirement (20) can not
be respected according to equations (11), (18) and (24).
As a result, u(t) does not satisfy the constraint in (7c)
even though z(t) satisfies the constraint (13c). In order
to tackle this issue, we propose in the following to add an
extra term Gz (z, λ) to the input matrix of the controller
dynamics (24) such that:

ṙ(t) = fr (r) +

 Gz (z, λ)

Bz

0

M−1uc(t),

yc(t) = M−>
[
G>z (z, λ) B>z 0

]
∇Hr (r) ,

(26)

where Gz (z, λ) ∈ R2nN×n is non-linear and satisfies the
following condition:

−M>Ez(t) = G>z (z, λ) z(t) + B>z λ(t). (27)

The matrices M, E and Bz are defined in (21), (11) and
(14b), respectively. The condition (27) implies that the
control law given in (17)-(18) is equal to the first element
of z(t) at all time. Note that with given values of z
and λ, (27) is actually a linear equation of Gz (z, λ) (see
discussion in Sec. 3.3).

Proposition 2. The controller system defined by (25),
(26) and (27) is passive.

Proof. From(22), (23) and (26), we have:

Ḣr (r) = ∇>Hr (r) ṙ(t)
= −z>(t)∇f (z)− z>(t)∇>g (z)µ(t)

+µ>(t) [g (z)]+µ + y>c (t)uc(t).
(28)

With derivations similar to those in appendix Appendix
A to obtain (A.11), we obtain:

Ḣr (r) ≤ y>c (t)uc(t), (29)

and thus, the proposition is concluded.

Remark 4 (Convergence). Assume there exists an
equilibrium r∗ (uc) of (26), which includes the predicted
input and state vectors completely respecting the
constraints. Despite the controller’s passivity, the
convergence of the controller state r(t) to r∗ (uc) is
not guaranteed. Indeed, using Proposition 1 and the
corresponding proof in Appendix A, the shifted controller
state is defined as r̃(t) = r(t)− r∗ (uc), which leads to the
shifted controller dynamics:

˙̃r(t) = fr (r)− fr (r∗ (uc)) +

[
Gz (z, λ)−Gz (z∗, λ∗)

0

]
uc.

Using the Hamiltonian H̃r (r̃) defined in (A.4) with the
result proved in (A.11), we derive that:

˙̃Hr (r̃) ≤ z̃>(t) [Gz (z, λ)−Gz (z∗, λ∗)]uc.

Since the right-hand side of the previous inequality is not
generally negative, the shifted controller dynamics are not
proved passive, and thus, the convergence of the state r(t)
to the equilibrium r∗ (uc) is not ensured. Nonetheless, in
simulations we observe empirically that convergence holds.

Remark 5 (Optimality). Due to the presence of the
nonlinear matrix G>z (z, λ), it is not easy to find the
optimization problem corresponding to the controller
dynamics (26) through the relation using the primal-dual
gradient method presented in the section 2.2. However,
since constraint consideration is the main objective in this
work, finding such an equivalent optimization problem is
not mandatory.

3.2. Closed-loop system

Based on the previously designed controller, the closed-
loop system is defined by coupling the plant (1) and the
controller dynamics (26) through the power-preserving
interconnection (18). The resulting closed loop system
reads:

 ẋ(t)

ṙz(t)

ṙλ(t)

 = [J (x, z, λ)−R (x)]

 ∂xH (x, r)

∂rzH (x, r)

∂rλH (x, r)


+

 0

−∇f (z)−∇>g (z)µ(t)

0

 ,
ṙµ(t) = [g (z)]+µ ,

(30)

where rz(t) ∈ R2nN , rλ(t) ∈ RnN , rµ(t) ∈ Rnµ and
r(t) ∈ R3nN+nµ are defined in (23); J (x, z, λ), R (x)
∈ R(n+3nN)×(n+3nN) and the closed loop Hamiltonian
H (x, r) are defined as follows:

J =

 Jx −GxM−TG>z −GxM−TB>z
GzM−1G>x 0 −A>z
BzM−1G>x Az 0

 , (31a)

R = blockdiag {Rx (x) ,0,0} , (31b)

H = Hx (x) +Hr (r) (31c)

with the Hamiltonians Hx (x) and Hr (r) given in (1)
and (22). Note that the term −∇f (z) −∇>g (z)µ(t)
contributes to the dissipation of the closed-loop system.
The stability and the convergence of the closed-loop
system are proved in the following proposition.
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Proposition 3. The closed-loop system (30)-(31):

i) is passive.

ii) converges to the origin if ker
(
A>z
)

= {0}.

Proof. i. Since the plant (1) and the controller system
(26) are passive, and the interconnection (18) is
power-preserving, the closed-loop system is also
passive, i.e., Ḣ (x, r) ≤ 0 [2].

ii. Consequently, according to the LaSalle’s invariance
principle, the states vector of the closed-loop system
(30) converges to the largest invariant set M such that

M =
{

(x, r) |Ḣ (x, r) = 0
}
.

In this largest invariant subset, we may conclude:

(rz(t), rµ(t)) = 0,∀ (x, z, λ, µ) ∈ M (32)

⇒rλ(t) = 0, (33)

⇒∇Hx (x) = 0 ⇔ x(t) = 0, (34)

(32) thanks to Assump. 2, (6), (28) and (A.10)
(33) thanks to (27), (30)-(31) and ker

(
A>z

)
= {0}

(34) thanks to Assumption 3, (14b) and (30)-(31)

Finally, we obtain (x(t), r(t)) −→
t→∞

0 which concludes

the proposition.

3.3. Parameter tuning and discussions

The efficiencies of the proposed controller depend on
the discrete-time system model (9), the prediction step
∆t, the prediction horizon N , the cost function f (z)
in (13a), the non-linear matrix Gz (z, λ) in (27), the
timescales matrices (τz, τλ, τµ) and the initial controller
states (z(0), λ(0), µ(0)).

• It is worth noting that we are dealing with
continuous systems for both the plant and the
controller. The discrete-time scheme (9) with respect
to the time step ∆t is only used to define the
finite-dimensional MPC optimization problem (13).
Choosing the appropriate time-discretization scheme
for the constrained optimal control is a hard question
which will not be rigorously discussed in this work.
However, different methods developed for PH systems
should be used to preserve intrinsic system properties,
e.g., the power-preserving structure and the energy
conservation, as mentioned in Appendix B or
discussed in [24].

• The choices of the prediction horizon N and the cost
function f (z) in (13a) are not specific features of
the proposed controller. They are key challenges for
MPC designs. It is indeed not trivial to select these
parameters in order to obtain a feasible optimization
problem. In practice, the “trials and errors” approach
is adopted the most frequently, combined with the
extensive use of numreical simulations. When the
MPC optimization problem is not feasible, no specific
parameters tuning direction can be determined,

since the MPC solution does not exist. One of
the advantages of the proposed CbI-MPC method
is precisely that the closed-loop system behaviour
may be obtained with an arbitrary parameter
choice, thanks to the constraint relaxation (gradient
method). This provides a guideline to adjust these
tuning parameters which will be shown during the
control implementation in the next section.

• The timescales matrices (τz, τλ, τµ) are chosen with
respect to the time constant of the controlled system.
If the time scales are too high, the controller
dynamics are much slower than the plant dynamics.
Therefore, the constraints may be seriously violated.
On the contrary, if they are small enough, the
controller dynamics, in theory, rapidly converge to
the instantaneous equilibrium corresponding to the
input uc(t). Hence, the constraints on the predicted
plant dynamics, input and output are respected before
the control action application. This implies that the
constraints are better taken into account. Moreover,
if the timescales are small enough, Gc (z, λ) ' 0,
the control law is then directly defined in (11)
and the controller states (z(t), λ(t), µ(t)) quickly
converge to the optimum values (z∗(t), λ∗(t), µ∗(t))
given in (4). In that case, the control law will
converge to the conventional MPC law given in (12).
However, in practice, small time scales will increase
the computational time which may exceed the time
limit, e.g. in real time applications. The compromise
between performance and rapidity thus depends on
each application.

• The matrix Gz (z, λ), which must be computed at
each time step, is a solution of the n linear equations
(27). This matrix has 2nN×n elements and therefore
many degrees of freedom exist for its choice. The
detailed analysis of the influences of these choices on
the control performance, which is quite complicated
due the nonlinearity, is beyond in the scope of this
paper and left for future research. To the best of
our knowledge, in CbI technique, the input matrix is
usually chosen constant due to the fact that no input
constraints are considered so far. This work hence
confirms the flexibility of the CbI method, which can
be further developed for more applications in the
future.

• The influence of the initial controller states
(z(0), λ(0), µ(0)) on the system stability is less
important than the previous tunable parameters.
z(0) just needs to satisfy the constraints in the
optimization problem (13), and µ(0) must not be
negative. However, bad choices of these parameters
may lead to an invalid Gz (z, λ) in the condition (27).
A possible solution is to choose the initial controller
states r(0) at the equilibrium r∗ (uc) of the controller
dynamics (26) where uc = x(0).
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Besides, regarding Remark. 3, the proposed controller
design can also be extended to general systems where m 6=
n. By adding an appropriate observer, e.g. PH structure-
preserving observer, we can guarantee the passivity
property of the plant-observer augmented system. Similar
ideas of such observer design are presented in [26, 25].
However, the output of these augmented systems is the
difference between the plant output y and the estimated
output ŷ which can not be directly used by the proposed
CbI-MPC controller. In an ongoing work, we define
new observer conjugate input-output pairs so-that the
estimated state x̂ can be easily extracted from the observer
outputs while the augmented system remains passive. The
proposed observer will facilitate state-feedback controller
design. In particular, controller laws based on CbI
technique will take charge of stabilizing the closed loop
system, as well as ensuring the convergence of the observer.

In order to illustrate the effectiveness of the proposed
CbI-MPC method, we will compare in the next section
the performances of different control methods through a
qualitative evaluation with four criteria: computational
effort, input constraint consideration, state constraint
consideration and stability illustration (see Table 1).

4. Numerical examples

In the following we validate the proposed method over
an electrical system which is in the PH system class defined
Subsection 2.1 (more precisely, it is linear, with u(t) ∈ Rn
and G (x) = G is constant and invertible).

4.1. LC circuit

Figure 2: Simple LC circuit with 2 control signal vi(t) and io(t).

A LC circuit with two control inputs is described in Fig.
2. Usual Kirchoff’s balance equations may be written in
the form of the following PH system:[

φ̇(t)
q̇(t)

]
= JQ

[
φ(t)
q(t)

]
+

[
vi(t)
io(t)

]
, (35)

where φ(t) ∈ R is the magnetic flux of the inductance L,
q(t) ∈ R is the electric charge of the capacitance C, and the

matrices J,Q ∈ R2×2 are given as: J =

[
0 −1
1 0

]
, Q =

diag

{
1

L
,

1

C

}
. Since the CbI-MPC controller of Sec. 3.2

has been designed to stabilize the PH system state around
the origin, a change of state variables is considered for (35),
i.e. it shifts the desired (reference) equilibrium value of

the state to the origin. Therefore, the shifted state vector
x(t) ∈ R2, the corresponding input vector u(t) ∈ R2 and
Hamiltonian function Hx (x) are given as:

x(t) = [φ(t) + Li∗o q(t)− Cv∗i ]> ,

u(t) = [vi(t)− v∗i io(t)− i∗o]> ,
Hx (x) =

1

2
x>(t)Qx(t).

System dynamics (35) then read:{
ẋ(t) = J∇Hx (x) + u(t),
y(t) = ∇Hx (x) ,

(36)

The following constraints of the state and input will be
considered: xmin ≤ x(t) ≤ xmax, umin ≤ u(t) ≤ umax.

Remark 6. The LC circuit can be considered as a
simplified buck DC-DC converter described in Fig. 3
where L, C, Vdc, r and S1, S2, S3 denotes, respectively,
the inductance, the capacitance, the input DC voltage,
the resistance load and the ideal switches [28]. Usually,
the switches are alternatively switched at high frequency
by using the Pulse Width Modulation technique. For
simplicity, we can consider a slower timescale where the
input voltage is represented by the continuous average
value vi(t). Moreover, according to the studied example
Fig. 3, the passive load is replaced by an active current
source io(t).

Figure 3: DC-DC buck converter [28].

4.2. Simulation results

In the following simulations, the results are obtained
using both the MPC and the CbI-MPC laws. The
simulations are implemented using MATLAB 2017b,
and the MPC optimization problem is solved using the
quadprog function. The values of the plant, controller and
simulation parameters are given in Table 2. Furthermore,
we simply use the mid-point discretization method to
determine the constant matrices A and B in (9):
A = [2I2 −∆tJQ]−1 [2I2 + ∆tJQ] ,

B = [2I2 −∆tJQ]−1 2∆tI2.

The cost function f (z) defined in (13a) is chosen
quadratic as presented in Remark 1, i.e.,

f (z) = z>(t)Qzz(t).

Three simulation scenarios are considered as presented
in Table 3: small limits of inputs, small limits of inputs
and states, and critical (even smaller) limits of inputs and
states, respectively. In all cases, the controller equilibrium
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Criteria MPC [16] Instant MPC [19] Optimal CbI [20] CbI-MPC
Computational effort high medium low medium
Input constraint consideration yes yes yes yes
State constraint consideration yes yes no yes
Stability illustration hard hard easy easy

Table 1: Qualitative comparison of different control methods.

Description Notation Value Unit
System

Inductance L 1 [H]
Capacitance C 1 [F ]
State and input dim. n 2

Controller
Prediction time step ∆t 0.5 [s]
Prediction horizon N 10
Weight matrix Qz I40
Time scale matrices τz 0.01 ×I40

τλ 0.01 ×I20
τµ 0.01 ×I80

Simulation
Simulation duration 5 [s]
Initial state x(0) 0.8 ×12

Table 2: Parameter values.

Description Scenario 1 Scenario 2 Scenario 3

u>max [1 1] [1 1] [0.35 0.35]
u>min −[0.7 0.4] −[0.7 0.4] −[0.7 0.4]
x>max [1 1] [1 1] [1 1]
x>min −[1 1] −[0.1 0.2] −[0.1 0.2]

Table 3: Simulation scenarios.

when uc(t) = x(0) is chosen as the initial conditions for
the controller dynamics as mentioned in Sec. 3.3.

In Scenario 1 (Fig. 4), small limits of inputs are
considered. Profiles of the input and output variables with
the MPC and CbI-MPC laws are described by the green
dashed and blue continuous lines, respectively. The results
illustrate the input constraint consideration in the CbI-
MPC controller as well as the stability and the convergence
to the references. Note that, since a relaxation is used to
deal with the constraints, the constraints are not always
respected. To improve the constraint satisfaction, we can
reduce the time scale τz, τλ, τµ as discussed in Sec. 3.3.

In Scenario 2 (Fig. 5), small limits of both inputs and
states are considered. Comparing to Fig. 4, we can see
that, besides the input constraint which is satisfied, the
state constraint is also taken into account by the proposed
controller.

Scenario 3 (Fig. 6) shows a clear advantage of the
proposed CbI-MPC method with respect to the MPC
method and the optimal CbI method developed in [20]
(see Appendix C for the definition of the corresponding
controller). Here, with this critical umax value, the
MPC optimization problem is not feasible. The optimal
CbI controller tries to keep the inputs between their
limits with remarkable oscillations during the first two
seconds. Note also that this CbI controller does not handle

-1

0

1

u
1

Scenario 1: small limits of inputs

0 1 2 3 4 5

-1

0

1

u
2

MPC

CbI-MPC

limits

-1

0

1

x
1

0 1 2 3 4 5

time [s]
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0

1

x
2

MPC

CbI-MPC

limits

Figure 4: The profiles of the input and state vectors in Scenario 1.

-1

0

1

u
1

Scenario 2: small limits of inputs and states

0 1 2 3 4 5
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0

1

u
2

MPC

CbI-MPC

limits

-1

0

1

x
1

0 1 2 3 4 5

time [s]

-1

0

1

x
2

MPC

CbI-MPC
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Figure 5: The profiles of the input and state vectors in Scenario 2.

state constraints, which are completely violated in this
approach.

5. Conclusion

This paper presents a novel control design to deal with
system constraints using a Port-Hamiltonian formulation
based on Model Predictive Control (MPC). The state
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Figure 6: The profiles of the input and state vectors in Scenario 3.

and input constraints are firstly taken into account by
formulating a MPC-type optimization problem. Then,
an open dynamical controller system is constructed
based on the primal-dual gradient method with an
additional nonlinear input. The controlled system and the
controller are finally coupled together using the Control by
Interconnection technique. The proposed control method
deals with both state and input constraints while explicitly
admitting the Hamiltonian as a Lyapunov function for the
closed-loop system. Moreover, a guideline to tune different
controller parameters is presented. The effectiveness of
the control design is illustrated in simulation through a
qualitative comparison with different control methods. As
future work, we aim at extending the proposed CbI-MPC
method to more general systems where the input matrix
is not necessarily invertible. This can be realized by
replacing the plant with the passive augmented system
which includes the plant and an appropriate observer.
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Appendix A. Primal-dual gradient convergence
proof

This section proves the result presented in Proposition
1, inspired from the ideas of [20]. Let Ω denote the set of
equilibrium points of the dynamics (5), and Ωµ denote the
following set:

Ωµ = {(z, λ, µ) | {µ ≥ 0,g (z) = 0}
or {µ = 0,g (z) < 0}} (A.1)

From (4), we can see that Ω ⊂ Ωµ. Consider an
equilibrium point (z∗, λ∗, µ∗) ∈ Ω. The state deviations(
z̃(t), λ̃(t), µ̃(t)

)
are defined as:(

z̃(t), λ̃(t), µ̃(t)
)

= (z(t), λ(t), µ(t))− (z∗, λ∗, µ∗) . (A.2)

From (5) and (A.2), the deviation dynamics are derived
as:

[
τz ˙̃z

τλ
˙̃
λ

]
=

[
0 −A>z
Az 0

][
z̃

λ̃

]
+[

−∇f (z) +∇f (z∗) +∇g> (z)µ−∇g> (z∗)µ∗

0

]
,

τµ ˙̃µ = [g (z)]+µ .

(A.3)

The corresponding shifted Hamiltonian with respect to the
equilibrium point is chosen as:

H̃r
(
z̃, λ̃, µ̃

)
=

1

2
z̃>(t)τz z̃(t) +

1

2
λ̃>(t)τλλ̃(t)

+
1

2
µ̃>(t)τµµ̃(t).

(A.4)

Firstly, we admit the following inequalities (see the proof
in [20]):

µ̃
>

[g (z)]
+
µ ≤ µ̃

>
g (z) , from (6, A.1), (A.5)

g (z) ≤ g
(
z
∗)

+ z̃
>∇>g (z) , g (z) is convex, (A.6)

g (z) ≥ g
(
z
∗)

+ z̃
>∇>g

(
z
∗)
, g (z) is convex, (A.7)

µ̃
>
g
(
z
∗) ≤ 0, from (4, 6). (A.8)

From (A.2), (A.3) and (A.4), we obtain:

˙̃Hr
(
z̃, λ̃, µ̃

)
= −z̃> [∇f (z)−∇f (z∗)]

−z̃>
[
∇>g (z)−∇>g (z∗)

]
µ∗

−z̃>∇>z g (z) µ̃+ µ̃> [g (z)]+µ .

(A.9)

We also have the following inequalities:


−z̃> [∇f (z)−∇f (z∗)] ≤ 0, from Assump. 2,

−z̃>
[
∇>g (z)−∇>g (z∗)

]
µ∗ ≤ 0, from (A.1),

−z̃>∇>z g (z) µ̃+ µ̃> [g (z)]+µ ≤ 0, from (A.5-A.8).

(A.10)

From (A.9) and (A.10), we obtain:

˙̃Hr
(
z̃, λ̃, µ̃

)
≤ 0, ∀(z̃, λ̃, µ̃). (A.11)

Let M =
{(

z̃, λ̃, µ̃
)}

denote the largest invariant set of

the system (A.3) such that ˙̃Hr

(
z̃, λ̃, µ̃

)
= 0, ∀

(
z̃, λ̃, µ̃

)
∈

M. From Assumption 2, (A.9) and (A.10), we derive that

∀
(
z̃(t), λ̃(t), µ̃(t)

)
∈ M, z̃(t) = 0, or z(t) = z∗. Let Mr

denote the set of (z, λ, µ) such that
(
z̃, λ̃, µ̃

)
∈ M. From

(A.4) and (A.11), by LaSalle’s invariance principle we may

conclude that
(
z̃, λ̃, µ̃

)
converges to M, i.e.,:(

z̃(t), λ̃(t), µ̃(t)
)
−→
t→∞

M,
or (z(t), λ(t), µ(t)) −→

t→∞
Mr.

(A.12)

When (z, λ, µ) ∈ Mr, we consider the dynamics of µ(t) in

(5), that is µ̇(t) = [g (z∗)]
+
µ . If g (z∗) = 0 and µ(t) ≥ 0,

µ̇(t) = 0. If g (z∗) < 0 and µ(t) = 0, µ̇(t) = 0. If
g (z∗) < 0 and µ(t) > 0, µ̇(t) = g (z∗) < 0. Therefore, it
is easy to see that when g (z∗) < 0, µ(t) −→

t→∞
0, e.g.,:

(z∗, λ(t), µ(t)) −→
t→∞

Ωµ ∩M. (A.13)

When (z, λ, µ) ∈ (Ωµ ∩M), ż(t) = 0, λ̇(t) = 0 and µ̇(t) =
0, and thus,:

(z(t), λ(t), µ(t)) ∈ Ω. (A.14)

From (A.12), (A.13) and (A.14), we conclude that:

(z(t), λ(t), µ(t)) −→
t→∞

Ω.

Appendix B. Discrete-time Port-Hamiltonian
system

This section briefly recalls a definition of discrete-
time port-Hamiltonian systems based on the symplectic
integration presented in [24]. Using the collocation
method, we define s ∈ N collocation points

{
tk1 , . . . , t

k
s

}
over a time step [k∆t, (k + 1) ∆t] such that:

k∆t < tki < tki+1 < (k + 1) ∆t, with i ∈ {1, . . . , s− 1} .

Let xki ∈ Rn, ukiRm represent the state and input vectors
at the collocation point tki with i ∈ {1, . . . , s}. According
to [24], the discrete-time state x (k + 1|t) of the port-
Hamiltonian system (1) is determined as:



xki = x (k|t)−∆t
s∑
j=1

aij
[
J
(
xkj

)
−R

(
xkj

)]
∇Hx

(
xkj

)
+aijG

(
xkj

)
ukj ,

x (k + 1|t) = x (k|t)−∆t
s∑
j=1

bj
[
J
(
xkj

)
−R

(
xkj

)]
∇Hx

(
xkj

)
+bjG

(
xkj

)
ukj ,

(B.1)

where aij , bj ∈ R are constants computed from the
collocation functions and points, and i, j ∈ {1, . . . , s}.
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The system (B.1) is linear if there exist constant matrices
A ∈ Rn×n and B ∈ Rn×m such that:

Ax(k|t) = x (k|t)−∆t
s∑
j=1

bj
[
J
(
xkj

)
−R

(
xkj

)]
∇Hx

(
xkj

)
Bu(k|t) = ∆t

s∑
j=1

bjG
(
xkj

)
ukj

(B.2)

Appendix C. Optimal Control by Interconnection

This subsection recalls the optimal CbI method
previously presented in [20]. The control design is based
on the following optimization problem:

min
u

f (u) (C.1a)

s.t. [Jx −Rx]∇Hx + Gxu = 0, (C.1b)

g (u) ≤ 0, (C.1c)

where u is the input of the controlled system. The cost
function f (u) ∈ R is a convex function, derived from
f (z) in the optimization problem (13) with Qx = 0 and
Qf = 0. The equality constraint (C.1b) is the equilibrium
condition, and the inequality constraint (C.1c) considers
the same limits of the input u as in (13c), and g(0) ≤ 0,
as presented in Assumption 2.

Using primal-dual gradient method presented in
Subsection 2.2 with additional conjugate input and
output, the controller is given as:

τuu̇(t) = −∇f (u)−G>x λ(t)−∇g> (u)µ(t),

τλλ̇(t) = [Jx −Rx]∇Hx + Gxu(t),

τµµ̇(t) = [g (u)]+µ ,

yc(t) = u(t).

(C.2)

Note that this control considers the input constraint but
can not deal with the state constraint.
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