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Learning is ubiquitous in animals: individuals can use their experience to fine-
tune behaviour and thus to better adapt to the environment during their life-
time. Observations have accumulated that, at the collective level, groups can
also use their experience to improve collective performance. Yet, despite
apparent simplicity, the links between individual learning capacities and a
collective’s performance can be extremely complex. Here we propose a centra-
lized and broadly applicable framework to begin classifying this complexity.
Focusing principally on groups with stable composition, we first identify
three distinct ways through which groups can improve their collective per-
formance when repeating a task: each member learning to better solve the
task on its own, members learning about each other to better respond to one
another and members learning to improve their complementarity. We show
through selected empirical examples, simulations and theoretical treatments
that these three categories identify distinct mechanisms with distinct conse-
quences and predictions. These mechanisms extend well beyond current
social learning and collective decision-making theories in explaining collective
learning. Finally, our approach, definitions and categories help generate new
empirical and theoretical research avenues, including charting the expected
distribution of collective learning capacities across taxa and its links to social
stability and evolution.

This article is part of a discussion meeting issue ‘Collective behaviour
through time’.
1. Introduction
Most animals are able to learn, that is, individuals can use their experience to
modify their subsequent behaviour, usually adapting to local environmental
conditions [1,2]. Much research has also focused on social learning as a funda-
mental process for cultural transmission and evolution [3,4]. Social learning
occurs when an individual’s behaviour is influenced by observing or interacting
with other individuals, thus learning from them, and potentially creating a
shared, homogenized pool of knowledge among group members [3]. By con-
trast, our chief premise here is that we can examine the interplay between
learning and sociality from a different angle: that of collective rather than indi-
vidual behaviour [5,6]. We aim to show that although ‘learning’ at the collective
level should involve individual and social learning, under certain conditions it
can extend much beyond these processes.
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Figure 1. ‘Collective learning’, as we define it here, occurs when collective performance at a task (i.e. a measure integrating the behaviour of multiple individuals)
changes consistently (usually improving members’ fitness) when the group repeats a task (i.e. increases its experience of it). Clear experimental examples include
quicker colony emigration to a new nest site after repeated nest destructions in Temnothorax ants [9], the development of straighter collective homing routes in
pigeons released multiple times from the same site [10] and more accurate collective choice of a predator-free arm in a y-maze in guppies [11]. (Online version in
colour.)
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For many problems solved in groups, it is possible to
quantify ‘collective performance’: the efficiency with which a
navigating flock or herd reaches its destination, the success
of a group hunt, the defence against predation by a tightly
coordinated shoal, or the breeding success of a mated pair, to
name a few examples. The collective nature of these measures
implies specific mechanisms of ‘collective decision-making’,
where several individual actions and preferences have to be
integrated into a common ‘collective decision’ or ‘consensus,
with potential ‘leaders’ and followers’ if not all individuals
contribute equally [7,8]. We use the term ‘performance’
as a reminder that the collective decision is likely to affect indi-
vidual members’ fitness (more on this below). Typically,
researchers tend to study collective-level decisions and pro-
blem-solving as single events in time [5]. Yet groups can
repeatedly face the same collective decisions (e.g. consecutive
group hunts), providing members with an opportunity for
learning and then using what they learn for collective
decisions. Can groups, like individuals, progressively adapt
and improve their collective performance by repeating a
collective problem-solving task? In other words, can groups
‘collectively learn’ (sensu [6])? If so, what mechanisms underlie
this capacity, and under which conditions does it emerge?

In this opinion piece, after clarifying below our working
definitions, we will first provide some detailed experi-
mental examples of collective learning and their potential
mechanisms. These examples come from diverse taxa and
behavioural contexts, illustrating many of the complexities
arising when trying to compare individual-level to collective-
level learning. Second, we will propose a general classification
of the different types of mechanisms that could be involved
in collective learning, along with empirical examples or
candidates. This should highlight that different types of emer-
gent properties (due to interactions between learning
members) can give rise to collective learning, involving but
not necessarily limited to, the processes of individual and/or
social learning. We will end by a synthesis highlighting areas
of recent research progress and areas that we believe require
further research, while also encouraging particular attention
to the potentially strong and deep links between collective
learning, social stability and evolution.

Before going further, we will now clarify the terminology
we intend to use throughout. We will refer to improvements
in collective performance through repeated trials within the
life of a group as ‘collective learning’ (figure 1). This definition
has three broad, acknowledged implications. First, our defi-
nition of collective learning departs from one previously
proposed [5] in that it makes no pre-specified assumptions
about interactions occurring between individuals. We believe
relaxing these assumptions makes the concept much more
broadly and objectively applicable by any researcher working
at a collective level. We will thus take ‘collective performance’
at its simplest meaning: a measure integrating the contributions
of two or more individuals, where these individuals are
considered ‘a group’ (regardless of their actual interactions).

Second, in theory, not all learning instances (individual or
collective) are necessarily adaptive [12] and could thus arguably
reduce or impair performance. Focusing on positive links to fit-
ness, as implicitly suggested by the word ‘performance’, is
not strictly necessary here, but such a stance will both facilitate
and emphasize discussions of evolutionary implications. We
believe that ‘maladaptive learning’ cases represent the other
side of the same coin, i.e. a different type of directed and non-
random change of (collective) behaviour arising from
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experience, but one that should not be favoured by natural
selection. We thus hope that the mechanisms discussed here
can easily be extended or translated to maladaptive, or even
neutral or mixed (i.e. those with different fitness impacts
between group members) cases of collective learning. This
choice will be further discussed in our final synthesis (§4).

Third, and finally, ‘within the life of a group’ implies that
the group persists in time, which might depend on rates of
immigrations (and/or births) and emigrations (and/or
deaths). To simplify, for the most part, we will thus focus
on groups that remain stable in composition across repeated
trials; further potential effects of immigrations or emigrations
(e.g. [13–15]) will be ignored unless explicitly mentioned and
discussed in more detail in the final synthesis.
il.Trans.R.Soc.B
378:20220060
2. Experimental examples of collective learning
(a) Some case studies and their specific mechanisms
To our knowledge, the first experimental study explicitly
focusing on collective learning as we define it examined the
responses of ant colonies to repeated nest destructions [9].
If the nest of a colony of ants from the genus Temnothorax
(formerly Leptothorax) is destroyed, individual scouts will
start to explore the surroundings to identify potential new
nest sites [6]. After finding a candidate new nest site, scouts
will transport and/or lead other individuals to its location,
until the whole colony has eventually ‘decided’ and settles
in the new site. At the collective level, researchers can
measure how long it takes for the whole colony to achieve
nest migration after initial nest destruction [6] (a ‘collective
performance’). How does this time-to-emigration change if
the same colony faces repeated nest destructions? Langridge
et al. [9] experimentally showed that across consecutive nest
destructions, colonies became increasingly quicker at choos-
ing a new nest site and at completing the emigration, and
they also progressively improved their accuracy in choosing
the best site among two candidates (another facet of the
colonies’ ‘collective performance’). In other words, the colo-
nies showed learning properties (improvement over trials,
i.e. with experience) at the collective level: they ‘collectively
learnt’. In theory, several distinct mechanisms could explain
these observations: recruited scouts could have learned to
explore their environment faster; and/or non-scouts may
have learnt to follow scouts more efficiently; and/or more
individuals may have learnt to readily engage in scouting be-
haviour after nest destruction, for instance. Later observations
concluded that the former hypothesis (more efficient scout
exploration) was the main explanation in this case [16].

In some experimental paradigms, it is possible to directly
compare the performance of a group with that of a single indi-
vidual at the same task. By measuring respective changes in
collective and lone individual performance across repetitions
of the task, we can quantitatively compare collective and
individual learning curves and their asymptotes. Groups of
domestic pigeons (Columba livia) released together from a site
away from their home will fly as a flock when returning
home, and as such trade off individual navigation preferences
against flock cohesion [10]. Across consecutive trials from a
single release site, initially unknown to all birds, pigeon
flocks refined and improved their collective routes to home,
progressively approaching the straight line [10,13]. The collec-
tive learning curve (improvement of homing route straightness
over trials for birds released in pairs and flying cohesively)
appeared strikingly similar to that of individual learning
curves obtained from pigeons repeatedly released alone
[10,13,17]. It was as if learning of the homing route was no
different between lone individuals and members of a flock
(see further discussion in [17,18]). Yet from a theoretical point
of view this similarity is not trivial. Social interactions that
maintain cohesion between flock members could have nega-
tively affected navigational learning, for example by reducing
attention to environmental features such as landmarks [19].
Conversely, finding a consensus between individual
navigational preferences could have led to flocks quickly
averaging out errors around the correct direction (the ‘many-
wrongs’ hypothesis; [20]) and thus to a collective learning
curve converging more rapidly than individual learning
curves [21]. In fact, if these mechanisms were both involved
and mutually compensating, similar apparent collective and
individual learning curves could emerge despite very different
underlying mechanisms.

In some cases, however, collective learning curves can be
clearly different from individual learning curves. Shoals of
Trinidadian guppies (Poecilia reticulata) were experimentally
shown to become faster and more efficient across trials (i.e.
‘collective learning’) at choosing the arm of a T-maze that
was devoid of predators [11]. In shoals from populations of
guppies that had evolved in low-predation environments,
the collective learning rate was faster than that of guppies
that had evolved in high-predation environments. However,
this effect of predator pressure on learning rate was not
observed in the learning curves of lone individuals. Hence
the level of predation pressure affected collective learning
properties but not how single individuals learnt. Further ana-
lyses revealed that collective learning in low-predation
groups was achieved across trials in part from some individ-
uals becoming more influential on collective movement
decisions across trials and in part from an increased sharing
of information between members [11]. Here, collective learn-
ing properties could not simply be predicted solely from the
learning capacities of individuals: the interactions between
members and the collective decision-making mechanisms
underscored a crucial difference.

A central difficulty is thatwhen observing a collective-learn-
ing curve, we have no information on what individual group
members each learnt, and whether they all learnt equally. For
instance, experiments showed that shoals of zebrafish (Danio
rerio) could learn to successfully discriminate and collectively
choose the ‘correct’ rewarded arm in a T-maze after only a few
trials, and indeed did so faster than individuals learning alone
[22]. Careful experimental designs showed that most shoals
learnt a ‘place response’ relying on surrounding landmarks
indicating the correct arm, rather than on a fixed response
(e.g. ‘turn left’). However, when individuals from these shoals
were later tested alone, therewere equal proportions of individ-
ual members that had learnt a fixed versus a place response
(these proportions matched those of individuals that had
learnt alone) [22]. Hence, the learning properties observed at
the collective level did not necessarily reflect what individual
members had learnt. Furthermore, while in this case what the
individual shoal members had learnt within the collective
seemed similar to what single individuals learnt, this may not
necessarily be the case. Theoretical simulations using groups
of machine-learning agents have indeed shown that members
of a group can learn very different solutions to a task than
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identical machine-learning agents solving the same task alone
[23,24], as we will see in more detail later (§3c).

(b) First conclusions: complexities and evolutionary
significance of collective learning

As an interim summary, although it may seem unsurprising
that collective-learning properties are observed in groups com-
posed of individuals able to learn, the processes underlying
collective learning can be complex and also challenging to
study. Directly comparing, in the context of the same task, the
collective-learning curves of groups with individual learning
curves of lone individuals can be a first step; however, such
an approach is insufficient in explaining what happens inside
the group. Social interactions within the group could strongly
affect what and how quickly members learn compared to
lone learners; in parallel, what members individually learn
might not necessarily be integrated into subsequent collective-
decision processes. Moreover, even without learning, pooling
the contributions of members may help the group perform
better than lone individuals (e.g. the ‘many-wrongs’ hypothesis
[20]), sowe emphasize that the key observation in our definition
of collective learning is an improvement of collective perform-
ance across trials by the same group. Our examples suggest
that for each observed case of improved collective performance
across trials, many different mechanistic explanations can be
suggested, based on the myriad ways members could interact
with one another to reach a collective decision. Classifying
these mechanisms could thus help design clearer scientific
comparisons between taxa and/or behavioural contexts.

Furthermore, these first few examples also suggest that
diverse animal groups from a broad phylogenetic spectrum
are indeed capable of collective learning in various types of
tasks. This might suggest some evolutionary significance of
collective learning. Many animals live in groups, with impor-
tant evolutionary advantages associated with group cohesion
(e.g. see [25]). As a result, the individual fitness of these social
animals can be greatly influenced by the outcome of their
group’s collective decisions [7,26]. It would therefore seem
adaptive for the capacity to individually adapt behaviour
through learning to scale up to the collective level; in other
words, for groups to be able to improve collective perform-
ance with experience. One might thus expect collective
learning capacities to be widespread, allowing not just indi-
viduals but also their groups to adapt their behaviour to
changing environmental conditions [2]. Even in solitary
animals without direct social interactions, the fitness conse-
quences of individual decisions can partly be dependent on
the decisions of others [27,28]. As a result, at least in some
cases, it can make sense to test if these ‘groups’ of solitary
neighbours improve their collective average performance
across consecutive measurements over their lifetime (e.g. to
better assess conservation chances in a population [27]). In
the next section, we will thus detail and classify potential
mechanisms for collective learning, to hopefully facilitate
their systematic investigation in diverse animal groups.
3. Mechanisms of collective learning: a
classification

As we have seen, there are several potential mechanisms
through which a given group can improve its collective
performance through experience. At first sight, these mechan-
isms could appear to strongly depend on the species, social
structure and/or collective task considered. Yet we have ident-
ified three distinct categories of mechanisms that could enable
stable groups to improve performancewhen repeating a collec-
tive task (figure 2). First, individual members could learn to
individually improve at solving the task on their own.
Second, individual members could learn about other members
and improve how they respond to each otherwhile performing
the task. Third, individuals could learn to adjust their
contribution to the task so that it better complements the con-
tributions of othermembers. As an analogywe can think about
a band of musicians learning to improve their performance at
playing a particular song: members could each improve their
own playing of their part; members could improve how well
they listen to and respond to each other and play in better syn-
chrony; or else members may adjust which instruments are
played in the band for an improved overall effect.

As we will see, these three categories of mechanisms over-
lap (that is, some observed empirical processes could fit several
categories simultaneously), but the essential point is that they
overlap only partly: some cases of collective learning can
only be assigned to one or two categories of mechanisms and
not to the other(s). By mainly focusing investigations on one
category of mechanism (as we will argue is the case of the
current scientific literature explicitly addressing collective
learning), we could fail to identify many cases of collective
learning. Moreover, each category has specific implications
and predictions as we will progressively detail.

All three categories assume individual learning capacities
by group members (which for simplicity we will here equate
to associative learning processes [1]) and might (or not)
involve social learning processes (i.e. learning from others,
which can also be explained in associative learning terms
[29,30]). However, we will show that collective learning can
potentially involve further emergent properties due to inter-
actions between learning agents, that are not necessarily
predictable by considering individual or social learning prop-
erties alone (see also [31,32] on such claims). We also note
here that some simulations showed that collective behaviour
can be influenced by the history of the group (i.e. a collective
memory effect, revealed by ‘hysteresis’ analyses) even when
members had no learning capacities implemented [33]. How-
ever, to our knowledge, this phenomenon has received
relatively little interest from biologists since its initial report,
and its biological significance is thus very poorly known. It
is unclear if it could have long-lasting effects on collective be-
haviour and/or individual fitness, especially in groups of real
animals who generally do have individual learning abilities
[1]. For all these reasons, we will not further explore this
type of process here, but it might be worth for future studies
to consider its potential impacts in more detail.

(a) Members learn to better solve the task on their
own

Perhaps the simplest way for a group to improve its collective
performance is by each member learning to individually
solve the task better and thus improving its contribution to
the group’s pool of contributions. If all members’ input
improves, the collective performance should indeed improve,
regardless of whether the collective decision emerges from
some form of averaging (weighted or not) or from extracting
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Figure 2. Schematic representation of three distinct but non-mutually exclusive mechanisms through which groups could increase collective performance through
experience, illustrated with the repeated collective task of not losing a member to a predator encounter. (a) Individuals may each progressively learn to recognize/
detect predators and thus quickly get to safety; (b) individuals may learn to detect and reduce risky behaviours from other members to ensure they all get to safety,
and/or they may learn to attend to and correctly interpret warning calls; (c) individuals may progressively specialize into subtasks (e.g. predator versus social
vigilance) and thus avoid interference and/or increase complementarity between individuals with different specializations. (Online version in colour.)
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a single solo contribution from among group members. We
argue that this occurs during collective learning of homing
routes in pigeons: virtually all individuals within the group
seem to learn the route home through collective trials. Indeed,
when they are separated from their group they still perform
well on their own, at levels similar (albeit not strictly identical)
to their group’s previous performance [18,21,34]. Similarly, in
the zebrafish experiments cited above [22], it seems that most
members of the shoal learnt to enter the correct rewarded
arm, so even though not all members acquired the same mech-
anism for selecting this arm, at the collective level the group
learnt the correct choice.As these two case studies reveal, testing
groupmembers alone, after the collective-learningphase, can be
instrumental in revealingwhat they each learnt, although itmay
not always be necessary.

Some cases of collective performance emerge from different
individual members performing very dissimilar, specialized
contributions (sometimes referred to as ‘division-of-labour’
[35,36], or ‘social roles’ or ‘niches’ [37–39]). The example of
nest destructions and emigrations in Temnothorax ants men-
tioned above [9] falls into that category: only a subset of the
colony’s individuals act as ‘scouts’ that explore the environment
for options, and at any given time, some recruited ants are pas-
sively carriedwhileothersmore actively follow ‘demonstrators’.
In such cases, no single individual performs the entire taskon its
own. However, even then it is still possible to test whether indi-
vidual members improve their individual performance, across
collective trials, at their subtask. This happened in the case of
ants: much of the collective-level increase in performance
across trials was due to individual-level improvements in
exploratory performance [16]. We shall return later (§3c) to
how such roles might spontaneously emerge within a group
andhow this could contribute to increases in collective perform-
ance across trials, but no such processes seemed to be involved
in the case reported in Landridge et al. [9,16].

At its most basic expression, this first category of
mechanism might thus appear to involve little in the way
of emergent collective-level properties. Under previous defi-
nitions [5], some authors might actually disregard it as a
case of ‘collective learning’. Yet if we consider inter-individ-
ual heterogeneity in behaviour [40], in experience [13] and/
or in learning capacities within the group [41], emergent
properties may be likely to occur, even if they are difficult
to study. First, members’ improvement at individually
solving the task may be facilitated by social interactions
(social learning), for instance by copying successful actions
(imitation or emulation) or more simply by increasing the
individual’s exposure to relevant cues (local or stimulus
enhancement) [3,30]. Such social learning might be addition-
ally facilitated if the group contains members with previous
experience of the task (e.g. [13,34,42]), but this would imply
a change in group composition, which we will discuss in
more detail later (§4b). However, social learning processes
might also occur in a group of initially all-naïve individuals,
if some members learn faster or fortuitously make better con-
tributions that are recognized as more efficient and then
(socially) learnt by other members (a form of ‘information
pooling’ [26,42,43]). Indeed, the mechanism could even
encompass simple social facilitation: the mere presence of
conspecifics may lower individuals’ neophobia and time
devoted to vigilance [25], and in turn increase their attention
to the relevant elements of the task. In homing pigeon flocks
for instance, some of these social learning processes seem
involved in collective learning of navigational routes [13,43].
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A second simple emergent property may arise if the
contribution of individual members to collective decision-
making is modulated by those members’ knowledge of the
task at hand. For instance, if themore knowledgeablemembers
tend to act as leaders, the group’s performance could increase
faster than the average performance of its members. In homing
pigeons again, links between knowledge and leadership have
sometimes been observed, although not under all conditions
[43–46]. More generally, there is a rich literature on the links
between leadership and individual knowledge in different
animal groups (e.g. [47–49]), the review of which extends
beyond the present manuscript.

These emergent properties might often be challenging to
demonstrate in stable groups, especially if they occur on very
small spatio-temporal scales within collective trials [50]: identi-
fying who learns from whom, to what extent information is
pooled among all members, or how knowledge influences lea-
dership in real time across trials will not always be possible
when individuals are constantly interacting with each other.
However, several non-mutually exclusive approaches can
help reveal them. First, insights can be gained by careful moni-
toring (e.g. [11,51]) and/or experimental manipulations of
group composition (especially heterogeneity in members’
knowledge; e.g. [13,45,49]) and the resulting effect on leader-
ship and collective performance within or across trials.
Second, the use of simulation models can also enable the com-
parison of predictions with or without some of these processes
(social learning, leader–follower roles, etc.; e.g. [51]).

Despite these empirical difficulties, currently much of the
research explicitly addressing collective learning seems to
focus on these mechanisms [5], as two now classical research
avenues are merging (animal cultural behaviour on the one
hand, and mechanisms of collective decision-making on the
other). It also appears that many of the most explicit cases
of collective learning reported, and presented in the previous
section, rely in large part on this general mechanism of indi-
vidual members improving at the task. Nonetheless, other
categories of mechanisms are plausible, and we turn to
them below.
(b) Members learn about each other
Whenconsidering individualswithinagroup,wehave to exam-
ine the possibility that individual behaviours can be a direct
response to perceptions of neighbours (i.e. their state and/or
actions), what we could call ‘direct interactions’. For instance,
simulation models of collective movements can recreate com-
plex dynamics of flocks or shoals only when members
account for neighbours’ positions around them to decide on
theirowndirectionand speed [33].While it is generallyassumed
in many collective movement models that the rules governing
these direct interactions are fixed (e.g. [23,24,52]), in theory
they could be influenced by the learning capacities ofmembers.
In associative learning terms, individuals could form an associ-
ation between what they perceive about others and how best to
respond (i.e. not simply learning from—i.e. social learning—but
also learning about each other). In turn, learning to interact
(directly) with other members might contribute to improve
some measure of collective-level performance.

This mechanism could of course extend beyond the case
of collective movements. In vampire bats (Desmodus rotun-
dus), groups can improve the average survival rate of their
members (our ‘collective performance’) through a form of
non-kin cooperation (sharing blood meals), which works
as a collective mutualistic insurance against stochastic indi-
vidual foraging success [53]. Recent studies suggest this
altruistic behaviour develops progressively between any
given pair, by establishing a form of trust relationship specific
to the partner: individuals are more likely to offer a blood
meal to individuals they have previously roosted with and
that groomed each other; it is also less likely to happen
again towards non-reciprocal individuals [53–55]. If we ima-
gine a newly formed group of vampire bats, all initially naïve
to each other and to foraging, we could in theory expect the
average survival rate of the group to increase through time
and across foraging attempts, as members learn to trust
each other through their interactions. Importantly, such col-
lective learning could arise even if individuals do not get
individually better at foraging. Here, collective learning
could arise from individuals learning about each other
rather than about solving the task on their own.

Collective behaviours that involve some level of coordi-
nation between members are likely to provide other
candidates for this mechanism of collective learning (e.g.
[56–58]). In particular, song duetting in passerine species
could become a powerful example to study such individual
and collective learning mechanisms in more detail [58]. In
song duetting birds, both males and females vocalize to pro-
duce a coordinated song (either in synchrony or in highly
precise alternance, sometimes with sex-specific phrases).
Evidence suggests that likemore classical singing in passerines,
song duetting species also have to learn their repertoire, and
presumably also the repertoire of duet-partners and how to
coordinate their responses. However, many of the specific
mechanistic questions raised by the coordinated nature of
song duets remain to be investigated [58].

Another way of identifying candidates would be to start
from some of the many known and diverse examples of
individuals formingmental representations about others. Con-
specific individual recognition and use of that skill during
interactions has been shown in various organisms [59–61].
Some predators, including raptors or dragonflies, can antici-
pate the behaviour of their prey (such as their escape
trajectory [62,63]), and it might not be unrealistic to imagine
similar anticipatory capacities targeted at conspecifics in
dense, fast-moving flocks or shoals. In monogamous pairs of
birds, there is evidence that individuals can account for the
physiological state of their partner to adjust their parental
effort [64], and in primates, there is a long tradition of research
on theory-of-mind (being able to represent others’ state of per-
ception or knowledge; [65]). Exploring, on the one hand, the
influence of learning in the context of these capacities, and on
the other hand their consequences on collective performance
across trials, would then provide confirmation of the role of
learning about other group members in collective learning.

In all the candidate examples we searched, we never
found all these elements empirically demonstrated together.
For instance, in monogamous birds, it is a common obser-
vation that pairs improve their breeding success across joint
breeding attempts (e.g. [66–68]; a form of collective learning
by our definition). In theory, this improvement could arise
if individuals progressively learn to better account for their
partner’s state to adjust their parental behaviour [64]. How-
ever, to our knowledge the mechanisms for the progressive
improvements of pairs’ breeding success across attempts are
still largely unknown (e.g. see [69,70]).
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When collective learning is shown in a system, evidence
that it emerges from members learning about each other
could be obtained indirectly, by manipulating group compo-
sition during the collective learning phase. For instance, if
individuals were to always behave as part of a group during
the collective learning phase, but with ever-changing partners,
would they still show the same collective learning properties
(e.g. see [70])? Even in non-manipulated stable groups, with
modern tracking technologies enabling us to record fine behav-
ioural responses of numerous individuals at a time, it could
also be possible to statistically assess whether individuals
become, for example, faster to respond to their neighbours
across trials [11,71]. This is indeed what is suggested by
detailed analyses of the predator avoidance experiments in
guppies [11]. Finally, modelling simulations that switch this
process of learning about others on and off could also enable
us to develop further testable predictions. Yet to our knowl-
edge this latter avenue has seldom been explored by
modellers: even when learning rules are implemented in bio-
logically inspired models (e.g. [23,24,52]), all models we
know of implement direct interactions as a fixed rather than
as a learnable and tuneable rule: learning is directed towards
other components of the behaviour. It should be noted that
this is not the case in Artificial Intelligence (AI) studies [72],
which may thus offer up useful insights for biologists.

To sum up, this mechanism of learning about others is at
least partly distinct from the mechanism of members improv-
ing their individual performance at the task (§3a). Indeed, we
can theoretically imagine a scenario where the improvement
of group performance mainly relies on members learning to
better respond to each other, such that if members were to be
extracted from the group and tested alone, theywould perform
poorly (a form of inter-dependence). This would be opposite to
our prediction in the previous section where testing members
alone would reveal they improved at solving the task alone.
We acknowledge that the distinction between these first two
categories may become blurred when the collective perform-
ance explicitly integrates a social dimension (e.g. synchrony),
and as such cannot be solved alone (in contrast with naviga-
tion, hunting, etc.). Moreover, there is a third category of
mechanism, which also predicts potential inter-dependencies
between members (and thus poor individual performance of
members tested alone). The distinction between the second
and the third category of mechanisms will be developed in
the next sub-section.
(c) Members learn to better complement others
Collective performance is a mathematical function integrating
the behaviours of several individuals into a single measure
[8]. Depending on the nature of this function, collective
performance might be higher than any of the individual
members’ contributions on their own, a phenomenon that
exemplifies ‘collective intelligence’ [13,20]. A well-known
mechanism for this is provided by the ‘many-wrongs’ prin-
ciple: a group averaging its members’ individual estimates
(for instance of a correct navigational direction)will statistically
increase its accuracy (if individual estimates are independent
from each other and unbiased), as the randomerrors in individ-
ual estimates are averaged out [20]. The many-wrongs process
can for instance be observed in some homing pigeon flocks
[21]. By contrast, members with high individual efficiency
when they are on their own may form poorly performing
groups when put together [73,74]. In other words, members
may complement each other (the collective performance is
then better than the individuals’ contributions), or they may,
on the contrary, ‘interfere’ with each other (the collective
performance is then worse thanmembers’ individual perform-
ances). The corollary is that across repetition of a collective task,
if individual members somehow learn to better compensate
each other or if they learn to reduce interferences among
them, the overall collective performance will improve across
trials. We refer to this effect as collective learning through
improved complementarity. We will see that it can emerge
spontaneously from simple individual (and/or social) learning
rules. Wewill further show that it can arise even if members do
not get individually better at the task or if members do not
explicitly learn about others.

A pioneering study by Kao et al. [23] first exemplified this
case through a modelling simulation placing individuals in a
particular trade-off, where collective accuracy could reach
higher levels than that possible for individual accuracy
(based on the many-wrongs principle). It showed that neural
networks placed in a group progressively learnt to rely on
the many-wrongs mechanism to gain higher collective-
estimate accuracy, rather than to improve their individual esti-
mates at the expense of the collective accuracy. When learning
reached an asymptote, these groups were thus composed of
individual members that would perform more poorly than
identical but lone learners [23], although as a group they
performed better.

A later example, perhaps more intuitive, is provided by a
different modelling simulation [24]. There, neural network
agents were paired to collectively navigate. Each neural net-
work independently proposed a direction, in the first trial
chosen randomly. In the experimental treatment of interest
to us here, the two ‘individual’ directions were then averaged
to determine the pair’s collective direction (cohesion was
forced). The magnitude of the difference between this collec-
tive direction and the ‘correct’ direction (arbitrarily chosen
but constant across trials) was used to modulate the reinforce-
ment of each neural network of the pair in its individually
proposed direction. Across trials, the collective direction of
most of these pairs converged towards the correct direction
(collective learning) [24]. However, in most of these pairs,
none of the individual neural network members converged
to individually propose the correct direction. Rather, each
pair stabilized at an idiosyncratic equilibriumwhere a constant
clockwise error of one neural network was almost perfectly
compensated by a constant, opposite anticlockwise error of
its partner [24]. Hence across trials, even if the individualmem-
bers did learn, none learnt to better solve the task on their own:
they would have poorly performed alone. Note that this might
affect our methods to efficiently detect individual learning,
when individuals act within a collective.

Other simulation studies have reported similar improve-
ments of collective performance through individuals
spontaneously increasing their complementarity across trials
(e.g. [27,75]). Importantly, in these simulations, members
could not track or directly account for the individual state or
behaviours of their partners. Individuals could only rely
on previous experienced outcomes (as reinforcement for
learning), but in contrast with lone learning, these previous
outcomes could potentially be influenced by other, sometimes
numerous individuals. Interactions with these other individ-
uals were therefore ‘indirect’. This category of mechanisms is
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thus distinct from the previous one in that members do not
necessarily learn about each other, i.e. they do not learn to
associate their choice of behaviour to perform with a cue per-
ceived about another member. The distinction may become
particularly important when considering very large groups
(in terms of numbers of individuals, and/or in terms of spatial
extent [26]). To perhaps illustrate this even more clearly, we
can consider a simulation where individuals might never
encounter each other [27].

Under some environmental conditions, simulated indi-
viduals only using individual learning and spatial memory
to forage for patchy, depletable resources can progressively
and spontaneously segregate over the landscape in distinct
home ranges [76]. This occurs with no rules for social inter-
actions (nothing happens when two individuals meet, by
chance), and no rules for territorial behaviour (no marking
or defence of borders). Spatial segregation occurs simply
because individuals are not reinforced when encountering a
patch already depleted by another individual [76]. In turn,
at the collective level this allows the population as a whole
to exploit a progressively larger share of the landscape’s
resources and to reach higher abundance (i.e. an increase in
carrying capacity), corresponding to a case of collective
learning [27]. In this case, individuals also benefit from the
situation, as they escape competition and improve their
individual consumption rate (i.e. this case could fit both
categories 1 and 3 when considering individual- and
collective-level foraging success) [27]. However, the limits of
their home ranges are arbitrary and there are no intrinsic
differences between the different home ranges. In other
words, individuals did not learn to exploit more productive
parts of the landscape; instead, they learnt to better divide
it among them, without direct interactions.

So far, we have restricted examples to modelling simu-
lations. The sets of models explaining spatial segregation
between foraging individuals have received strong empirical
support in bats [77] and in seabirds [78]. In seabirds, this
effect was observed after adding further complex processes
of social information transfer within subgroups: segregation
at sea in seabirds was observed mainly between individuals
from different rather than from the same breeding colony
[78]. This exemplifies that collective learning through
complementarity can also involve social learning. A distinct
simulation model sharing similar spatial properties was
also developed to explain empirical observations in humans
playing a cooperative game online without direct communi-
cation or tracking of the partner’s actions [75]. It is likely
that many other empirical examples exist of these processes,
but their indirect nature makes them very difficult to
disentangle without the help of simulation models.

A common, recurrent pattern observed with this third cat-
egory of mechanism is that in almost all cases individual
members progressively specialize their behaviour: neural net-
works specialize on a specific direction, either clockwise or
anticlockwise [24], and individuals segregate over a landscape
[76–78]. One potential way to empirically test for collective
learning through improved complementarity between mem-
bers could thus be to examine how members’ specialization
changes through time, and how this affects overall collective
performance. To assess changes in specialization through
time, one can look at the change across trials in within- and
in between-individual variability in behaviour among group
members [35]. There are many empirical and theoretical
studies that have investigated how social roles (e.g. leader
versus follower [79]), division-of-labour [36,80,81] and/or per-
sonalities [39,82,83] can spontaneously and progressively
emergewithin collectives, but the link to a progressive increase
in collective performance through this mechanism seems to
have been rarely addressed empirically [84]. In eusocial insects,
for instance,while division-of-labour is ubiquitous and the cur-
rent literature favours mechanisms of self-emergence within
colonies, an empirical link from the progressive emergence of
division-of-labour to any colony-level performance is still
lacking [81,85].

This ‘specialization test’ among members might also help
highlight a further distinction between ‘learning about
others’ (§3b) and ‘learning to complement others’ (this sub-
section). In the case of vampire bats discussed in §3b, it can
be argued that members learn to complement each other.
Indeed, when one member has poor foraging success, the
others compensate for it; hence, the gain at the collective
level is through the consensus function and not necessarily
through individual improvement. As we saw in the previous
section, it also occurs through learning about each other (i.e.
the case fits both categories 2 and 3). Yet in the vampire bat
case we would not necessarily predict a progressive specializ-
ation of individuals into different roles. In fact, across trials,
individuals should have roughly symmetrical contributions
in terms of feeding others or being fed by others: reciprocity
seems a requisite to establish and maintain trust relationships
[53]. As another key distinguishing prediction, if for any
reason one member suddenly changes its behaviour (or disap-
pears) during a trial T compared to previous trials, if other
members had learnt about this specific individual (§3b), they
should immediately adjust their own behaviour in the same
trial T (since the cue to which their behaviour responds has
changed). However, if members had learnt to complement
each otherwithout learning about the others (this sub-section’s
mechanism), it should take longer (i.e. at least another trial) for
them to change their individual behaviour. Hence, we have our
three, partly overlapping yet distinct categories ofmechanisms.
4. Synthesis and key areas for future research
Our survey of empirical examples, including clear experimental
results from taxa as diverse as ants, pigeons and fish, suggest
that collective learning capacities could be widespread across
animal groups. To facilitate their systematic investigation, we
have proposed classifying the mechanisms of collective learn-
ing into three broad categories: members learning to better
solve the task on their own; members learning about each
other to improve how they directly interact; andmembers learn-
ing to act so as to better complement others’ actions. We
highlighted how these mechanisms could be tested and distin-
guished. Below we will suggest a broad roadmap for future
research questions, arising from our definition of collective
learning and our proposed categories of mechanisms.

First, we emphasize once more that our discussion of
collective learning mechanisms suggests it may be misguided
and counterproductive to try to fit any given empirical ormod-
elling case of collective learning in a single of the three
categories of mechanisms described. The three categories over-
lap partly, and/or can jointly operate. Rather, these categories
can help to consider broad sets of alternative mechanistic
hypotheses when collective learning is observed. Indeed,
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Figure 3. Schematic representations of non-mutually exclusive constraints on collective learning capacities which might help predict its distribution in animal
groups: (a) the individual cognitive processing of information may be more challenging when several individuals, rather than only a single individual, contribute
to a task; (b) what individual members learn and/or know does not necessarily influence the collective decision; (c) conditions for the emergence of collective
learning need to be evolutionarily stable strategies, successfully traded off against other biological functions, to persist across generations. (Online version in colour.)
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each category of mechanisms presents distinct consequences
and predictions to be tested. We provided various candidate
examples where such investigations might prove fruitful. The
definitions we adopted also highlight two further and broad
avenues of research that we now turn to: when should we
expect collective performance to have (or not have) the capacity
to improve over time, and thus how might collective learning
capacities be distributed across animal groups; andwhat influ-
ence can emigrations and immigrations (i.e. ‘social instability’)
have on the processes we described, and on collective learning
more generally?
(a) The distribution of collective learning capacities, or
why collective learning may often fail to emerge in
groups

We focused our discussion of mechanisms on cases where
‘collective learning’ occurred, i.e. was detected through an
improvement of a group’s performance across trials. Yet we
acknowledged in the introduction that not all learning is
necessarily adaptive. In fact, because our definition of ‘collec-
tive performance’ is very broad (any measure integrating the
behaviour of several individuals), trivially we expect that
only some collective measures should increase across trials.
This leaves open the question of the actual distribution of
collective learning capacities across species, groups and/or
tasks. Studies reporting collective learning failing to emerge
in biological groups, and explaining why, would thus be
essential to better map these capacities.

To explore when and how collective learning fails, biol-
ogists might find inspiration from empirical works of AI
engineers. For decades now, AI researchers have been striving
to develop teams of robots each capable of individual learn-
ing, and trying to solve cooperative tasks together (e.g. see an
early introductory review of hundreds of such studies in
[73]). Many of the challenges the robots and their engineers
faced, reviewed in Panait and Luke [73], will probably also
be relevant for groups of learning animals. Indeed, in many
cases, teams of robots did not improve at solving the coopera-
tive task [73]. Robots, however, can only be imperfect models
for animal groups, primarily because they do not have a long
evolutionary history, and are often designed to complete a
specific task, rather than to balance and trade off various
needs related to survival and/or reproduction [12,86,87].
Therefore, there is still ample scope for biologists to assess
the factors influencing when animal groups should fail or
succeed in collective learning. We provide below some
more detailed outstanding questions and hypotheses.

We suggest there are three broad types of challenges for
the emergence of collective learning in animal groups com-
posed of individuals capable of learning (figure 3), which
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might then help to predict the distribution of collective-
learning capacities in groups. The first type of challenge is
cognitive: being part of a collective might alter what
or how fast individual members learn. If for any reason
individuals fail to learn efficiently when they are within a
group, the collective should not learn either. Biological simu-
lation studies indeed often reported slower learning of
collectives and/or of members of collectives, compared to
lone individuals [23,24,76]. In some cases, individual
members (and thus their groups) even failed to converge
on a solution [24]. Broadly summarized, many such effects
can be due to social cues and social interactions adding
noise around relevant signals and slowing down the
learning of relevant cues or actions by individuals. Some
theoretical and empirical hypotheses for these processes can
be found in the previously cited review on cooperative robotics
(non-stationarity of the environment, i.e. ‘co-learning’; wide
joint-solutions space to be explored by trial-and-error; impor-
tance of the reward system for learning reinforcement, etc.)
[73]. Other, more biologically oriented hypotheses can be
found in the psychology and neuroscience literatures [1],
reporting various types of competition between cues during
perception and processing (e.g. limited attention [19,88],
over-shadowing or blocking [1]) which interfere with or slow
down learning.

Yet several empirical studies in animal groups found an
opposite, positive effect of the collective context on learning
rates, or no effects at all (e.g. [10,89,90]). More work is thus
needed to elucidate which of the hypothetized cognitive chal-
lenges suggested by theory and simplified simulations apply
to real animal groups and/or which solutions may have
evolved for animal groups to overcome these. In turn, this
might help better predict the distribution of collective-learn-
ing capacities across taxa. It might be that collective
learning is more likely to occur in animals whose brains com-
partmentalize the processing of social from physical cues (e.g.
through brain lateralization [91–94]), or in animals with gen-
erally enlarged neural processing capacities (e.g. see ‘the
social brain hypothesis’ [95,96]).

The second type of challenge is collective: even if individual
members learn,what they learnmay not be integrated into sub-
sequent collective decisions. We previously mentioned (§3a)
existing research on the links between knowledge and leader-
ship, for instance (e.g. [13,45,48]). Other approaches have
been linking social network properties (size, modularity, etc.)
to rates of information transfer (social learning) between indi-
viduals and to the efficiency of information pooling at the
collective level (e.g. [97,98]). It is thus likely that not all social
structures will favour the efficient integration of members’
newly acquired knowledge into collective decisions. Within
non-human animal groups, empirical work suggests that col-
lective decision-making processes and/or social networks
can vary extensivelywith species, populations and/or environ-
mental or social contexts within populations (e.g. see the case
of travelling baboon troops [99–101]). It is thus possible that
the distribution of collective learning capacities in animal
groups would best be predicted by social organization rather
than cognitive capacities. The question of efficiently integrating
members’ knowledge at the collective level also has a long his-
tory of research in various human sciences (e.g. [102–106]), but
it is largely beyond our expertise to assess to what extent
the methods and/or conclusions therein could transfer to
non-human animals.
The third type of challenge is linked to evolutionary con-
straints, potentially interacting with cognitive and collective
processes. Collective learning might emerge by chance in a
group where members can learn but impose important fitness
costs on somemembers onwhich it is reliant, such that it might
not persist across generations, due to natural selection. The
interactions between genetic and learning processes in giving
rise to evolutionarily stable strategies are still poorly known
[12,87]. Moreover, the evolution of learning capacities them-
selves has mainly been studied from an individual rather
than a collective perspective so far [87,107]. In their review of
cooperative AI research [73], Panait and Luke suggested that
one key to successful cooperation between learning robots
was to implement the correct reward scheme to better align
individual and collective objectives. It would be particularly
valuable to explore whether similar considerations may be rel-
evant to predicting the distribution of collective-learning
capacities in animals, through an analysis of the fitness costs
and benefits to individual members.

(b) Links between collective learning and group
instability

So far, we mostly focussed our discussion on stable groups,
where improved performance across trials is not linked to
altered group compositions. This arbitrary choice was made
to focus on the already complex links between learning at
the individual level and the processes of collective decision-
making. Yet in many animals, groups remaining stable
across trials may be the exception rather than the rule [108].
Moreover, theory and empirical observations both suggest
that emigrations and immigrations (and/or birth and
death) can play pivotal roles in shaping the collective per-
formance of groups across time. Overall, changes in group
composition can indeed alter the ‘sum’ of knowledge present
within the group [99,109–111]; they could also at least tem-
porarily disrupt collective organization and the efficient
integration of relevant knowledge among members, but
they might on the other hand favour innovations, as strongly
suggested empirically [13–15].

A first clear observation is that most of the distinctions
between the three different categories of mechanisms we
proposed will be best revealed by sudden changes in group
composition (see §3). In particular, collective learning
based on ‘learning about others’, or based on ‘learning
to complement others’, could be highly sensitive to group
disruptions. These two categories of mechanisms create inter-
dependencies between group members, so that their collective
performance relies on members remaining together, although
in large groups, redundancy of social roles among individuals
might partly alleviate this effect. Our short summary of poten-
tial challenges to collective learning (§4a) also suggested that in
many cases being part of a collective might slow down the
learning rate of groups compared to lone individuals. Long-
term group stability could thus be of paramount importance
to learn about others and/or to learn to complement others.
In fact, even in homing pigeons where collective learning of
navigational routes seemed not to involve such inter-depen-
dencies, social disruptions caused large drops in collective
performance which took several trials to recover to (and
eventually overtake) pre-disruption levels [13].

Based on these considerations about sensitivity to social
disruptions, one could hypothesize that ‘learning about
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others’ and ‘learning to complement others’ should primarily
be observed in phylogenetic lineages with a long history of
high group stability. Yet things might not be so simple: the
modelling simulation studies we reviewed suggest that at
least ‘learning to complement others’ can spontaneously
emerge from very basic individual learning abilities
[23,24,76]. Since most animals can individually learn, many
collectives may spontaneously come to rely on inter-comple-
mentarity between members. More work is thus needed to
evaluate how often and to what extent repetitive collective
performance in animal groups is sensitive to group disrup-
tions. More theoretical work is also needed to understand
how this might have affected the coevolution of learning
and social traits in animals [25,87,107].

Positive effects of recruitment on collective performance
could also be actively leveraged by group members. At
least in humans, groups and institutions can rely on selective
recruitment of members into the group (as well as selective
exclusion), based on their expected capacity to improve col-
lective performance (through one or several of the three
mechanisms of collective learning we proposed). It is unclear
if such selective recruitment processes could also apply to
non-human animal groups, although at the level of pairs or
very small groups, this is reminiscent of assortative mating
and/or non-random coalition bonds within groups [112,113].

At a time when the planet is undergoing major global
changes, the sensitivity of collective learning (and collective
performance) to social stability may thus affect species’ vul-
nerability to human activities that often disrupt social
group structures (e.g. [114]). If group performance (e.g. fora-
ging or breeding success) requires a long learning phase,
and/or if it involves building inter-dependencies between
group members, loss of individuals or changes in the social
bonds might have long-lasting effects on the fitness of
group members (e.g. extending over several breeding seasons
for disrupted pairs of monogamous birds), but it remains to
be seen how significant this might be in ecology and
conservation compared to other processes and threats [115].

(c) General conclusions
To sum up, empirical evidence has accumulated for collective
learning, i.e. that diverse animal groups are capable of
improving their collective performance when repeating a
given task. The conditions and mechanisms for collective
learning had previously received little focused attention
from biologists [5]. We have illustrated here that elements
of answers already exist in a vastly scattered, multi-disciplin-
ary literature. We have provided several empirical examples
or candidates for collective learning in natural behaviours,
yet little is empirically known regarding the actual preva-
lence of collective learning and even less regarding
the relative contributions of the various categories of
mechanisms we identified.
Currently, studies explicitly addressing collective learning
have mainly been emerging from two converging research
avenues: social learning on the one hand (i.e. information
transfer between individuals, or ‘learning from’) and collec-
tive decision-making on the other. For instance, a lot of
attention has been devoted to the links between leadership
and individual traits (in particular, individual knowledge),
or to the effects of social network structure on information
pooling by individual members. By contrast, much less is
known about other types of emergent processes, that is,
those due to learning about others or due to increased com-
plementarity between members, although we cannot
exclude that we missed key studies from the extensive and
varied literature on group behaviours. We hope our work
will help better centralize knowledge about each of these
processes in the future.

The importance of the cognitive and/or evolutionary
challenges in shaping collective learning capacities are also
little understood and may be difficult to address empirically.
For these questions, but also more generally for mechanistic
studies of the emergence of collective learning, there is vast
potential for modelling approaches [23,24,27], including
those that incorporate insights developed in artificial learning
sciences [72,73]. In particular, more explicit integration of
rules for learning about others could greatly extend our
understanding of the interplay between learning and collec-
tive behaviour in animals, as already explored in AI studies
[72]. We have highlighted throughout how these concepts
expand our understanding of learning beyond current the-
ories on individual and social learning processes, notably
including the potentially deep links between learning and
social stability. To conclude, there is broad scope for renewed
research questions, as much remains to be discovered and
understood regarding the importance, distribution, and
mechanisms of collective learning across animal groups.
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