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Multi-centered dilatations, congruent isomorphisms

and Rost double deformation space

Arnaud Mayeux

Abstract. We introduce multi-centered dilatations of rings, schemes and algebraic spaces, a
basic algebraic concept. Dilatations of schemes endowed with a structure (e.g. monoid, group or
Lie algebra) are in favorable cases schemes endowed with the same structure. As applications,
we use our new formalism to contribute to the understanding of mono-centered dilatations, to
formulate and deduce some multi-centered congruent isomorphisms and to interpret Rost double
deformation space as both ”double-centered” and mono-centered dilatations.
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1. Introduction

1.1 Motivation and goals

Dilatation of rings is a basic construction of commutative algebra, like localization or tensor
product. It can be globalized so that it also makes sense on schemes or algebraic spaces. In fact
dilatations generalize localizations.

Let A be a ring and let S be a multiplicative subset of A. Recall that the localization S−1A
is an A-algebra such that for any A-algebra A→ B such that the image of s is invertible for any
s ∈ S, then A→ B factors through A→ S−1A. Intuitively, S−1A is the A-algebra obtained from
A adding all fractions a

s with a ∈ A and s ∈ S. Formally, S−1A is made of classes of fractions a
s

where a ∈ A and s ∈ S (two representative a
s and b

t are identified if atr = bsr for some r ∈ S),
addition and multiplication are given by usual formulas. Now let us give for any element s ∈ S an
ideal Ms of A containing s. The dilatation of A relatively to the data S, {Ms}s∈S (introduced in
this paper) is an A-algebra A′ obtained intuitively by adding to A only the fractions m

s with s ∈ S
and m ∈Ms. The dilatation A

′ satisfies that for any s ∈ S, we have sA′ =MsA
′ (intuitively any

m ∈ Ms belongs to sA′, i.e. becomes a multiple of s, so that we have an element m
s such that

m = sms ). As a consequence of the construction, the elements s ∈ S become a non-zero-divisor
in A′ so that m

s is well-defined (i.e. unique). It turns out that it is convenient, with dilatations
of schemes in mind, to make a bit more flexible the above framework, namely to remove the
conditions that S is multiplicative and that s ∈Ms, so we use the following definition.

Definition. Let A be a ring. Let I be an index set. A multi-center in A indexed by I is a set
of pairs {[Mi, ai]}i∈I where for each i, Mi is an ideal of A and ai is an element of A.

To each multi-center {[Mi, ai]}i∈I , one has the dilatation A[{Mi
ai
}i∈I ], it is an A-algebra.

We will define and study in details dilatations of rings in Section 2, in particular we will state
formally the universal property they enjoy. We will see that A[{Mi

ai
}i∈I ] is generated, as A-algebra,

by {Mi
ai
}i∈I . We will also see that if Mi = A for all i, then A[{Mi

ai
}i∈I ] = S−1A where S is the

multiplicative subset generated by {ai}i∈I . Reciprocally, we will see that any sub-A-algebra of a
localization S−1A for a certain S is isomorphic to a dilatation of A.

Dilatations of schemes and algebraic spaces are obtained from dilatations of rings via glueing.
We introduce the following definition (we restrict to schemes in this introduction).

Definition. Let X be a scheme. Let I be an index set. A multi-center in A indexed by I is a
set of pairs {[Yi, Di]}i∈I such that Yi and Di are closed subschemes for each i and such that
locally, all Di are principal for i ∈ I.

Associated to each multi-center, one has the dilatation Bl
{Di
Yi

}
i∈IX, it is a scheme endowed

with a canonical affine morphism f : Bl
{Di
Yi

}
i∈IX → X. It satisfies, in a universal way, that

f−1(Di) is a cartier divisor (i.e. is locally defined by a non-zero-divisor) and that f−1(Di) =
f−1(Yi ∩Di) for all i ∈ I. If #I = 1, we use the terminology mono-centered dilatation. We will
introduce formally and study several facets of this construction and show that it enjoys many
wonderful properties.

As we explained, dilatations are a basic construction which can be easily encountered in
specific situations. As a consequence, the theory of dilatations has deep and distinguished roots.
Right from the start, we warn the reader that we could not present a comprehensive historical
account. As soon as Cremona and Bertini started using quadratic transformations (or blowups)
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in the framework of algebraic geometry over fields, “substitutions” of the form x′ = x and
y′ = y/x started being made by algebraic geometers, see for example equation (8) in [No1884,
Section 11] and Noether’s acknowledgement, at the start of [No1884, Section 12], that these
manipulations come from Cremona’s point of view. Examples of dilatations appear frequently in
some works of Zariski and Abhyankar, cf. [AZ55, Definition, p. 86] and [Za43, p499 proof of Th.4,
case (b)]. Other forerunner examples of dilatations play a central role in several independent
and unrelated works later, cf. [Da67], [Ner64, Section 25] and [Ar69, Section 4]. As far as we
know, the terminology dilatations emerged in [BLR90, §3.2], where a section is devoted to study
dilatations of schemes over discrete valuation rings systematically. In the context of schemes
over a discrete valuation ring, we draw the reader’s attention to [Ana73], [WW80] and [PY06].
The paper [KZ99] studies dilatations (under the name affine modifications) systematically in
the framework of algebraic geometry over fields. Over two-dimensional base schemes dilatations
also appear in [PZ13, p. 175]. In recent times, the authors of [Du05] and [MRR20] have set out
to accommodate all these mono-centered constructions in a larger and unified frame, namely
for arbitrary schemes. The paper [MRR20] introduces dilatations of arbitrary schemes in the
mono-centered case and provides a systematic treatment of mono-centered dilatations of general
schemes. An equivalent definition of mono-centered dilatations of general schemes, under the
name affine modifications, was introduced earlier in [Du05, Définition 2.9] under few assumptions.
Set aside localizations, mono-centered dilatations have been the main focus of mathematicians
in the past. However, in the context of group schemes over discrete valuation rings, examples
of multi-centered dilatations of rings and schemes that are not localizations or mono-centered
dilatations appeared and were used in [SGA3, Exp. VIB Ex. 13.3], [PY06] and [DHdS18]. The
present paper unifies all these constructions, it introduces dilatations of arbitrary rings, schemes
and algebraic spaces for arbitrary multi-centers. Allowing multi-centers also leads naturally to
the formulation of combinatorial isomorphisms on dilatations and gives birth to refined universal
properties.

Beyond rings and algebraic spaces, the concept of dilatations makes sense for other structures
and geometric settings. Let us indicate some constructions already available. Some dilatation
constructions in the framework of complex analytic spaces were introduced in [Ka94]. For many
other structures than rings, dilatations also make sense (e.g. categories, non-commutative rings,
semirings), this is the topic of [Ma23c].

Recall that dilatations have distinguished roots, as a consequence, several other terminologies
are used to call certains dilatations in literature. For examples the constructions named affine
blowups, affine modifications, automatic blowups, formal blowups, Kaliman-Zaidenberg modifica-
tions, localizations and Néron blowups are examples of (eventually multi-centered) dilatations.

1.2 Results

Let A be a ring and let {[Mi, ai]}i∈I be a multi-center. Put Li =Mi+(ai) for i ∈ I. Let Ringa-regA

be the full subcategory of A-algebras f : A → B such that f(ai) is a non-zero-divisor for all
i ∈ I. Dilatations of rings enjoy several properties, the main ones are summarized in the following
statement.

Proposition 1.1. The following assertions hold.

(i) The functor from Ringa-regA to Set given by

(f : A→ B) 7−→

{
{∗}, if f(ai)B = f(Li)B for i ∈ {1, . . . , k};
∅, else. (2.26)
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is representable by an A-algebra A[Ma ], also denoted A[
{
Mi
ai

}
i∈I ], called the dilatation of A

with center {[Mi, ai]}i∈I .
(ii) The image of ai in A[

M
a ] is a non-zero-divisor for any i ∈ I, moreover

aiA[
M

a
] = LiA[

M

a
]. (2.10, 2.25)

(iii) Assume that I = {1, . . . , k} is finite. Then we have a canonical identification of A-algebras

A[
{
Mi
ai

}
i∈I ] = A[

∑
i∈I(Mi·

∏
j∈I\{i} aj)

a1···ak ]. (2.30)

(iv) If Mi = A for all i, then A[Ma ] identifies with the localization S−1A where S is the multi-
plicative subset of A generated by {ai}i∈I . (2.11)

(v) Any sub-A-algebra of a localization S−1A can be obtained as a multi-centered dilatation.
(2.15)

(vi) If A is a domain and ai ̸= 0 for all i, then A[Ma ] is a domain. (2.8)

(vii) If A is reduced, then A[Ma ] is reduced. (2.9)

(viii) In regular cases, one has an explicit description of A[Ma ] as a quotient of a polynomial
algebra. (5.5)

Now let X be a scheme and let {[Yi, Di]}i∈I be a multi-center. Put Zi = Yi ∩Di for all i ∈ I.
Let SchD-reg

X be the full subcategory of X-schemes f : T → X such that f−1(Di) is a Cartier
divisor for all i ∈ I. Our main results on dilatations of schemes are summarized in the following
theorem. Note that we work with general algebraic spaces later in the paper.

Theorem 1.2. The following assertions hold.

(i) The functor from SchD-reg
X to Set given by

(f : T → X) 7−→

{
{∗}, if f |T×XDi

factors through Yi ∩Di ⊂ X for i ∈ {1, . . . , k};
∅, else.

is representable by an X-affine scheme BlDY X, also denoted Bl
{Di
Yi

}
i∈IX and Bl

{Di}i∈I

{Yi}i∈I
X,

and called the dilatation of X with multi-center {[Yi, Di]}i∈I . (3.17)

(ii) As closed subschemes of BlDY X, one has, for all i ∈ I,

BlDY X ×X Zi = BlDY X ×X Di,

which is an effective Cartier divisor on BlDY X. (3.16)

(iii) Let J be a subset of I and put K = I \ J . Then

Bl
{Di

Yi

}
i∈IX = Bl

{Dk×XBl
{Di

Yi

}
i∈J

X

Yk×XBl
{Di

Yi

}
i∈J

X

}
k∈K

Bl
{Di

Yi

}
i∈JX.

In particular, there is a unique X-morphism

Bl
{Di

Yi

}
i∈IX → Bl

{Di

Yi

}
i∈JX. (3.19)

(iv) Assume that #I = k is finite. We fix an arbitrary bijection I = {1, . . . , k}. We have a
canonical isomorphism of X-schemes

Bl
{Di}i∈I

{Yi}i∈I
X ∼= Bl

(Bl··· )×XDk

(Bl··· )×XYk

(
· · ·Bl(Bl··· )×XD3

(Bl··· )×XY3

(
Bl

(Bl
D1
Y1

X)×XD2

(Bl
D1
Y1

X)×XY2

(
BlD1

Y1
X
)))

. (3.30)
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(v) (Monopoly isomorphism) Assume that #I = k is finite. We fix an arbitrary bijection I =
{1, . . . , k}. We have a canonical isomorphism of X-schemes

Bl
{Di}i∈I

{Yi}i∈I
X ∼= BlD1+...+Dk⋂

i∈I(Yi+D1+...+Di−1+Di+1+...+Dk)
X. (3.31)

(vi) In many cases, multi-centered dilatations can be iterated in a compatible way with the
addition law on closed subschemes. (3.1, 4.6)

(vii) Multi-centered dilatations whose multi-center {[Yi, Di]}i∈I satisfies that {Di}i∈I are multi-
ples of a single locally principal closed subscheme satisfy additional properties (preservation
of flatness, smoothness). (cf. e.g. 5.5, 6.1 for precise statements)

We also define dilatations in a relative setting as follows. Let S be a scheme and let X be a
scheme over S. Let C = {Ci}i∈I be closed subschemes of S such that, locally, each Ci is principal.
Put D = {Ci ×S X}i∈I . Let Y = {Yi}i∈I be closed S-subspaces of X. We put BlCYX := BlDY X.

Fact 1.3. BlCYX represents the functor from SchC-reg
S to Set given by

(f : T → S) 7→ {x ∈ HomS(T,X)| x|Ci
: T ×S Ci → X ×S Ci factors through Yi ×S Ci}.

Remark 1.4. Fact 1.3 implies that for any T ∈ SchC-reg
S (e.g. T = S if each Ci is a Cartier divisor

in S) we have a canonical inclusion on T -points BlCYX(T ) ⊂ X(T ). But in general BlCYX → X
is not a monomorphism in the full category of S-schemes.

We now describe our results regarding the behaviour of dilatations of schemes endowed with
a structure. So let S be a base scheme and assume that X = G is a monoid (resp. group,
resp. Lie algebra) scheme (or any structure defined using products). Let Hi ⊂ Di = G|Ci be a
closed submonoid (resp. subgroup, resp. Lie subalgebra) schemes over Ci for all i ∈ I and let
H = {Hi}i∈I . Let G := BlDHG→ G be the associated dilatation. The structure morphism G → S
defines an object in SchC-reg

S .

Proposition 1.5. Let G → S be the above dilatations.

(i) Recall that the scheme G → S represents the contravariant functor SchC-reg
S → Set given for

T → S by the set of all S-morphisms T → G such that the induced morphism T |Ci → G|Ci

factors through Hi ⊂ G|Ci for all i ∈ {1, . . . , k}. (7.1)

(ii) Let T → S be an object in SchC-reg
S , then as subsets of G(T )

G(T ) =
⋂
i∈I

(
BlDi

Hi
G
)
(T ). (7.1)

(iii) The map G → G is affine. Its restriction over Ci factors as Gi → Hi ⊂ Di for all i ∈ I. (7.1)

(iv) Assume the dilatation G → S is flat, then G → S is equipped with the structure of a monoid
(resp. group, resp. Lie algebra) scheme over S such that G → G is a morphism of S-monoid
(resp. S-group, resp. S-Lie algebra) schemes. (7.2 )

(v) Under flatness assumptions, dilatations commute with the formation of Lie algebra schemes
in a natural sense

Lie(BlG|C
H G) ∼= Bl

{Lie(G)×SCi

Lie(Hi)

}
i∈ILie(G). (7.4)

As an example of dilatations, let us explain a connexion between dilatations and Yu’s famous
construction of supercuspidal representations [Yu01] (cf. also [Yu15, §10]).
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Example 1.6. Assume in this example that O is the ring of integers of a non-Archimedean
local field F and that π is the maximal ideal of O. Let G be a split connected reductive group

scheme over O, i.e. a Demazure group scheme over O. Let
→
G = (G0 ⊂ G1 ⊂ . . . ⊂ Gd = G)

be a sequence of split Levi subgroups of G over O. Put Gi = Gi ×O F for all i ∈ {0, . . . , k}.
Put

→
G = (G0 ⊂ G1 ⊂ . . . ⊂ Gd =: G), a sequence of split Levi subgroups of G over F .

For i ∈ {0, . . . , d}, let xi be the special point in the Bruhat-Tits building of Gi such that Gi

corresponds to xi via Bruhat-Tits theory. Then xi comes from x0 via functoriality of buildings
as in [Yu01, §1]. Let 0 ⩽ r0 ⩽ r1 ⩽ . . . ⩽ rd be integers. Recall that eG denotes the trivial closed
subgroup scheme of G. There is a canonical isomorphism of groups

→
G(F )

x,
→
r
= Bl

r0,r1,r2,...,ri+1,...,rd
eG,G0,G1,...,Gi,...,Gd−1G(O),

where
→
G(F )

x,
→
r
is defined in [Yu01, §1 p584] and Bl{tiHi

}i∈IG denotes Bl{O/πt
i

Hi
}i∈IG for integers

ti ⩾ 0.

In the paper, we prove the following result. It generalizes the fact that congruence subgroups
are normal subgroups. It was also motivated by the fact that the proof of [Yu01, Lemma 1.4],
related to Example 1.6, is not correct.

Proposition 1.7. Assume that #I = 1, C = C1 is a Cartier divisor in S and G → S is a
flat group scheme. Let η : K → G be a morphism of group schemes over S such that K → S
is flat. Assume that H ⊂ G is a closed subgroup scheme over S such that H → S is flat and
BlCHG → S is flat (and in particular a group scheme). Assume that KC commutes with HC in
the sense that the morphism KC ×C HC → GC , (k, h) 7→ η(k)hη(k)−1 equals the composition
morphism KC ×C HC → HC ⊂ GC , (k, h) 7→ h. Then K normalizes BlCHG, more precisely the
solid composition map

K ×S BlCHG K ×S G G

BlCHG

Id×Bl k,g 7→η(k)gη(k)−1

Bl

factors uniquely through BlCHG. (7.5)

Recall that mono-centered dilatations (#I = 1) are already studied in many references, cf.
e.g. [WW80], [BLR90], [KZ99], [Du05] and [MRR20]. We refer the reader to [DMdS23] for a
survey paper on the topic of both mono and multi-centered dilatations.

We now discuss some applications of the above theoretical results. Our first application is a
multi-centered congruent isomorphism. To explain it, let (O, π) be a henselian pair where π ⊂ O
is an invertible ideal.

Theorem 1.8 (Multi-centered congruent isomorphism). Let G be a separated and smooth group
scheme over S. Let H0, H1, . . . ,Hk be closed subgroup schemes of G such that H0 = eG is the
trivial subgroup and such that Hi → S is smooth for all i ∈ {0, . . . , k}. Let s0, s1, . . . , sk and
r0, r1, . . . , rk be in N such that

(i) si ⩾ s0 and ri ⩾ r0 for all i ∈ {0, . . . , k}
(ii) ri ⩾ si and ri − si ⩽ s0 for all i ∈ {0, . . . , k}.
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Assume that G is affine or O is local. Assume that a regularity condition (RC) is satisfied (cf.
Definition 8.2). Then we have a canonical isomorphism of groups

Bls0, s1, ...,sk
H0,H1,...,Hk

G(O)/Blr0, r1, ...,rk
H0,H1,...,Hk

G(O) ∼= Lie(Bls0, s1, ...,sk
H0,H1,...,Hk

G)(O)/Lie(Blr0, r1, ...,rk
H0,H1,...,Hk

G)(O)

where Blt0, ...,tk
H0,...,Hk

G denotes Bl
O/πt0 ,...,O/πtk

H0, ... ,Hk
G for any t0, . . . , tk ∈ N. (8.1)

Remark 1.9. Note that [Yu01, Lemma 1.3] provides a comparable ”multi-centered” isomor-
phism, but in the framework of reductive groups over non-Archimedean local field ([Yu01, Lemma
1.3] does not involve dilatations). Note also that Theorem 1.8 extends [MRR20, Theorem 4.3].
Recall that [MRR20, Theorem 4.3] is related to the Moy-Prasad isomorphism in the setting
of reductive groups over non-Archimedean local fields. The Moy-Prasad isomorphism for re-
ductive groups is of fundamental importance in representation theory of reductive groups over
non-Archimedean local fields. The proof of the Moy-Prasad isomorphism in the recent reference
[KP22] use [MRR20, Theorem 4.3], cf. [KP22, Theorem 13.5.1 and its proof, Proposition A.5.19
(3) and its proof].

Our other application is an interpretation of Rost double deformation space in the language
of dilatations. Rost double deformation space is a fundamental tool in intersection theory and
motivic homotopy theory. Let Z → Y → X be closed immersions of schemes (in [Ro96], all
schemes are assumed to be defined over fields but we work with arbitrary schemes here). Let
D(X,Y, Z) be the double deformation space as defined in [Ro96, §10].

Let A2 be Spec(Z[s, t]). Let Ds, Dst and Ds2t be the locally principal closed subschemes of
A2 defined by the ideals (s), (st) and (s2t). We now omit the subscript Spec(Z) in fiber products.

Proposition 1.10. (i) We have a canonical identification:

D(X,Y, Z) ∼= Bl
(X×Dst), (X×Ds)
(Y×A2), (Z×A2)

(X × A2).

In other words, Rost double deformation space is naturally interpreted as a ”double-centered”
dilatation. (9.1)

(ii) Using the monopoly isomorphism (cf. Theorem 1.2), we obtain that Rost double deformation
space is canonically isomorphic to a mono-centered dilatation as follows:

D(X,Y, Z) ∼= Bl
X×Ds2t(
(Y×A2)+(X×Ds)

)
∩
(
(Z×A2)+(X×Dst)

)(X × A2). (9.2)

1.3 Structure of the paper

Section 2 introduces dilatations of rings. Section 3 introduces multi-centered dilatations. Section 4
deals with iterated dilatations. Section 5 focuses on the case where the multi-center {[Zi, Di]}i∈I
satisfies that {Di} are given by multiples of a single D. Section 6 proves some flatness and
smoothness results. Section 7 considers dilatations of monoid, group and Lie algebra schemes.
Section 8 studies congruent isomorphisms. Section 9 interprets Rost double deformation space
as dilatations.

2. Dilatations of rings

We introduce dilatations of commutative rings. Recall that dilatations of categories also make
sense (cf. [Ma23c]), however dilatations of commutative rings behave specifically and it is better
to treat them separately. From now on, rings are assumed to be unital and commutative.
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2.1 Definition

Let A be a unital commutative ring. If M is an ideal of A and a ∈ A is an element, we say
that the pair [M,a] is a center in A. Let I be an index set and let {[Mi, ai]}i∈I be a set of
centers indexed by I. For i ∈ I, we put Li = Mi + (ai), an ideal of A. Let NI be the monoid⊕

i∈I N. If ν = (ν1, . . . , νi, . . .) ∈ NI we put Lν = Lν1
1 · · ·L

νi
i · · · (product of ideals of A) and

aν = aν11 · · · a
νi
i · · · (product of elements of A). We also put aNI = {aν |ν ∈ NI} ⊂ A.

Definition and Proposition 2.1. The dilatation of A with multi-center {[Mi, ai]}i∈I is the
unital commutative ring A[

{
Mi
ai

}
i∈I ] defined as follows:

• The underlying set of A[
{
Mi
ai

}
i∈I ] is the set of equivalence classes of symbols m

aν where
ν ∈ NI and m ∈ Lν under the equivalence relation

m

aν
≡ p

aλ
⇔ ∃β ∈ NI such that maβ+λ = paβ+ν in A.

From now on, we abuse notation and denote a class by any of its representative m
aν if no confusion

is likely.

• The addition law is given by m
aν + p

aβ
= maβ+paν

aβ+ν .

• The multiplication law is given by m
aν ×

p
aβ

= mp
aν+β .

• The additive neutral element is 0
1 and the multiplicative neutral element is 1

1 .

We have a canonical morphism of rings A→ A[
{
Mi
ai

}
i∈I ] given by a 7→ a

1 . We sometimes use

the notation A[Ma ] to denote A[
{
Mi
ai

}
i∈I ].

Proof. Let us first prove that the relation is an equivalence relation. Assume

m

aν
≡ p

aλ

l

aθ
≡ p

aλ

where ν, λ, θ ∈ NI , (m, p, l) ∈ (Lν , Lλ, Lθ). We want to prove that

m

aν
≡ l

aθ
.

By definition, there exist β, α ∈ NI such that

maβ+λ = paβ+ν

laα+λ = paα+θ.

Put δ = β + λ+ α. We get

maδ+θ = maβ+λ+α+θ = paβ+ν+α+θ = laβ+ν+α+λ = laδ+ν ,

so m
aν ≡

l
aθ
. The addition and multiplication laws are associative and commutative. The distribu-

tivity axiom is satisfied and the additive neutral element is absorbent for the multiplication. So
A[Ma ] is a unital commutative ring. The formula a 7→ a

1 provides a canonical morphism of rings
A→ A[Ma ].

The element a
1 of A[

{
Mi
ai

}
i∈I ] will sometimes be denoted by a if no confusion is likely.

Remark 2.2. Let {Ni}i∈I be ideals in A such that Ni + (ai) = Li for all i ∈ I. Then we have
identifications of A-algebras A[

{
Mi
ai

}
i∈I ] = A[

{
Ni
ai

}
i∈I ] = A[

{
Li
ai

}
i∈I ].

8



Remark 2.3. Note that Def. Prop. 2.1 and its proof shows that if A is assumed to be just a unital
commutative semiring, then A[

{
Mi
ai

}
i∈I ] is a unital commutative semiring and A→ A[

{
Mi
ai

}
i∈I ]

is a morphism of semirings. Note that most results of §2.1-2.2 extend to semirings.

Remark 2.4. Let {Ei}i∈I be subsets of A, let Pi be the ideal generated by Ei for i ∈ I. Then
one can define A[{Ei

ai
}i∈I ] as being A[{Pi

ai
}i∈I ].

Definition 2.5. Let f : A→ B be a morphism of rings, we say that f is a dilatation map or an
affine modification if there exists a multi-center {[Mi, ai]}i∈I in A such that B ∼= A[

{
Mi
ai

}
i∈I ] as

A-algebras (cf. also Fact 2.15 for an other caracterization).

2.2 Properties of dilatations

We proceed with the notation from §2.1.

Remark 2.6. As A-algebra, A[
{
Mi
ai

}
i∈I ] is generated by

{
Li
ai

}
i∈I . Since Li = Mi + (ai), this

implies that A[
{
Mi
ai

}
i∈I ] is generated by

{
Mi
ai

}
i∈I .

Fact 2.7. The following assertions are equivalent.

(i) There exists ν ∈ NI such that aν = 0 in A.

(ii) The ring A[
{
Mi
ai

}
i∈I ] is equal to the zero ring.

Proof. Assume (i) holds. Let m
aβ
∈ A[Ma ] with β ∈ NI and m ∈ Lβ. Then aνm = 0 in A and so

m
aβ

= 0
1 in A[

{
Mi
ai

}
i∈I ]. So (ii) holds. Reciprocally, assume (ii) holds. Then 1

1 = 0
1 and so there

exists ν ∈ NI such that aν = 0 in A. So (i) holds.

Fact 2.8. Assume that A is a domain and ai ̸= 0 for all i, then A[
{
Mi
ai

}
i∈I ] is a domain.

Proof. Assume that m
aν

l
aβ

= 0 in A[
{
Mi
ai

}
i∈I ]. Then there exists θ ∈ NI such that aθml = 0 in A.

Since aθ ̸= 0 and A is a domain, we get that m = 0 or l = 0. This finishes the proof.

Fact 2.9. Assume that A is reduced, then A[
{
Mi
ai

}
i∈I ] is reduced.

Proof. Assume that, in A[
{
Mi
ai

}
i∈I ], (

m
aν )

N = 0 for some N ∈ N then there exists β ∈ NI such

that aβmN = 0. We can assume that β = Nθ with θ ∈ NI . Then (aθm)N = 0 in A and so
aθm = 0 since A is reduced. So m

aν = 0 in A[
{
Mi
ai

}
i∈I ].

Fact 2.10. Let ν be in NI . The image of aν in A[
{
Mi
ai

}
i∈I ] is a non-zero-divisor.

Proof. Let b ∈ A[
{
Mi
ai

}
i∈I ] such that aνb = 0 in A[

{
Mi
ai

}
i∈I ]. Write b = m

aα , then we get aνm
aα = 0

in A[
{
Mi
ai

}
i∈I ]. This implies that there is β ∈ NI such that aβaνm = 0. So b = 0 in A[

{
Mi
ai

}
i∈I ].

So aν is a non-zero-divisor.

Fact 2.11. Assume Mi = A for all i ∈ I. Then A[
{
Mi
ai

}
i∈I ] = (aNI )−1A where (aNI )−1A is the

localization of A relatively to the multiplicative monoid aNI .

Proof. For any ν ∈ NI , we have Lν = A. Now the map x
aν 7→

x
aν provides an isomorphism of

A-algebras A[
{
Mi
ai

}
i∈I ] = (aNI )−1A.

Remark 2.12. Dilatations of rings generalize entirely localizations of rings. Indeed, let A be a
ring and let S be a multiplicative subset of A (i.e. a submonoid of A,×). Let I be a set such
that S = {si}i∈I . Then sNI = S and Fact 2.11 says that S−1A = A[

{
A
s

}
s∈S ].
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Fact 2.13. Let f : A → B be a morphism of rings. Let {[Ni, bi]}i∈I be centers of B such that
f(Mi) ⊂ Ni and f(ai) = bi for all i ∈ I. Then we have a canonical morphism of A-algebras

ϕ : A[
{
Mi
ai

}
i∈I ]→ B[

{
Ni
bi

}
i∈I ] .

Proof. Put ϕ(maν ) =
f(m)
bν .

Fact 2.14. Let {Pi}i∈I be ideals of A such that Pi ⊂Mi for all i ∈ I. Then we have a canonical
injective morphism of A-algebras

A[
{
Pi
ai

}
i∈I ]→ A[

{
Mi
ai

}
i∈I ].

Proof. Clear.

Fact 2.15. Let f : A→ B be a morphism of rings. The following assertions are equivalent.

(i) The morphism f is a dilatation map (cf. Definition 2.5).

(ii) There exists a multiplicative subset S of A and a sub-A-algebra C of S−1A such that B ∼= C
as A-algebras.

Proof. The assertion (i) implies (ii) by Facts 2.11 and 2.14. Reciprocally, let C be a sub-A-algebra
of S−1A. Let I be the set defined as

I := {i = (mi, ai) ∈ A× S|
mi

ai
belongs to C} ⊂ A× S

Then C ∼= A[
{ (mi)

ai

}
i∈I ], indeed we have a canonical morphism ofA-algebras ϕ : C → A[

{ (mi)
ai

}
i∈I ]

sending mi
ai

to mi
ai
. The morphism ϕ is injective, e.g. because A[

{ (mi)
ai

}
i∈I ] ⊂ S−1A since S =

{ai}i∈I because (ai, ai) belongs to I for any ai ∈ S. The morphism ϕ is surjective by Remark
2.6.

Remark 2.16. Note that the concept of dilatations extend to categories, cf. [Ma23c]. However
the analog of Fact 2.15 fails for categories, cf. [Ma23c].

Fact 2.17. Let c be a non-zero-divisor element in A. Then c
1 is a non-zero-divisor in A[

{
Mi
ai

}
i∈I ].

Proof. Let m
aν ∈ A[

{
Mi
ai

}
i∈I ] such that m

aν
c
1 = 0. Then there exists β ∈ NI such that aβmc = 0 in

A. Because of c is a non-zero-divisor, this implies aβm = 0 in A and so m
aν = 0 in A[

{
Mi
ai

}
i∈I ].

Proposition 2.18. Let K ⊂ I put J = I \K. Then we have a canonical morphism of A-algebras

φ : A[
{
Mi
ai

}
i∈K ]→ A[

{
Mi
ai

}
i∈I ].

Moreover

(i) if Mi ⊂ (ai) for all i ∈ J , then φ is surjective, and

(ii) if ai is a non-zero-divisor in A for all i ∈ J , then φ is injective.

Proof. We have a canonical injective morphism of monoids NK → NI . Let
m
aν with ν ∈ NK and

m ∈ Lν , then we put φ(maν ) =
m
aν ∈ A[

{
Mi
ai

}
i∈I ]. We now prove the listed properties.

(i) It is enough to show that Mi
ai

is in the image of φ for all i ∈ I. This is obvious for all i ∈ K.

So let i ∈ J and let mi
ai
∈ Mi

ai
. Since Mi ⊂ (ai) we write mi = aix with x ∈ A. Then mi

ai
= x

1
belongs to the image of φ. So φ is surjective.
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(ii) Let m
aν ∈ A[

{
Mi
ai

}
i∈K ] with ν ∈ NK . Assume that m

aν = 0
1 in the image A[

{
Mi
ai

}
i∈I ]. Then

there exists β ∈ NI such that maβ = 0. Write β = ν ′ + θ with ν ′ ∈ NK and θ ∈ NJ . Then
we have maν

′
aθ = 0 in the ring A and aθ is a non-zero-divisor, so maν

′
= 0 in the ring A

and so m
aν = 0

1 in the source. So φ is injective.

Corollary 2.19. Let K ⊂ I. Assume that, for all j ∈ J = I \K, the element aj belongs to the
face A∗ of invertible elements of the monoid (A,×), i.e. aj is invertible for ×. Then

A[
{
Mi
ai

}
i∈I ] = A[

{
Mi
ai

}
i∈K ].

Proof. This follows from Proposition 2.18.

Corollary 2.20. Let J ⊂ I be such that for all j ∈ J , there is i ∈ I \ J satisfying that ai = aj
andMj ⊂Mi, then we have a canonical identification of A-algebras A[

{
Mi
ai

}
i∈I ] = A[

{
Mi
ai

}
i∈I\J ].

Proof. This follows from Proposition 2.18 and elementary arguments.

Corollary 2.21. Let {di}i∈I be positive integers. Let I =
∐

j∈J Ij be a partition of I. Assume
that, for all j ∈ J , Mi = Mi′ =: Mj and ai = ai′ =: aj for all i, i′ ∈ Ij . Assume moreover that,
for all j ∈ J , maxi∈Ij di =: dj exists. Then we have a canonical identification

A[
{

Mi

aidi

}
i∈I ] = A[

{ Mj

aj
dj

}
j∈J ].

Proof. This follows from Proposition 2.18 and elementary arguments.

Proposition 2.22. Let K ⊂ I. Then we have a canonical isomorphism of A[
{
Mi
ai

}
i∈K ]-algebras

A[
{
Mi
ai

}
i∈I ] = A[

{
Mi
ai

}
i∈K ][

{A[
{

Mi
ai

}
i∈I

]
Mj
1

aj
1

}
j∈I\K ],

where A[
{
Mi
ai

}
i∈I ]

Mj

1 is the ideal of A[
{
Mi
ai

}
i∈I ] generated by

Mj

1 ⊂ A[
{
Mi
ai

}
i∈I ].

Proof. We have a morphism of rings A[
{
Mi
ai

}
i∈K ] → A[

{
Mi
ai

}
i∈I ] given by Fact 2.18. The right-

hand side of the equation in the statement of 2.22 is generated as A[
{
Mi
ai

}
i∈K ]-algebra by

{
A[
{

Mi
ai

}
i∈I

]Mj

aj

}
j∈I\K . We now define an A[

{
Mi
ai

}
i∈K ]-morphism from the right-hand side to the

left-hand side sending
mν
aν

mj

akj
(with ν ∈ I, j ∈ I \K and k ∈ N) to mνmj

aνakj
. This is well-defined and

it is easy to check injectivity and surjectivity.

Corollary 2.23. Let S and S′ be the multiplicative monoids in A and A[
{
Mi
ai

}
i∈I ] given by

{aν |ν ∈ NI}. Then S′−1A[
{
Mi
ai

}
i∈I ] = S−1A.

Proof. Using, Fact 2.11, Proposition 2.22 and Corollary 2.20, we get

S′−1A′ = A[
{
Mi
ai

}
i∈I ][

{A[
{

Mi
ai

}
i∈I

]

ai

}
i∈I ] = A[

{
Mi
ai

}
i∈I ,

{
A
ai

}
i∈I ] = A[

{
A
ai

}
i∈I ] = S−1A .

Proposition 2.24. Assume that ai = aj =: b for all i, j ∈ I, then
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A[
{
Mi
ai

}
i∈I ] = A[

∑
i∈I Mi

b ].

Proof. This follows from the identity
( ∑

ν∈NI ,
∑

i∈I νi=n

Mν
)
= (
∑
i∈I

Mi)
n.

Fact 2.25. Let ν ∈ NI . We have LνA[
{
Mi
ai

}
i∈I ] = aνA[

{
Mi
ai

}
i∈I ].

Proof. Obviously aνA[
{
Mi
ai

}
i∈I ] ⊂ L

νA[
{
Mi
ai

}
i∈I ]. Let y ∈ L

ν and x
aα ∈ A[

{
Mi
ai

}
i∈I ], the formula

y
x

aα
= aν

yx

aα+ν

now shows that LνA[
{
Mi
ai

}
i∈I ] = aνA[

{
Mi
ai

}
i∈I ].

Proposition 2.26. (Universal property) If χ : A→ B is a morphism of rings such that χ(ai) is
a non-zero-divisor and generates χ(Li)B for all i ∈ I, then there exists a unique morphism χ′ of
A-algebras A[

{
Mi
ai

}
i∈I ]→ B. The morphism χ′ sends l

aν (ν ∈ NI , l ∈ Lν) to the unique element
b ∈ B such that χ(aν)b = χ(l).

Proof. The element b in the statement is unique because χ(aν) is a non-zero-divisor for all ν ∈ NI .
Clearly, the map χ′ defined in the statement is a morphism of A-algebras. Now let ϕ be an other
morphism of A-algebras A[

{
Li
ai

}
i∈I ]→ B. We have

χ(aν)ϕ(
l

aν
) = ϕ(

l

aν
)ϕ(aν) = ϕ(l) = χ(l).

This implies χ′( l
aν ) = ϕ( l

aν ).

Remark 2.27. The universal property of dilatations generalizes the universal property of local-
izations. Indeed, let S be a multiplicative subset of A and let f : A → B be an A-algebra such
that f(s) is invertible for any s ∈ S. Recall that by 2.11, we have S−1A = A[{As }s∈S ]. Then
obviously f(s) is a non-zero-divisor and f(s) generate B = f(A)B, so by the universal property
of dilatations there exists a unique morphism f ′ of A-algebras S−1A → B. So dilatation is a
construction that generalizes localization without the need to know localization. An other less
uniform way to introduce dilatations of rings (or rings) is to first treat the case of localizations
and then to define a dilatation as in the second assertion of Fact 2.15. At the end both points of
view are equivalent by Fact 2.15.

Definition 2.28. The blowup algebra, or the Rees algebra, associated to A and {Li}i∈I is the
NI -graded A-algebra

Bl{Li}i∈I
A =

⊕
ν∈NI

Lν

where the summand Lν is placed in degree ν ∈ NI .

Let e1 = (1, 0, . . .), e2 = (0, 1, 0, . . .), . . . , ei = (0, . . . , 0, 1, 0, . . .), . . . be the canonical basis
of the free N-semimodule NI . Recall that ai ∈ Li for i ∈ I. Denote ai,i the element ai seen
as an element of degree ei in the Rees algebra Bl{Li}i∈I

A. Let S be the multiplicative subset
of Bl{Li}i∈I

A generated by {ai,i}i∈I . Let
(
Bl{Li}i∈I

A
)
[S−1] be the localization of the multi-Rees

algebra relatively to S. This A-algebra inherits a ZI -grading given, for any l ∈ Lν , by

deg(
l

a1,1α1 . . . ai,iαi
) =

∑
i∈I

(νi − αi)ei ∈ ZI :=
⊕
i∈I

Z.
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Fact 2.29. We have a canonical identification of A-algebras

A[
{
Mi
ai

}
i∈I ] =

[(
Bl{Li}i∈I

A
)
[S−1]

]
deg=(0,...,0,...)

where the right-hand part is obtained as degree zero elements in
(
Bl{Li}i∈I

A
)
[S−1].

Proof. This is tautological.

Proposition 2.30. Assume that I = {1, . . . , k} is finite. Then we have a canonical isomorphism
of A-algebras

A[
{
Mi
ai

}
i∈I ]
∼= A[

∑
i∈I(Mi·

∏
j∈I\{i} aj)

a1···ak ].

Proof. Let us provide a map

ϕ : A[
∑

i∈I(Mi·
∏

j∈I\{i} aj)

a1···ak ]→ A[
{
Mi
ai

}
i∈I ].

The ring A[
∑

i∈I(Mi·
∏

j∈I\{i} aj)

a1···ak ] is generated as A-algebra by
∑

i∈I(Mi·
∏

j∈I\{i} aj)

a1···ak , we now define
a map ϕ via (for mi ∈Mi, i ∈ I):

ϕ(

∑
i∈I(mi ·

∏
j∈I\{i} aj)

a1 · · · ak
) =

∑
i∈I(mi ·

∏
j∈I\{i} aj)

a1 · · · ak
.

This is well-defined and ϕ is a morphism of A-algebras. It is easy to prove that ϕ is injective and
surjective.

Remark 2.31. Assume that A = Z[X,Y ]. The formal symbol X
3 does not make sense in

A[ (2X)+(3Y )
6 ]. The formal symbol 2X

6 makes sense and defines an element in A[ (2X)+(3Y )
6 ]. The

formal symbols 2X
6 and X

3 make sense in A[ (X)
3 , (Y )

2 ] and define the same element. The canonical

isomorphism of Proposition 2.30 sends 2X
6 ∈ A[

(2X)+(3Y )
6 ] to 2X

6 = X
3 ∈ A[

(X)
3 , (Y )

2 ].

Lemma 2.32. Write I = colimJ⊂IJ as a filtered colimit of sets. We have a canonical identification
of A-algebras

A[
{
Mi
ai

}
i∈I ] = colimJ⊂IA[

{Mj

ai

}
i∈J ]

where the transition maps are given by Fact 2.18.

Proof. For each J ⊂ I, Fact 2.18 gives a canonical morphism A[
{
Mi
ai

}
i∈J ] → A[

{
Mi
ai

}
i∈I ] of

A-algebras. These morphisms are compatible with transition maps. So we have a canonical A-
morphism

ϕ : colimJ⊂IA[
{
Mi
ai

}
i∈J ]→ A[

{
Mi
ai

}
i∈I ].

The map ϕ is surjective because for any ν ∈ NI , there exists a subset J ⊂ I such that ν ∈ NJ

(recall that NJ ⊂ NI). It is easy to check injectivity.
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2.3 More properties of dilatations of rings

We proceed with the notation from §2.1.

Proposition 2.33. Let T be an ideal of A. Assume that we have a commutative diagram of

A-algebras

A/T

A[
{
Mi
ai

}
i∈I ] A

φ

f

ϕ
where ϕ is the quotient map. Assume that ϕ(ai)

is a non-zero-divisor for all i ∈ I. Then

ker(φ) =
∑

ν∈NI

Lν∩T
aν ⊂ A[

{
Mi
ai

}
i∈I ].

Proof. Let ν ∈ NI and m
aν ∈ A[

{
Mi
ai

}
i∈I ], i.e. m ∈ L

ν . We have

ϕ(aν)φ(
m

aν
) = φ(

aν

1
)φ(

m

aν
) = φ(

m

1
) = φ(f(m)) = ϕ(m).

Now assume φ(maν ) = 0, then ϕ(m) = 0 and som ∈ Lν∩T . This shows that ker(φ) ⊂
∑

ν∈NI

Lν∩T
aν .

Reciprocally assume m ∈ Lν ∩ T . Then ϕ(m) = 0. This implies φ(maν ) = 0 because ϕ(aν) is a
non-zero-divisor by assumption.

Corollary 2.34. We proceed with the notation from Proposition 2.33 and assume that I = {i},
ai = bki for some k ∈ N, bi ∈ A and that T =Mi. Then ker(φ) is the ideal of A[Mi

ai
] generated by

Mi
ai
, moreover A[Mi

bki
][ker(φ)

bdi
] = A[ Mi

bk+d
i

] for any d ∈ N.

Proof. Clearly, Mi
ai
⊂ ker(φ), so it is enough to prove that ker(φ) is included in the ideal generated

by Mi
ai

(that we denote in this proof by ⟨Mi
ai
⟩). So let n ∈ N, we have to prove that

Ln
i ∩Mi

ani
is

included in ⟨Mi
ai
⟩. An element x ∈ Ln

i can be written as a sum x =
∑n

k=0mka
n−k
i with mk ∈Mk

i

(note that, if x belongs to Ln
i ∩ Mi, then m0a

n
i also belongs to Mi). Now we assume that x

belongs to Ln
i ∩Mi, it is clear that for k > 0 the element

mka
n−k
i

ani
= mk

aki
belongs to ⟨Mi

ai
⟩. Now for

k = 0, using that ai is a non-zero-divisor in A/Mi and that m0a
n
i belongs to Mi, we get that m0

belongs to Mi and it is now clear that
m0ani
ani

belongs to ⟨Mi
ai
⟩. So x belongs to ⟨Mi

ai
⟩.

Now we deduce the equality A[Mi

bki
][ker(φ)

bdi
] = A[ Mi

bk+d
i

] and finish the proof:

A[
Mi

bki
][
ker(φ)

bdi
] = A[

Mi

bki
][

Mi

bki
A[Mi

bki
]

bdi
]

= A[
Mi

bki
][
MiA[

Mi

bki
]

bk+d
i

]

by Proposition 2.22 = A[
Mi

bki
,
Mi

bk+d
i

]

by Corollary 2.21 = A[
Mi

bk+d
i

].

Proposition 2.35. Let f : A → B be an A-ring. Put Ni = f(Mi)B and bi = f(ai) for i ∈ I.
Then B[

{
Ni
bi

}
i∈I ] is the quotient of B ⊗A A[

{
Mi
ai

}
i∈I ] by the ideal Tb of elements annihilated by

some element in bNI := {bν |ν ∈ NI}.
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Proof. We can assume that ai ∈Mi and bi ∈ Ni. Let B
′ be the quotient of B ⊗A A[

{
Mi
ai

}
i∈I ] by

Tb. The ring map

B ⊗A A[
{
Mi
ai

}
i∈I ]→ B[

{
Ni
bi

}
i∈I ]

is surjective and annihilates aNI -torsion as elements in bNI are non-zero-divisors in B[
{
Ni
bi

}
i∈I ].

Hence we obtain a surjective map B′ → B[
{
Ni
bi

}
i∈I ]. To see that the kernel is trivial, we construct

an inverse map. Namely, let z = y
bν be an element of B[

{
Ni
bi

}
i∈I ], i.e y ∈ N

ν for some ν ∈ NI .
Write y =

∑
xisi with xi ∈Mν and si ∈ B. We map z to the class of

∑
si⊗ xi

aν in B′. This is well
defined because we claim that an element of the kernel of the map B⊗AM

ν → Nν is annihilated
by aν hence maps to zero in B′. We now prove the claim of the previous assertion. Let

∑
j(sj⊗mj)

be in the kernel of the map as before (sj ∈ B,mj ∈ Mν for all j), so that
∑

j sjf(mj) = 0; we
have aν

∑
j(sj ⊗ mj) =

∑
j(sj ⊗ mja

ν) =
∑

j(sjf(mj) ⊗ aν) = (
∑

j sjf(mj)) ⊗ aν = 0. This
finishes the proof.

Corollary 2.36. We proceed with the notation from Proposition 2.35 and assume f : A→ B
is flat. Then Tb = 0, in other words we have a canonical isomorphism

B[{Ni
bi
}i∈I ] = B ⊗A A[{Mi

ai
}i∈I ].

Proof. Since f is flat, the map ϕ : A[{Mi
ai
}i∈I ] → B ⊗A A[{Mi

ai
}i∈I ] is flat. Since ϕ is flat, the

image of any non-zero-divisor element in A[{Mi
ai
}i∈I ] under the map ϕ is a non-zero-divisor. So

Tb = 0 and Proposition 2.35 finishes the proof.

Definition 2.37. Assume that ai is a non-zero divisor for all i ∈ I. Let Ji be the ideal of A
generated by ai, it is invertible. We consider the A-algebra

CJ
LA

def
=
⊕
ν∈NI

Lν ⊗ J−ν ,

and we call it the associated conic algebra.

Proposition 2.38. We proceed with the notation from Definition 2.37. Let ζ be the ideal of
CJ
LA generated by elements ρα − 1 for α ∈ NI where ρi ∈ CJ

LA is the image of 1 ∈ A under
A ∼= Ji ⊗ J−1

i ⊂ Li ⊗ J−1
i ⊂ CJ

LA for any i ∈ I. We have a canonical isomorphism of A-algebras

(CJ
LA)/ζ −→ A[

{
Li
ai

}
i∈I ].

Proof. Let ti = a∨i be the generator for J−1
i , dual to ai for all i ∈ NI . We have a natural morphism

of rings given explicitly by

ψ : CJ
LA −→ A[

{Li

ai

}
i∈I ],

∑
ν∈NI

lν ⊗ tν 7→
∑

ν∈NI

lν
aν
.

The morphism ψ is surjective and ζ ⊂ kerψ. It is enough to prove that kerψ ⊂ ζ. Let X =∑
ν∈c lν ⊗ tν ∈ CJ

LA where lν ∈ Lν , and c is a finite subset of NI . Let β ∈ NI defined by
βi = maxν∈cνi for all i ∈ I. Then we have

ψ(X) =
∑
ν∈c

lν
aν

=

∑
ν∈c a

β−ν lν

aβ
.

Assume X ∈ kerψ, then
∑

ν∈c a
β−ν lν = 0 because ai are non-zero-divisors i ∈ I. So we are

allowed to write

X =
(∑
ν∈c

lν ⊗ tν
)
−
(∑
ν∈c

aβ−ν lν
)
⊗ tβ =

∑
ν∈c

[(
lν ⊗ tν

)(
1− (aβ−ν ⊗ tβ−ν)

)]
.
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This finishes the proof since aβ−ν ⊗ tβ−ν = ρβ1−ν1
1 · · · ρβi−νi

i · · · .

Remark 2.39. We note that the ideal ζ appearing in Proposition 2.38 is in fact generated by
{ρi − 1}i∈I . To see this, use for example that in any ring and for any elements ρ, σ in the ring
we have ρn − 1 = (ρ− 1)(ρn−1 + . . .+ ρ+ 1) and ρσ − 1 = (ρ− 1)(σ + 1) + (σ − 1)− (ρ− 1).

Fact 2.40. Let R be a ring and assume that f : R → A is a morphism of rings. Let {ri}i∈I be
elements in R and assume that ai = f(ri) for all i ∈ I. Let Rr = R[

{
R
ri

}
i∈I ] be the localization

of R at {ri}i∈I . For any i ∈ I, let Mi ⊗ r−1
i ⊂ A ⊗R Rr. Then A[

{
Mi
ai

}
i∈I ] identifies with the

A-subalgebra of A⊗R Rr generated by {Mi ⊗ r−1
i }i∈I and A.

Proof. By [StP, Tag 00DK] and Fact 2.11, we get A⊗RRr = (A⊗RR)r = A[
{

A
ai

}
i∈I ]. Moreover

Mi ⊗ r−1
i ⊂ A⊗R Rr corresponds to Mi

ai
⊂ A[

{
A
ai

}
i∈I ]. Now 2.6 and 2.14 finish the proof.

Remark 2.41. We discussed before that dilatations of rings provide a formalism unifying local-
izations of rings and affine blowups of rings (recall that affine blowups are studied in [StP, Tag
052P]). It is easy to check on examples that dilatations strictly generalize localizations and affine
blowups. In fact such examples already appeared in literature in the framework of flat group
schemes of finite type over discrete valuation rings, cf. e.g. [SGA3, Exp. VIB Ex. 13.3], [PY06,
§7, after Proposition 7.3], [DHdS18, Definitions 5.1 and 5.5].

2.4 Dilatations of modules

Recall that dilatations of rings generalize localizations of rings. Recall also that localizations of
A-modules make sense. In this remark we explain that dilatations of A-modules also make sense.
Let M be an A-module. The dilatation of M with multi-center {[Mi, ai]}i∈I is the A[

{
Mi
ai

}
i∈I ]-

module M[
{
Mi
ai

}
i∈I ] defined as follows:

• The underlying set of M[
{
Mi
ai

}
i∈I ] is the set of equivalence classes of symbols lm

aν where
ν ∈ NI , m ∈ M and l ∈ Lν under the equivalence relation

lm

aν
≡ hp

aλ
⇔ ∃β ∈ NI such that lmaβ+λ = hpaβ+ν in A.

From now on, we abuse notation and denote a class by any of its representative lm
aν if no confusion

is likely.

• The addition law is given by lm
aν + hp

aβ
= lmaβ+hpaν

aβ+ν .

• The action law is given by l
aν

hp
aβ

= lhp
aν+β .

• The additive neutral element is 0
1 .

We have a canonical morphism of A-modules from M to M[
{
Mi
ai

}
i∈I ] given by m 7→ m

1 . We now

put M′ = M[
{
Mi
ai

}
i∈I ].

Proposition 2.42. Let ν ∈ NI .

(i) Let m ∈ M′. If aνm = 0, then m = 0.

(ii) We have aνM′ = LνM′.

Proof. (i) Write m = hp
aβ
. There exists γ such that aγaνhp = 0 in M, so m = 0 in M′.

(ii) It is enough to prove that aνM′ ⊃ LνM′. This follows from the identity, for l ∈ Lν :

l
hp

aβ
= aν

lhp

aβ+ν
.
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Proposition 2.43. (Universal Property) Let A-Moda-regM be the category whose objects are
morphisms of A-modules F : M→ M′ with source M such that ai is a non-zero-divisor of M′ for
all i ∈ I, then

HomA-Moda-regM
(M[{Mi

ai
}i∈I ],M′) =

{
{∗}, if LiM

′ = aiM
′ for i ∈ I;

∅, else.

Dilatations of modules enjoy similar properties than dilatations of rings, we do not list all of
them here.

Remark 2.44. In general M[{Mi
ai
}i∈I ] is not equal to M ⊗A A[{Mi

ai
}i∈I ]. Indeed, let A = Z[X],

I = {0},M0 = (X), a0 = 2 and M = A[M0
2 ]. Note that A[M0

2 ] = Z[X2 ] ⊂ Q[X]. Then M[M0
2 ] ∼= M,

however M⊗A A[
M0
2 ] ̸∼= M. Indeed the element 0 ̸= T := (X2 ⊗ 1) + (−1⊗ X

2 ) ∈ A[
M0
2 ]⊗A A[

M0
2 ]

satisfies 2T = 0 whereas M is 2-torsion free. This contrasts with the case of localizations where
we always have M⊗A S

−1A ∼= S−1M, cf. e.g. [StP, Tag 00DK].

Remark 2.45. Let 0 → M1 → M2 → M3 → 0 be an exact sequence of A-modules. Then in
general M1[{Mi

ai
}i∈I ]→ M2[{Mi

ai
}i∈I ]→ M3[{Mi

ai
}i∈I ] is not exact. For example, Take A = Z[X],

I = {0}, M0 = (X), a0 = 2 and consider the exact sequence 0 → Z[X]
m 7→2m−−−−→ Z[X] →

Z/2Z[X]→ 0. Then Z/2Z[X][X2 ] = 0, however Z[X2 ]
m 7→2m−−−−→ Z[X2 ] is not surjective. This contrasts

with the case of localizations where we always have preservation of exact sequences, cf. e.g. [StP,
Tag 00CS].

3. Multi-centered dilatations in the absolute setting

In this section, we define multi-centered dilatations and prove some properties.

3.1 Definitions

Let S be a scheme. An S-space is an S-algebraic space. Let us fix an S-space X. For the
convenience of the reader, we recall some basic notations and well-known facts.

Notation 3.1. Let Clo(X) be the set of closed S-subspaces ofX. Recall that Clo(X) corresponds
to quasi-coherent ideals of OX via [StP, Tag 03MB]. Let IQCoh(OX) denote the set of quasi-
coherent ideals of OX . It is clear that (IQCoh(OX),+,×, 0,OX) is a semiring. So we obtain
a semiring structure on Clo(X), usually denoted by (Clo(X),∩,+, X, ∅). For clarity, we now
recall directly operations on Clo(X). Given two closed subspaces Y1, Y2 given by ideals J1,J2,
their sum Y1 + Y2 is defined as the closed subspace given by the ideal J1J2. Moreover, if n ∈ N,
we denote by nY1 the n-th multiple of Y1. The set of locally principal closed subspaces of X
(cf. [StP, Tag 083B]), denoted Pri(X), forms a submonoid of (Clo(X),+). Effective Cartier
divisors of X, denoted Car(X), form a submonoid of (Pri(X),+). Note that Car(X) is a face
of Pri(X). We have an other monoid structure on Clo(X) given by intersection, this law is
denoted ∩. The operation ∩ corresponds to the sum of quasi-coherent sheaves of ideals . The set
Clo(X) endowed with ∩,+ is a semiring whose neutral element for + is ∅ and whose neutral
element for ∩ is X. Let C ∈ Car(X), a non-zero-divisor (for +) in the semiring Clo(X). Let
Y, Y ′ ∈ Clo(X). If C + Y is a closed subspace of C + Y ′, then Y is a closed subspace of Y ′.
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Moreover if C + Y = C + Y ′, then Y = Y ′. Let f : X ′ → X be a morphism of S-spaces, then f
induces a morphism of semirings Clo(f) : Clo(X) → Clo(X ′), Y 7→ Y ×X X ′, moreover Clo(f)
restricted to (Pri(X),+) factors through (Pri(X ′),+), this morphism of monoids is denoted
Pri(f). Let Y1, Y2 ∈ Clo(X), we write Y1 ⊂ Y2 if Y1 is a closed subspace of Y2. We obtain a
poset (Clo(X),⊂). Let Y1, Y2, Y3 ∈ Clo(X), if Y1 ⊂ Y2 and Y1 ⊂ Y3 then Y1 ⊂ Y2 ∩ Y3. Let
Y1, Y2 ∈ Clo(X), then (Y1 ∩ Y2) ⊂ Y1 and Y1 ⊂ (Y1 + Y2). Finally, if Y = {Ye}e∈E is a subset of
Clo(X) and if ν ∈ NE , we put Y ν = {νeYe}e∈E and if moreover ν ∈ NE , we put νY =

∑
e∈E νeYe.

Remark 3.2. Be careful that the operation + on Clo(X) is not the operation ∪ of [StP, Tag
0C4H]. Recall that + corresponds to multiplication of ideals whereas ∪ corresponds to intersection
of ideals.

Remark 3.3. We proceed with the notation from Notation 3.1. In general the image of the map
Pri(f)|Car(X) is not included in Car(X ′).

Definition 3.4. Let D = {Di}i∈I be a subset of Clo(X).

(i) Let SpacesD-reg
X be the category of S-algebraic spaces f : T → X over X such that for any

i ∈ I, T ×X Di is a Cartier divisor in T .

(ii) If X = S is a scheme, let SchD-reg
X be the category of X-schemes f : T → X such that for

any i ∈ I, T ×X Di is a Cartier divisor in T .

If T ′ → T is flat and T → X is an object in SpacesD-reg
X or SchD-reg

X , so is the composition

T ′ → T → X by [StP, Tag 083Z] and [StP, Tag 02OO]. In particular, the categories SpacesD-reg
X

and SchD-reg
X can be equipped with the fpqc/fppf/étale/Zariski Grothendieck topology so that

the notion of sheaves is well-defined.

Fact 3.5. Let D = {Di}i∈I be a subset of Clo(X).

(i) Let f : T → X be an object in SpacesD-reg
X . Then for any ν ∈ NI , the space T ×X νD is a

Cartier divisor in T , namely ν(T ×X D).

(ii) Assume that #I is finite, then SpacesD-reg
X equals Spaces

∑
i∈I Di

X .

Proof. (i) This follows from the fact that (Clo(f),+) is a morphism of monoids and the fact
that Car(X) is a submonoid of Clo(X) (e.g. cf. the discussion in Notation 3.1).

(ii) This follows from the fact that Car(X) is a face of the monoid Pri(X) (e.g. cf. the discussion
in Notation 3.1).

Definition 3.6. A multi-center in X is a set {[Yi, Di]}i∈I such that

(i) Yi and Di belong to Clo(X),

(ii) there exists an affine étale covering {Uγ → X}γ∈Γ of X such that Di|Uγ is principal for all
i ∈ I and γ ∈ Γ (in particular Di belongs to Pri(X) for all i).

In other words a multi-center {[Yi, Di]}i∈I is a set of pairs of closed S-spaces such that locally
each Di is principal.

Remark 3.7. Let {Yi, Di}i∈I such that Yi ∈ Clo(X) and Di ∈ Pri(X) for any i ∈ I. Assume
that I is finite, then {[Yi, Di]}i∈I is a multi-center in X, i.e. the second condition in Definition
3.6 is satisfied.
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We now fix a multi-center {[Yi, Di]}i∈I in X. Denote by Mi,Ji the quasi-coherent sheaves
of ideals in OX so that Yi = V (Mi), V (Ji) = Di. We put Zi = Yi ∩ Di and Li = Mi + Ji so
that Zi = V (Li) for any i ∈ I. We put Y = {Yi}i∈I , D = {Di}i∈I and Z = {Zi}i∈I . We now
introduce dilatations OX -algebras by glueing (cf. [StP, Tag 04TP]).

Definition and Proposition 3.8. The dilatation of OX with multi-center {[Mi,Ji]}i∈I is the

quasi-coherent OX -algebra OX

[{
Mi
Ji

}
i∈I

]
obtained by glueing as follows. The quasi-coherent

OX -algebra OX

[{
Mi
Ji

}
i∈I

]
is characterized by the fact that its restriction, on any étale S-

morphism φ : U → X such that U is an affine scheme and each Di is principal on U and
generated by aiU , is given by(

OX

[{Mi

Ji

}
i∈I

])∣∣
U

=
˜

Γ(U,OX)
[{Γ(U,Mi)

aiU

}
i∈I

]
where ˜ is given by [StP, Tag 01I7] and [StP, Tag 03DT] (we work with small étale sites).

Proof. By Definition 3.6, the affine schemes U → X satisfying the conditions in the statement
form an étale covering of X. Now Proposition 3.8 follows from [StP, Tag 03M0] and Corollary
2.36.

Let Bl{Li}i∈I
OX =

⊕
ν∈NI

Lν denote the multi-Rees algebra, it is a quasi-coherent NI -graded

OX -algebra. By localization, we get a quasi-coherent OX -algebra
(
Bl{Li}i∈I

OX

)
[{J −1

i }i∈I ] (lo-
cally, we invert a generator of Ji, for each i ∈ I). This OX -algebra inherits a grading giving local
generators of Ji degree ei.

Fact 3.9. We have a canonical identification of quasi-coherent OX -algebras

OX

[{Mi

Ji

}
i∈I

]
=
[(
Bl{Li}i∈I

OX

)
[{J −1

i }i∈I ]
]
deg=(0,...,0,...)

,

where the right-hand side is obtained as the subsheaf of degree zero elements in(
Bl{Li}i∈I

OX

)
[{J −1

i }i∈I ]. In particular OX

[{
Mi
Ji

}
i∈I

]
= OX

[{
Li
Ji

}
i∈I

]
.

Proof. This follows from Fact 2.29.

Definition 3.10. The dilatation of X with multi-center {[Yi, Di]}i∈I is the X-affine algebraic
space over S

BlDY X
def
= SpecX

(
OX

[{Mi

Ji

}
i∈I

])
.

Remark 3.11. Fact 3.9 implies that BlDY X = BlDZX.

Fact 3.12. Assume that X = S is a scheme. Then BlDY X is a scheme.

Proof. We have an affine morphism BlDY X → X, now the fact follows from [StP, Tag 03WG].

Notation 3.13. We will also use the notation Bl
{Di

Yi

}
i∈IX and Bl

{Di}i∈I

{Yi}i∈I
X to denote BlDY X. If

I = {i} is a singleton we also use the notation BlDi
Yi
X. If K ⊂ I, we sometimes use the notation

Bl
{Di}i∈K ,{Di}i∈I\K
{Yi}i∈K ,{Yi}i∈I\K

X. If I = {1, . . . , k}, we use the notation BlD1,...,Dk
Y1,...,Yk

X. Etc.

Definition 3.14. Let X be a scheme or an algebraic space over a scheme S. We say that a

morphism f : X ′ → X is a dilatation morphism if f is equal to Bl
{Di

Yi

}
i∈IX → X for some multi-

center {[Yi, Di]}i∈I . The terminologies affine blowups and affine modifications are also used.
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Fact 3.15. If Yi = ∅ is the empty closed subscheme defined by the ideal OX for all i ∈ I, then
we say that Bl

{Di

∅
}
i∈IX → X is a localization. Moreover if #I is finite, the dilatation morphism

Bl
{Di

∅
}
i∈IX → X is an open immersion.

Proof. This is local on X [StP, Tag 03M4] and follows from Fact 2.11.

3.2 Exceptional divisors

We proceed with the notation from § 3.1.

Proposition 3.16. As closed subspaces of BlDY X, one has, for all ν ∈ NI ,

BlDY X ×X νZ = BlDY X ×X νD,

which is an effective Cartier divisor on BlDY X.

Proof. Our claim is étale local on X. We reduce to the affine case and apply 2.10 and 2.25.

3.3 Universal property

We proceed with the notation from § 3.1. As BlDY X → X defines an object in SpacesD-reg
X by

Proposition 3.16, the contravariant functor

SpacesD-reg
X → Set, (T → X) 7→ HomX-Spaces

(
T,BlDY X

)
(3.1)

together with idBlDY X determines BlDY X → X uniquely up to unique isomorphism. The next
proposition gives the universal property of dilatations.

Proposition 3.17. The dilatation BlDY X → X represents the contravariant functor SpacesD-reg
X →

Set given by

(f : T → X) 7−→

{
{∗}, if f |T×XDi factors through Yi ⊂ X for i ∈ I;
∅, else.

(3.2)

Proof. Note that the condition f |T×XDi factors through Yi ⊂ X is equivalent to the condition
f |T×XDi factors through Zi ⊂ X, because Zi = Yi ∩Di. Let F be the functor defined by (3.2). If
T → BlDY X is a map of X-spaces, then the structure map T → X restricted to T ×X Di factors
through Zi ⊂ X by Proposition 3.16. This defines a map

HomX-Spaces

(
- ,BlDY X

)
−→ F (3.3)

of contravariant functors SpacesD-reg
X → Set. We want to show that (3.3) is bijective when

evaluated at an object T → X in SpacesD-reg
X . As (3.3) is a morphism of étale sheaves, we reduce

to the case where both X and T are affine and Ji is principal for all i ∈ I. Now Proposition 2.26
finishes the proof.

Proposition 3.18. Put f : BlDY X → X. Then the morphism of monoids Clo(f)|Car(X) factors

through Car(BlDY X). In other words, any effective Cartier divisor C ⊂ X is defined for f , i.e.
the fiber product C ×X BlDY X ⊂ BlDY X is an effective cartier divisor (cf. [StP, Tag 01WV]).

Proof. We reduce to the case where X = Spec(A) is affine and apply Fact 3.18.

Proposition 3.19. Let J be a subset of I. There exists a unique X-morphism

φ : Bl
{Dj}j∈I

{Yj}j∈I
X → Bl

{Dj}j∈J

{Yj}j∈J
X.
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Proof. This follows from Propositions 3.17 and 3.16.

Remark 3.20. Proposition 3.19 is the spaces version of Fact 2.18.

Remark 3.21. Proposition 3.28 will refine Proposition 3.19 and show that φ is in fact a dilatation
map (cf. Definition 3.14).

Proposition 3.22. Let K ⊂ I and assume Zi = Di is a Cartier divisor in X, for all i ∈ K. Then

Bl
{Dj}j∈I

{Zj}j∈I
X = Bl

{Dj}j∈I\K
{Zj}j∈I\K

X.

Proof. Both sides belong to SpacesD-reg
X by Propositions 3.18 and 3.16, so it is enough to show

that they agree when evaluated at any f : T → X ∈ SpacesD-reg
X . We have

Bl
{Dj}j∈I

{Zj}j∈I
X(T ) =

{
{∗}, if f |T×XDi factors through Zi ⊂ X for i ∈ I;
∅, else.

=

{
{∗}, if f |T×XDi factors through Zi ⊂ X for i ∈ I \K;

∅, else.

= Bl
{Dj}j∈I\K
{Zj}j∈I\K

X(T ).

Remark 3.23. Proposition 3.22 is the spaces version of Proposition 2.18.

Proposition 3.24. Assume Di = Dj =: D for all i, j ∈ I. Then

Bl
{D
Yi

}
i∈IX = BlD∩i∈IYi

X.

Proof. Both sides belong to SpacesD-reg
X by Proposition 3.16, so it is enough to show that they

agree when evaluated at any f : T → X ∈ SpacesD-reg
X . We have

Bl
{D
Yi

}
i∈IX(T ) =

{
{∗}, if f |T×XD factors through Zi ⊂ X for i ∈ I;
∅, else.

=

{
{∗}, if f |T×XD factors through ∩i∈IZi ⊂ X ;

∅, else.

= BlD∩i∈IYi
X(T ).

Remark 3.25. Proposition 3.24 is the spaces version of Proposition 2.24.

Fact 3.26. Let I =
∐

j∈J Ij be a partition of I. Assume that, for all j ∈ J , Yi = Yi′ =: Yj and

Di = D′
i for all i, i′ ∈ Ij . Let ν be in NI and assume that for all j ∈ J , the number maxi∈Ij νi

exists. Let ν ∈ NJ defined by νj = maxi∈Ij νi. Then

Bl
{νjDj

Yj

}
j∈JX = Bl

{νiDi

Yi

}
i∈IX.

Proof. We have a canonical morphism Bl
{νjDj

Yj

}
j∈JX → Bl

{νiDi

Yi

}
i∈IX by Proposition 3.19, now

we reduce to the affine case and apply Corollary 2.21.
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Remark 3.27. Proposition 3.26 is the spaces version of Corollary 2.21.

Proposition 3.28. Let J be a subset of I and put K = I \ J . Then

Bl
{Di

Yi

}
i∈IX = Bl

{Dk×XBl
{Di

Yi

}
i∈J

X

Yk×XBl
{Di

Yi

}
i∈J

X

}
k∈K

Bl
{Di

Yi

}
i∈JX.

This in particular gives the unique X-morphism

Bl
{Di

Yi

}
i∈IX → Bl

{Di

Yi

}
i∈JX

of Proposition 3.19.

Proof. The right hand side is well-defined (e.g. cf. [StP, Tag 053P]). Using Proposition 3.16 and
Proposition 3.18, one obtains that the right hand side is in SpacesD-reg

X . So it is enough to see

that both sides coincide when evaluated at any f : T → X ∈ SpacesD-reg
X . This follows from

Proposition 3.17.

3.4 Multi-centered dilatations and mono-centered dilatations

We proceed with the notation from § 3.1.

Proposition 3.29. Write I = colimJ⊂IJ as a filtered colimit of sets where transition maps are
given by inclusions of subsets. We have a canonical identification

Bl
{Di

Yi

}
i∈IX = limJ⊂I Bl

{Di

Yi

}
i∈JX

where transition maps are described in Propositions 3.19 and 3.28. On the right-hand side the
direct limit is on the category of S-spaces over X.

Proof. By [StP, Tag 07SF] the limit exists. For each J ⊂ I, Propositions 3.19 and 3.28 give

us a X-morphism Bl
{Di

Yi

}
i∈IX → Bl

{Di

Yi

}
i∈JX, so we get an X-morphism ϕ : Bl

{Di

Yi

}
i∈IX →

limJ⊂I Bl
{Di

Yi

}
i∈JX. To prove that ϕ is an isomorphism, we reduce to the affine case where the

result follows from Proposition 2.32.

Proposition 3.30. Assume that #I = k is finite. We fix an arbitrary bijection I = {1, . . . , k}.
We have a canonical isomorphism of X-spaces

Bl
{Di}i∈I

{Yi}i∈I
X ∼= Bl

(Bl··· )×XDk

(Bl··· )×XYk

(
· · ·Bl(Bl··· )×XD3

(Bl··· )×XY3

(
Bl

(Bl
D1
Y1

X)×XD2

(Bl
D1
Y1

X)×XY2

(
BlD1

Y1
X
)))

.

Proof. By induction on k using Proposition 3.28.

Proposition 3.31 (Monopoly isomorphism). Assume that #I = k is finite. We fix an arbitrary
bijection I = {1, . . . , k}. We have a canonical isomorphism of X-spaces

Bl
{Di}i∈I

{Yi}i∈I
X ∼= BlD1+...+Dk⋂

i∈I(Yi+D1+...+Di−1+Di+1+...+Dk)
X.

Proof. Since Car(X) is a face of the monoid Pri(X), the right-hand side belongs to SpacesD-reg
X .

Let f : BlD1+...+Dk⋂
i∈I Zi+D1+...+Di−1+Di+1+...+Dk

X → X be the dilatation morphism. Let us prove that

f−1(Di) ⊂ f−1(Yi) for all i ∈ {1, . . . , k}. By Proposition 3.17,

f−1(D1 + . . .+Dk) ⊂ f−1(
⋂
i∈I

Yi +D1 + . . .+Di−1 +Di+1 + . . .+Dk)
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is a Cartier divisor in f−1(X). Moreover by the discussion in Notation 3.1

f−1(
⋂
i∈I

Yi +D1 + . . .+Di−1 +Di+1 + . . .+Dk)

=
⋂
i∈I

f−1(Yi) + f−1(D1) + . . .+ f−1(Di−1) + f−1(Di+1) + . . .+ f−1(Dk), and

f−1(D1 + . . .+Dk) = f−1(D1) + . . .+ f−1(Dk).

So for any i ∈ {1, . . . , k}, we have

f−1(D1) + . . .+ f−1(Dk) ⊂ f−1(Yi) + f−1(D1) + . . .+ f−1(Di−1) + f−1(Di+1) + . . .+ f−1(Dk).

Since f−1(Dl) is a Cartier divisor for any l ∈ {1, . . . , k}, this implies f−1(Di) ⊂ f−1(Yi). So we

obtain an X-morphism ϕ : BlD1+...+Dk⋂
i∈I(Yi+D1+...+Di−1+Di+1+...+Dk)

X → Bl
{Di}i∈I

{Yi}i∈I
X. To check that ϕ

is an isomorphism, it is enough to prove that there is an X-morphism

φ : Bl
{Di}i∈I

{Yi}i∈I
X → BlD1+...+Dk⋂

i∈I(Yi+D1+...+Di−1+Di+1+...+Dk)
X.

To build φ, we consider the map f ′ : Bl
{Di}i∈I

{Yi}i∈I
X → X and check that f ′−1(D1 + . . . + Dk) ⊂

f ′−1(
⋂

i∈I(Yi +D1 + . . .+Di−1 +Di+1 + . . .+Dk)). This is easy because f ′−1(Di) ⊂ f ′−1(Yi)
for all i. An other method to prove Proposition 3.31 is to build ϕ or φ and then reduce to the
affine case an apply Proposition 2.30.

3.5 Functoriality

We proceed with the notation from § 3.1. Let X ′ and {[Y ′
i , D

′
i]}i∈I be another datum as in § 3.1.

As usual, put Z ′
i = Y ′

i ∩ D′
i. A morphism f : X ′ → X such that, for all i ∈ I, its restriction

to D′
i (resp. Z

′
i) factors through Di (resp. Zi), and such that f−1(Di) = D′

i, induces a unique

morphism BlD
′

Y ′X ′ → BlDY X such that the following diagram of S-spaces

BlD
′

Y ′X ′ BlDY X

X ′ X.

commutes. This follows directly from Proposition 3.17.

Remark 3.32. This is the spaces version of Fact 2.13.

3.6 Base change

We proceed with the notation from § 3.1. Let X ′ → X be a map of S-spaces, and denote by
Y ′
i , Z

′
i, D

′
i ⊂ X ′ the preimage of Yi, Zi, Di ⊂ X. Then D′

i ⊂ X ′ is locally principal for any i

so that the dilatation BlD
′

Y ′X ′ → X ′ is well-defined. By § 3.5 there is a canonical morphism of
X ′-spaces

BlD
′

Y ′X ′ −→ BlDY X ×X X ′. (3.4)

Lemma 3.33. If BlDY X ×X X ′ → X ′ is an object of SpacesD-reg
X′ , then (3.4) is an isomorphism.

Proof. Our claim is étale local on X and X ′. We reduce to the case where both X = Spec(B),
X ′ = Spec(B′) are affine, and Ji = (bi) is principal for all i. We denote Z ′

i = Spec(B′/L′
i) and
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D′
i = Spec(B′/J ′

i). Then J
′
i = (b′i) is principal as well where b

′
i is the image of bi underB → B′. We

need to show that the map of B′-algebras B′⊗B B
[
L
b

]
−→ B′[L′

b′

]
is an isomorphism. However,

this map is surjective with kernel the b′NI -torsion elements by Lemma 2.35. As b′1, . . . , b
′
i, . . . are

non-zero-divisors in B′ ⊗B B
[
L
b

]
by assumption, the lemma follows.

Corollary 3.34. If the morphism X ′ → X is flat and satisfies a property P which is stable
under base change, then BlD

′
Y ′X ′ → BlDY X is flat and satisfies P.

Proof. Since flatness is stable under base change the projection p : BlDY X ×X X ′ → BlDY X is flat
and has property P. By Lemma 3.33, it is enough to check that the closed subspace BlDY X×XD

′
i

defines an effective Cartier divisor on BlDY X ×X X ′ for all i. But this closed subscheme is the
preimage of the effective Cartier divisor BlDY X ×X Di under the flat map p, and hence is an
effective Cartier divisor as well by [StP, Tag 083Z].

3.7 Relation to multi-centered affine projecting cone

We proceed with the notation from § 3.1 and assume that {Di}i∈I belong to Car(X). In this
case, we can also realize BlDY X as a closed subspace of the multi-centered affine projecting cone
associated to X,Z and D.

Definition 3.35. The affine projecting cone OX-algebra with multi-center {[Zi = V (Li), Di =
V (Ji)]}i∈I is

CJ
LOX

def
=
⊕
ν∈NI

Lν ⊗ J −ν .

The affine projecting cone of X with multi-center {[Zi, Di]}i∈I is

CD
ZX

def
= Spec

(
CJ
LOX

)
.

Proposition 3.36. The dilatation BlDZX is the closed subspace of the affine projecting cone
CD
ZX defined by the equations {ϱi − 1}i∈I , where for all i ∈ I, ϱi ∈ CJ

LOX is the image of
1 ∈ OX under the map

OX
∼= Ji ⊗ J −1

i ⊂ Li ⊗ J −1
i ⊂ CJ

LOX .

Proof. We may work locally and the proposition follows from Proposition 2.38 and Remark
2.39.

Remark 3.37. Let X be a scheme and let D be a Cartier. Let Z ⊂ D be a closed subscheme of
finite type. Then the mono-centered dilatation BlDZX was already defined in [Du05, Definition
2.9] using the conic point of view.

3.8 Relation to Proj of multi-graded algebras and multi-centered blowups

We proceed with the notation from § 3.1 and assume that X = Spec(A) is an affine scheme but we
expect the content of this section can be adapted to algebraic spaces. We assume moreover that
I = {1, . . . , k} is finite. We have NI = Nk. We refer to [BS07, §2] for the construction of the Proj
associated to Ω-graded R-algebras where Ω is a finitely generated abelian group and R is a ring.
This construction should globalize to arbitrary Ω-graded quasi-coherent algebras. It should also
work for algebraic spaces, e.g. cf. [StP, Tag 085P] for a hint. We plan to study this later. Recall
that Z1, . . . , Zk are closed subspaces of X with ideals L1, . . . , Lk. Recall that Zi ⊂ Di for all i.
We assume that each Di is principal and given by elements ai ∈ A. We introduce the following
definition. Recall that BlL1,...,Lk

A is canonically Nk-graded, and in particular Zr-graded.
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Definition 3.38. The blowup of X with multi-center Z = (Z1, . . . , Zk) is the scheme

BlZX
def
= Proj

(
BlL1,...,Lk

A
)
.

Proposition 3.39. The map BlZ1,...,Zk
X → X is a final object of SchZ1,...,Zk-reg

X .

Proof. We adapt [GW20, Chap 13, pages 414-415]. By definition BlZX =
⋃

{f relevant}D+(f)

(cf. [BS07, Def. 2.2]). We have D+(f) = SpecA[L1
f , . . . ,

Lk
f ]. Now 2.10, 2.25 and 2.26 finish the

proof.

Proposition 3.40. Let 1 ⩽ r ⩽ k and let Z ′
i = BlZr+1,...,Zk

X ×X Zi for 1 ⩽ i ⩽ r. Then we have
a canonical isomorphism of X-schemes

BlZ′
1,...,Z

′
r
BlZr+1,...,Zk

X = BlZ1,...,Zk
X.

Proof. The right-hand side belongs to SchZ1,...,Zk-reg
X . We now observe that the left-hand side

also belongs to SchZ1,...,Zk-reg
X . Indeed, let g be the composition

BlZ′
1,...,Z

′
r
BlZr+1,...,Zk

X → BlZr+1,...,Zk
X → X.

Obviously g−1(Zi) is a Cartier divisor in BlZ′
1,...,Z

′
r
BlZr+1,...,Zk

X for 1 ⩽ i ⩽ r. We claim that

g−1(Zi) is also a Cartier divisor in BlZ′
1,...,Z

′
r
BlZr+1,...,Zk

X for r+1 ⩽ i ⩽ k. To see this, we observe
that the preimage of any Cartier divisor of BlZr+1,...,Zk

X in BlZ′
1,...,Z

′
r
BlZr+1,...,Zk

X is a Cartier
divisor, this follows from the local definition of Proj and Proposition 3.18. So both sides belong
to SchZ1,...,Zk-reg

X . It is easy to construct an X-morphism BlZ′
1,...,Z

′
r
BlZr+1,...,Zk

X ← BlZ1,...,Zk
X.

This shows that the left-hand side is also (cf. Proposition 3.39) a final object of SchZ1,...,Zk-reg
X .

This finishes the proof.

Proposition 3.41. We have a canonical isomorphism of X-schemes

BlZ1+...+Zk
X = BlZ1,...,Zk

X.

Proof. This follows from [StP, Tag 085Y].

Fact 3.42. The dilatation BlDZX is the open subscheme of the blowup BlZX defined by
D+(a1 . . . ak) (cf. [BS07, page 6] for the notation D+(−)).

Proof. The identity A[L1
a1
, . . . , Lk

ak
] = (BlL1,...,Lk

A)(a1...ak), given by Fact 2.29, is a proof.

3.9 Dilatations of quasi-coherent OX-modules

We proceed with the notation from §3.1. Let F be a quasi-coherent OX -module. Working locally
as in Definition 3.10 and using dilatations of modules (cf. §2.4), we obtain a canonical quasi-

coherent sheaf on BlDY X, denoted BlDY F or F
[{

Mi
Ji

}
i∈I

]
. Note that in general BlDY F ≁= Bl∗F

where Bl : BlDY X → X is the dilatation map. This construction enjoys the following universal
property. Let QCoh(X)D-reg

F be the category whose objects are morphisms of quasi-coherent OX -
modules F : F → F ′ with source F such that, locally, each Ji is defined by a non-zero-divisor
of the module F ′, then

Hom
QCoh(X)D-reg

F
(F
[{Mi

Ji

}
i∈I

]
,F ′) =

{
{∗}, if LiF ′ = JiF ′ for i ∈ I;
∅, else.
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4. Iterated multi-centered dilatations

We proceed with the notation from § 3.1. Let ν, θ ∈ NI such that θ ⩽ ν, i.e. θi ⩽ νi for all i ∈ I.

Proposition 4.1. There is a unique X-morphism

φν,θ : Bl
Dν

Y X → BlD
θ

Y X.

Proof. Let φν : BlD
ν

Y X → X, φθ : BlD
θ

Y X → X be the dilatation maps. Let i ∈ I, if θi = 0,
then θiDi = X and so φ−1

ν (θiDi) = BlD
ν

Y X is a Cartier divisor in BlD
ν

Y X. If θi > 0, then νi > 0
and φ−1

ν (νiDi) = νiφ
−1
ν (Di) is Cartier and so φ−1

ν (Di) is Cartier because Car(Bl
Dν

Y X) is a face
of Pri(BlD

ν

Y X) (cf. the discussion in Notation 3.1). Consequently φ−1
ν (θiDi) = θiφ

−1
ν (Di) is a

Cartier divisor. So we proved that BlD
ν

Y X belongs to SpacesD
θ-reg

X . We now use Proposition 3.17.
Let i ∈ I, we have θiDi ⊂ νiDi. So we have φ−1

ν (θiDi) ⊂ φ−1
ν (νiDi) ⊂ φ−1

ν (Y ∩ νiDi). so

φ−1
ν (θiDi) ⊂

(
φ−1
ν (Y ∩ νiDi)

)
∩
(
φ−1
ν (θiDi)

)
= φ−1

ν (Y ∩ νiDi ∩ θiDi) = φ−1
ν (θiDi ∩ Y ).

Now we apply Proposition 3.17 and finish the proof.

Assume now moreover that ν, θ ∈ NI ⊂ NI .We will prove that, under some assumptions, φν,θ

is a dilatation morphism with explicit descriptions. We need the following observation.

Proposition 4.2. Assume that we have a commutative diagram of S-spaces

B C

X

f ′

f

F
.

Assume that F is affine and f is a closed immersion. Then f ′ is a closed immersion.

Proof. A closed immersion is affine, so by [StP, Tag 08GB], f ′ is affine. Using [StP, Tag 03M4],
we reduce to the case where B,C and X are affine (taking an étale covering of X by affine
schemes). Now the assertion is clear because closed immersions of affine schemes correspond to
surjective morphisms at the level of rings.

Corollary 4.3. Assume that we have a commutative diagram of S-spaces

B BlDY X

X

f ′

f

where the right-hand side morphism is the dilatation map. Assume that f is a closed immersion.
Then f ′ is a closed immersion.

Proof. Clear by Proposition 4.2.

We now assume that Zi ⊂ Yi is a Cartier divisor inclusion for all i ∈ I. Let Di be the canonical
diagram of closed immersions

Yi BlνiDi
Yi

X

Zi Di

□

obtained by Propositions 3.17 and 4.3.
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Lemma 4.4. Assume I = {i} and let ni ∈ N. We have an identification

Bl
(νi+ni)Di

Yi
X = BlniDi

Yi
BlνiDi

Yi
X.

Proof. Using Propositions 3.17 and 4.1 and the discussion in Notation 3.1, it is easy to prove

that there is a unique BlνiDi
Yi

X-morphism Bl
(νi+ni)Di

Yi
X → BlniDi

Yi
BlνiDi

Yi
X. To prove that it is an

isomorphism, we reduce to the affine case and apply Corollary 2.34

Let fi be the canonical morphism (e.g. cf. 3.19, 3.28 or 4.1)

BlD
ν

Y X → BlνiDi
Yi

X.

We denote by Yi ×Bl
νiDi
Yi

X
BlD

ν

Y X the fiber product obtained via the arrows given by fi and Di.

We use similarly the notation Di ×Bl
νiDi
Yi

X
BlD

ν

Y X.

Lemma 4.5. Let i ∈ I and let ni ∈ N. Let γi ∈ NI be (0, . . . , 0, ni, 0, . . .) where ni is in place i.
We have an identification

BlD
ν+γi

Y X = Bl

niDi×
Bl

νiDi
Yi

X
BlD

ν

Y X

Yi×
Bl

νiDi
Yi

X
BlD

ν
Y X

BlD
ν

Y X.

In particular we have a canonical dilatation morphism

φν+γi,ν : BlD
ν+γi

Y X → BlD
ν

Y X.

Proof. We have

Bl

niDi×
Bl

νiDi
Yi

X
BlD

ν

Y X

Y×
Bl

νiDi
Yi

X
BlD

ν
Y X

BlD
ν

Y X

by Proposition 3.28 = Bl

niDi×
Bl

νiDi
Yi

X
BlD

ν

Y X

Y×
Bl

νiDi
Yi

X
BlD

ν
Y X

Bl
{νjDj×XBl

νiDi
Yi

X}j∈I\{i}

{Yj×XBl
νiDi
Yi

X}j∈I\{i}
BlνiDi

Yi
X

by Proposition 3.28 = Bl
niDi,{νjDj×XBl

νiDi
Yi

X}j∈I\{i}

Yi,{Yj×XBl
νiDi
Yi

X}j∈I\{i}
BlνiDi

Yi
X

by Proposition 3.28 and Lemma 4.4 = Bl
{νjDj×XBl

(νi+ni)Di
Yi

X}j∈I\{i}

{Yj×XBl
(νi+ni)Di
Yi

X}j∈I\{i}
Bl

(νi+ni)Di

Yi
X

by Proposition 3.28 = BlD
ν+γi

Y X.

Proposition 4.6. Recall that θ ⩽ ν. Put γ = ν − θ. Put K = {i ∈ I|γi > 0}. We have an
identification

BlD
ν

Y X = Bl

{γiDi×
Bl

θiDi
Yi

X
BlD

θ

Y X}i∈K

{Yi×
Bl

θiDi
Yi

X
BlD

θ
Y X}i∈K

BlD
θ

Y X.

In particular the unique X-morphism

φν,θ : Bl
Dν

Y X → BlD
θ

Y X

of Proposition 4.1 is a dilatation map.
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Proof. We prove the first assertion by induction on #{i ∈ I|νi > 0}. If k = 1 the assertion
follows from Lemma 4.4. The passage from k − 1 to k follows from Lemma 4.5 and Proposition
3.28.

It is now natural to introduce the following terminology.

Definition 4.7. For any ν ∈ NI , let us consider

BlD
ν

Y X = Bl
{νiDi

Yi

}
i∈IX

and call it the ν-th iterated dilatation of X with multi-center {[Yi, Di]}i∈I .

5. Multi-centered dilatations along multiples of a single divisor

LetX be an S-space. We fix a locally principal closed subschemeD ⊂ X. Let Y0, Y1, . . . , Yi, . . . , Yk
be closed S-subspaces of X such that D ∩ Yi ⊂ Yi is a Cartier divisor for all i. We assume
moreover that Y0 ⊂ Yi for i ∈ {1, . . . , k}. Let s0, s1, . . . , sk ∈ N be integers. We claim that we
have a canonical closed immersion Y0 → Bls0D,...,skD

Y0, ... ,Yk
X. This follows from Propositions 3.17 and

4.3 observing that the map Y0 → X restricted to siD factors through Yi∩ siD for any i. We now
use the notation Bls0,...,skY0,...,Yk

X to denote Bls0D,...,skD
Y0, ... ,Yk

X. The following fact is a direct generalization
of the first assertion of Corollary 2.34 to the present situation.

Fact 5.1. Assume that X = Spec(A) is affine. Assume that D = Spec(A/(a)) and Yi =
Spec(A/Mi) for i ∈ I. Then the ideal Q of A′ := A[M0

as0 ,
M1
as1 · · ·

Mk
ask ] corresponding to the canon-

ical closed immersion Y0 → Bls0,s1,...,skY0,Y1,...,Yk
X is the ideal ⟨M0

as0 ,
M1
as1 , . . . ,

Mk
ask ⟩ of A′ generated by

M0
as0 ,

M1
as1 , . . . ,

Mk
ask .

Proof. There is no difficulty to adapt the proof of 2.34. We provide details for the convenience of
the reader. Using 2.33, it is clear that ⟨M0

as0 ,
M1
as1 , . . . ,

Mk
ask ⟩ ⊂ Q, so it is enough to prove that Q ⊂

⟨M0
as0 ,

M1
as1 , . . . ,

Mk
ask ⟩. So let ν ∈ Nk, we have to prove that Lν∩M0

(as)ν is included in ⟨M0
as0 ,

M1
as1 , . . . ,

Mk
ask ⟩.

An element x ∈ Lν can be written as a sum x =
∑

ν=β+αmβ(a
s)α with mβ ∈ Mβ (note

that, if x belongs to Lν ∩M0, then m(0,...,0)(a
s)ν also belongs to M0). Now we assume that x

belongs to Lν ∩M0, it is clear that for β ̸= (0, . . . , 0) the element
mβ(a

s)α

(as)ν =
mβ

(as)β
belongs to

⟨M0
as0 ,

M1
as1 , . . . ,

Mk
ask ⟩. Now for β = (0, . . . , 0), using that ai is a non-zero-divisor in A/Mi for all i

and that m(0,...,0)(a
s)ν belongs toM0, we get that m(0,...,0) belongs toM0 and it is now clear that

m(0,...,0)(a
s)ν

(as)ν belongs to ⟨M0
as0 ,

M1
as1 , . . . ,

Mk
ask ⟩. So x belongs to ⟨M0

as0 ,
M1
as1 , . . . ,

Mk
ask ⟩.

Proposition 5.2. Let 0 ⩽ t ⩽ s0 be an integer. We have a canonical identification

BltY0
Bls0,s1,...,skY0,Y1,...,Yk

X = Bls0+t,s1+t,...,sk+t
Y0, Y1, ... , Yk

X.

Proof. Using Propositions 3.17 and 4.1 and the discussion in Notation 3.1, we get a morphism
from left to right. We then reduce to the case where X = Spec(A) is affine and use the notation
of Fact 5.1. It is enough to show that we have a canonical identification of rings(

A[M0
as0 ,

M1
as1 · · ·

Mk
ask ]

)
[Qat ] = A[ M0

as0+t ,
M1

as1+t · · · Mk

ask+t ].

For this, there is no difficulty to adapt the proof of the second assertion of Corollary 2.34. Indeed,
it is enough to apply Proposition 2.22 and Corollary 2.21.
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Fact 5.3. Let A be a ring. Let P = A[T,X1, . . . , Xn] be the polynomial algebra in n+1 variables.
Let d1, . . . , dn ∈ N. Then there is a canonical identification of A-algebras

P [x1, . . . , xn]/(X1 − T d1x1, . . . , Xn − T dnxn) = P [ (X1)

T d1
, . . . , (Xn)

T dn
].

Proof. The map given by xi 7→ Xi

T di
is well-defined and surjective. The source and target of our

map are T -torsion free and the map is an isomorphism after inverting T by Corollary 2.23.

Proposition 5.4. Let A be a ring. Let a ∈ A. Let g1, . . . , gn be elements in A where n ∈ N. Let
d1, . . . , dn ∈ N. There is a surjection

A[x1, . . . , xn]/(g1 − ad1x1, . . . , gn − adnxn)→ A[ (g1)
ad1

, . . . , (gn)
adn

]

whose kernel is the a-power torsion in the source.

Proof. Consider the map P = A[T,X1, . . . , Xn]→ A sending T to a and Xi to gi for 1 ⩽ i ⩽ n.

By Fact 5.3, we have P [x1, . . . , xn]/(X1 − T d1x1, . . . , Xn − T dnxn) = P [ (X1)

T d1
, . . . , (Xn)

T dn
]. Now we

use Proposition 2.35 to finish the proof.

Proposition 5.5. Let A be a ring. Let a, g1, . . . , gn be a H1-regular sequence in A (cf. [StP,
Tag 062E] for H1-regularity). Let d1, . . . , dn be positive integers. Then the surjection of Propo-
sition 5.4 is an isomorphism. In particular, the dilatation algebra identifies with a quotient of a
polynomial algebra as follows

A[ (g1)
ad1

, . . . , (gn)
adn

] = A[x1, . . . , xn]/(g1 − ad1x1, . . . , gn − adnxn).

Proof. We can assume that di > 0 for all i by Corollary 2.19. By Proposition 5.4, it is enough
to show that the right-hand side is a-torsion free. We adapt the proof of [StP, Tag 0BIQ]. We
claim that the sequence (a, g1 − ad1x1, . . . , gn − adnxn) is H1-regular in A[x1, . . . , xn]. Namely,
the map

(a, g1 − ad1x1, . . . , gn − adnxn) : A[x1, . . . , xn]⊕(1+n) → A[x1, . . . , xn]

used to define the Koszul complex on a, g1 − ad1x1, . . . , gn − adnxn is isomorphic to the map

(a, g1, . . . , gn) : A[x1, . . . , xn]
⊕(1+n) → A[x1, . . . , xn]

used to define the Koszul complex on a, g1, . . . , gn via the isomorphism Θ

A[x1, . . . , xn]
⊕(1+n) → A[x1, . . . , xn]

⊕(1+n)

sending (P0, P1, . . . , Pn) to

(P0 −
n∑

i=1

adi−1xiPi, P1, P2, . . . , Pn);

this follows from the identity

aP0 +

n∑
i=1

(gi − adixi)Pi = a
(
P0 −

n∑
i=1

adi−1xiPi

)
+

n∑
i=1

giPi.

By [StP, Tag 0624] these Koszul complexes are isomorphic. By [StP, Tag 0629] the Koszul
complex K on (a, g1 − ad1x1, . . . , gn − adnxn) is the cone on a : L → L where L is the Koszul
complex on (g1− ad1x1, . . . , gn− adnxn), since H1(K) = 0, we conclude that a : H0(L)→ H0(L)
is injective, so the right-hand side is a-torsion free.
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6. Some flatness and smoothness results

Let S be a scheme and let C ⊂ S be a Cartier divisor in S. Let X be a scheme over S. Let D be
the closed subscheme of X given by X ×S C. Let Xj ⊂ D be closed subchemes for 1 ⩽ j ⩽ d.
We are now making the following assumption. We assume that locally over S,X the following
conditions are satisfied

(i) S = Spec(R), C = Spec(R/a) and X = Spec(A),

(ii) there exists a sequence g1, . . . , gn ∈ A such that a, g1, . . . , gn is a H1-regular sequence in A,

(iii) there exists a sequence 1 ⩽ i1 < i2 < . . . < ij < . . . < id = n such that

X1 = Spec
(
A/(g1, . . . , gi1)

)
X2 = Spec

(
A/(

±
g1, . . . ,

±
gi1 , gi1+1, . . . , gi2)

)
...

...

Xj = Spec
(
A/(

±
g1, . . . ,

±
gij−1 , gij−1+1, . . . , gij )

)
...

...

Xd = Spec(A/(
±
g1, . . . ,

±
gid−1

, gid−1+1, . . . , gn)
)

where ± over a symbol means that this symbol possibly appears but not necessarily. We
put Uj = Spec(A/(g1, . . . , gij )) for 1 ⩽ i ⩽ j.

Let m1 ⩾ . . . ⩾ mj ⩾ . . . ⩾ md ⩾ 0 ∈ N be integers.

Proposition 6.1. (i) If X/S is flat and if moreover one of the following holds:

(a) Xj → S is flat and S,X are locally noetherian for 1 ⩽ j ⩽ d,
(b) Xj → S is flat and Xj → S is locally of finite presentation,
(c) the local rings of S are valuation rings,

then Blm1,...,md
X1,...,Xd

X → S is flat.

(ii) If X → S is smooth and (with the local notation of the assumption) Uj×SSpec(R/(a
mj ))→

Spec(R/(amj )) is smooth for all 1 ⩽ j ⩽ d, then Blm1,...,md
X1,...,Xd

X → S is smooth.

Proof. This is local on S,X. We use notations used to state the assumption before the statement.
Corollary 2.21 implies that we can and do assume that Xj = Uj for all 1 ⩽ j ⩽ d.

(i) We prove the assertions by induction on d. If d = 1 this follows from [MRR20, Propo-
sition 2.16]. By Proposition 3.28 we have Blm1,...,md

X1,...,Xd
X = Blmd

X′
d
Bl

m1,...,md−1

X1,...,Xd−1
X where X ′

d =

Bl
m1,...,md−1

X1,...,Xd−1
X ×X Xd. Proposition 5.5 implies that Bl

m1,...,md−1

X1,...,Xd−1
X identifies with the spec-

trum of P/I where P = A[x1, . . . , xid−1
] and

I = (g1−am1x1, . . . , gi1−am1xi1 , gi1+1−am2xi1+1, . . . , gi2−am2xi2 , . . . , gid−1
−amd−1xid−1

).

We claim that the sequence given by gid−1+1, . . . , gid is H1-regular in P/(I+ (amd)). Let us
prove the claim. Since md ⩽ mj for all 1 ⩽ j ⩽ d − 1, the ideal I + (amd) of A is equal to
(amd , g1, . . . , gid−1

). So P/(I+ (amd)) identifies with
(
A/(amd , g1, . . . , gid−1

)
)
[x1, . . . , xid−1

].
Now since (a, g1, . . . , gn) is H1-regular in A, we know that (amd , g1, . . . , gn) is H1-regular in
A by [StP, Tag 062G]. So gid−1+1, . . . , gid is a H1-regular sequence in A/(amd , g1, . . . , gid−1

)
by [StP, Tag 068L]. This implies that gid−1+1, . . . , gid is a H1-regular sequence in(
A/(amd , g1, . . . , gid−1

)
)
[x1, . . . , xid−1

]. This finishes to prove our claim. We now apply
[MRR20, Proposition 2.16] to deduce the assertions for d.
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(ii) We prove the assertion by induction on d. If d = 1, this is [MRR20, Proposition 2.16].
We now assume that the assertion is true for d − 1. Using [MRR20, Proposition 2.16] and
Proposition 3.28, it is enough to show that Z ′

d := (Xd ×X Blm1,...,md
X1,...,Xd

X)×S (Spec(R/(amd))
is smooth over Spec(R/(amd). We have

Z ′
d = Xd ×S Spec(R/(amd))×Spec(R/(amd )) Bl

m1,...,md
X1,...,Xd

X ×S Spec(R/(amd).

We computed Blm1,...,md
X1,...,Xd

X ×S Spec(R/(amd) in (i) and proved that it is the spectrum
of A/(amd , g1, . . . , gid−1

)[x1, . . . , xid−1
]. Now Xd ×S Spec(R/(amd)) is the spectrum of

A/(adm , g1, . . . , gn). Consequently Z
′
d is the spectrum of (A/(adm , g1, . . . , gn))[x1, . . . , xid−1

].
So by assumption A/(adm , g1, . . . , gn) is smooth over R/(adm). Moreover any polynomial
algebra is smooth over its base ring. A composition of smooth morphisms is smooth. So the
composition

R/(adm)→ A/(adm , g1, . . . , gn)→ (A/(adm , g1, . . . , gn))[x1, . . . , xid−1
]

is smooth. This finishes the proof.

7. Dilatations of monoid, group and Lie algebra schemes

We study dilatations of schemes endowed with a structure (cf. [SGA3, Exp. I §2.2]) in this section.
We focus on monoid, group and Lie algebra structures. Let S be a scheme, and let G→ S be a
monoid (resp. group, resp. Lie algebra) scheme. Let C = {Ci}i∈I ⊂ S be locally principal closed
subschemes. Put Di = G|Ci = G ×S Ci and D = {Di}i∈I . Let Hi ⊂ Di be a closed submonoid
(resp. subgroup, resp. Lie subalgebra) scheme over Ci for all i ∈ I and let H = {Hi}i∈I . Let
G := BlDHG → G be the associated dilatation. By Lemma 3.16 the structure morphism G → S
defines an object in SchC-reg

S .

Fact 7.1. Let G → S be the above dilatations.

(1) The scheme G → S represents the contravariant functor SchC-reg
S → Set given for T → S

by the set of all S-morphisms T → G such that the induced morphism T |Ci → G|Ci factors
through Hi ⊂ G|Ci for all i ∈ {1, . . . , k}.

(2) Let T → S be an object in SchC-reg
S , then as subsets of G(T )

G(T ) =
⋂
i∈I

(
BlDi

Hi
G
)
(T ).

(3) The map G → G is affine. Its restriction over Si factors as Gi → Hi ⊂ Di for all i ∈ I.

Proof. Part (1) is a reformulation of Proposition 3.17. Assertion (2) is immediate using (1).
Finally (3) is immediate from Proposition 3.16.

Proposition 7.2. If the dilatation G → S is flat, then it is equipped with the structure of
a monoid (resp. group, resp. Lie algebra) scheme over S such that G → G is a morphism of
S-monoid (resp. S-group, resp. S-Lie algebra) schemes.

Proof. By virtue of Fact 7.1 the (forgetful) map G → G defines a submonoid (resp. subgroup,
resp. Lie subalgebra) functor when restricted to the category SchC-reg

S . As G → S is an object in

SchC-reg
S , it is a monoid (resp. group, resp. Lie algebra) object in this category. Now if X → S

and Y → S are two flat morphisms in SchC-reg
S , then the product of X and Y in the category
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SchC-reg
S exists and is equal to the product of X and Y in the full category of S-schemes. So

G → S is a monoid (resp. group, resp. Lie algebra) object in the full category of S-schemes.

Dilatations of group schemes are often called Néron blowups. We note that dilatations preserve
similarly structures defined using products and commutative diagrams (cf. [SGA3, Exp. I §2.2]).

Remark 7.3. In general the product of two objects in SchC-reg
S is not equal to the product of the

same objects seen in the full category of S-schemes (in fact the product of these objects in the
full category of S-schemes need not be in SchC-reg

S ). Proposition 3.39 allows to compute products

in SchC-reg
S .

Proposition 7.4. Assume that Ci ⊂ S is a cartier divisor for all i. Assume thatG→ S andHi →
Ci are flat group schemes. Assume that BlDHG → S is flat (and so a group scheme by 7.2). Let
Lie(G)/S (resp. Lie(Hi)/Ci, resp. Lie(BlDHG)/S) be the Lie algebra scheme of G/S (resp. Hi/Ci,

resp. BlDHG/S) (cf. [SGA3, Exp. II Scholie 4.11.3]). Assume that Bl
{Lie(G)×SCi

Lie(Hi)

}
i∈ILie(G) → S

is flat (and so a Lie algebra scheme by 7.2). Then we have a canonical isomorphism of S-Lie
algebra schemes:

Lie(BlDHG) ∼= Bl
{Lie(G)×SCi

Lie(Hi)

}
i∈ILie(G).

Proof. We have a morphism of S-group schemes BlDHG→ G, it induces a morphism of S-Lie alge-
bra schemes Lie(BlDHG)→ Lie(G). Using the universal property of dilatations of Lie algebras, we

obtain a canonical morphism of S-Lie algebra schemes Lie(BlDHG) → Bl
{Lie(G)×SCi

Lie(Hi)

}
i∈ILie(G).

We now show that it is an isomorphism. Using flatness and the assumptions on divisors Ci, we
see that both sides belongs to SchC-reg

S . It is enough (to finish the proof) to evaluate both sides

on a test scheme T → S in SchC-reg
S and obtain an identification of sets. Recall that for any

scheme U , IU = Spec(Z[X]/(X2)) ×Spec(Z) U denotes the scheme of dual numbers over U . The

scheme IU is obviously flat over U . In particular IT → S belongs to SchC-reg
S . We have a canonical

morphism T → IT induced by Z[X]/X2 → Z, X 7→ 0. Using [SGA3, Exp. II Sch. 4.11.3, Cor.
3.9.0.2.] we get

(Lie(BlDHG))(T ) = ker
(
(BlDHG)(IT )→ (BlDHG)(T )

)
=
{
IT → BlDHG ∈ HomS(IT ,Bl

D
HG)| T → IT → BlDHG is the unit

}
=
{
IT → G ∈ HomS(IT , G)| T→IT→G is the unit

IT |Ci
→G|Ci

factors through Hi for all i

}
=
{
T → Lie(G) ∈ HomS(T,Lie(G))| T |Ci

→Lie(G)|Ci
factors through Lie(Hi) for all i

}
=
(
Bl
{Lie(G)|Ci

Lie(Hi)

}
i∈ILie(G)

)
(T ).

This finishes the proof.

The following result generalizes the fact that congruence groups are normal subgroups, it is
related to Example 1.6 (note that the proof of [Yu01, Lemma 1.4] is not correct).

Proposition 7.5. Assume that I = {1}, C = C1 is a Cartier divisor in S and G → S is a
flat group scheme. Let η : K → G be a morphism of group schemes over S such that K → S
is flat. Assume that H ⊂ G is a closed subgroup scheme over S such that H → S is flat and
BlCHG → S is flat (and in particular a group scheme). Assume that KC commutes with HC in
the sense that the morphism KC ×C HC → GC , (k, h) 7→ η(k)hη(k)−1 equals the composition
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morphism KC ×C HC → HC ⊂ GC , (k, h) 7→ h. Then K normalizes BlCHG, more precisely the
solid composition map

K ×S BlCHG K ×S G G

BlCHG

Id×Bl k,g 7→η(k)gη(k)−1

Bl

factors uniquely through BlCHG.

Proof. Let ϕ be the solid composition map, we claim that it belongs to SchGC -reg
G . Let us prove

this claim. The map θ : K ×S G
k,g 7→η(k)gη(k)−1

−−−−−−−−−−−→ G is flat. Indeed it is the composition of an

isomorphism, namely K ×S G
(k,g)7→(k,η(k)gη(k)−1)−−−−−−−−−−−−−−→ K ×S G, with a flat morphism, namely the

projection on the second factor K ×S G→ G. So θ−1(GC) is a Cartier divisor in K ×S G (note
that GC is a Cartier divisor in G because G→ S is flat). Now Lemma 3.33 and 3.18 shows that
(Id× Bl)−1(θ−1(GC)) is a Cartier divisor. This finishes to prove the claim. Now by Proposition
3.17, ϕ factors uniquely through BlCHG if and only if ϕ|GC

factors through HC . The following
diagram, obtained using Proposition 3.16, finishes the proof

(K ×S BlCHG)×G GC (K ×S G)×G GC GC

KC ×C (BlCHG×G GC) KC ×C GC GC

KC ×C HC HC .

8. Congruent isomorphisms

Let (O, π) be an henselian pair where π ⊂ O is an invertible ideal. Let S = Spec(O) and let
C = Spec(O/π). If G→ S is a group scheme Lie(G)→ S denote the underlying group schemes
of Lie(G)→ S (cf. §7).

Theorem 8.1. Let G be a separated and smooth goup scheme over S. Let H0, H1, . . . ,Hk be
closed subgroup schemes of G such that H0 = eG is the trivial subgroup. Let s0, s1, . . . , sk and
r0, r1, . . . , rk be in N such that

(i) si ⩾ s0 and ri ⩾ r0 for all i ∈ {0, . . . , k}
(ii) ri ⩾ si and ri − si ⩽ s0 for all i ∈ {0, . . . , k}.
Assume that G is affine or O is local. Assume that the regularity condition (RC) introduced
below is satisfied (cf. Definition 8.2). Then we have a canonical isomorphism of groups

Bls0, s1, ...,sk
H0,H1,...,Hk

G/Blr0, r1, ...,rk
H0,H1,...,Hk

G ∼= Lie(Bls0, s1, ...,sk
H0,H1,...,Hk

G)/Lie(Blr0, r1, ...,rk
H0,H1,...,Hk

G).

Proof. For i ∈ {0, . . . , k}, put ti = ri−si. As a first step in our proof, we assume that ti = tj =: t
for all i, j ∈ {0, . . . , k}. Proposition 5.2 shows that

Blr0, r1, ...,rk
H0,H1,...,Hk

G = Bl2tH0
Bls0−t,...,sk−t

H0,H1,...,Hk
G and Bls0, s1, ...,sk

H0,H1,...,Hk
G = BltH0

Bls0−t,...,sk−t
H0,H1,...,Hk

G.
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Put G′ = Bls0−t,...,sk−t
H0,H1,...,Hk

G. The scheme G′ is smooth over S by (RC). By [MRR20, Theorem 4.3],
we have a canonical isomorphism

BltH0
G′/Bl2tH0

G′ ∼= Lie(BltH0
G′)/Lie(Bl2tH0

G′).

This finishes the proof of the case where ti = tj for all i, j ∈ {1, . . . , k}. Now we prove the
general case. Put tm = maxi∈{0,...,k} ti. The isomorphism [MRR20, Theorem 4.3] is functorial in

G. Applying this functoriality to the morphism Bl
{si−tm}0⩽i⩽k

{Hi}0⩽i⩽k
G→ Bl

{ri−2tm}0⩽i⩽k

{Hi}0⩽i⩽k
G and with the

integers given by the inequality 0 ⩽ 2tm
2 ⩽ tm ⩽ 2tm, we get a canonical commutative diagram

Bl
{si}0⩽i⩽k

{Hi}0⩽i⩽k
G(O)/Bl{ri}0⩽i⩽k

{Hi}0⩽i⩽k
G(O)

Bl
{si}0⩽i⩽k

{Hi}0⩽i⩽k
G(O)/Bl{si+tm}0⩽i⩽k

{Hi}0⩽i⩽k
G(O) Bl

{ri−tm}0⩽i⩽k

{Hi}0⩽i⩽k
G(O)/Bl{ri}0⩽i⩽k

{Hi}0⩽i⩽k
G(O)

Lie(Bl
{si}0⩽i⩽k

{Hi}0⩽i⩽k
G)(O)/Lie(Bl{si+tm}0⩽i⩽k

{Hi}0⩽i⩽k
G)(O) Lie(Bl

{ri−tm}0⩽i⩽k

{Hi}0⩽i⩽k
G)(O)/Lie(Bl{ri}0⩽i⩽k

{Hi}0⩽i⩽k
G)(O)

Lie(Bl
{si}0⩽i⩽k

{Hi}0⩽i⩽k
G)(O)/Lie(Bl{ri}0⩽i⩽k

{Hi}0⩽i⩽k
G)(O).

The injectivity of the two hookarrows follows from Remark 1.4. This identifies

Bl
{si}0⩽i⩽k

{Hi}0⩽i⩽k
G(O)/Bl{ri}0⩽i⩽k

{Hi}0⩽i⩽k
G(O)

and

Lie(Bl
{si}0⩽i⩽k

{Hi}0⩽i⩽k
G)(O)/Lie(Bl{ri}0⩽i⩽k

{Hi}0⩽i⩽k
G)(O)

inside the right part of the diagram.

Definition 8.2. Let G, {Hi, si, ri}0⩽i⩽k be as in Theorem 8.1. Put tm = maxi∈{0,...,k}(ri − si).
We introduce the following regularity condition

(RC) Bl
{si−tm}0⩽i⩽k

{Hi}0⩽i⩽k
G and Bl

{ri−2tm}0⩽i⩽k

{Hi}0⩽i⩽k
G are smooth over S.

We recall that Proposition 6.1 offers a way to check (RC) in many cases. We finish with the
following result.

Corollary 8.3. Let G be a separated and smooth goup scheme over S. LetH0 ⊂ H1 ⊂ . . . ⊂ Hk

be closed subgroup schemes of G such that Hi is smooth over S for 0 ⩽ i ⩽ d and H0 = eG. Let
s0, s1, . . . , sk and r0, r1, . . . , rk be in N such that

(i) si ⩾ s0 and ri ⩾ r0 for all i ∈ {0, . . . , k}
(ii) ri ⩾ si and ri − si ⩽ s0 for all i ∈ {0, . . . , k}.

Assume that G is affine or O is local. Then we have a canonical isomorphism of groups

Bls0, s1, ...,sk
H0,H1,...,Hk

G/Blr0, r1, ...,rk
H0,H1,...,Hk

G ∼= Lie(Bls0, s1, ...,sk
H0,H1,...,Hk

G)/Lie(Blr0, r1, ...,rk
H0,H1,...,Hk

G).
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Proof. By Theorem 8.1, it is enough to check the condition (RC), it follows from [SGA3, Exp.
III, Proposition 4.15] and Proposition 6.1.

Remark 8.4. Note that the result of the proof of [SGA3, Exp. III, Proposition 4.15] is stronger
than its statement. Indeed the statement uses Koszul-regularity and the proof shows regularity
(in the terminology of [StP, Tag 063J]).

9. Interpretation of Rost double deformation space as dilatations

We interpret Rost double deformation space [Ro96] in the language of dilatations. This section
emerged after a question of A. Dubouloz. Let Z → Y → X be closed immersions (in [Ro96], all
schemes are assumed to be defined over fields but we work with arbitrary schemes here). Let
D(X,Y, Z) be the double deformation space as defined in [Ro96, §10]. Let A2 be Spec(Z[s, t]).
Let Ds, Dst and Ds2t be the locally principal closed subschemes of A2 defined by the ideals
(s), (st) and (s2t). We now omit the subscript Spec(Z) in fiber products.

Proposition 9.1. We have a canonical identification

D(X,Y, Z) ∼= Bl
(X×Dst), (X×Ds)
(Y×A2), (Z×A2)

(X × A2).

In other words, Rost double deformation space is canonically interpreted as a ”double-centered”
dilatation.

Proof. The definition of D(X,Y, Z) is given in [Ro96, 10.5] locally for affine schemes. So we
reduce to the case where X = Spec(A), Y = Spec(A/I), Z = Spec(A/J) are affine. Then
D(X,Y, Z) is defined as the spectrum of the ringOD =

∑
n,m I

nJm−nt−ns−m ⊂ A[t, s, t−1, s−1] ∼=
A⊗Z Z[t, s, t−1, s−1] where Ik = Jk = A for k < 0 as in [Ro96, §10.2].

We claim that OD is equal to the sub-A[t, s]-algebra of A[t, s, t−1, s−1] generated by I(ts)−1

and Js−1. Indeed, let a, b ∈ N and put m = a + b and n = a. Then (I(ts)−1)a(Js−1)b =
InJm−nt−ns−m. So (A[t, s])[I(ts)−1, Js−1] is included in OD. Reciprocally, let n,m ∈ Z. Assume
firstly that n < 0 and put l = −n > 0, then

InJm−nt−ns−m = Jm+ltls−m ⊂ Jms−mtl ⊂ A[t, s][Js−1] ⊂ A[t, s][I(ts)−1, Js−1].

Assume secondly that n ⩾ 0 and m ⩾ n and put a = n and b = m− n ⩾ 0, then

InJm−nt−ns−m = (I(ts)−1)a(Js−1)b ⊂ A[t, s][I(ts)−1, Js−1].

Assume thirdly that n ⩾ 0 and m− n < 0 and put c = n−m > 0, then

InJm−nt−ns−m = (I(ts)−1)nsc ⊂ A[t, s][I(ts)−1] ⊂ A[t, s][I(ts)−1, Js−1].

So in all cases, InJm−nt−ns−m ⊂ A[t, s][I(ts)−1, Js−1. This finishes to prove our claim. Now
Fact 2.40 finishes the proof of Proposition 9.1.

Corollary 9.2. Rost double deformation space is canonically isomorphic to a mono-centered
dilatation as follows:

D(X,Y, Z) ∼= Bl
X×Ds2t(
(Y×A2)+(X×Ds)

)
∩
(
(Z×A2)+(X×Dst)

)(X × A2).

Proof. This follows from Proposition 9.1, the monopoly isomorphism 3.31 and the identity

(X ×Dst) + (X ×Ds) = X × (Dst +Ds) = X ×Ds2t.
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