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Multi-centered dilatations, congruent isomorphisms
and Rost double deformation space

Arnaud Mayeux

ABSTRACT. We introduce multi-centered dilatations of rings, schemes and algebraic spaces, a
basic algebraic concept. Dilatations of schemes endowed with a structure (e.g. monoid, group or
Lie algebra) are in favorable cases schemes endowed with the same structure. As applications,
we use our new formalism to contribute to the understanding of mono-centered dilatations, to
formulate and deduce some multi-centered congruent isomorphisms and to interpret Rost double
deformation space as both ”double-centered” and mono-centered dilatations.
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1. Introduction

1.1 Motivation and goals

Dilatation of rings is a basic construction of commutative algebra, like localization or tensor
product. It can be globalized so that it also makes sense on schemes or algebraic spaces. In fact
dilatations generalize localizations.

Let A be a ring and let S be a multiplicative subset of A. Recall that the localization S~ A
is an A-algebra such that for any A-algebra A — B such that the image of s is invertible for any
s € S, then A — B factors through A — S~ A. Intuitively, S~ A is the A-algebra obtained from
A adding all fractions ¢ with a € A and s € S. Formally, S ~1 A is made of classes of fractions e
where a € A and s € S (two representative ¢ and % are identified if atr = bsr for some r € 5),
addition and multiplication are given by usual formulas. Now let us give for any element s € S an
ideal M; of A containing s. The dilatation of A relatively to the data S, {M;}secs (introduced in
this paper) is an A-algebra A’ obtained intuitively by adding to A only the fractions = with s € S
and m € M,. The dilatation A’ satisfies that for any s € S, we have sA" = M A’ (intuitively any
m € M, belongs to sA’, i.e. becomes a multiple of s, so that we have an element * such that
m = s™). As a consequence of the construction, the elements s € S become a non-zero-divisor
in A’ so that 7 is well-defined (i.e. unique). It turns out that it is convenient, with dilatations
of schemes in mind, to make a bit more flexible the above framework, namely to remove the
conditions that S is multiplicative and that s € M, so we use the following definition.

DEFINITION. Let A be a ring. Let I be an index set. A multi-center in A indexed by [ is a set
of pairs {[M;, a;]}icr where for each i, M; is an ideal of A and a; is an element of A.

To each multi-center {[M;,a;]}icr, one has the dilatation A[{%"}ie]], it is an A-algebra.
We will define and study in details dilatations of rings in Section 2, in particular we will state
formally the universal property they enjoy. We will see that A[{%’}Ze 1] is generated, as A-algebra,

by {Mi }ier. We will also see that if M; = A for all 4, then A[{ M; Yier] = ST1A where S is the

a; a;
multiplicative subset generated by {a;}icr. Reciprocally, we will see that any sub-A-algebra of a

localization ST A for a certain S is isomorphic to a dilatation of A.

Dilatations of schemes and algebraic spaces are obtained from dilatations of rings via glueing.
We introduce the following definition (we restrict to schemes in this introduction).

DEFINITION. Let X be a scheme. Let I be an index set. A multi-center in A indexed by I is a
set of pairs {[Y;, D;]}ier such that Y; and D; are closed subschemes for each i and such that
locally, all D; are principal for i € I.

Associated to each multi-center, one has the dilatation Bl{}D/i" e X, it is a scheme endowed

with a canonical affine morphism f : Bl{%}i c ;X — X. It satisfies, in a universal way, that
f7Y(D;) is a cartier divisor (i.e. is locally defined by a non-zero-divisor) and that f~!(D;) =
f7YY;n D) for all i € I. If #:I = 1, we use the terminology mono-centered dilatation. We will
introduce formally and study several facets of this construction and show that it enjoys many
wonderful properties.

As we explained, dilatations are a basic construction which can be easily encountered in
specific situations. As a consequence, the theory of dilatations has deep and distinguished roots.
Right from the start, we warn the reader that we could not present a comprehensive historical
account. As soon as Cremona and Bertini started using quadratic transformations (or blowups)



in the framework of algebraic geometry over fields, “substitutions” of the form 2’ = x and
y' = y/x started being made by algebraic geometers, see for example equation (8) in [No1884,
Section 11] and Noether’s acknowledgement, at the start of [No1884, Section 12|, that these
manipulations come from Cremona’s point of view. Examples of dilatations appear frequently in
some works of Zariski and Abhyankar, cf. [AZ55, Definition, p. 86] and [Za43, p499 proof of Th.4,
case (b)]. Other forerunner examples of dilatations play a central role in several independent
and unrelated works later, cf. [Da67], [Ner64, Section 25| and [Ar69, Section 4]. As far as we
know, the terminology dilatations emerged in [BLR90, §3.2], where a section is devoted to study
dilatations of schemes over discrete valuation rings systematically. In the context of schemes
over a discrete valuation ring, we draw the reader’s attention to [Ana73], [WW80] and [PYO06].
The paper [KZ99] studies dilatations (under the name affine modifications) systematically in
the framework of algebraic geometry over fields. Over two-dimensional base schemes dilatations
also appear in [PZ13, p. 175]. In recent times, the authors of [Du05] and [MRR20] have set out
to accommodate all these mono-centered constructions in a larger and unified frame, namely
for arbitrary schemes. The paper [MRR20] introduces dilatations of arbitrary schemes in the
mono-centered case and provides a systematic treatment of mono-centered dilatations of general
schemes. An equivalent definition of mono-centered dilatations of general schemes, under the
name affine modifications, was introduced earlier in [Du05, Définition 2.9] under few assumptions.
Set aside localizations, mono-centered dilatations have been the main focus of mathematicians
in the past. However, in the context of group schemes over discrete valuation rings, examples
of multi-centered dilatations of rings and schemes that are not localizations or mono-centered
dilatations appeared and were used in [SGA3, Exp. VIB Ex. 13.3], [PY06] and [DHdS18]. The
present paper unifies all these constructions, it introduces dilatations of arbitrary rings, schemes
and algebraic spaces for arbitrary multi-centers. Allowing multi-centers also leads naturally to
the formulation of combinatorial isomorphisms on dilatations and gives birth to refined universal
properties.

Beyond rings and algebraic spaces, the concept of dilatations makes sense for other structures
and geometric settings. Let us indicate some constructions already available. Some dilatation
constructions in the framework of complex analytic spaces were introduced in [Ka94]. For many
other structures than rings, dilatations also make sense (e.g. categories, non-commutative rings,
semirings), this is the topic of [Ma23c].

Recall that dilatations have distinguished roots, as a consequence, several other terminologies
are used to call certains dilatations in literature. For examples the constructions named affine
blowups, affine modifications, automatic blowups, formal blowups, Kaliman-Zaidenberg modifica-
tions, localizations and Néron blowups are examples of (eventually multi-centered) dilatations.

1.2 Results

Let A be aring and let {[M;, a;]}ier be a multi-center. Put L; = M;+ (a;) for i € I. Let Ring%y ®
be the full subcategory of A-algebras f : A — B such that f(a;) is a non-zero-divisor for all
1 € I. Dilatations of rings enjoy several properties, the main ones are summarized in the following
statement.

PRroprosITION 1.1. The following assertions hold.
(i) The functor from Ring’"® to Set given by
{x}, if f(a;)B = f(L;)B fori € {1,...,k};

(f: A= B) — {@, else.  (2.26)



(vi)
(vii)

(viii)

is representable by an A-algebra A[X], also denoted A[{ JZZ 3 ¢;)s called the dilatation of A
with center {[M;, a;]}ier.

The image of a; in A[%] is a non-zero-divisor for any i € I, moreover

M M

A= = LiA[—].  (210,225)

a
Assume that I = {1,...,k} is finite. Then we have a canonical identification of A-algebras

Ay )= 4z eng @) 5

a; al--ak

If M; = A for all i, then A[%] identifies with the localization S~'A where S is the multi-
plicative subset of A generated by {a;}icr.  (2.11)

Any sub-A-algebra of a localization S~'A can be obtained as a multi-centered dilatation.
(2.15)

If A is a domain and a; # 0 for all i, then A[%] is a domain.  (2.8)
If A is reduced, then A[%] is reduced.  (2.9)

In regular cases, one has an explicit description of A[%] as a quotient of a polynomial
algebra.  (5.5)

Now let X be a scheme and let {[Y;, D;]}icr be a multi-center. Put Z; = Y; N D; for all i € I.
Let Schg'reg be the full subcategory of X-schemes f : T — X such that f~1(D;) is a Cartier
divisor for all ¢ € I. Our main results on dilatations of schemes are summarized in the following
theorem. Note that we work with general algebraic spaces later in the paper.

THEOREM 1.2. The following assertions hold.

(i)

(iii)

(iv)

The functor from Sch?reg to Set given by
{x}, if flrxx b, factors through Y; N D, C X fori € {1,...,k};

@, else.

(f: T—X)+— {

is representable by an X-affine scheme BI2 X | also denoted Bl{%}i o X and Bl}%}}:: X,
and called the dilatation of X with multi-center {[Y;, D;|}icr.  (3.17)
As closed subschemes of BleX , one has, for all i € I,

BI2X xx Z; = BIPX xx D,
which is an effective Cartier divisor on BI?X.  (3.16)
Let J be a subset of I and put K =1\ J. Then
DkxXBl{i: }iEJX

BI{y' } e, X = BY '
{}/Z i€l YkXXBl{}D,;}ieJX

D;
A
In particular, there is a unique X -morphism

D; D;
BlI{y '}, X = BYy'} X (3.19)

Assume that #1 = k is finite. We fix an arbitrary bijection I = {1,...,k}. We have a
canonical isomorphism of X -schemes

D
{Di}iel ~ (Bl)Xka (Bl)XxD3 (BIYIX)XXD2 D
Byl X = BIip) ") ( S BIGT (Bl(m?}x)xXYQ (BI2X)) ]. (3.30)



(v) (Monopoly isomorphism) Assume that #1 = k is finite. We fix an arbitrary bijection I =
{1,...,k}. We have a canonical isomorphism of X -schemes
{Di}ier yv ~ pyD1+...4+D
Bl{Yi}iEEI X = Blniej(Yz"f‘gl+...+Di_1+Di+1+.‘.+Dk)X' (331)
(vi) In many cases, multi-centered dilatations can be iterated in a compatible way with the
addition law on closed subschemes. (3.1, 4.6)

(vii) Multi-centered dilatations whose multi-center {[Y;, D;|}icr satisfies that {D;};cr are multi-
ples of a single locally principal closed subscheme satisfy additional properties (preservation
of flatness, smoothness).  (cf. e.g. 5.5, 6.1 for precise statements)

We also define dilatations in a relative setting as follows. Let S be a scheme and let X be a
scheme over S. Let C' = {C; };er be closed subschemes of S such that, locally, each C; is principal.
Put D = {C; x5 X }icr. Let Y = {Y;}ier be closed S-subspaces of X. We put BI{ X := BIY X

Fact 1.3. Bng represents the functor from Schg_reg to Set given by

(f:T—8) = {z € Homg(T, X)| x|, : T x5 C; = X xg C; factors through Y; x5 C;}.

REMARK 1.4. Fact 1.3 implies that for any T € Schg'mg (e.g. T = Sif each C; is a Cartier divisor
in S) we have a canonical inclusion on T-points BI{ X (T') ¢ X (T'). But in general BI{ X — X
is not a monomorphism in the full category of S-schemes.

We now describe our results regarding the behaviour of dilatations of schemes endowed with
a structure. So let S be a base scheme and assume that X = G is a monoid (resp. group,
resp. Lie algebra) scheme (or any structure defined using products). Let H; C D; = G|¢, be a
closed submonoid (resp. subgroup, resp. Lie subalgebra) schemes over C; for all i € I and let
H = {H;}ics. Let G := BIZG — G be the associated dilatation. The structure morphism G — S
. . C-reg
defines an object in Schg™ .

PROPOSITION 1.5. Let G — S be the above dilatations.

(i) Recall that the scheme G — S represents the contravariant functor S chg'reg — Set given for
T — S by the set of all S-morphisms T' — G such that the induced morphism T|c;, — G|c;,
factors through H; C G|¢, for alli € {1,...,k}. (7.1)

ii) Let T — S be an object in SchS™®, then as subsets of G(T
( ) J S )
G(T) = BIFG)(T). (7.1)
i€l
(iii) The map G — G is affine. Its restriction over C; factors as G; — H; C D; foralli € I. (7.1)

(iv) Assume the dilatation G — S is flat, then G — S is equipped with the structure of a monoid
(resp. group, resp. Lie algebra) scheme over S such that G — G is a morphism of S-monoid
(resp. S-group, resp. S-Lie algebra) schemes. (7.2 )

(v) Under flatness assumptions, dilatations commute with the formation of Lie algebra schemes
in a natural sense

Lie(BIS/C @) o BI{ ()¢

Lie(H)) }ieILz’e(G). (7.4)

As an example of dilatations, let us explain a connexion between dilatations and Yu’s famous
construction of supercuspidal representations [YuO1] (cf. also [Yul5, §10]).



EXAMPLE 1.6. Assume in this example that O is the ring of integers of a non-Archimedean
local field F' and that 7 is the maximal ideal of O. Let G be a split connected reductive group

N
scheme over O, i.e. a Demazure group scheme over 0. Let G = (G° ¢ G' c ... ¢ G¢ = G)
be a sequence of split Levi subgroups of G over O. Put G; = G; xp F for all i € {0,...,k}.

H

Put G = (G° ¢ G!' ¢ ... ¢ G =: G), a sequence of split Levi subgroups of G over F.
For i € {0,...,d}, let x; be the special point in the Bruhat-Tits building of G; such that G;
corresponds to x; via Bruhat-Tits theory. Then x; comes from x( via functoriality of buildings
as in [YuO1, §1]. Let 0 < 79 < r1 < ... < 1g be integers. Recall that eg denotes the trivial closed
subgroup scheme of G. There is a canonical isomorphism of groups

— T

G(F), =Bl g caaG(O),

— t

where G(F)x,?’ is defined in [YuO1, §1 p584] and Bl{%i}iejG denotes Bl{gl_/ﬂi }ierG for integers
t > 0.

In the paper, we prove the following result. It generalizes the fact that congruence subgroups
are normal subgroups. It was also motivated by the fact that the proof of [Yu0l, Lemma 1.4],
related to Example 1.6, is not correct.

PropoSITION 1.7. Assume that #1 = 1, C = C} is a Cartier divisor in S and G — S is a
flat group scheme. Let n : K — G be a morphism of group schemes over S such that K — S
is flat. Assume that H C G is a closed subgroup scheme over S such that H — S is flat and
BI$,G — S is flat (and in particular a group scheme). Assume that K commutes with Ho in
the sense that the morphism K¢ x¢ He — Ge, (k,h) + n(k)hn(k)~! equals the composition
morphism K¢ x¢ Ho — Ho C Ge, (k,h) — h. Then K normalizes BISG, more precisely the
solid composition map

IdxBl k.g—=n(k)gn(k)~'

KXSBgG>KxSG/////////$G
e Bl

A
BI$G

factors uniquely through BI%G . (7.5)

Recall that mono-centered dilatations (#I = 1) are already studied in many references, cf.
e.g. [WW80], [BLR90], [KZ99], [Du05] and [MRR20]. We refer the reader to [DMdS23] for a
survey paper on the topic of both mono and multi-centered dilatations.

We now discuss some applications of the above theoretical results. Our first application is a
multi-centered congruent isomorphism. To explain it, let (O, 7) be a henselian pair where 7 C O
is an invertible ideal.

THEOREM 1.8 (Multi-centered congruent isomorphism). Let G be a separated and smooth group
scheme over S. Let Hy, Hy, ..., Hy be closed subgroup schemes of G such that Hy = eq is the
trivial subgroup and such that H; — S is smooth for all i € {0,...,k}. Let so,s1,...,S; and
r0,71,---,Tt be in N such that

(i) s; = sg and r; = ro for alli € {0,...,k}
;> s; and r; — s; < so for all i € {0,...,k}.

(ii) 7



Assume that G is affine or O is local. Assume that a regularity condition (RC) is satisfied (cf.
Definition 8.2). Then we have a canonical isomorphism of groups

Blyg, w1, i, G(O)/Bl, 1) i, G(O) = Lie(Bly i1y iy, G)(O) /Lie(Bly, i1y i, G)(O)

where BIy % @ denotes B/ ™7/ G for any to, ...t €N, (8.1)

REMARK 1.9. Note that [YuOl, Lemma 1.3] provides a comparable ”multi-centered” isomor-
phism, but in the framework of reductive groups over non-Archimedean local field ([Yu01l, Lemma
1.3] does not involve dilatations). Note also that Theorem 1.8 extends [MRR20, Theorem 4.3].
Recall that [MRR20, Theorem 4.3] is related to the Moy-Prasad isomorphism in the setting
of reductive groups over non-Archimedean local fields. The Moy-Prasad isomorphism for re-
ductive groups is of fundamental importance in representation theory of reductive groups over
non-Archimedean local fields. The proof of the Moy-Prasad isomorphism in the recent reference
[KP22] use [MRR20, Theorem 4.3], cf. [KP22, Theorem 13.5.1 and its proof, Proposition A.5.19
(3) and its proof].

Our other application is an interpretation of Rost double deformation space in the language
of dilatations. Rost double deformation space is a fundamental tool in intersection theory and
motivic homotopy theory. Let Z — Y — X be closed immersions of schemes (in [R0o96], all
schemes are assumed to be defined over fields but we work with arbitrary schemes here). Let

D(X,Y, Z) be the double deformation space as defined in [Ro96, §10].

Let A% be Spec(Z[s,t]). Let Dy, Dg; and Dy, be the locally principal closed subschemes of
A? defined by the ideals (s), (st) and (s*). We now omit the subscript gpec(z) in fiber products.

PROPOSITION 1.10. (i) We have a canonical identification:

Y ~ (XxDsgt), (XXDsg) 2
D(X,Y,2) =Bl o) (X x A2).

In other words, Rost double deformation space is naturally interpreted as a ”double-centered”
dilatation. (9.1)

(ii) Using the monopoly isomorphism (cf. Theorem 1.2), we obtain that Rost double deformation
space is canonically isomorphic to a mono-centered dilatation as follows:

— ~ XXDSQt 2
D(X,Y,Z) = BI(WXAzH(xXDS))n((zmzmstt))(X x A%).  (9.2)

1.3 Structure of the paper

Section 2 introduces dilatations of rings. Section 3 introduces multi-centered dilatations. Section 4
deals with iterated dilatations. Section 5 focuses on the case where the multi-center {[Z;, D;]}ier
satisfies that {D;} are given by multiples of a single D. Section 6 proves some flatness and
smoothness results. Section 7 considers dilatations of monoid, group and Lie algebra schemes.
Section 8 studies congruent isomorphisms. Section 9 interprets Rost double deformation space
as dilatations.

2. Dilatations of rings

We introduce dilatations of commutative rings. Recall that dilatations of categories also make
sense (cf. [Ma23c]), however dilatations of commutative rings behave specifically and it is better
to treat them separately. From now on, rings are assumed to be unital and commutative.



2.1 Definition

Let A be a unital commutative ring. If M is an ideal of A and a € A is an element, we say
that the pair [M,a] is a center in A. Let I be an index set and let {[M;,a;]}icr be a set of
centers indexed by I. For i € I, we put L; = M; + (a;), an ideal of A. Let N; be the monoid
PN If v = (v1,...,14,...) € Ny we put LV = L --- L7 --- (product of ideals of A) and
a’ =af"---a;’--- (product of elements of A). We also put ™7 = {a”|v € N;} C A.

DEFINITION AND PROPOSITION 2.1. The dilatation of A with multi-center {[M;, a;|};cs is the
unital commutative ring A {Ml} ;] defined as follows:

e The underlying set of A {M }1 el s the set of equivalence classes of symbols _; where
v € Ny and m € LY under the equ1valence relation
m p

— = & 38 € Ny such that ma®™ = pa®t in A.
a

From now on, we abuse notation and denote a class by any of its representative . if no confusion
is likely.
Je] v
. . . . m P _ ma +pa
e The addition law is given by (7 + -5 = — 70—

e The multiplication law is given by 7 x By = 5.

e The additive neutral element is % and the multiplicative neutral element is %

We have a canonical morphism of rings A — A[{
the notation A[2] to denote A[ { 11

M; . a .
a }iEI] given by a — 7. We sometimes use

ZEI

Proof. Let us first prove that the relation is an equivalence relation. Assume
m _p

a¥ ~ a?
_ P
A

l
a0

where v, \,0 € Ny, (m,p,1) € (L”,L*, LY). We want to prove that
m l

av  a?
By definition, there exist 3, a € N such that
maPt™ = paﬁ—i—u
l aa+)\ _ paa-i-e
Put 6 =5+ A+ a. We get
madt? = maPAtett — pafrvtettd _ poBtvtatd 0ty
so 77 = —5. The addition and multiplication laws are associative and commutative. The distribu-

t1v1ty 10m is satisfied and the additive neutral element is absorbent for the multiplication. So
[ ] is a unital commutative ring. The formula a — ¢ provides a canonical morphism of rings
A— A[ . O

The element ¢ of A[{%}Z ;) will sometimes be denoted by a if no confusion is likely.

REMARK 2.2. Let {N;}ier be ideals in A such that N; + (a;) = L; for all ¢ € I. Then we have
identifications of A-algebras A {JZ }Ze[ { @ }zGI {al }Ze[




REMARK 2.3. Note that Def. Prop. 2.1 and its proof shows that if A is assumed to be just a unital
commutative semiring, then A[{ ];4; }Z ¢7 is a unital commutative semiring and A— Al {
is a morphism of semirings. Note that most results of §2.1-2.2 extend to semirings.

}161

REMARK 2.4. Let {E;};cs be subsets of A, let P; be the ideal generated by E; for ¢ € I. Then
one can define A[{%}le[] as being A[{%}ig].

DEFINITION 2.5. Let f: A — B be a morphism of rings, we say that f is a dilatation map or an
affine modification if there exists a multi-center {[M;, a;]}ics in A such that B = A[{ ]Z’ }iel] as
A-algebras (cf. also Fact 2.15 for an other caracterization).

2.2 Properties of dilatations
We proceed with the notation from §2.1.

REMARK 2.6. As A-algebra, A {M } is generated by { } . Since L; = M; + (a;), this
implies that A] { o }Z.eI.
Fact 2.7. The following assertions are equivalent.

(i) There exists v € Ny such that ¥ =0 in A.
(ii) The ring A {M }zEI is equal to the zero ring.

ot }ieq) is generated by {

Proof Assume (i) holds. Let 75 € A[%] with 3 € Ny and m € L?. Then a¢m = 0 in A and so

Z=7inA {M }zel So (ii) holds. Reciprocally, assume (ii) holds. Then 1 = Y and so there
exists 1/ € N; such that a” = 0 in A. So (i) holds. O

FActT 2.8. Assume that A is a domain and a; # 0 for all i, then A[{%’}Ze[] is a domain.

Proof. Assume that 75 = 0 in A[ { } . Then there exists § € Ny such that a?ml = 0 in A.
Since a’ # 0 and A is a domaln we get that m = 0 or [ = 0. This finishes the proof. O

FACT 2.9. Assume that A is reduced, then A[{ ](\il }iEI] is reduced.

Proof. Assume that, in A] { }zEI a,,) = 0 for some N € N then there exists § € Ny such

that a®m”™ = 0. We can assume that 3 = N6 with § € N;. Then (am)Y = 0 in A and so

a’m = 0 since A is reduced. So——OlnA{ }zel O

FactT 2.10. Let v be in N;. The image of ¢” in A {M }zGI is a non-zero-divisor.

Proof. Let be A {M } | such that a¥b =0 in A| { } . Write b = 7%, then we get aim _ )

in A { } eI This 1rnphes that there is 8 € Ny such that aﬂa m=0.S0b=0in A {M }zEI
So a” is a non-zero-divisor.

Fact 2.11. Assume M; = A for all i € I. Then A| { }zel (a™1)"1 A where (a™1)71 A is the
localization of A relatively to the multiplicative mono1d al

Proof. For any v € Ny, we have LV = A. Now the map _; + _% provides an isomorphism of

A-algebras A {M }zGI = (a"1)~1A. O

REMARK 2.12. Dilatations of rings generalize entirely localizations of rings. Indeed, let A be a
ring and let S be a multiplicative subset of A (i.e. a submonoid of A, x). Let I be a set such

that S = {s;}ics. Then s"7 = S and Fact 2.11 says that S~!A4 = A| { }SGS



Fact 2.13. Let f : A — B be a morphism of rings. Let {[N;, b;|}icr be centers of B such that
f(M;) C N; and f(a;) = b; for all i € I. Then we have a canonical morphism of A-algebras

A[{ le/ii }'L'EI] - B[{%}zel] :

Proof. Put ¢(2) = fgun). O

Fact 2.14. Let {P;}icr be ideals of A such that P; C M; for all i € I. Then we have a canonical
injective morphism of A-algebras

A[{%}ZEI] - A[{ ]gz‘i }iEI]'

Proof. Clear. 0
Fact 2.15. Let f: A — B be a morphism of rings. The following assertions are equivalent.

(i) The morphism f is a dilatation map (cf. Definition 2.5).

(ii) There exists a multiplicative subset S of A and a sub-A-algebra C of S~ A such that B = C
as A-algebras.

Proof. The assertion (i) implies (ii) by Facts 2.11 and 2.14. Reciprocally, let C' be a sub-A-algebra
of ST1A. Let I be the set defined as

I:={i=(mj,a;) € Ax S| % belongs to C} C A x S

2

Then C = A { (mi) } |, indeed we have a canonical morphism of A-algebras ¢ : C' — A[{ (7::) }Z c I]

sending " to ZLZ The morphism ¢ is injective, e.g. because A {(ml }161] C S7'A since S =
{a;}ier because (al, a;) belongs to I for any a; € S. The morphism ¢ is surjective by Remark

2.6. O

REMARK 2.16. Note that the concept of dilatations extend to categories, cf. [Ma23c|. However
the analog of Fact 2.15 fails for categories, cf. [Ma23c].

FACT 2.17. Let ¢ be a non-zero-divisor element in A. Then ¢ is a non-zero-divisor in A[{ ];4’ }iel].

Proof. Let 2 € A[{ ];JZ }iel] such that < = 0. Then there exists 3 € N; such that a’mc =0 in

A. Because of ¢ is a non-zero-divisor, this implies a’m = 0 in A and so 2 = 0 in A[{ ](\14; }iel]' O

PROPOSITION 2.18. Let K C I put J = I\ K. Then we have a canonical morphism of A-algebras

A[{ ];Jii }iGK] — A[{ ]21/[: }'L'EI]'

Moreover
(i) if M; C (a;) for all i € J, then y is surjective, and
(ii) if a; is a non-zero-divisor in A for all i € J, then ¢ is injective.

Proof. We have a canonical injective morphism of monoids Nx — Ny. Let 73 with v € Ni and
m € L¥, then we put o(13) = & € A[{%}Zel] We now prove the listed properties.

(i) Tt is enough to show that M; is in the image of ¢ for all i € I. This is obvious for all i € K.

Solet i € J and let € M; Since M; C (a;) we write m; = a;x with € A. Then ™o=7
belongs to the image Of ®. So (p is surjective.

10



(ii) Let % € A[ { }zeK ] with v € Ng. Assume that 7 = % in the image A[{ ]L{Z}zel] Then
there exists 3 E N; such that ma® = 0. Write 8 = v/ + 0 with v/ € Ng and 6 € Nj. Then
we have ma”’ a’ = 0 in the ring A and a? is a non-zero-divisor, so ma”’ = 0 in the ring A
and so o5 = % in the source. So ¢ is injective.

O]

COROLLARY 2.19. Let K C I. Assume that, for all j € J = I\ K, the element a; belongs to the
face A* of invertible elements of the monoid (A, x), i.e. a; is invertible for x. Then

{ ai zEI { a; zEK
Proof. This follows from Proposition 2.18. 0

COROLLARY 2.20. Let J C I be such that for all j € J, there is i € I\ J satisfying that a; = a;
and M; C M;, then we have a canonical identification of A-algebras A| { }zel Al ](\f }zeI\J]

Proof. This follows from Proposition 2.18 and elementary arguments. O

COROLLARY 2.21. Let {d;};c; be positive integers. Let I = H]EJ I; be a partition of I. Assume
that, for all j € J, M; = My =: Mj and a; = ay =: a; for all i,7' € I;. Assume moreover that,
for all j € J, max;¢ I d; =: d; exists. Then we have a canonical identiﬁcation

A e = AUE )

Proof. This follows from Proposition 2.18 and elementary arguments. O
PROPOSITION 2.22. Let K C I. Then we have a canonical isomorphism of A[{ J(\fl }ieK]—algebras
. , S } s
M; _ M; i 1
A[{ a; }iel] o A[ a; }ieK EI }jeI\K]’

where A| { —j is the ideal of A] {

}161 I } | generated by L C Al {

}ZEI

}ZGI given by Fact 2.18. The right-
%i}ieK]—algebra by

Proof. We have a morphism of rings A[ { }Z c K — Al {

hand side of the equation in the statement of 2.22 is generated as A[{

Al },
A eIV }jel\K We now define an A| { }ZGK
left—hand side sending T"” (withvel,jeI\K and k € N) to ";”Z?j . This is well-defined and
j i

-morphism from the right-hand side to the

v

J
it is easy to check injectivity and surjectivity. ]

COROLLARY 2.23. Let S and 5" be the multiplicative monoids in A and A[{

{a”|v € Nr}. Then S'~LA[{ 2L }zeI S—1A.

A1) given by

Proof. Using, Fact 2.11, Proposition 2.22 and Corollary 2.20, we get

54 = Al U )= A8 (2 = A ) =

PROPOSITION 2.24. Assume that a; = aj =: b for all i,j € I, then

11



{ ZGIM ]

a; ’LG] :

Proof. This follows from the identity ( Z M ”) = (Z M;)". O
veENy,Y i vi=n iel

FAacT 2.25. Let v € Nj. WehaveL”A{ }zel ”A{a: ier)

Proof. Obviously a” A[{ ]Z’ }iel] C LYA {M } .Let y € L” and 5 € A[{ o, }zel] the formula

x Yt

yaa =a qatv

now shows that L A[{ 2L o, }zeI ”A[{%i}ie[]. O

PROPOSITION 2.26. (Universal property) If x : A — B is a morphism of rings such that X(Gz’) is
a non-zero-divisor and generates x(L;)B for all i € I, then there exists a unique morphism ' of
A-algebras A {M } ] = B. The morphism x' sends -5 L (v e Ny, 1 € L) to the unique element
b € B such that X( )b =x(0).

Proof. The element b in the statement is unique because x(a") is a non-zero-divisor for all v € Nj.
Clearly, the map X’ defined in the statement is a morphism of A-algebras. Now let ¢ be an other
morphism of A-algebras A[{{;—:}Z ;) = B. We have
v l l 14
X(@)6(5) = B(-)6(a”) = o(1) = x(0)

This implies X'(L) = ¢(:5). O

REMARK 2.27. The universal property of dilatations generalizes the universal property of local-
izations. Indeed, let S be a multiplicative subset of A and let f : A — B be an A-algebra such
that f(s) is invertible for any s € S. Recall that by 2.11, we have S~'A = A[{4},c5]. Then
obviously f(s) is a non-zero-divisor and f(s) generate B = f(A)B, so by the universal property
of dilatations there exists a unique morphism f’ of A-algebras S™'A — B. So dilatation is a
construction that generalizes localization without the need to know localization. An other less
uniform way to introduce dilatations of rings (or rings) is to first treat the case of localizations
and then to define a dilatation as in the second assertion of Fact 2.15. At the end both points of
view are equivalent by Fact 2.15.

DEFINITION 2.28. The blowup algebra, or the Rees algebra, associated to A and {L;};cs is the
Ny-graded A-algebra

Blr,p, A= P L
veNy
where the summand LY is placed in degree v € Nj.

Let e; = (1,0,...),eo = (0,1,0,...),...,e; = (0,...,0,1,0,...),... be the canonical basis
of the free N-semimodule N;. Recall that a; € L; for ¢« € I. Denote a;; the element a; seen
as an element of degree e; in the Rees algebra Blyy, ,A. Let S be the multiplicative subset
of Blyz,1,., A generated by {a;;}ier. Let (Bl{Li}iE[A) [S~!] be the localization of the multi-Rees
algebra relatively to S. This A-algebra inherits a Zj-grading given, for any [ € L, by

deg(ﬁ) - Z(W —a;)e; € Ly = @Z.

a
1,1 iel iel

12



Fact 2.29. We have a canonical identification of A-algebras

{ a; }ZGI |:(B1{L }16114) [S_l]:|deg:(0,...,0,...)

where the right-hand part is obtained as degree zero elements in (Bl{Li}iE[A) [S—1].
Proof. This is tautological. O

PROPOSITION 2.30. Assume that I = {1,...,k} is finite. Then we have a canonical isomorphism
of A-algebras

{ |=A ZictMilljen iy aj)]

aj ZEI ay--ag

Proof. Let us provide a map

¢ A[ZE e W) L (A

ai--ag a; Jiel!”

ZieI(Mi'HjEI\{i} a;)

al--ag

The ring A[ZZEI(AZIHzel\{ J; j)] is generated as A-algebra by

a map ¢ via (for m; € M;, i € I):

, we now define

D ier(my - Hje[\{z’} aj)) _ Dier(m - Hje[\{i} a;)

al...ak al...ak

&

This is well-defined and ¢ is a morphism of A-algebras. It is easy to prove that ¢ is injective and
surjective. 0

REMARK 2.31. Assume that A = Z[X,Y]. The formal symbol % does not make sense in

A[W} The formal symbol 2X makes sense and defines an element in A[W]. The

3 ), ()2/)] and define the same element. The canonical

EXVHEY)) o 2X _ X ¢ 410 ()

formal symbols 2X % and X make sense in A[(

isomorphism of Prop081t10n 2.30 sends 2X €Al

LEMMA 2.32. Write I = colimjc;J as a filtered colimit of sets. We have a canonical identification
of A-algebras

{ a: iEI = colimjcrA { }zeJ

where the transition maps are given by Fact 2.18.

Proof. For each J C I, Fact 2.18 gives a canonical morphism A[{ ](\J,/[ii}iej = A {M }zeI ] of
A-algebras. These morphisms are compatible with transition maps. So we have a canonical A-

morphism

o : COhmJC[A[{aT}ieJ] — A[{ o, }iel}'
The map ¢ is surjective because for any v € Ny, there exists a subset J C I such that v € Ny
(recall that N; C Nj). It is easy to check injectivity. ]
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2.3 More properties of dilatations of rings

We proceed with the notation from §2.1.

PROPOSITION 2.33. Let T be an ideal of A. Assume that we have a commutative diagram of
A/T

A-algebras % \ where ¢ is the quotient map. Assume that ¢(a;)

M;
[{ a; iG]] f
is a non-zero-divisor for all i € I. Then

ker(p) = Y, en, Yot C© AlLG
Proof. Let v € Ny and 7 € A {

a; }iel]'

} i.,e. m € LY. We have
ZGI

v

i m a m m

Pa”)e( ) = e()e( ) = (1) = e(f(m)) = o(m).
Now assume ¢( i) = 0, then ¢(m) = 0 and so m € L”NT'. This shows that ker(¢) C >y, LT
Reciprocally assume m € L” NT. Then ¢(m) = 0. This implies ¢(7;) = 0 because ¢(a”) is a
non-zero-divisor by assumption. O

COROLLARY 2.34. We proceed with the notation from Proposition 2.33 and assume that I = {i},
a; = b¥ for some k € N,b; € A and that T = M;. Then ker(y) is the ideal ofA[]y_i] generated by

o B = Al] for any d € N.

, moreover A[

Proof Clearly7 L C ker(y), so it is enough to prove that ker(¢p) is included in the ideal generated
LynM;

by =i (that we denote in this proof by ( £)). So let n € N, we have to prove that

1ncluded in < £). An element z € L can be written as a sum o = Y p_omgal " with my 6 Mf
(note that, i Pt belongs to L} N MZ, then mgaj also belongs to M;). Now we assume that

belongs to L™ N M;, it is clear that for k > 0 the element ™ = " belongs to < ). Now for
k = 0, using that a; is a non-zero- d1v1sor in A/M and that moa belongs to M;, we get that mg

o ). So = belongs to ( a;)
err( )] — A[b%id] and finish the proof:

belongs to M; and it is now clear that ™ 1 belongs to (

Now we deduce the equality A[

b
M; M;
My [y
M, ker(p) M;. vF AL
A[EH b | = A[EMT}
a, MAL]
= A[E][W]
M; M;
by Proposition 2.22 = A[75, -]
M;
by Corollary 2.21 = A[bk;+d]‘

O
PROPOSITION 2.35. Let f : A — B be an A-ring. Put N; = f(M;)B and b; = f(a;) fori € I.
Then B[{]X—:}iel] is the quotient of B ® 4 A[{ ](\1{’ }iel] by the ideal Ty, of elements annihilated by
some element in b1 := {b"|v € Nj}.
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Proof. We can assume that a; € M; and b; € N;. Let B’ be the quotient of B ®4 A {
Ty. The ring map

}zEI

B®AA{

}ZEI — B { }zEI

is surjective and annihilates a"V/-torsion as elements in b7 are non-zero-divisors in B { }Z el

Hence we obtain a surjective map B’ — B] { } . To see that the kernel is trivial, we construct
an inverse map. Namely, let z = b,, be an element of B { }zeI i.e y € NY for some v € Nj.
Write y = Y #;s; with z; € M" and s; € B. We map z to the class of 3~ s;® =& in B'. This is well
defined because we claim that an element of the kernel of the map B® 4 MY — NV is annihilated
by a” hence maps to zero in B’. We now prove the claim of the previous assertion. Let > j(sj ®@my)
be in the kernel of the map as before (s; € B,m; € M” for all j), so that >, s;f(m;) = 0; we
have a” 32 (s; @ mj) = 3_.(s; @ mya”) = 32:(s;f(m;) ® a”) = (32, 5;f(m;)) ® a” = 0. This
finishes the proof. O

COROLLARY 2.36. We proceed with the notation from Proposition 2.35 and assume f : A — B
is flat. Then T, = 0, in other words we have a canonical isomorphism

B{{%}zel] =B @ A[{ JZ? Vel
Proof. Since f is flat, the map ¢ : A[{JZ[: Yier] = B ®a A[{Jy; bier] is flat. Since ¢ is flat, the

image of any non-zero-divisor element in A[{ 1;41 }ier] under the map ¢ is a non-zero-divisor. So
T, = 0 and Proposition 2.35 finishes the proof. O

DEFINITION 2.37. Assume that a; is a non-zero divisor for all ¢ € I. Let J; be the ideal of A
generated by a;, it is invertible. We consider the A-algebra
ciA < @ L'eJ™,
veNy

and we call it the associated conic algebra.

ProproOSITION 2.38. We proceed with the notation from Definition 2.37. Let { be the ideal of
C’gA generated by elements p® — 1 for a € N; where p; € C"L]A is the image of 1 € A under
A2 T, ® J[l CL;i® J[l C C{ A for any i € I. We have a canonical isomorphism of A-algebras

(C{A)/¢ — A[{ £}

ZEI

Proof. Let t; = a) be the generator for J;- 1 dual to a; for all i € N;. We have a natural morphism
of rings given explicitly by
l
J v v
p:CLA — Al { }ZGI ZueN,l” RtY ZueN,aV'
The morphism 1 is surjective and { C ker. It is enough to prove that ker¢y C (. Let X =
ZVEC l, ®tV e CgA where [, € L”, and ¢ is a finite subset of N;. Let 5 € Nj defined by

,87; = MaXyeccl; for all 7 el Then we have
ll, E v Caﬁ vy

a¥ ab
vee

Assume X € kert), then )
allowed to write

= (Y wer)- (X d ) e’ =3 (L)1 - @ et).

vee vee vee

vee aP~VI¥ = 0 because a; are non-zero-divisors i € I. So we are
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This finishes the proof since a?~" @ t9~¥ = p?l_yl . pfl Vil O

REMARK 2.39. We note that the ideal { appearing in Proposition 2.38 is in fact generated by
{pi — 1}icr. To see this, use for example that in any ring and for any elements p,o in the ring
we have p" — 1= (p—1)(p" 1 +...+p+1)and po —1=(p—1)(c+1)+ (6 —1) — (p—1).
FacT 2.40. Let R be a ring and assume that f : R — A is a morphism of rings. Let {r;};cr be
elements in R and assume that a; = f(r;) for allieI. Let R, = R {R} | be the localization
of R at {r;}ics. For any i € I, let M; ® r; V'« A®gr R,. Then A {M } | identifies with the
A-subalgebra of A ®g R, generated by {M; @ r; }7,6] and A.

Proof. By [StP, Tag 00DK] and Fact 2.11, we get A®R R, = (A®RrR), = A[{aéi}iel]. Moreover
M;®r; ' c A®p R, corresponds to 24 ¢ Al { } . Now 2.6 and 2.14 finish the proof. O

REMARK 2.41. We discussed before that dilatations of rings provide a formalism unifying local-
izations of rings and affine blowups of rings (recall that affine blowups are studied in [StP, Tag
052P]). It is easy to check on examples that dilatations strictly generalize localizations and affine
blowups. In fact such examples already appeared in literature in the framework of flat group
schemes of finite type over discrete valuation rings, cf. e.g. [SGA3, Exp. VIB Ex. 13.3], [PY06,
§7, after Proposition 7.3], [DHdS18, Definitions 5.1 and 5.5].

2.4 Dilatations of modules

Recall that dilatations of rings generalize localizations of rings. Recall also that localizations of
A-modules make sense. In this remark we explain that dilatations of A-modules also make sense.
Let M be an A-module. The dilatation of M with multi-center {[M;, a;]}iecs is the A[ { }zel

module M[ { } | defined as follows:

e The underlymg set of M| { }Z el is the set of equivalence classes of symbols la—”f where
v €Ny, meMand !l € LY under the equivalence relation

Im h
— = p & 3B € Ny such that Ima®** = hpa®*” in A.

a a?

From now on, we abuse notation and denote a class by any of its representatlve 7 if no confusion

is likely.

e The addition law is given by X2 + a,; = lmajﬁ#.
e The action law is given by a%:—g = alu}fﬂ.
e The additive neutral element is %
We have a canonical morphism of A-modules from M to M| { } | given by m — 2. We now
put M" = { a; }iGI .
PROPOSITION 2.42. Let v € Ny.
(i) Let m € M'. If a¥m = 0, then m = 0.
(ii) We have a"M' = L*M'.
Proof. (1) Write m = “E. There exists v such that a”a”hp =0 in M, so m = 0 in M’.
(ii) It is enough to prove that a’M’ D L*M'. This follows from the identity, for [ € L":
hp — , lhp

l

PR RN

16


https://stacks.math.columbia.edu/tag/00DK
https://stacks.math.columbia.edu/tag/052P
https://stacks.math.columbia.edu/tag/052P

O]

PROPOSITION 2.43. (Universal Property) Let A-Mody; ® be the category whose objects are
morphisms of A-modules F' : M — M’ with source M such that a; is a non-zero-divisor of M’ for
all i € I, then

M; {*}, lszM/ = aiM’ for i € I;
H a-re M —_— M/ =
OMA_Mody; «(M[{ a; Vier], M) {g’ clse.
Dilatations of modules enjoy similar properties than dilatations of rings, we do not list all of
them here.

REMARK 2.44. In general M[{ ]Zl }ier] is not equal to M ®4 A[{ ]gf}zel] Indeed, let A = Z[X],
I={0}, My = (X),ap=2and M = A[™2]. Note that A[*2] = Z[%] C Q[X]. Then M[*0] = M,
however M ®4 A[22] 22 M. Indeed the element 0 # T = (5 ® 1) + (-1 ® %) € A[2R] 04 A[M]
satisfies 27" = 0 whereas M is 2-torsion free. This contrasts with the case of localizations where
we always have M ®4 S™1A4 =2 S™IM, cf. e.g. [StP, Tag 00DK].

REMARK 2.45. Let 0 — M; — My — M3 — 0 be an exact sequence of A-modules. Then in
general Ml[{%’}zg] — Mg[{%}le]] — Mg[{%}le[] is not exact. For example, Take A = Z[X],

I = {0}, My = (X), ap = 2 and consider the exact sequence 0 — Z[X] mem Z[X] —

Z/2Z[X] — 0. Then Z/2Z[X][5] = 0, however Z[% | m2m, Z[%] is not surjective. This contrasts
with the case of localizations where we always have preservation of exact sequences, cf. e.g. [StP,

Tag 00CS].

3. Multi-centered dilatations in the absolute setting

In this section, we define multi-centered dilatations and prove some properties.

3.1 Definitions

Let S be a scheme. An S-space is an S-algebraic space. Let us fix an S-space X. For the
convenience of the reader, we recall some basic notations and well-known facts.

NOTATION 3.1. Let Clo(X) be the set of closed S-subspaces of X . Recall that Clo(X) corresponds
to quasi-coherent ideals of Ox via [StP, Tag 03MB]. Let IQCoh(Ox) denote the set of quasi-
coherent ideals of Ox. It is clear that (IQCoh(Ox),+, x,0,0x) is a semiring. So we obtain
a semiring structure on Clo(X), usually denoted by (Clo(X),N,+,X,0). For clarity, we now
recall directly operations on Clo(X). Given two closed subspaces Y1, Ys given by ideals J1, Ja,
their sum Y7 + Y5 is defined as the closed subspace given by the ideal J1J>. Moreover, if n € N,
we denote by nY7 the n-th multiple of Y1. The set of locally principal closed subspaces of X
(cf. [StP, Tag 083B]), denoted Pri(X), forms a submonoid of (Clo(X),+). Effective Cartier
divisors of X, denoted Car(X), form a submonoid of (Pri(X),+). Note that Car(X) is a face
of Pri(X). We have an other monoid structure on Clo(X) given by intersection, this law is
denoted N. The operation N corresponds to the sum of quasi-coherent sheaves of ideals . The set
Clo(X) endowed with N,+ is a semiring whose neutral element for + is () and whose neutral
element for N is X. Let C' € Car(X), a non-zero-divisor (for +) in the semiring Clo(X). Let
Y, Y' € Clo(X). If C +Y is a closed subspace of C +Y', then Y is a closed subspace of Y.
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Moreover if C +Y =C +Y', then Y =Y. Let f : X' — X be a morphism of S-spaces, then f
induces a morphism of semirings Clo(f) : Clo(X) — Clo(X"),Y — Y xx X', moreover Clo(f)
restricted to (Pri(X),+) factors through (Pri(X’),+), this morphism of monoids is denoted
Pri(f). Let Y1,Y, € Clo(X), we write Y1 C Y, if Y] is a closed subspace of Y,. We obtain a
poset (Clo(X),C). Let Y1,Ys,Ys € Clo(X), if Y1 C Yo and Y7 C Y3 then Y7 C Yo NYs. Let
Y1,Ys € Clo(X), then (Y1 NY2) C Yy and Yy C (Y1 + Y2). Finally, if Y = {Y.}ccp is a subset of
Clo(X) and ifv € N¥ | we put Y = {1.Y,. }ecr and if moreover v € Ng, we put vY = Y eck VeYe.

REMARK 3.2. Be careful that the operation + on Clo(X) is not the operation U of [StP, Tag
0C4H]. Recall that + corresponds to multiplication of ideals whereas U corresponds to intersection
of ideals.

REMARK 3.3. We proceed with the notation from Notation 3.1. In general the image of the map
Pri(f)|car(x) is not included in Car(X").

DEFINITION 3.4. Let D = {D;};cr be a subset of Clo(X).
(i) Let Spacesg'reg be the category of S-algebraic spaces f: T — X over X such that for any
1 €1, T xx D; is a Cartier divisor in 7.

(ii) If X = S is a scheme, let Sch?reg be the category of X-schemes f : T — X such that for
any i € I, T xx D; is a Cartier divisor in 7.

If 7" — T is flat and T'— X is an object in Spaces?reg or Sch?reg, so is the composition
T' — T — X by [StP, Tag 083Z] and [StP, Tag 0200]. In particular, the categories Spaces)%reg

and Schg'reg can be equipped with the fpqc/fppf/étale/Zariski Grothendieck topology so that
the notion of sheaves is well-defined.

Fact 3.5. Let D = {D;};cr be a subset of Clo(X).

(i) Let f : T — X be an object in Spacesg'reg. Then for any v € Ny, the space T x x vD is a
Cartier divisor in T, namely v(T xx D).

.. . . - > ie1 Di
ii) Assume that #I is finite, then SpacesD "¢ equals Spacesyy <’ .
X X

Proof. (i) This follows from the fact that (Clo(f),+) is a morphism of monoids and the fact
that Car(X) is a submonoid of Clo(X) (e.g. cf. the discussion in Notation 3.1).

(ii) This follows from the fact that Car(X) is a face of the monoid Pri(X) (e.g. cf. the discussion
in Notation 3.1).

O
DEFINITION 3.6. A multi-center in X is a set {[Y;, D;]}ier such that
(i) Y; and D; belong to Clo(X),

ii) there exists an affine étale covering {U, — X }~cr of X such that D;|y, is principal for all
v Y bl
i€l and v €I (in particular D; belongs to Pri(X) for all 7).

In other words a multi-center {[Y;, D;|}icr is a set of pairs of closed S-spaces such that locally
each D; is principal.

REMARK 3.7. Let {Y;, D;}ier such that Y; € Clo(X) and D; € Pri(X) for any ¢ € I. Assume
that I is finite, then {[Y;, D;]}icr is a multi-center in X, i.e. the second condition in Definition
3.6 is satisfied.
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We now fix a multi-center {[Y;, D;]}icr in X. Denote by M;, J; the quasi-coherent sheaves
of ideals in Ox so that Y; = V(M;),V(T;) = D;. We put Z; = ;N D; and L£; = M; + J; so
that Z; = V(L;) for any i € I. We put Y = {Y;}icr, D = {D;}icr and Z = {Z;}icr. We now
introduce dilatations O x-algebras by glueing (cf. [StP, Tag 04TP]).

DEFINITION AND PROPOSITION 3.8. The dilatation of Ox with multi-center {[M;, J;]}icr is the

quasi-coherent Ox-algebra Ox HA}} J obtained by glueing as follows. The quasi-coherent
i Jie

Ox-algebra Ox [{/\;1} I] is characterized by the fact that its restriction, on any étale S-
i Jie

morphism ¢ : U — X such that U is an affine scheme and each D; is principal on U and
generated by a;y, is given by

P

(oxl{F o)), =reen[ () ]

where ~  is given by [StP, Tag 0117] and [StP, Tag 03DT] (we work with small étale sites).

Proof. By Definition 3.6, the affine schemes U — X satisfying the conditions in the statement
form an étale covering of X. Now Proposition 3.8 follows from [StP, Tag 03MO0] and Corollary
2.36. O

Let Blizy,.,0x = @ueNI LY denote the multi-Rees algebra, it is a quasi-coherent Ny-graded
Ox-algebra. By localization, we get a quasi-coherent Ox-algebra (Bl{ﬁi}iezoX)[{jz’_l}iel] (lo-
cally, we invert a generator of J;, for each ¢ € I). This Ox-algebra inherits a grading giving local
generators of J; degree e;.

FAcT 3.9. We have a canonical identification of quasi-coherent O x-algebras
M.
ox[{Z} ] = [(Blizn.c, 0x) T et ,
X J]l el ( {Likier X)[{Z }ZEI] deg=(0,...,0,...)
where the right-hand side is obtained as the subsheaf of degree zero elements in

(Bl{fii}ieloX) [{‘71‘_1}@'61]' In particular Ox H A;Z }iel} =Ox [{%}zel} ’

3

Proof. This follows from Fact 2.29. 0

DEFINITION 3.10. The dilatation of X with multi-center {[Y;, D;]}icr is the X-affine algebraic
space over S

BI2X & Specy (Ox H/‘\%Z}IGJ)

REMARK 3.11. Fact 3.9 implies that BI?X = BIJ X.
FACT 3.12. Assume that X = S is a scheme. Then BIY X is a scheme.

Proof. We have an affine morphism BI¥ X — X, now the fact follows from [StP, Tag 03WG]. [

NOTATION 3.13. We will also use the notation Bl{gi}ielX and Bl}g?_ffX to denote BI2 X . If

I = {i} is a singleton we also use the notation Bl%X. If K C I, we sometimes use the notation

{Di}iex ADi}ien\x . . D1,...,Dy,
Bl{n}ien{yi}ielw X.If I ={1,...,k}, we use the notation Bly, "y " X. Etc.

DEFINITION 3.14. Let X be a scheme or an algebraic space over a scheme S. We say that a
morphism f : X’ — X is a dilatation morphism if f is equal to Bl{?f }Z X =X for some multi-
center {[Yi, D;]}ier. The terminologies affine blowups and affine modifications are also used.
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Fact 3.15. IfY; = ) is the empty closed subscheme defined by the ideal Ox for all i € I, then
we say that Bl{q])ji }Z e X — X is a localization. Moreover if #1 is finite, the dilatation morphism

Bl{éji}ielX — X is an open immersion.

Proof. This is local on X [StP, Tag 03M4] and follows from Fact 2.11. O

3.2 Exceptional divisors

We proceed with the notation from §3.1.

PROPOSITION 3.16. As closed subspaces of Bl{?X, one has, for all v € Ny,
BI?X xx vZ =BIYX xx vD,
which is an effective Cartier divisor on BIZX.

Proof. Our claim is étale local on X. We reduce to the affine case and apply 2.10 and 2.25. [

3.3 Universal property

We proceed with the notation from §3.1. As BI{?X — X defines an object in Spacesg'reg by
Proposition 3.16, the contravariant functor

Spaces)%reg — Set, (T — X) — Homx_spaces (T Bl{:/)X) (3.1)

together with idgpy determines Bl{;X — X uniquely up to unique isomorphism. The next
proposition gives the universal property of dilatations.

PROPOSITION 3.17. The dilatation Bl{? X — X represents the contravariant functor Spacesg'reg —
Set given by

{*}, if flrx D, factors through Y; C X for i € I;

3.2
a, else. (32)

(f:T—X)+— {
Proof. Note that the condition f|rx,p, factors through Y; C X is equivalent to the condition
flrx b, factors through Z; C X, because Z; = Y; N D;. Let F be the functor defined by (3.2). If
T — BIQX is a map of X-spaces, then the structure map T'— X restricted to T x x D; factors
through Z; C X by Proposition 3.16. This defines a map

Hom x_spaces (-, B X) — F (3.3)

D-

of contravariant functors Spacesy ® — Set. We want to show that (3.3) is bijective when

evaluated at an object T' — X in Spaces?reg. As (3.3) is a morphism of étale sheaves, we reduce

to the case where both X and T are affine and J; is principal for all ¢ € I. Now Proposition 2.26
finishes the proof. O

PROPOSITION 3.18. Put f : BI?X — X. Then the morphism of monoids Clo(f)|car(x) factors

through Car(BI¥X). In other words, any effective Cartier divisor C C X is defined for f, i.e.
the fiber product C x x BI2X ¢ BI2X is an effective cartier divisor (cf. [StP, Tag 01WV]).

Proof. We reduce to the case where X = Spec(A) is affine and apply Fact 3.18. O
ProprosiTION 3.19. Let J be a subset of 1. There exists a unique X-morphism
o pitPitier x _, gitPities x

{Yj}jer {Yj}ies
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Proof. This follows from Propositions 3.17 and 3.16. O
REMARK 3.20. Proposition 3.19 is the spaces version of Fact 2.18.

REMARK 3.21. Proposition 3.28 will refine Proposition 3.19 and show that ¢ is in fact a dilatation
map (cf. Definition 3.14).

PRrOPOSITION 3.22. Let K C I and assume Z; = D; is a Cartier divisor in X, for all i € K. Then

{DjYjer v _ pi{Pitjenk
Bl{Zj}jeI X = Bl{Zj}jel\K X.

Proof. Both sides belong to Spaces)%reg by Propositions 3.18 and 3.16, so it is enough to show
that they agree when evaluated at any f: T — X € Spaces?reg. We have

{Zj}jer

Bl{Dj}jEIX(T) _ {{*}, if flrx b, factors through Z; C X for i € I;
&, else.

_J{*}, if flrx D, factors through Z; C X fori e I'\ K;
B &, else.

_ piiDilienk
- Bl{Zj}jeI\K X(D).

REMARK 3.23. Proposition 3.22 is the spaces version of Proposition 2.18.
PROPOSITION 3.24. Assume D; = D; =: D for all i,j € I. Then
D
Bl{Yi}z’eIX = BlgiEI}/iX'

Proof. Both sides belong to Spaces)%reg by Proposition 3.16, so it is enough to show that they
agree when evaluated at any f: T — X € Spacesg_reg. We have

BI{Q}iGIX(T) =

{*}, if flrx D factors through Z; C X for i € I;
&, else.

_JA*} if flrxxp factors through M Z; C X 5
B o, else.

=BIR v, X(T).

REMARK 3.25. Proposition 3.24 is the spaces version of Proposition 2.24.

Fact 3.26. Let I = HjEJ I; be a partition of I. Assume that, for all j € J, Y; =Yy =:Y; and
D; = D, for all i,7" € I;. Let v be in N’ and assume that for all j € J, the number max;ey; Vi
exists. Let v € N’ defined by vj = maxey,; V. Then

viD; ViDi
By ™}, X =By g X

Proof. We have a canonical morphism Bl{;’%_Dj }jeJX — Bl{;Di }ZEIX by Proposition 3.19, now
we reduce to the affine case and apply Corollary 2.21. O
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REMARK 3.27. Proposition 3.26 is the spaces version of Corollary 2.21.
PROPOSITION 3.28. Let J be a subset of I and put K =1\ J. Then

DkxXBl{Zi} X

i D;
¥ LB i X

B X :Bl{ '
{Yi }zeI YkXXBl{)Lf?}ieJX

This in particular gives the unique X-morphism
Di Di
Bl{Yi }ZEIX — BI{Y,- }ieJX
of Proposition 3.19.
Proof. The right hand side is well-defined (e.g. cf. [StP, Tag 053P]). Using Proposition 3.16 and

Proposition 3.18, one obtains that the right hand side is in Spacesg'reg. So it is enough to see

that both sides coincide when evaluated at any f : T — X € Spaces?reg. This follows from
Proposition 3.17. O

3.4 Multi-centered dilatations and mono-centered dilatations
We proceed with the notation from § 3.1.

PRroOPOSITION 3.29. Write I = colim j-;J as a filtered colimit of sets where transition maps are
given by inclusions of subsets. We have a canonical identification

By}, X = limyer B b, X

where transition maps are described in Propositions 3.19 and 3.28. On the right-hand side the
direct limit is on the category of S-spaces over X.

Proof. By [StP, Tag 07SF] the limit exists. For each J C I, Propositions 3.19 and 3.28 give
us a X-morphism Bl{g_i}ielX — Bl{?i}ieJX, so we get an X-morphism ¢ : Bl{?i}ieIX —
lim ey Bl{?i}i c;X - To prove that ¢ is an isomorphism, we reduce to the affine case where the
result follows from Proposition 2.32. O

PROPOSITION 3.30. Assume that #I = k is finite. We fix an arbitrary bijection I = {1,...,k}.
We have a canonical isomorphism of X -spaces

Dy
{Di}iGI ~ (Bl)Xka . (Bl)XxD3 (BlYl X)XxDQ Dl
Blivyier X = Bl )y, ( Blg1)x vy (Bl(BlellX)Xsz (BLX) ) )

Proof. By induction on k using Proposition 3.28. O
PROPOSITION 3.31 (Monopoly isomorphism). Assume that #I = k is finite. We fix an arbitrary
bijection I = {1,...,k}. We have a canonical isomorphism of X -spaces
{Di}ier yv ~ p1D1+...+ Dk
Bl{Yi}iel X = Blmiej(Yi+D1+~~-+Di71+Dz‘+1+~--+Dk)X'

Proof. Since Car(X) is a face of the monoid Pri(X), the right-hand side belongs to Spaces?reg.
Let f: Blﬁj;.é_z:‘DDkl+-~~+Di—1+Di+1+m+DkX — X be the dilatation morphism. Let us prove that

f~YD;) C YY) for all i € {1,...,k}. By Proposition 3.17,

f_l(D1+-~-+Dk)Cf_l(ﬂYi+D1+---+Dif1+Di+1+-~-+Dk)
iel
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is a Cartier divisor in f~!(X). Moreover by the discussion in Notation 3.1

f_l(ﬂYi—l-D1+...+D171+Dz’+1+.-.+Dk)
iel
=YD+ D)+ 4 D) + f T (Diga) + -+ fH(Dr), and
i€l
fU D1+ ...+ D)= fHD1) + ...+ (D).
So for any i € {1,...,k}, we have

D)+ A+ D) C ) + D) + o D) + f T (Digr) + -+ fH(D).

Since f~1(Dy) is a Cartier divisor for any I € {1,...,k}, this implies f~*(D;) C f~1(¥;). So we
. . . piDit.4D {D:};

obtain an X-morphism ¢ : Blﬂ;,(Yﬂr&+..'+D¢_1+Di+1+m+Dk)X — Bl{Yi}i:zIX' To check that ¢

is an isomorphism, it is enough to prove that there is an X-morphism

. ritDitier Di+...4+Dy,
L Bl{Yi}iGI X = Blﬂiej(X/i"l‘Dl"rm‘f‘Difl+Di+1+~-~+Dk)X'

To build ¢, we consider the map f : Bl}gi}}f;{X — X and check that f~'(Dy +... + D) C

f (Mie;(Yi+ D1+ ...+ Di—1 + Dix1 + ...+ Dy)). This is easy because f'~1(D;) C f~1Y;)
for all ¢. An other method to prove Proposition 3.31 is to build ¢ or ¢ and then reduce to the
affine case an apply Proposition 2.30.

O]

3.5 Functoriality

We proceed with the notation from §3.1. Let X" and {[Y}/, D}]}ier be another datum as in §3.1.
As usual, put Z! = Y/ N D.. A morphism f : X’ — X such that, for all i € I, its restriction
to D! (resp. Z!) factors through D; (resp. Z;), and such that f~1(D;) = D}, induces a unique
morphism Bl?: X' — Bl}[/)X such that the following diagram of S-spaces

BIZ, X' —— BIPX

| |

X — X
commutes. This follows directly from Proposition 3.17.
REMARK 3.32. This is the spaces version of Fact 2.13.

3.6 Base change

We proceed with the notation from §3.1. Let X’ — X be a map of S-spaces, and denote by
Y/, Z!, D, C X' the preimage of Y;,Z;, D; C X. Then D, C X' is locally principal for any i
so that the dilatation Ble/,X " — X' is well-defined. By §3.5 there is a canonical morphism of
X'-spaces

B, X' — BIZX xx X'. (3.4)

LEMMA 3.33. If BI?X xx X’ — X' is an object of Spaces)%reg, then (3.4) is an isomorphism.

Proof. Our claim is étale local on X and X’. We reduce to the case where both X = Spec(B),
X' = Spec(B’) are affine, and J; = (b;) is principal for all i. We denote Z/ = Spec(B’/L}) and
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D! = Spec(B'/J!). Then J! = (b}) is principal as well where b/ is the image of b; under B — B’. We
need to show that the map of B’-algebras B’ ®p B [%] — B [%] is an isomorphism. However,
this map is surjective with kernel the &™7-torsion elements by Lemma 2.35. As b},..., b, ... are
non-zero-divisors in B’ ® g B [%] by assumption, the lemma follows. ]

COROLLARY 3.34. If the morphism X' — X is flat and satisfies a property P which is stable
under base change, then BIY, X’ — BIP X is flat and satisfies P.

Proof. Since flatness is stable under base change the projection p: BleX xx X' — Bl{?X is flat
and has property P. By Lemma 3.33, it is enough to check that the closed subspace Bl? X xx D;
defines an effective Cartier divisor on BIZ?X x x X’ for all 4. But this closed subscheme is the
preimage of the effective Cartier divisor Bl{:/)X X x D; under the flat map p, and hence is an
effective Cartier divisor as well by [StP, Tag 083Z]. O

3.7 Relation to multi-centered affine projecting cone

We proceed with the notation from §3.1 and assume that {D;};cr belong to Car(X). In this
case, we can also realize BleX as a closed subspace of the multi-centered affine projecting cone
associated to X, Z and D.

DEFINITION 3.35. The affine projecting cone Ox-algebra with multi-center {[Z; = V(L;), D; =
V(T }ier is
Cfox = Prros
veNy
The affine projecting cone of X with multi-center {[Z;, D;|}icr is

CPX = Spec(CLOx).

ProprosITION 3.36. The dilatation Bl?X is the closed subspace of the affine projecting cone
CEX defined by the equations {p; — 1};cr, where for all i € I, p; € Cg(’)x is the image of
1 € Ox under the map

Ox=2JeJ ' cLiwJg ' cClox.

Proof. We may work locally and the proposition follows from Proposition 2.38 and Remark
2.39. O

REMARK 3.37. Let X be a scheme and let D be a Cartier. Let Z C D be a closed subscheme of
finite type. Then the mono-centered dilatation BIZ X was already defined in [Du05, Definition
2.9] using the conic point of view.

3.8 Relation to Proj of multi-graded algebras and multi-centered blowups

We proceed with the notation from § 3.1 and assume that X = Spec(A) is an affine scheme but we
expect the content of this section can be adapted to algebraic spaces. We assume moreover that
I=1{1,...,k} is finite. We have N; = N¥. We refer to [BS07, §2] for the construction of the Proj
associated to {2-graded R-algebras where € is a finitely generated abelian group and R is a ring.
This construction should globalize to arbitrary 2-graded quasi-coherent algebras. It should also
work for algebraic spaces, e.g. cf. [StP, Tag 085P] for a hint. We plan to study this later. Recall
that Z1,..., Z; are closed subspaces of X with ideals L1,..., L. Recall that Z; C D; for all 1.
We assume that each D; is principal and given by elements a; € A. We introduce the following
definition. Recall that Bly, . 1, A is canonically NF¥-graded, and in particular Z"-graded.
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DEFINITION 3.38. The blowup of X with multi-center Z = (Zy, ..., Z;) is the scheme
BlzX = Proj(Bly, . 1, A).

PROPOSITION 3.39. The map Bly, 7 X — X is a final object of Schf(l""’zk'reg.

Proof. We adapt [GW20, Chap 13, pages 414-415]. By definition Blz X = U{frelevant} D (f)

cf. [BSO7, Def. 2.2]). We have D, (f) = SpecA[LL, ..., L1 Now 2.10, 2.25 and 2.26 finish the
+ f ji
proof. O

PROPOSITION 3.40. Let 1 < r < k and let Z{ =Blz, ...z, X xXx Z; for 1 <i < r. Then we have
a canonical isomorphism of X -schemes

Bly  zBlz. .2, X =Blz .z X

Proof. The right-hand side belongs to Sch)Z(l""’Z’“'reg. We now observe that the left-hand side

also belongs to Sch)Z(l""’Z’“'reg. Indeed, let g be the composition

Bly .zBlz. .2, X = Blz,, 72X — X

P41y 41,

Obviously g~1(Z;) is a Cartier divisor in Bl zBlz, .. zX for 1 <i < r. We claim that
g 1(Z;) is also a Cartier divisor in Blzi7,..,Z;Ber+17~-~7ZkX for r+1 < ¢ < k. To see this, we observe
that the preimage of any Cartier divisor of Blz, ., . 7 X in Blzi,..,,Z;B12T+1,...,ZkX is a Cartier
divisor, this follows from the local definition of Proj and Proposition 3.18. So both sides belong

to Sch)Z(1 """ I easy to construct an X-morphism BlZi,...,Z;BIZTH,...,Z;CX « Blz, ..z X

This shows that the left-hand side is also (cf. Proposition 3.39) a final object of Sch)Z(l""’Z’“'reg.
This finishes the proof. O

PROPOSITION 3.41. We have a canonical isomorphism of X -schemes
Blz, 4. 42, X =Blz . 7 X.
Proof. This follows from [StP, Tag 085Y]. O

Fact 3.42. The dilatation Bng is the open subscheme of the blowup BlzX defined by
Dy (ai...ag) (cf. [BSO7, page 6] for the notation Dy (—)).
Proof. The identity A[%, I (BlL,,...L, A)(ar...ar)> given by Fact 2.29, is a proof. O

) a

3.9 Dilatations of quasi-coherent Ox-modules

We proceed with the notation from §3.1. Let F be a quasi-coherent O x-module. Working locally
as in Definition 3.10 and using dilatations of modules (cf. §2.4), we obtain a canonical quasi-

coherent sheaf on BI¥ X, denoted BIYF or }'[{%} J. Note that in general BIYF 2 BI*F
i Jie

where Bl : B13D/X — X is the dilatation map. This construction enjoys the following universal
property. Let QCoh(X )?reg be the category whose objects are morphisms of quasi-coherent O x-
modules F' : F — F’ with source F such that, locally, each J; is defined by a non-zero-divisor
of the module F’, then

Mz} }7]__,) _ {«}, if LiF = JiF forieI;
il

Hom ) pores (F [{7 @, else.
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4. Tterated multi-centered dilatations

We proceed with the notation from § 3.1. Let v, € N’ such that § < v, i.e. §; < v; for all i € 1.
PROPOSITION 4.1. There is a unique X-morphism

ovo: BIZ'X - BI2'X.
Proof. Let ¢, : BI2"X — X, ¢p : BI2’X — X be the dilatation maps. Let i € I, if 6; = 0,
then 0;D; = X and so gp;l(QiDi) = BISI/)VX is a Cartier divisor in Bl{:/)VX. If 6, > 0, then v; >0
and ¢, Y (v;D;) = vip;, Y (D;) is Cartier and so ¢, '(D;) is Cartier because Car(BI2” X) is a face
of Pri(BI2"X) (cf. the discussion in Notation 3.1). Consequently ¢, 1(6;D;) = 0;0, (D;) is a

Cartier divisor. So we proved that BIZ” X belongs to Spacesgg'reg We now use Proposition 3.17.
Let i € I, we have 6;D; C v;D;. So we have ¢, 1(0;D; ) C o, YD) C o, 1 (Y Ny D). so

Now we apply Proposition 3.17 and finish the proof. ]

Assume now moreover that v, € N; € N/, We will prove that, under some assumptions, Pu0
is a dilatation morphism with explicit descriptions. We need the following observation.

PROPOSITION 4.2. Assume that we have a commutative diagram of S-spaces

B— I ¢

N

Assume that F is affine and f is a closed immersion. Then f’ is a closed immersion.

Proof. A closed immersion is affine, so by [StP, Tag 08GB], f’ is affine. Using [StP, Tag 03M4],
we reduce to the case where B,C and X are affine (taking an étale covering of X by affine
schemes). Now the assertion is clear because closed immersions of affine schemes correspond to
surjective morphisms at the level of rings. O

COROLLARY 4.3. Assume that we have a commutative diagram of S-spaces

p— 1~ BI2 X

where the right-hand side morphism is the dilatation map. Assume that f is a closed immersion.
Then f’ is a closed immersion.

Proof. Clear by Proposition 4.2. O

We now assume that Z; C Y; is a Cartier divisor inclusion for all ¢ € I. Let D; be the canonical
diagram of closed immersions

Y, — Bl;iDiX

[ o1
Z; ——— D;
obtained by Propositions 3.17 and 4.3.
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LeEMMA 4.4. Assume I = {i} and let n; € N. We have an identification
(vitni)Di 5 _ iDipwiDi
Bly. X = Bl%_ Bl;i X.
Proof. Using Propositions 3.17 and 4.1 and the discussion in Notation 3.1, it is easy to prove

that there is a unique Blgj}'iDiX—morphism Bl%ﬁm)DiX — BIT}L/:DiBl;iD"X. To prove that it is an
isomorphism, we reduce to the affine case and apply Corollary 2.34 0
Let f; be the canonical morphism (e.g. cf. 3.19, 3.28 or 4.1)
BIP"X — BIji"iX.
We denote by Y; x BleuX the fiber product obtained via the arrows given by f; and D;.

Bl X.

Bl;iDiX
We use similarly the notation D; X gp¥iDi x
Y;
LEMMA 4.5. Let i € I and let n; € N. Let ; € Ny be (0,...,0,n;,0,...) where n; is in place i.
We have an identification
niDix_,.p. BIR'X
DY+ o Blyll. X DV
Bly X —BlYiX Vb BIDYX Bly X.
BIYZZ- v X
In particular we have a canonical dilatation morphism
Guivw B2 X o B X,

Proof. We have

BIgf i X v
BIYX BIDY X Bly X
BlYiPix Y
Y;
niDix_,.p. BIR'X VD,
o BI Vi x {viDjxxBI " X}ien s D
by Proposition 3.28 = Bl "B x T UiDY; TEnt }Bll{}iDlX
BlVyz‘_DiX Y {YjXXBlyi X}jen(y
1
v;D.
o niD; {v;DixxBl *X}icn g D,
by Proposition 3.28 = Bl ~ 'Y I }BI?DZX
YidYixxBly ™" X}en iy ¢
(v;+n;)D;
. {v;D;xxBLitm i Pixy. oo A Ds
by Proposition 3.28 and Lemma 4.4 = Bl = 7"~ Vi TNt gl D
Y Bl(VﬂL”z)DzX . . Y;
{YjxxBly, Yientiy
. vt
by Proposition 3.28 = BIZ"" X.
O

PROPOSITION 4.6. Recall that 0 < v. Put v = v — 0. Put K = {i € I|y; > 0}. We have an
identification
{’yiDiXBlf}.iDiXBleeX}ieK

BI2“X = Bl B2 X.

Y"XBI&DZ'XBI?/BX}MK
In particular the unique X-morphism
ovo: BIZ'X - B2’ X

of Proposition 4.1 is a dilatation map.

27



Proof. We prove the first assertion by induction on #{i € I|ly; > 0}. If £ = 1 the assertion
follows from Lemma 4.4. The passage from k — 1 to k follows from Lemma 4.5 and Proposition
3.28. 0

It is now natural to introduce the following terminology.

DEFINITION 4.7. For any v € Ny, let us consider
BIZ'X =By X

and call it the v-th iterated dilatation of X with multi-center {[Y;, D;]}icr.

5. Multi-centered dilatations along multiples of a single divisor

Let X be an S-space. We fix a locally principal closed subscheme D C X. Let Yy, Y7,...,Y,, ..., Y,
be closed S-subspaces of X such that D NY; C Y; is a Cartier divisor for all 7. We assume
moreover that Yo C Y; for i € {1,...,k}. Let sg,s1,...,5r € N be integers. We claim that we
have a canonical closed immersion Yb — BISOD’ ’SkDX ThlS follows from Propositions 3.17 and
4.3 observing that the map Yy — X restrlcted to sZD factors through Y; Ns; D for any i. We now
use the notation Bly?"{* X to denote BISOD’ ’S’“DX The following fact is a direct generalization
of the first assertlon of Corollary 2.34 to the present situation.

FacT 5.1. Assume that X = Spec(A) is affine. Assume that D = Spec(A/(a)) and Y; =
Spec(A/M;) for i € 1. Then the ideal Q of A" := A[MO M ... 2/51’,;] corresponding to the canon-

S0 asl
ical closed immersion Yy — Bl;%"‘;}’ %k - X is the ideal (Mo e 2{}, ,i‘f,’j) of A’ generated by
My M,y M,
Ly usry e sy PEs

Proof. There is no difficulty to adapt the proof of 2.34. We provide details for the convenience of

the reader. Using 2.33, it is clear that <J\fg, i\f} e ask> C Q, so it is enough to prove that QQ C
<£§[8, é\f},...,ask> So let v € N¥, we have to prove that & @ ﬁ\f" is included in ((]I\fg, i\f} e %’;)
An element z € L” can be written as a sum x = 5 mg(a”)® with mg € MPB (note

that, if x belongs to L N Mo, then m . g)(a®)” also belongs to Mp). Now we assume that x

belongs to LY N My, it is clear that for S # (0,...,0) the element (a(f;y)a = (;2’)3@ belongs to

(Mo My, a5k> Now for 5 = (0,...,0), using that a; is a non-zero-divisor in A/M; for all i
and that m(_ . o)(a®)” belongs to Moy, we get that m g o) belongs to My and it is now clear that
mo,...,0)(a®)” My M M, My M M,

( (QS;V belongs to <a58, S as’,j}. So x belongs to <a58, IR as’g}. O

PROPOSITION 5.2. Let 0 < t < sg be an integer. We have a canonical identification
t 80,51 ,-++,S _ so+t,s1+t,...,5+t
B1Y0B13%,1/1'1,...,{/€'kX - BIY%, Yi, VN )};k X.
Proof. Using Propositions 3.17 and 4.1 and the discussion in Notation 3.1, we get a morphism
from left to right. We then reduce to the case where X = Spec(A) is affine and use the notation
of Fact 5.1. It is enough to show that we have a canonical identification of rings

Mo M M, M, M M,
(A[a587 asi e agllz})[%] = [a503t7 asl‘li't o askﬁ't]‘

For this, there is no difficulty to adapt the proof of the second assertion of Corollary 2.34. Indeed,
it is enough to apply Proposition 2.22 and Corollary 2.21. ]
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Fact 5.3. Let A be aring. Let P = A[T, X1, ..., X,] be the polynomial algebra in n+1 variables.
Let dy,...,d, € N. Then there is a canonical identification of A-algebras

Plr1,... @0l /(X1 — THay,. .., Xp — Tina,) = PISE, .. B)]

Proof. The map given by x; — ;f;b_ is well-defined and surjective. The source and target of our

map are T-torsion free and the map is an isomorphism after inverting 7" by Corollary 2.23. O

PROPOSITION 5.4. Let A be aring. Let a € A. Let ¢1,..., g, be elements in A wheren € N. Let
di,...,d, € N. There is a surjection

Alzy, ..., x0)/(g1 — aPxy,. .., gn — a%rxy) — A[%,... @]

a

whose kernel is the a-power torsion in the source.

Proof. Consider the map P = A[T, X1,...,X,] — A sending T to a and X; to g; for 1 <1i < n.
By Fact 5.3, we have Plxy,...,2,]/(X1 — T%zy,..., X, — T%x,) = P[(;(—dll), e (;{T"n)] Now we
use Proposition 2.35 to finish the proof. O
PROPOSITION 5.5. Let A be a ring. Let a,g1,...,g, be a Hi-regular sequence in A (cf. [StP,
Tag 062E] for Hi-regularity). Let dy,...,d, be positive integers. Then the surjection of Propo-
sition 5.4 is an isomorphism. In particular, the dilatation algebra identifies with a quotient of a
polynomial algebra as follows

Al ) = Al 2] (1 i, g — atray,).

Proof. We can assume that d; > 0 for all ¢ by Corollary 2.19. By Proposition 5.4, it is enough
to show that the right-hand side is a-torsion free. We adapt the proof of [StP, Tag 0BIQ]. We
claim that the sequence (a,g; — a®x1,..., g, — a®x,) is Hy-regular in Afxy,...,x,]. Namely,
the map

(a,g1 —aBx1,. .. gn —a®™xy) : Alxy, ..., 2n)P0F = A2, .. 2y
used to define the Koszul complex on a, g1 — a®z1,. .., g, — a®™z,, is isomorphic to the map
(a1, gn) : Alxr, 20T o Al 2]
used to define the Koszul complex on a, g1, ..., g, via the isomorphism ©
Alzy, ..., 2,204 o Ay, 2, 20F)

sending (P, Py, ..., P,) to

n

(Po—= a4 ta;P P, Ps,...,P,);
i=1

this follows from the identity

n n n

aPo+ ) (gi—a%z)Py=a(Py— ) a"'wP) + ) giPi.

i=1 i=1 i=1
By [StP, Tag 0624] these Koszul complexes are isomorphic. By [StP, Tag 0629] the Koszul
complex K on (a,g — a®xy,...,g9, —a%x,) is the cone on a : L — L where L is the Koszul
complex on (g1 —a®ay, ..., g, —a®™x,), since Hi(K) = 0, we conclude that a : Ho(L) — Ho(L)
is injective, so the right-hand side is a-torsion free. O
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6. Some flatness and smoothness results

Let S be a scheme and let C' C S be a Cartier divisor in S. Let X be a scheme over S. Let D be
the closed subscheme of X given by X xg C. Let X; C D be closed subchemes for 1 < j < d.
We are now making the following assumption. We assume that locally over S, X the following
conditions are satisfied

(i) S = Spec(R), C' = Spec(R/a) and X = Spec(A),
(ii) there exists a sequence g1, ..., gy, € A such that a, g1, ..., g, is a Hi-regular sequence in A,
(ili) there exists a sequence 1 < iy <ip < ... <1i; <...<ig=n such that

Xl = SpeC(A/(gl7 s )gil))
+ +
Xy = SpeC(A/(gh <o iy Gig+1s - - 7gi2))

+ +
XJ = SpeC(A/(gl) o )gij,17gij71+17 L 7gij)>

+ +
Xd = SpeC(A/(gh s Gig 15 Gig_ 15 - - - agn))
where £ over a symbol means that this symbol possibly appears but not necessarily. We
put Uj = Spec(A/(g1,...,9:;)) for 1 <i < j.

Let mi >...2mj; > ... > mgq >0 € N be integers.

PRrROPOSITION 6.1. (i) If X/S is flat and if moreover one of the following holds:

(a) X; — S is flat and S, X are locally noetherian for 1 < j < d,
(b) X; — S is flat and X; — S is locally of finite presentation,
(c) the local rings of S are valuation rings,
then Bl?i:::_‘:;?;X — S is flat.
(ii) If X — S is smooth and (with the local notation of the assumption) U; x gSpec(R/(a™7)) —
Spec(R/(a™)) is smooth for all 1 < j < d, then Bl "¢*X — S is smooth.

Proof. This is local on S, X. We use notations used to state the assumption before the statement.
Corollary 2.21 implies that we can and do assume that X; = U; for all 1 < j <d.

(i) We prove the assertions by induction on d. If d = 1 this follows from [MRR20, Propo-
sition 2.16]. By Proposition 3.28 we have Bl;ll::;sX = Bl;gBl;;”ggjﬁX where X/, =

Bl;i’:_";;_‘llX x x Xg. Proposition 5.5 implies that Bl?i’:::’;j__ll)( identifies with the spec-

trum of P/J where P = Alxy,...,x;, ,] and

J=(g1—a™x1,...,0i; —a"™Ti, Giy 41— "™ Ti 41, - oo Gis — Q2 Tig, .., Giy_, — AT, ).
We claim that the sequence given by gi, ,+1,-..,0i, is Hi-regular in P/(J+ (a™)). Let us
prove the claim. Since mq < mj for all 1 < j < d — 1, the ideal J + (a™4) of A is equal to
(@™, g1,...,9i, ,)- So P/(J+ (a™4)) identifies with (A/(a™, g1,..., iy 1)) @1, -, Tiy_,].
Now since (a, g1, ..., gn) is Hi-regular in A, we know that (a4, g1, ..., gn) is Hi-regular in
A by [StP, Tag 062G]. So ¢i, ,+1,---,9i, is a Hi-regular sequence in A/(a™, g1,...,9i, ,)
by [StP, Tag 068L]. This implies that gi, ,41,...,9i, is a Hj-regular sequence in
(A/(amd,gl7 ... ,gid_l)) [1,...,2;, ,]. This finishes to prove our claim. We now apply
[MRR20, Proposition 2.16] to deduce the assertions for d.
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(ii) We prove the assertion by induction on d. If d = 1, this is [MRR20, Proposition 2.16].
We now assume that the assertion is true for d — 1. Using [MRR20, Proposition 2.16] and
Proposition 3.28, it is enough to show that Z/, := (Xy x x Bl?;’_’:_’:?gj){) X s (Spec(R/(a™))
is smooth over Spec(R/(a™4). We have

Zl = Xgq x5 Spec(R/(a™)) X Spec(R/(a™d)) Bl%i’_"’::?g;X X g Spec(R/(a™?).

We computed Bl?ll::::’;an X g Spec(R/(a™) in (i) and proved that it is the spectrum
of A/(a™, g1,...,6i, )z1,...,%i, ,]. Now X; xg Spec(R/(a™4)) is the spectrum of
A/(a%  gy,...,gn). Consequently Z!, is the spectrum of (A/(a% g1, ., gu))]T1,- - Ty, ]-

So by assumption A/(a®, g1,...,gn) is smooth over R/(a%"). Moreover any polynomial
algebra is smooth over its base ring. A composition of smooth morphisms is smooth. So the
composition

R/(adm) — A/(adm’gla cee ugn) - (A/(adm’glv s 7971))['1"17 s 7$id—1}

is smooth. This finishes the proof.

7. Dilatations of monoid, group and Lie algebra schemes

We study dilatations of schemes endowed with a structure (cf. [SGA3, Exp. I §2.2]) in this section.
We focus on monoid, group and Lie algebra structures. Let .S be a scheme, and let G — S be a
monoid (resp. group, resp. Lie algebra) scheme. Let C' = {C;}icr C S be locally principal closed
subschemes. Put D; = G|, = G x5 C; and D = {D;}ier. Let H; C D; be a closed submonoid
(resp. subgroup, resp. Lie subalgebra) scheme over C; for all i € I and let H = {H;};er. Let
g .= BIQG — @ be the associated dilatation. By Lemma 3.16 the structure morphism G — S

defines an object in Schg'reg.

Fact 7.1. Let G — S be the above dilatations.

(1) The scheme G — S represents the contravariant functor Schg_reg — Set given for T — S
by the set of all S-morphisms T'— G such that the induced morphism T'|c, — G|¢, factors
through H; C G|, for alli € {1,...,k}.

2) Let T — S be an object in SchS ™8, then as subsets of G(T
( J S
G(T) = () (BIE,G)(D)-
el
(3) The map G — G is affine. Its restriction over S; factors as G; — H; C D; for all i € I.

Proof. Part (1) is a reformulation of Proposition 3.17. Assertion (2) is immediate using (1).
Finally (3) is immediate from Proposition 3.16. O

PRrROPOSITION 7.2. If the dilatation G — S is flat, then it is equipped with the structure of
a monoid (resp. group, resp. Lie algebra) scheme over S such that G — G is a morphism of
S-monoid (resp. S-group, resp. S-Lie algebra) schemes.

Proof. By virtue of Fact 7.1 the (forgetful) map G — G defines a submonoid (resp. subgroup,
resp. Lie subalgebra) functor when restricted to the category Schg'reg . As G — S is an object in

Schg'reg, it is a monoid (resp. group, resp. Lie algebra) object in this category. Now if X — S
and Y — S are two flat morphisms in Schg'reg, then the product of X and Y in the category
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Schg'reg exists and is equal to the product of X and Y in the full category of S-schemes. So
G — S is a monoid (resp. group, resp. Lie algebra) object in the full category of S-schemes. [J

Dilatations of group schemes are often called Néron blowups. We note that dilatations preserve
similarly structures defined using products and commutative diagrams (cf. [SGA3, Exp. I §2.2]).

REMARK 7.3. In general the product of two objects in Sch € is not equal to the product of the
same objects seen in the full category of S-schemes (in fact the product of these objects in the
full category of S-schemes need not be in S chg'reg). Proposition 3.39 allows to compute products
in Sch$ ™.

PROPOSITION 7.4. Assume that C; C S is a cartier divisor for all i. Assume that G — S and H; —
C; are flat group schemes. Assume that BlgG — S is flat (and so a group scheme by 7.2). Let
Lie(G)/S (resp. Lie(H;)/C;, resp. Lie(BI2G)/S) be the Lie algebra scheme of G/S (resp. H;/C;,
resp. BIDG/S) (cf. [SGA3, Exp. II Scholie 4.11.3]). Assume that BI{HM )xsCi efie(G) = S

is flat (and so a Lie algebra scheme by 7.2). Then we have a canomcal 1somorph1'sm of S-Lie
algebra schemes:

Lie(BIG) = BI{ ey 5} Lie(G).
Proof. We have a morphism of S-group schemes BlgG — @G, it induces a morphism of S-Lie alge-
bra schemes Lie(B12G) — Lie(G). Using the universal property of dilatations of Lie algebras, we
obtain a canonical morphism of S-Lie algebra schemes Lie(BIRG) — Bl{izi P )X s Ci}i < Lie(G).
We now show that it is an isomorphism. Using flatness and the assumptlons on divisors C;, we
see that both sides belongs to Schg'reg. It is enough (to finish the proof) to evaluate both sides
on a test scheme T — S in Schg'mg and obtain an identification of sets. Recall that for any

scheme U, Iy = Spec(Z[X]/(X?)) Xspec(z) U denotes the scheme of dual numbers over U. The

scheme [; is obviously flat over U. In particular I — S belongs to Schg'reg. We have a canonical
morphism 7' — I7 induced by Z[X]/X? — Z, X ~ 0. Using [SGA3, Exp. II Sch. 4.11.3, Cor.
3.9.0.2.] we get

(Lie(BIgG))(T) = ker ((BlgG)(Ir) — (BIgG)(T))
= {Ir — BIG € Homg (I, BIfG)| T — Iy — BIfG is the unit }

_ T—Ir—G is the unit
- {IT —Ge HomS(IT’ G)‘ It|c,—Glc, factors through H; for all z}

- {T - LZG(G) € Homg (Ta Lze(G))’ T|c; —Lie(G)|c, factors through Lie(H;) for all z}
Lie(G
(BI{JLZ@(H zEIL G(G)) (T)

This finishes the proof. O

The following result generalizes the fact that congruence groups are normal subgroups, it is
related to Example 1.6 (note that the proof of [Yu0l, Lemma 1.4] is not correct).

PROPOSITION 7.5. Assume that [ = {1}, C = C is a Cartier divisor in S and G — S is a
flat group scheme. Let np : K — G be a morphism of group schemes over S such that K — S
is flat. Assume that H C G is a closed subgroup scheme over S such that H — S is flat and
BI$G — S is flat (and in particular a group scheme). Assume that Ko commutes with He in
the sense that the morphism Ko x¢ Ho — Ge, (k,h) — n(k)hn(k)~! equals the composition
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morphism K¢ x¢ Ho — He € G, (k,h) — h. Then K normalizes BI$,G, more precisely the
solid composition map

IdxBl k.g—n(k)gn(k)~!

> G

K x5 BI$G K xsG

factors uniquely through BI%G .

Proof. Let ¢ be the solid composition map, we claim that it belongs to Schgc'reg. Let us prove

-1
this claim. The map 6 : K xg G kgn(B)gnk) ",

(k,g)—(kn(k)gn(k)~")

G is flat. Indeed it is the composition of an

isomorphism, namely K xg G K xg¢ G, with a flat morphism, namely the
projection on the second factor K xg G — G. So 0~}(G¢) is a Cartier divisor in K xg G (note
that G¢ is a Cartier divisor in G because G — S is flat). Now Lemma 3.33 and 3.18 shows that
(Id x Bl)71(071(G()) is a Cartier divisor. This finishes to prove the claim. Now by Proposition
3.17, ¢ factors uniquely through BI%G if and only if ¢|g. factors through Hc. The following
diagram, obtained using Proposition 3.16, finishes the proof

(K XSBI%G) XgGC (K XSG) XaG GC > GC
Ko xo (BI%G xa Ge) y Ko xo Go >y Go
KC X HC ffffffffffffffffffffffffffffff > HC

8. Congruent isomorphisms

Let (O, 7) be an henselian pair where 7 C O is an invertible ideal. Let S = Spec(O) and let
C = Spec(O/m). If G — S is a group scheme Lie(G) — S denote the underlying group schemes
of Lie(G) — S (cf. §7).

THEOREM 8.1. Let G be a separated and smooth goup scheme over S. Let Hy, H1,..., H} be

closed subgroup schemes of GG such that Hy = eq is the trivial subgroup. Let sg, s1,..., S, and
ro,T1,...,Tr be in N such that

(i) s; = sp and r; > ro for alli € {0,...,k}

(ii) r; > s; and r; — s; < sp for alli € {0,...,k}.

Assume that G is affine or O is local. Assume that the regularity condition (RC) introduced
below is satisfied (cf. Definition 8.2). Then we have a canonical isomorphism of groups

Bligo b1, G /Bl 1, i, G = Lie(Blyy g, 7y, G) [Lie(Blyg bi) ", G)-
Proof. Fori € {0,...,k}, put t; = r;—s;. As a first step in our proof, we assume that t; =t; =: ¢
for all 4,j € {0,...,k}. Proposition 5.2 shows that
TOy T1y --eyT o 2t so—t,...,s—1 80, S1, --+yS - t so—t,...,s—1
BIHOO’}}LMJka = BIHOBIHOmHh_._’ijG and Blé}O,I{ll Ika = BlHoBlf?o,Hl,...lfHkG'

-----
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Put G' = BIZO_Z‘“’S’“}?G. The scheme G’ is smooth over S by (RC). By [MRR20, Theorem 4.3],
0,421,541k
we have a canonical isomorphism

Bl G'/Bl3j G’ = Lie(Bl};, G') /Lie(Bl%, G).
This finishes the proof of the case where ¢; = t; for all i,j € {1,...,k}. Now we prove the
general case. Put ¢, = max;c(o,. k) t;- The isomorphism [MRR20, Theorem 4.3] is functorial in

G. Applying this functoriality to the morphism BI?Z }2’:}:’<kG Blgﬁ} }iimijkG and with the
2tm

integers given by the inequality 0 < <ty < 2t,, we get a canonical commutative diagram

{sito<i<k {T1}0<z<k
Bl 0eia OBl G

/\

{si}o<i<k {sit+tmYogi<k {ri—tm}o<i<k {ri}o<igk
I{H }0<1<kG( )/BI{H Yogi<k G BI{H Yo<i<k G( )/BI{H }0<z<kG(O)

. si Yo<i< . Si+tm}o<i< ri—tm fo<i< . Ti50<i<
Lie(BI{; 1<% G)(0)/Lie(BI {554 G)(0) » Lie(BI[ "< G)(0) /Lie(BI[ =< G)(0)

\ /

{siJocic iridosss
Lie(BL 1< G)(0)/Lie(Bly; 1" @)

The injectivity of the two hookarrows follows from Remark 1.4. This identifies

Bl{s }0<z<k G( )/Bl{ri}Oéiék G(O)

{Hi}o<isk {Hi}o<i<k
and
3 {S } A . {Tz} 1<
Lie(Blg o2, G (O) [Lie(Blyp 3 2, G)(O)
inside the right part of the diagram. O

DEFINITION 8.2. Let G, {H;, si,i}o<i<k be as in Theorem 8.1. Put t,,, = max;eo,. 1y} (ri — 5i)-
We introduce the following regularity condition

(RC) BIEZEZTZ}OQQG and Blg} }iim<}2<’<kG are smooth over S.

We recall that Proposition 6.1 offers a way to check (RC) in many cases. We finish with the
following result.

COROLLARY 8.3. Let GG be a separated and smooth goup scheme over S. Let Hy C Hy C ... C Hy
be closed subgroup schemes of G such that H; is smooth over S for 0 < i < d and Hy = eqg. Let

$0,81,--.,S8; and rg,71,...,7, be in N such that
(i) s; = so and r; > rg for all i € {0,...,k}
(ii) r; > s; and r; — s; < s for all i € {0,...,k}.

Assume that G is affine or O is local. Then we have a canonical isomorphism of groups

Blzo(; j;l" kkG/Bl’I'g(; 2}1" TkG Lle(Blig(; f;}l" ika)/Lw( 1’,3’ }"}1" }}kG).

34



Proof. By Theorem 8.1, it is enough to check the condition (RC), it follows from [SGA3, Exp.
ITI, Proposition 4.15] and Proposition 6.1. ]

REMARK 8.4. Note that the result of the proof of [SGA3, Exp. III, Proposition 4.15] is stronger
than its statement. Indeed the statement uses Koszul-regularity and the proof shows regularity
(in the terminology of [StP, Tag 063J]).

9. Interpretation of Rost double deformation space as dilatations

We interpret Rost double deformation space [Ro96] in the language of dilatations. This section
emerged after a question of A. Dubouloz. Let Z — Y — X be closed immersions (in [Ro96], all
schemes are assumed to be defined over fields but we work with arbitrary schemes here). Let
D(X,Y,Z) be the double deformation space as defined in [Ro96, §10]. Let A2 be Spec(Z[s,t]).
Let D, Dy and Dg; be the locally principal closed subschemes of A? defined by the ideals
(s), (st) and (s*t). We now omit the subscript speq(z) in fiber products.

PROPOSITION 9.1. We have a canonical identification

a1 ~ (X xDst), (XXDs) 2
D(X,Y, 2) =Bl G20 (X x A2).

In other words, Rost double deformation space is canonically interpreted as a ”double-centered”
dilatation.

Proof. The definition of D(X,Y,Z) is given in [R096, 10.5] locally for affine schemes. So we
reduce to the case where X = Spec(A), Y = Spec(A/I), Z = Spec(A/J) are affine. Then
D(X,Y, Z) is defined as the spectrum of the ring O = me mjm—ng=ns—m c Alt, s, t71, s =
A®z Z[t,s,t71,s71] where I* = J¥ = A for k < 0 as in [R096, §10.2].

We claim that O is equal to the sub-A[t, s]-algebra of A[t,s,t™!, s™1] generated by I(ts)™!
and Js~!. Indeed, let a,b € N and put m = a + b and n = a. Then (I(ts)™1)%(Js™ )b =
[ gm=ng=ngTm So (Alt, s])[I(ts)!, Js~!] is included in O. Reciprocally, let n,m € Z. Assume
firstly that n < 0 and put { = —n > 0, then

mgmengTngTm = gmtllgmm o gmgmmil < Alt, s][JsTY € Alt, s [I(ts) 7, Js 7.
Assume secondly that n > 0 and m > n and put a =n and b =m —n > 0, then
Mg s = (I(ts) )% (Js™ )0 € Alt, s][I(ts)~1, Js™ 1.
Assume thirdly that n > 0 and m —n < 0 and put ¢ =n —m > 0, then
I sT ™ = (I(ts) s € Alt, s][I(ts) Y] € Alt, s][I(ts)™t, Js7 1.
So in all cases, I"J™ "t~ "s~™ C Alt,s|[I(ts)~', Js~'. This finishes to prove our claim. Now
Fact 2.40 finishes the proof of Proposition 9.1. O
COROLLARY 9.2. Rost double deformation space is canonically isomorphic to a mono-centered
dilatation as follows:
- XXD,Q 2
D(X,Y,Z) = Bl P (X x A2),
(v xA2)+(XxDy)) N ((ZxA2)+(Xx Dar))

Proof. This follows from Proposition 9.1, the monopoly isomorphism 3.31 and the identity
(X X Dg) + (X x Dg) = X X (Dgt + Ds) = X X Dgay.
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