CNN demosaicking
generalizes for any CFA
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Context - Demosaicking

Acquiring image: single sensor imaging (mimetic with human vision)
RAW image

Original image




Context - Al

* Inverse system: finding the color image that the camera projects onto
the mosaic image. RAW image

Original image

y’

Reverse




Solution 1: Linear demosaicking
* Why linear ?
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x=My

If the operator is linear and the estimator is the mean square error, then LMMSE
(Linear Minimum Mean Square Error) estimation is a direct solution.



Solution 1: Linear demosaicking

* From a cloud of color images

Database * One solution for a given database
X=|V|y * Few images to learn
* Low cost solution (to learn and test)
Y H oxox3 * Scalable solution nh * nw x hwp
X H X ] 16x16
- B
Works well for Hyperspectral imaging
min ” Dx - y ”2 e Can handle random mosaic by local processing
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for 4x4 #2 on Kodak
Using neighborhood in RAW image for regularization Amba & al., CIC 2016



Other solutions: Non-linear operators

 Many of them: ANN (Artificial NN), CNN (Convolutional NN) with MSE
(Minimum Square Error). Amba et al. CIC 2018
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Bilinear Interpolation

PSNR =43 dB




What we did

A CNN with bottleneck y=2x2x3

y=2x2x3
x=16x 16

g(x)

Mosaiced full imags
2 decorvolution layers for Reconstructed
dimensionnality reduction image
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Full image sampled image patch & convolution layers Flatten / Bottleneck
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Experiment 1
Periodic CFA Random CFA
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Test

PSNR =39 dB PSNR =37 dB



s it working?

* Image degradation

Red off Green off
5% 20% 50% 5% 20% 50%
Random
Learning
Periodic

Learning




Experiment 2

* Cross testing CFA arrangement

Learnt periodic 4x4 #2 &
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Why it works ?

* Network found local trajectories

é.

Random
Learning

Periodic
Learning

Filters of the first convolutional layer



Universality ?

* For a given problem (a particular CFA) optimal solution is found

empirically (e.g. Bayer), from adequate processing (i.e. universal

demosaicking) and universal processing (a single process for all
problems).

LMMSE Our CNN | Our CNN
Periodic | Random

Same code with different CFA
Different code with different CFA X X X
Deterministic solution X X

Learning capability X X X



What does that mean?

* There probably exists a universal processing for demosaicking. That
produces the desire image. A potential candidate for retinal
demosaicking. But at the speed of biological process, not CNN.

* A local solution can be efficient solution.
e Relaxing constraints in CFA fabrication.
* Perspective: confirming robustness property against illumination



