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Abstract 
A convolutional neural network is trained in auto/hetero-

associative mode for reconstructing RGB components from a 

randomly mosaicked color image. The trained network was shown 

to perform equally well when images are sampled periodically or 

with a different random mosaic. Therefore, this model is able to 

generalize on every type of color filter array. We attribute this 

property of universal demosaicking to the network learning the 

statistical structure of color images independently of the mosaic 

pattern arrangement. 

Introduction 
For reducing cost and cumbersomeness, most digital cameras 

use a sensor covered by a Color Filter Array (CFA). Sensors 

capture only one out of the three RGB color components per pixel, 

and complete images with three colors per pixels are reconstructed 

numerically by a process called demosaicking. The color 

associated with captured pixel at a given location is determined by 

the arrangement of color filters in the CFA. 

Most of these CFAs are periodical patterns of small periodic 

size, repeated through the entirety of the sensor area. The most 

common one being the Bayer CFA [1], which consists of a 2x2 

array having twice the number of green, than red and blue pixels. 

Random CFAs, i.e., arrays where the color filter at any location of 

the captured image is chosen randomly, are less explored. Yet they 

could theoretically trigger less reconstruction artifacts because 

reconstruction errors are non-periodic [2, 3]. But this imposes 

associated demosaicking algorithm that can bypass the higher 

complexity of dealing with several different neighbourhoods (in 

terms of pixel configuration). Indeed, one issue is that random 

CFAs lack the statistical regularities exploited by the 

reconstruction algorithms for periodical patterns.  

The goal of our work is to use the generalization capabilities 

of convolutional neural networks (CNN) to demosaic images 

filtered with several random CFAs. Our hypothesis is that a CNN 

trained on a random CFA, lacking the regularities in the pattern, 

should instead focus on natural image statistics to reconstruct the 

output of different random CFA. We expect this training to have 

interesting generalization capabilities, i.e., a CNN trained as such 

should be able to demosaic any kind of CFA pattern, periodical or 

not. 

Material and method 
The architecture of our network called RandColDem was built 

specifically to address the inverse problem of demosaicing a 

completely random CFA pattern. Fig 1. gives a view of the 

architecture of the network. It can be seen as a hetero-encoder, 

meaning that its main goal is to reconstruct a small portion of a 

picture from its mosaiced counterpart and an empirically chosen 

neighborhood size in order to compensate for the large amount of 

missing information (i.e. as with other demosaicing problems, two-

thirds of the information are missing). 

We used 16x16x3 image patches as input (image pixels are 

taken as they are without any linearization), and 2x2x3 output 

window. The model received patches of mosaicked images and 

reconstructed tiny super pixels (2x2x3) with the ground truth being 

patches of the RGB images. Images were completely reconstructed 

post-CNN, by replacing the different 2x2 output values of the 

network to their original place in the picture. 

For the input, as two-thirds of the information is missing, two 

of the three pixel values are set at 0. We used a three-dimensional 

tensor as input, as was done in similar simulations [4]. This allows 

us to fully reconstruct an image within a single network. Another 

way to do so could have been to first separately reconstruct the 

image for each color channel then merge the results similarly to [5] 

which might have been of help to improve the network overall 

performance. Our goal was simply to study the pros and cons of 

random CFA vs periodical ones, so the simpler method was 

preferred. 

Two hetero encoders, both with the exact same structures, 

were tested. One is built to reconstruct images mosaicked through 

fully random CFAs. The other reconstructs images which were 

mosaicked using a periodical CFA pattern, to provide a basis for 

comparison and analysis of RandColDems’ inner reconstructing 

patterns. Overall, both networks are designed with an encoder part, 

a bottleneck part, and a decoder part. The three parts are built as 

follows:  

- The encoder part consists of six stacks of convolution 

layers using ReLU (Rectified Linear units) activation functions and 

batch normalization layers. The first layer consists of 9x9x32 

kernels. The following five layers are all 3x3 kernels with a 

progressively growing number of filters (32 – 64 – 64 – 128 – 128) 

and a stride of one or two to progressively reduce the reconstructed 

patches’ size from 16x16 to 2x2.  

- The bottleneck part takes as input the flattened 512 unit 

vectors of the last encoder convolutional layer. The bottleneck 

squeezes these vectors to 210 values before raising its size again to 

512 units. The value 210 was chosen empirically. 

- The decoder part reconstructs super-pixels from the 

output of the bottleneck part. It is constituted of 2 deconvolution 

layers with ReLU / batch normalization layers, which 

progressively reduce the number of filters (i.e.: dimensionality) 

until the 2x2x3 output. 

The mean-squared error loss-function was used to train the 

network. We used the Adam optimizer [6] with a learning rate 

parameter set to 1e-3. Training was stopped when validation error 

stopped improving after five epochs, which took approximately 2 

hours with our GeForce 2080 RTX GPU. 

 



 

 

Dataset 
The dataset was built from 180 pictures chosen from Flickr 

(selection criterion was picture with balanced hue content, 

saturated and good looking). As test sets, we used the MCM [7] 

and the KODIM [8] datasets. No image from the KODIM dataset 

was used when this dataset was the one tested, similarly for MCM. 

Since the reconstructed outputs are tiny, this small number of 

images becomes a large dataset. For each train/validation 

procedure, we randomly selected about 2 million 2x2 “center” and 

16x16 “neighborhood” patches. To do so, each image was sampled 

into many 2x2x3 super pixels plus their corresponding 16x16x3 

neighborhood. Therefore, there were enough images patches to 

perform training within reasonable time delays on a recent 

personal computer. 

Figure 1 Schematic view of RandColDem. The network demosaics tiny image 
patches using neighbourhood information. The same architecture can be used 
either for demosaicking periodical or random CFAs. 

 

Figure 2. Examples of the CFAs used for (left) training the periodical model 
and (right) training the fully random model. For ease of visualization we show 
only 32x32 pixels, but every pixel of the random mosaic is picked randomly 
(i.e. for any image, each pixel is randomly chosen between red, green, and 
blue). 

Fig.2 showcases two examples of CFA patterns which were 

used to create the mosaicked images. All images in the database 

are mosaicked with one of these patterns. For the random model, 

the CFA pattern was a fully random trichromatic mosaic of the size 

of the input images, which means each pixel was randomly 

attributed to either the red, green, or blue channel, and set to 0 for 

the other two. No statistical property of randomness, e.g., 

equalizing the number of colors per patch or limiting the 

conglomeration of a particular color, was added. The mosaic was 

applied on each image of the dataset by element-wise 

multiplication of each color channel with the associated CFA. 

    For experiment 1, the periodical model, the 4x4#2 mosaic 

was used. This mosaic was proposed by Amba & al. [3] as an 

alternative to the more traditional Bayer pattern. We chose this 

pattern for our periodic model as it was the one which provided the 

best performances after training. During experiment 2, we also 

used the Bayer CFA to mosaic the image and evaluate the 

capabilities of both our models to generalize to another kind of 

periodically mosaicked image. 

In experiment 2, our objective is to confirm that the random 

network has indeed learned to demosaic under an approximation of 

luminance, and independently from the kind CFA. To do so, we 

test the capabilities of both the periodic and random model to 

perform demosaicking of images filtered through CFAs that are 

different from the one the models have been trained on. In the case 

of the periodic model, demosaicking is tested using (1) images 

filtered with a fully random CFA and (2) images filtered with the 

Bayer CFA. In the case of the random model, it is tested using (1) 

images filtered with the 4x4 CFA (i.e. the one used to teach the 

periodic model) (2) images filtered with the Bayer CFA and (3) 

images filtered with another fully random pattern. Figure 3 shows 

examples of reconstructed images for the two models. 

Results 

Experiment 1 
In this first experiment, we provide the results of RanColDem 

when demosaicking random CFA and periodic 4x4-2 CFA, with 

quality measured by the widely used Peak Signal to Noise Ratio 

(PSNR) metric. We then focus on the differences between how 

both models function. Our analysis concludes that the periodical 

and the random model proceed in a completely different ways, 

more specifically with regards to how luminance is handled. We 

highlight this by analysing the results of a post-training 

degradation of the CFA mosaic’s colors. 

Table 1 shows the results for the KODIM and the MCM 

datasets. The periodical model reaches slightly higher values 

(about 2 points PSNR) but the differences between both models in 

similar conditions is small. For the two models, reconstruction 

quality is good, despite a relatively low PSNR, as confirmed by the 

visual evaluation provided in figure 3. 

 

Figure 3. Reconstructed KODIM image 19. For both the periodical and 
Random RandColDem, reconstruction quality is good. “Traditional” visual 
artifacts on this image, such as aliasing in the fences, are absent. Some 
colors are slightly modified (i.e. reddish taint on the fences, even more so for 
the periodical model). The random model picture is slightly more blurred. 
Overall colors seem better represented on the random model whereas 
blurriness is less pronounced on the periodical one. 

It should be noted that these results are obtained using 

mosaicked images as input and no post-processing once the image 

patches have been reconstructed. Raw performance can be 

improved by adding mechanisms such as providing the exact pixel 

values of the available pixels (i.e. the ones which are not changed 

during the mosaicking process) to the output or rebuild the residual 

of the mosaicked pictures and fully reconstruct the desired patches 

post neural network. PSNR can also be improved by simply 

augmenting the number of kernels at each convolution layer. A 

third way to increase PSNR would be to provide a more carefully 

crafted dataset of images as input. These implementations would 



 

 

also raise the PSNR to values closer to the best demosaicking 

models (i.e. DMCNN-VD [9], whose values for both KODIM and 

MCM are provided in Table 1), at the cost of simplicity. 

Performance is not our main objective, rather, obtaining an equal 

baseline to compare and analyze the demosaicking process of 

periodical and fully random models is. 

 
Table 1. Performance (PSNR) of both the periodical model and random 
RandColDem model for the KODIM and MCM datasets. DMCNN-VD and its 
shallow version, DMCNN, are provided for comparison [9] 

Both networks indeed learn the most efficient way to achieve 

the required task. For the periodical model, the better 

approximation to reconstruct the image is to simply guess which 

color is missing out of the repetitive pattern which is present both 

at the central super-pixel location and at the neighborhood, so the 

pattern can be deciphered without need to focus on the image 

statistics. For the random model, since the neighborhood lacks 

completely random pixels, the better approach is to grasp 

luminance instead and therefore focus on the different kinds of 

shades present in an image patch. 

 
(a)      |         (b) 

Figure 6. Examples of 18 out of the 32 learned kernels for the first 9x9 
convolution layers of periodical model (a) and the random model (b). We can 

see that the periodicity of the mosaic is visible in the filters of the periodical 
model, while the random model does not show the same redundant pattern. 
Rather, it is much more focused on a central element and much more 
sensitive to luminance elements than the periodical model.  

At a pure performance level and without demosaic-specific 

optimizations to the models, the task conducted by the periodical 

model is more efficient in terms of metrics, probably because it is 

simpler and does not need to spend as much attention on image 

statistics, more specifically light. This however comes with a price; 

Figure 7 shows what happens when a portion of a single color in 

the mosaic is destroyed. Generally, as the level of degradation 

increases, colors are more preserved on the random model. For this 

model, destroyed pixels mostly appear as dark grey or seemingly 

random colors, while artifacts which are extremely specific to the 

destroyed color (i.e. magenta when green is lost, turquoise when 

red is lost, yellow when blue is lost) instantly appear in the 

periodical model. Those specific color artifacts also end-up 

appearing for the random model when the degradation factor 

augments, but to a lesser degree. 

 
Figure 7. Examples of reconstructed images with degraded mosaics. For the 

simulation a proportion of randomly chosen pixel are set to zero. The 
destructed mosaic pixels can be seen in both the random model and the 
periodical model. However, in the case of the periodical model, color is more 
false: magenta artifacts appear much faster when green is degraded and 
similarly with cyan artifacts when red destroyed. The same result happens 
with blue destroyed and yellow artifacts (not shown here to save place).  

Experiment 2 
Note that since both network structures are the same, these 

differences in reconstruction behavior can only come from their 

input during training. In other words, when tuned for a 

demosaicking task, a neural network will, in the case of a 

periodical pattern, learn to fill-in the periodically missing colors, 

and in the case of a random pattern, the statistics of the images it 

should reconstruct. Since it is image-based rather than mosaic-

based, we assume that this second way of completing 

demosaicking should come with independence to the kind of CFA 

used to mosaic an image. Experiment 2 tests this by analyzing the 

consequences for both models when images built on other CFA 

patterns are fed to them. 

 
Figure 8. Examples of reconstructed images for the random model using 
different mosaic patterns which were never used for training. Interestingly, the 
random model performs slightly better (about 0.5 PSNR difference) on the 4x4 
CFA that on a random mosaic, whether the one it was trained on or a different 
one. Conversely, the performances are slightly worse (2 PSNR difference) 
when the random model demosaics images filtered with the Bayer CFA. The 

periodical model, however, shows extremely low performances when 
demosaicking unlearned CFA patterns. In the case where another periodical 
CFA (i.e.: the Bayer CFA) is used, color information is lost but the shape of 



 

 

the picture is conserved. Against a randomly mosaiced image, most of that 
shape information is also lost. 

As can be seen, the random network is able to demosaic all 

the presented input. This suggests that the network has learned the 

statistics of the image when trained off a random pattern. Some 

traditional artifacts appear on the reconstructed image crafted 

under the basis of the Bayer CFA (i.e. blue/yellow color lines on 

high frequency areas). Conversely, the periodical model’s inability 

to reconstruct images mosaicked under different patterns than its 

own confirms it learned the mosaic rather than the image. 

Discussion 
The main conclusion of the article is that our model is able to 

learn, at the price of a small reduction of performance of PSNR, a 

universal function allowing learning and generalizing 

demosaicking from any type of sensors CFA. This property was 

obtained with not much artifacts for any type of CFA (periodic or 

not). The first step of the network is a bank of 32 convolution 

filters that did 32 different representations of color input as 

projection on a particular axis (in a 16x16x3 dimensional vector 

space), given by the learned coefficients present in the 32 

convolutional filter. Because those filters mixed color components 

in the computation of the output, they can be considered as 

projections on the luminous, achromatic, axis. Orientation of the 

luminous axis depends on the coefficient of the filters and the 

particular color arrangement on the input pattern. Once the 

network is trained, filter coefficients are fixed and determined by 

the values of pixels of the input. Because the corresponding color 

of a particular pixel is set randomly, the direction of the luminance 

projection is not fixed. In the regular case, one can argue that 

several luminous projections are used and weighted accordingly to 

enable reconstruction of chrominance. But for the random case, the 

several luminous projections depend on the input pattern. Contrary 

to the regular case, the neural network cannot use an estimate of 

colors based on a multitude of luminous projections on different 

axis. It is thus likely that the network trained with random input 

color arrangement learned something on the statistics of image 

than the configuration of the mosaic itself.  

Knowing why the network trained with random arrangement 

of color samples provides a generalization for any arrangement, 

even regular, remains an open question. The network has learned 

several different input patterns despite it being impossible to have 

trained on all patterns. To be specific, this is impossible because 

there are 316𝑥16 > 1.3𝐸122 different possibilities of placing three 

colors on a 16x16 grid, while our training set has about 2 million 

elements. We can affirm that the network is able to generalize 

based on a reduced set of examples. Learning rate is lower in 

random case than in regular case (50 epochs for the regular net and 

twice this number for the random case), and the reconstruction 

quality is lower in random case compared to the regular case 

(~2dB less for KODIM database). But it remains spectacular that 

the network can reconstruct raw image having any arrangement of 

colors. This raises similar questions at the level of human retina 

that is able to learn the demosaicking process from natural images 

on the basis of a single random mosaic of photoreceptors (for a 

specific individual, and different mosaics among different 

individuals). This will be tested in further studies but we assume 

here that this property is related to the ability of biological (and 

artificial) neural networks to capture and generalize the statistics of 

natural images. 
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