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MAINTAINING 2D DELAUNAY TRIANGULATIONS ON THE GPU FOR PROXIMITY QUERIES OF MOVING POINTS 1. INTRODUCTION

Delaunay Triangulations (or DT) are useful in numerous applications related to meshing as they are composed of good quality triangles that maximize their minimum angle, preventing the existence of very thin ones and favoring precision when doing numerical computation. For example, terrain generation techniques are frequently based on DT to obtain surface meshes from 2D elevation points or from noise functions. They are also used to construct meshes for finite element methods because of the guarantee on the angles and the speed of the algorithms. DT can also be found in finite volume methods to generate meshes on complex geometries, especially in fluid mechanics or deformable objects simulations. Algorithms for constructing DT rely on efficient data structures to store triangles and vertices. The neighbourhood relations stored in such structures can then be used to implement FEM simulations or proximity queries in particle based simulations.

In this work we study how efficient is a DT as a data structure for answering parallel proximity queries efficiently. More in detail, we are interested in the parallel GPU computation of the DT for sets of points whose position evolves over time. In this case it is generally more efficient to try to fix the inconsistencies of the mesh dynamically during the simulation rather than reconstruct the triangulation entirely at each time step, especially for very large sets of points.

The problem to be solved in this case is that of mesh untangling, since the displacement of the points over time generally induces situations in which the mesh presents self-intersections and no longer satisfies the Delaunay condition.

Below we present a quick summary of the various approaches for dynamically managing DT on the GPU is presented, along with more details on specific GPU data structures. The structure we have created and the fundamental procedures required to maintain the DT are covered next, followed by a discussion on proximity queries.

PREVIOUS WORKS Computing triangulations in parallel

There is a vast amount of work in different algorithms to build DT in parallel. Divide-and-conquer approaches [START_REF] Chen | A Divide-and-Conquer Algorithm of Delaunay Triangulation with GPGPU[END_REF][START_REF] Marot | One machine, one minute, three billion tetrahedra[END_REF] separate the work in different threads and then merge these partial solutions in a final step. This has been done in a variety of parallel models: many-cores, GPU, multi-GPU, etc. In flip-based approaches, an initial mesh is built without explicitly satisfying Delaunay conditions, before the topology is modified through local transformations implemented on the GPU to get the final DT [START_REF] Cao | A GPU accelerated algorithm for 3D Delaunay triangulation[END_REF][START_REF] Navarro | A parallel gpu-based algorithm for delaunay edge-flips[END_REF].

The method designed by Navarro et al. [START_REF] Navarro | A parallel gpu-based algorithm for delaunay edge-flips[END_REF] stores the mesh in neither counter clock-wise (CCW) order nor clock-wise (CW) order. It checks in parallel, for every edge, if it fulfils the Delaunay condition. If the edge doesn't fulfil the Delaunay condition, it may be flipped if the thread gets the ownership of both triangles that share it. Finally, they perform a final step to fix inconsistencies in the data structure. These three steps are repeated in sequence until the triangulation is legalized. Also, the data structure used in this work doesn't allow building the graph related to the triangulation efficiently, as it stores only the necessary information to check the Delaunay condition, and flip the edges. Another approach is the GPU computation of a discrete Voronoi diagram [START_REF] Qi | Computing 2D constrained Delaunay triangulation using the GPU[END_REF], which can in turn be converted into a valid DT.

Maintaining triangulations without rebuilding

Filtering methods to maintain triangulations have been studied and experimentally tested [START_REF] Manhães De Castro | Filtering relocations on a Delaunay triangulation[END_REF][START_REF] Zhou | Fast Updating of Delaunay Triangulation of Moving Points by Bi-cell Filtering[END_REF]. These methods rely on two phases : filtering, then displacing the vertices. Filtering consists in defining a safe region around each vertex, computed through geometric tests on its neighborhood. If a point ends up inside the region after the perturbation, then no further action is required. Otherwise, the point is removed from the triangulation and reinserted afterwards. Even though these methods are efficient, their parallelization imposes additional difficulties related to the order of displacement of the points and the computation of the safe regions.

Untangling triangulations instead of deleting and reinserting

Carter et al. [START_REF] Carter | GPU parallel simulation algorithm of Brownian particles with excluded volume using Delaunay triangulations[END_REF] built an algorithm that maintains a triangulation under small movements in the GPU in order to speedup NNS in a colloids simulation. After each time-step of the simulation, they fix the triangulation whenever the points go through one edge (so the triangle gets invalid). Afterwards they utilize Navarro et al. [START_REF] Navarro | A parallel gpu-based algorithm for delaunay edge-flips[END_REF] approach to legalize the triangulation. This algorithm doesn't handle movements further than one edge crossing, and uses the same data structure as Navarro et al. [START_REF] Navarro | A parallel gpu-based algorithm for delaunay edge-flips[END_REF]. Shewchuk [START_REF] Shewchuk | Untangling Triangulations[END_REF] describes an algorithm that updates a triangulation by taking decisions through only local geometric tests, even when triangles get inverted after vertex displacements. In order to do that, it performs flips, vertex insertion, vertex deletion and vertex displacement. Another approach to fix the triangulation after displacement is the one described by Agarwal et al. [START_REF] Agarwal | Untangling triangulations through local explorations[END_REF], which defines and identifies regions in the triangulation composed of inverted triangles. A re-triangulation is applied after fixing those cases.

Mesh representations on the GPU

Matrix based representations of static meshes [START_REF] Mahmoud | RXMesh: a GPU mesh data structure[END_REF][START_REF] Yu | Mesh-Taichi: A Compiler for Efficient Mesh-based Operations[END_REF] have been tailored to efficiently retrieve information about the neighborhood of the elements in the mesh on the GPU. These representations do not allow efficient modifications of the elements, and Mahmoud et al. [START_REF] Mahmoud | RXMesh: a GPU mesh data structure[END_REF] also show that an implicit half edge representations on the GPU is more efficient for the same purposes.

Proximity queries

Many GPU implementations of proximity queries are already available in existing software. The most used techniques rely on cell sorting [START_REF] Green | Particle simulation using cuda[END_REF][START_REF] Hoetzlein | Fast fixed-radius nearest neighbors: interactive million-particle fluids[END_REF]. This techniques sort the particles according to where they are on a regular grid, and then use adjacent cells to explore neighborhood. Such a method is used for example in [START_REF] Hoetzlein | Fast fixed-radius nearest neighbors: interactive million-particle fluids[END_REF] for molecular surface generation, as well as in particle-based fluid simulations in computer graphics [START_REF] Hoetzlein | Fast fixed-radius nearest neighbors: interactive million-particle fluids[END_REF]. Other important method to solve proximity queries is based on hardware ray-tracing acceleration [START_REF] Zhu | RTNN: accelerating neighbor search using hardware ray tracing[END_REF], which reports a significant performance over gridbased methods.

OUR METHOD

Data structure and basic operations

We use an indexed half edge data structure to conduct flip operations while also verifying the local geometrical requirements of each edge. Our data structure is very similar to the "parallel directed edges" described in [START_REF] Mahmoud | RXMesh: a GPU mesh data structure[END_REF]. The most important difference is that we store the index of the vertex opposed to each half edge to efficiently check the geometric conditions of the edge. Along with the vertices coordinates, the triangulation is stored as three data arrays as seen in Listing 1. This representation is practical primarily because it enables retrieval of the two triangles for each fully indexed edge with only one random access to global memory per edge, and of the geometrical information of the points in these triangles in only four more random reads to global memory (in order to check the geometry of the triangles that share that edge). It also makes the 1to-1 mapping from threads to edges easy, as we have to assign only 1 thread per every 2 half-edges.

The flipping operation using this data structure takes only 5 reads and 5 writes to global memory (all the edges of the two triangles we are flipping), and 2 global atomic operations. Opposed to the data structure used by Navarro et al. [START_REF] Navarro | A parallel gpu-based algorithm for delaunay edge-flips[END_REF] and Carter et al. [START_REF] Carter | GPU parallel simulation algorithm of Brownian particles with excluded volume using Delaunay triangulations[END_REF], with this data layout we don't need to repair any inconsistent data after performing the flips.

Updating the triangulation

Starting with a fixed set of particles S, we assume this set undergoes a series of displacements di with i ∈ {0, n} and n the number of timesteps in the simulation; particles positions at timestep i are noted Si. We start the simulation with a triangulation T0 built offline from the initial set S0, and modify it to meet the Delaunay condition on the GPU as in [START_REF] Navarro | A parallel gpu-based algorithm for delaunay edge-flips[END_REF]. The goal now is to keep the triangulation Delaunay for each timestep i ∈ {1, n} from the previous triangulation Ti-1 and displacements di-1.

In our approach the problem is divided in two steps: first, we check if Ti+1 is still a valid triangulation for the positions Si+1. If it's not, we fix it only with local geometric tests and flips, just like [START_REF] Carter | GPU parallel simulation algorithm of Brownian particles with excluded volume using Delaunay triangulations[END_REF]. In the second step, we flip as many edges as necessary in order to ensure the Delaunay condition of the edges, just as in [START_REF] Navarro | A parallel gpu-based algorithm for delaunay edge-flips[END_REF]. We call the first part of the process fixing (described in the next section), and the second legalizing.

In the case where it is not possible to fix the trian-gulation after displacements di, we simply divide the displacements in smaller (and fixable) steps. An example of the whole process is depicted in Fig. 1. 

Fixing the triangulation

In the following we take some definitions from Shewchuk [START_REF] Shewchuk | Untangling Triangulations[END_REF], slightly adapted to simplify the exposition of the ideas in this research note.

Assuming that Ti is a CCW oriented mesh, once we move the points to Si+1 and keep the connectivity of Ti, some triangles become CW oriented and can be called inverted triangles. Let's note first that an inverted triangle could be part of a larger group of inverted triangles that all share common edges, also called inverted triangle zone in [START_REF] Agarwal | Untangling triangulations through local explorations[END_REF]. This zones are delimited by edges shared between an inverted triangle and a non-inverted triangle. We will call those edges creased edges, and the ones shared by two inverted triangles will be called inverted edges. Finally, if an edge is shared by two non-inverted triangles we call it an upright edge.

It is easy to see that if there are no inverted triangles nor creased edges after the displacement, no other action is required in this step because the triangulation is still valid and will be legalized afterwards.

As stated in [START_REF] Carter | GPU parallel simulation algorithm of Brownian particles with excluded volume using Delaunay triangulations[END_REF], if there are points going through only one edge, we can fix the triangulation by simply flipping the crossed edge. We can also fix an inverted triangle whenever it has a creased edge and the vertex "coming" from that edge is inside the triangle. We implement this check by testing if another edge has both of its opposite vertices in opposite sides of the plane defined by the current edge. An example of this process is shown on Figs 1b and1c.

The real problems arise if a point goes through two or more edges, i.e. if a creased edge is shared by an Table 1: Performance results for RTX 3090 and RTX A3000 GPUs for a diffusion limited aggregation simulation, comparing our Delaunay approach with a grid-based structure [START_REF] Hoetzlein | Fast fixed-radius nearest neighbors: interactive million-particle fluids[END_REF]. Timings are averaged over 1K timesteps. inverted triangle which is not contained by an noninverted one or the opposite. This is illustrated in Fig. 2: In this case flipping one of the creased edges -the three edges of the inverted triangle-does not guarantee that the triangulation gets fixed.

We characterize this as the difficult case of fixing the tangled triangulation, as it is still an open question whether or not we can solve this in a local and efficient way using only flips. It is important to note that Shewchuk [START_REF] Shewchuk | Untangling Triangulations[END_REF] handles this case by adding, removing and/or displacing vertices to untangle the triangulation and fix the topological information before going back to the original geometrical positions stored in Si.

RESULTS AND DISCUSSION

From our data structure storing a Delaunay triangulation, it is easy to compute the associated graph traversing the neighborhood of each vertex, thus allowing to compute the nearest neighbor (NN) of any vertex since they are both connected by an edge of the graph.

Table 1 shows how well our algorithm implemented with CUDA performs in a simple Diffusion-Limited Aggregation simulation [START_REF] Spicher | From Reactive Multi-Agent models to Cellular Automata -Illustration on a Diffusion-Limited Aggregation model[END_REF], by comparing against a grid-based approach [START_REF] Hoetzlein | Fast fixed-radius nearest neighbors: interactive million-particle fluids[END_REF]. We made sure that the displacements in this simulation are small enough so we can always fix the triangulation, by keeping a displacement radius 100M times smaller than the whole simulation box.

Even though our method is efficient at answering proximity queries, it is not as fast as a grid-based method. However, we store a lot of information on the connec- tivity of points and a complete triangulation of the points during the simulation, which we believe can be beneficial in other applications. One of them is to retrieve the vertices within a certain distance to a given vertex, also called fixed-radius near neighbors (FRNN). For this we can apply a Breadth First Search (BFS) algorithm in the graph, using a naive approach where each thread on the GPU has its own queue of non-visited vertices. In order to check whether or not a vertex has been visited before, we search linearly in the set of already discovered neighbors. This linear pass is currently the bottleneck of our algorithm and needs to be improved before we can make comparisons with state-of-the-art methods.

CONCLUSION AND FUTURE WORK

The approach presented in this paper is slightly behind state-of-the-art techniques, still we believe it is a valuable method to update triangulations in slow moving scenarios, and a starting point towards a more robust method. It would be interesting to evaluate the performances in other simulation scenarios, because updating the mesh depends heavily on how fast the points move. This would require to define metrics, to estimate which simulations could benefit the most from our approach.

One possible way of improvement is the fact that a se-quence of flips that can untangle a triangulation should always exist, as stated by Agarwal et al. [START_REF] Agarwal | Untangling triangulations through local explorations[END_REF]. It would be interesting to find this sequence using only local geometric tests, or to prove that it is indeed impossible in some situations. Another future work concerns the Delaunay graph, which could be enhanced to make proximity queries faster. The Voronoi diagram could be used alternatively because it has a fixed vertex degree of 3, thus decreasing thread divergence. Finally, we could also try to improve our naive BFS algorithm by using a concurrent approach to solve FRNN queries. This is an interesting ongoing research topic in the GPU community, e.g. Liu et al. [START_REF] Liu | ibfs: Concurrent breadth-first search on gpus[END_REF] address a very similar problem, and we could use or even improve their approach to solve the problem. In addition, we believe our method can be naturally extended to use constrained Delaunay triangulations to simulate particle movement a non rectangular domain.

Listing 1 :

 1 Data structure memory layout struct half_edge { /* Indices to the vertex position buffer */ int v; // Vertex at the beginning of the half-edge int op; // Vertex oposite to the half-edge /*****************************************/ int t; // Triangle index that contains this half-edge int next; // Index to the next half-edge in this triangle }; struct triangulation { double v[numVertices*2]; // Vertex positions int v_to_e[numVertices]; // Vertex to edges uint t_to_he[numTriangles]; // Triangles to half_edges indices half_edge he[numEdges*2]; // Half-edges };

Figure 1 :

 1 Figure 1: Fixing and legalizing a triangulation

( a )

 a Initial position, initial triangulation (b) Point displaced, a triangle got inverted

Figure 2 :

 2 Figure 2: A point going through two edges. None of the creased edges is shared by a triangle that contains the other.

Figure 3 :

 3 Figure 3: Depiction of the Delaunay triangulation of the final state of diffusion limited aggregation with 1K points.