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Abstract

Simulations using computationally intensive computedels need to be organized according to a design
of experiments. Space-filling designs spread oattthining examples in the experimental domain with
the aim to catch the irregularities of the compuésponse. Among the existing space-filling desigime
uniform designs have the characteristic of havindisribution of their points close to the uniform
distribution. In this paper we propose three umifity criteria to build space-filling designs, defohfrom
three methods of estimating the Rényi entropy:ug{ih estimation, a nearest neighbor estimationand
method based on the minimum spanning tree of tkegdegoints. An optimization algorithm is used to
build optimal Latin hypercube designs. The spaltiedi properties of the resulting designs are stddi
with numerical tests.

Keywords: Uniform designs, plug-in entropy estimate, neanesghbor estimate, minimal spanning tree
estimate.

Subject classification codes62K05, 62G07

1. Introduction

Space-filling designs are commonly used for satectihe input values of time-consuming computer sode
Since the true relation between the computer respand inputs is not known, the design points shoul
explore the entirexperimental region, and should allow one to fitasiety of models. One strategy is to
select the input values so that they are evenlgagpthroughout the experimental region, according t
“space-filling criterion”. Many space-filling critea have been investigated in the literature. Sofrtem
qguantify how the points fill up the space using dlitance between points, such as the Maximin rilista
(Johnsoret al, 1990) or the PHI-P criterion (Morris and Mitchel995). Others measure the difference
between the empirical distribution of the desigmfmoand the uniform distribution, such as the @ipancy
(Niederreiter, 1987, Fargt al, 2006) or Kullback-Leibler criterion (Jourdan afdnco, 2010).

In this paper, we use the second strategy. Thegiwnee between the empirical distribution of theigie
points and the uniform distribution is measuredhwite Rényi entropy. We suppose that the points
X1,...,%, Of the designD, aren independent observations of a random ve#ter (X,,...,X;) with
absolutely continuous density functigrconcentrated on the unit cube [0,0)e reduce the experimental
space to the unit cube). Rényi entropy,

Hy(D) = li—qlog [, f()%dx , with g=1

measures the difference betwegeand the uniform density function in so far as, ateays hagi, (D)<0
and the maximum value &f, (D), zero, being uniquely attained by the uniform dtgn3his latter property
confirms that maximizing Rényi entropy makésonverge toward the uniform density.

The objective is to construct a design that max@mihe Rényi entropy or, more simply, that maximite
integral,

Io(F) = [, f(x)%dx,
with g €]0,1[ (or minimizes ifg > 1).

We will say that desigl; is better than desigh, if I,(f;) > I,(f;), wheref; andf, are the density
functions associated with, andD, respectively. And we use an optimization algorittenfind the design



that maximizes the criterion. The main questiohasy to estimate the criterion with the design pmir
the following section, we investigate three waysdstimating the entropy. Our goal is not to findracise
estimate of the entropy but to define criteriadnpare the designs in the optimization algorithrorider
to get closer to the uniform distribution.

Wheng tends tol, H, (D) tends to the Shannon entropy. Jourdan and Fr@ed®) defined a space-filling
criterion based on the Shannon entropy. They usegltig-in estimator and the nearest neighbor astim

in order to obtain two criteria that can be caltedafrom the design points and used in an optingrat
process. In the same way, Pronzato and Muller (R8ddgested to use these two methods of estimation
with the Rényi and Tsallis entropies. Using the@yR&ntropy instead of the Shannon entropy allawsste

a third estimation method based on minimum spantmggyas explained in Pronzato (2017). Next, we use
the plug-in estimate, the nearest neighbor estiayatethe minimum spanning tree estimate, to dehiree
criteria from of the Rényi entropy.

To guarantee the consistency of the following estors, we assume that]0,1[. The goal of this paper is
not to study the properties of these estimators.tfat, one can refer to the papers Pronzato (28td)
Pronzato and Muller (2011). The goal is to dedwraputable criteria, to build the designs and to gara
their performance with simulations.

In the next section, space-filling criteria areided from the three estimation methods of the Réngtiopy.
Section 3 is devoted to numerical to study the sgaling performances of the designs built withe thew
criteria. A conclusion and some future work areegivn Section 4.

2. Three methods for estimating the Rényi entropy

2.1. The plug-in estimate (KERN)

The integral is the expected value,
I,(f) = [, fC)I f(x)dx = Ep [f (X)T7].

The Monte-Carlo method gives an unbiased estimation
~ 1 -
Iq(f) = =1 f1? 1(xi)-

The unknown density functiofiis estimated with the design poifits= {x;, ..., x,,} by a kernel method with
a Gaussian kernel

n
f(x) = EZ(ZH)_‘UZ|H|_1/Ze_%(x_xj)TH_l(x—xj)’
n
j=1

whereH is the bandwidth matrix (symmetric and positivéirdge matrix).

The choice of the bandwidth matrix has a greatisfte on the accuracy of the estimation. Joe (j1€988vs
that in the case wheyfis estimated by a kernel method, the bias in #tienation ofl, (f) depends on the
sample sizer, the dimensionl, and the bandwidth matri. When constructing an optimal design, the size
n and the dimensiod are fixed. We need to fix the bandwidth so that llias does not vary during the
optimization algorithm.

Usually the bandwidth matrix is simplified into aadonal matrix with the Scott’s rule [(199%, =
diag(h?, ..., h%) with h, = n~Y/@*95, whereg, is the estimation of, standard deviation. The estimation
4, changes at each iteration of the optimization ritligm. In order to fix the bias during the algonthwe
replace it with the standard deviation of the tafgaiform) distribution,

1 1
b = h = Ty



Finally,

n a-1

n
) 1 =il
=— 2h2 7
.(f) nZ n(2n)d/2hdze

=1

We remove the terms independent of the designgaimi the symmetric terms in the double sum, and we
obtain the simplified criterion,

n-1 n q-1

Cxprn (D) = Z Z e_ﬁ”x]"ﬁ”

i=1 \ j=i
2.2. The nearest neighbor estimate (NN)

Wanget al. (2006) and Leonenket al. (2008) proposed to estimate the entropy with tme&rest neighbor
density estimation.

Let p(x,y) denote the Euclidian distance between two poin@ndy of IRY. We notep™®(x,S) <
pP(x,8) < - < p™M(x,S), the order distances betweeIR? andS = {y,, ..., y,,} a set of points of IR
such thatcgS. p®(x,S) is the k-nearest-neighbor distance frerto points ofS. The previous authors
demonstrated that the following estimatel gif) with the design pointd = {x,, ..., x,} is asymptotically
unbiased and consistent,

n

=2 ((n = DCeVa (p® Cxi D_o)d) )

i=1

with C, = (" (k) /I (k + 1 — q))/@~9 wherel" is the Gamma functiof¥,; the volume of the unit ball
in IRY andD_; = D\{x;}.

The bias depends an d andk. We need to fix the value @fso that the bias does not vary during the
optimization algorithm. Pronzato (2017) justifiem restrict the estimation o= 1. We remove the terms
independent of the design points and we obtairsithelified criterion,

n

G = Y (0P, 00)" "

i=1
2.3. The minimum spanning tree estimate (MST)
Another way to estimate the Rényi entropy is tothgeminimum spanning tree of the design points.

The tree is constructed by connecting the pointe@tesign by edges;() such that:
- only one edge connects two points,
- only one path allows to go from one point to angthe
- there is no cycle,
- all the points of the design are connected,
and such that the sum of the lengths of the edgediflean norm),

Ls(D) = Ze, [les; ]|, 3010.dL,
is minimal.

Redmond and Yukich (1996) and Hero and Mitchel @3$howed that

H,(D) =

1
= 09(n Laag) (D)) + B(a. )



is an asymptotically unbiased and almost surelysistent estimator of the entropy, wh#rés a constant
bias correction independent gnMaximizing the above estimator is equivalent aximize the simplified
criterion

Cusr(D) = Z Lg1-qy(D).

i=1

The idea of using minimum length trees to assessligtribution of points in a multidimensional spas
not new. In 1984, Smith and Jain defined a muliataruniformity test based on this structure. Titiea
can also be found in the comparative study of difie€topographic analysis methods by Wallet andsBrus
(1998). Francet al.(2009) presented a nice graphic tool based oarttgrical mean and standard deviation
of the edge lengths of the MST to compare spabiegfilesigns. Finally, as mentioned in Pronzatd. {0
the sum of power-weighted edge lengths for the M&3 never been used as a criterion for spacegfillin
designs.

In the next section, we compare the new MST catewith the two criteria defined above. We canadre
note that the complexity of the MST criterion (®fe(n+1)/2) +O(n%log(n))) is greater than that of the
KERN (O(dxnx(n-1)/2)) or NN criterion (O(&nx(n-1))) because of the Kruskal algorithm used titdithe
minimum spanning tree.

3. Numerical tests

In this section we compare the three critelgacribed previousljor g=0.1, 0.5 and 0.9he idea is to use an
optimization algorithm to build designs that maxdmihe criteria and compare the space-fillling penances of
the resulting designs. It is well-known that spéitlig criteria tend to push the design pointstbe boundaries of
the unit cube as d increases (curse of dimensighafi common strategy to overcome this problenoisse Latin
hypercube designs (LHD). Each column of a d-dimemeliLHD of n points is a random permutation of41,.,n}.
This property ensures that each variable is tastades regularly between 0 and 1 (and not onthatedges), but
does not ensure a good spatial distribution ofdibiats in the unit cube. It is necessary to opteran LHD with a
space-filling criterion. Many algorithms have bedgwveloped to optimize LHD. We use the enhancecdhsistc
algorithm (ESE) defined by Jiat al. [17] with the same settings. In the numericalstesve build 20 Latin
hypercube designs with d=2 and n=20, d=4 and nadf,d=10 and n=100. We compare both the uniforiiity
the distribution of the design points and theieirsite distance.

3.1. Uniformity of the distribution of the design points

A common method to assess the space-filling progeedf a design is to use the discrepancy, thenieasurement
of the difference between the cumulative functiérth@ uniform distribution and the cumulative fuioct of the
distribution of the design points (Fasgal.,2006). Many ways to calculate the discrepancy hmeean defined in
the literature. Figure 1 give the boxplots of tleatered L2-discrepancy,

DlSCLZ(D)—(lg)d 2n|d|(1+1| 05— 2| 05|2)
“\12) " n. g i T Bl T o e = B
i=1 k=1
n n d
1 1—[ 1 1 1
+FZZ <1+E|xik—0.5|+E|x]-k—0.5|—§|xik—xjk|>
i=1j=1k=1

but the results are quiet the same with the L2rdjs@ncy and the wrapped discrepancy. The aim fisitémize
the discrepancy or maximize its opposite valuedsigure 1.

The choice of g value has a big impact on the djsancy for NN and MST designs. The designs defini
g=0.1 have a high discrepancy value with a highetslity. Thus, with q=0.1, the distribution of thiesign points
is further from the uniform distribution (in thersee of discrepancy) than the distribution obtaingth q=0.5 or
g=0.9. The high variability implies that the disga@cy of the design strongly depends on the daitjalization
in the optimization algorithm.
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Fig. 1. Boxplot of (-1)*DISCL2 criterion for KERN\IN and MST designs.
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3.2. Inter-site distance of the design points

Another way to assess the space-filling propewiea design is to study the distance between tiseggdepoints
(Johnsoret al, 1990). Here, we use the PHI-P criterion with p£bigure 2) as proposed by Morris and Mitchell
(1995),

n-1 n 1/p

o0 = Y lk-51"]

i=1 j>i

In order to compare the inter-site distance ofdégign points, we add a graphical tool (Figureé=8).a design, we
compute the nearest neighbor distance of each.piietx-axis is the average of the nearest neigtilstances of
the design points (1) and the y-axis is the stahdawiation ¢). A good coverage of the experimental region is
obtained by a design with points far from each oiégh average) and close to a regular grid (srsi@hdard
deviation) like a scrambled grid. Then the targetds at the bottom right of this graphic.

As for discrepancy, we can see that the PHI-P wiigt&riterion is rather little impacted by the \vabf g for KERN
designs except for the variability in dimension dH®wever, we can see in Figure 3 (especially matision d=4
and d=10) that the average of the minimum distabe@éseen two points increases when g decreases.

The NN and MST designs obtained with q=0.1 alsdgper the worst in terms of PHI-P criterion or minim
distances. The NN and MST designs constructed gwth9 give the best results. The PHI-P criteriolues are
almost the same for KERN designs and NN and MSSigdewith q=0.9 (Figure 2). However, the minimum
distance between points (Figure 3) is greateriferNN and MST designs for g=0.5 and g=0.9 thariferKkERN
designs. The NN and MST designs with q=0.5 havénthlkest average of the nearest neighbor distamgesome
designs have a high standard deviation. This mtrigylobally the points are far from each othethia design,
but that some points are clo§die NN and MST designs with g=0.9 have a slighdlyér average but with a very
small standard deviation. This means that the pang almost all equidistant.

4. Conclusion

In this paper we used the Rényi entropy to meathaeuniformity of the point distribution in an expeental
design. From three methods of estimating the egtrae proposed three criteria that can be compdiegttly
from a set of points. The criteria are used in ptinoization algorithm to build space-filling Latmypercubes.
Numerical tests allow to establish that the perfmoe depends on the valueqdfor the criteria based on the
minimal spanning tree and the nearest neighboamiist The space-filling performances are bettemwyhis close
to 1, i.e. when the Rényi entropy is close to tharBion entropy.

In order to avoid the curve of dimensionality (ahds points pushed to the edges of the experimdotahin), we
used a Latin hypercube structure to build the sifitloey designs. This guarantees to have pointsda the
experimental domain and an equidistribution of pleénts on the factorial axes, but it constrainsdpémization

algorithm. An alternative idea is to use the additiproperty satisfied by the Rényi entropy. Thstiate of the
entropy in dimensior can be reduced to the sum of thestimates of the entropies of the projection$iefgoints
on factorial axis. Maximizing the sum of entrop&would ensure a good spatial distribution and adgoaint

distribution on each factorial axe. One idea wdrgdo use a multi-objective algorithm to ensuré #zch entropy
is maximized in the sum. The first objective funatiwould be the sum of the entropies and the seobjettive

function would be the uniformity of the entropy was on the axis. Another advantage of using thecfientropies
is that it allows to consider other methods forvamiate density estimation like Fourier series (®yinan, 1986)
or histogram-based estimate Baredral. (1992).
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