
HAL Id: hal-04029768
https://hal.science/hal-04029768

Submitted on 11 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Leveraging Micro-Services for Ultra-Low Latency: An
optimization Model for Service Function Chains

Placement
Hichem Magnouche, Guillaume Doyen, Caroline Prodhon

To cite this version:
Hichem Magnouche, Guillaume Doyen, Caroline Prodhon. Leveraging Micro-Services for Ultra-Low
Latency: An optimization Model for Service Function Chains Placement. NetSoft 22: IEEE 8th
International Conference on Network Softwarization, IEEE, Jun 2022, Milan, Italy. pp.198-206,
�10.1109/NetSoft54395.2022.9844040�. �hal-04029768�

https://hal.science/hal-04029768
https://hal.archives-ouvertes.fr


Leveraging Micro-Services for Ultra-Low Latency:
An Optimization Model for Service Function

Chains Placement
Hichem Magnouche∗, Guillaume Doyen†, Caroline Prodhon∗

∗LIST3N, University of Technology of Troyes, Troyes, France, {first.last}@utt.fr
†OCIF - IRISA (UMR CNRS 6074), IMT Atlantique, Rennes, France, guillaume.doyen@imt-atlantique.fr

Abstract—The evolution of the Internet tends toward ever
requiring lower latency services. Cloud robotics or drone piloting
are service use-cases in which the latency of traffic cannot
exceed a few milliseconds. Reducing the latency can be achieved
through several means, and micro-services deployed over virtual
infrastructures appears as a promising way by enabling service
chain reductions, micro-function mutualization and parallelism.
However, the placement and routing of such components ap-
pears as an harder task to achieve as compared to monolithic
approaches of the state of the art. Consequently, we propose
in this paper a comprehensive optimization model in charge of
placing micro-services in a virtualized network infrastructure,
under ultra-low latency constraints while preserving resource
consumption. By challenging our model with several realistic
scenarios in terms of topology and service function chains
(SFC), we demonstrate to what extent it improves the overall
performance of SFC by especially minimizing the gap between
the expected latency and the actual one, as compared to several
competitors, thus making it a well-fitted approach for ultra-low
latency services.

Index Terms—micro-services, Placement and Routing, Opti-
mization, Orchestration.

I. INTRODUCTION

The Internet is ever evolving according to novel usage
and needs expressed from end-users and the evolution of the
technologies that it leverages. Reducing traffic latency is a
core concern for today’s cloud gaming and interactive video
systems, and especially for emerging services such as cloud
robotics, metavers, augmented and virtual reality and haptic
internet. For these future services, being able to carry their
traffic with no more than a few millisecond is a prerequisite
to enable them bringing the expected quality of service to the
end-users and consequently allow their adoption.

Reducing the Internet latency is not an issue targeting a sin-
gle component or service in the end-to-end delivery of traffic,
but rather, it can be achieved by considering all the points
that can be inflected to globally improve the traffic forwarding
delay. Some relevant work has been proposed during the last
few years on novel congestion control algorithms (e.g. TCP-
Prague) or active queue management strategies (e.g. L4S) to
improve the sole packet forwarding performance in routing
elements. Besides, network traffic does not only cross routers
but also a set of Network Functions (NF) such as firewalls or
NAT, all bringing a latency penalty, and thus being subject to
improvement.

The Network Function Virtualization (NFV) is now ac-
knowledged as the standard means to deploy such NF. Al-
though its standard usage consists to deploy monolithic NF,
it has been recently identified that the split of such functions
into micro-services could be highly beneficial to reduce the
usage of resources while improving the overall performance
of the service delivery. Indeed, micro-services enable the
reduction of Service Function Chains (SFC) by removing
redundant micro-functions (e.g. packet parsing), mutualizing
micro-functions belonging to different NF (e.g. packet clas-
sifiers) or parallelizing the processing on independent packet
fields. However, in the context where the number of micro-
services is roughly one order of magnitude larger than that of
network functions, and service chains must be restructured to
actually leverage the power of micro-services, the question of
their efficient orchestration appears as an open issue. Indeed,
standard orchestration algorithms, in charge of placement and
routing of monolithic NF, are no longer applicable given these
particular characteristics (i.e. parallelization, mutualization and
scale) exposed by microservices since they consider SFC
service chains as linear and therefore do not handle forks and
merges.

To that aim, we propose in this paper an optimization model
which allows a routing and placement orchestration function
to operate on SFC that will eventually be deployed as micro-
services while preserving ultra-low latency constraints. Our
model intrinsically integrates the capability to both mutualize
and parallelize micro-services. Furthermore, it is compre-
hensive, meaning that it encompasses the set of constraints
that must be considered to efficiently achieve a satisfying
deployment of service function chains and especially the
resource it consumes. In order to validate the relevance of
our proposal, we implemented it into the CPLEX solver and
we performed an exhaustive performance evaluation in which
we considered a realistic telco topology, some set of SFC
extracted from realistic use-cases and we demonstrate to what
extent it outperforms current approches from the state of the art
leveraging monolithic NF but also micro-services leveraging
the sole mutualization feature.

The paper is organized as follows. Section II presents a
literature review of the recent approaches for service function
orchestration. Section III presents our model and its math-



ematical formulation. In Section IV, tests on the model are
developed and analyzed. Finally, Section V concludes the
paper.

II. RELATED WORK

A large literature covers the question of placement and
chaining of Virtual Network Functions (VNF) in NFV as a
means to ensure a prescribed performance level while ensuring
a satisfying usage of resources. Besides, several improvements
on VNF have been recently proposed to further enhance the
overall latency induced by service chains. These are especially
VNF parallelization and micro-service architectures. As a set
of fields closely related to our work, we subsequently review
them and state to what extent our approach fills the gap
to provide efficient orchestration means for the placement
and chaining of restructured SFC composed of micro-services
fulfilling ultra-low latency constraints.

A. VNF Placement and Routing

The VNF Placement and Routing (VNF-PR) problem has
attracted a lot of attention for a decade [1]. It exhibits two
objectives which are: (1) the placement of VNF on network
nodes, and (2) their chaining to satisfy the service requests
while respecting various associated constraints. In the majority
of the related literature, the formulation of the VNF-PR
problem is achieved through an Integer Linear Program (ILP)
or a Mixed ILP (MILP). Concerning the resolution of the
problem, some proposals use a solver such as CPLEX [2], [3],
while some others develop a heuristic algorithm [4], [5] or a
meta-heuristic [6]. In [2], Addis et al. consider the placement
and routing problem of VNF with only one type of VNF for
all services thus making it restricted. In Casado et al. [7], the
authors consider the problem in a similar way with a single
type of VNF but they use a heuristic algorithm to solve it and
consequently reduce the computation time.

In [8], Luizelli et al. deal with the VNF-PR issue by
using an ILP composed of 9 constraints reflecting the real
situation of a network. In this work, close from ours regarding
the operational features it considers while being restricted to
monolithic VNF and not micro-services, the latency minimiza-
tion is translated into a constraint instead of the objective
function which is rather formulated with the aim of minimizing
the number of VNF instances. The authors especially break
down the problem into sub-problems and try to optimize them.
To that aim, they develop a Variable Neighborhood Search
algorithm that tries to find a near-optimal solution for each
sub-problem. Similarly, in [9], the authors keep the same
model but they use a meta-heuristic-based algorithm and they
demonstrate to what extent it is more efficient. In [10], the
authors minimize the number of activated nodes instead of
VNF instances which shows the relevance of the cost metric
choice in the formulation of the VNF-PR issue.

B. VNF Parallelization

In order to optimise the latency of SFC, some contributions
propose to parallelize the execution of VNF. [11] develops

a pioneer work with an algorithm allowing to carry out a
graph parallelizing the whole of the parallelizable VNF. To that
aim, the algorithm is based on a table which states whether
or not two services function are parallelizable given that the
processing carried out on the packets are not related to each
other. The authors propose to implement parallelism of VNF
for those deployed on the same node as well as different nodes,
standing for internal and external parallelism. Nevertheless,
the parallelism on different nodes can controversially degrade
the SFC latency as it requires to copy and merge packets,
whereas within the same node, the VNF can use a shared
memory, as proposed by DPDK [12]. Subsequently, among
the most relevant proposals, [13] proposes to solely implement
internal parallelism of NF with the condition that all SFC are
placed on the same node. In order to limit the copy/merge time,
the authors propose two techniques: (1) only copy the header
when some processing is performed on it, and (2) use the
shared memory when the processed packet fields are different.
In a similar way to the former [11], [13] also proposes a
parallelization table allowing to state which VNF can be
parallelized. Finally, [14] proposes a parallelization approach
that addresses the weaknesses of [11] and [13] by parallelizing
VNF placed on the same node without any condition on the
whole SFC, thus preventing the loss in copy/merge latency on
different nodes. Besides, it also allows better agility because
the parallelism is decided after deployment and does not
require the whole SFC to be on the same node.

C. Micro-services: Architectures and Orchestration

For a couple of years, the benefits of micro-services have
been demonstrated [15] as an alternative to standard mono-
lithic VNF which exhibit three important limits: the overlap-
ping of functionalities, the loss of CPU cycles and the lack
of flexibility in scaling. Following this idea, several micro-
services architectures have been designed and implemented,
such as Microboxes [16] and Openbox [17], all bringing
specific performance enhancements which mainly leverage
lightweight virtualization with containers and zero-copy of
packets with DPDK [12].

Concerning the placement and chaining of micro-services,
in [18], the authors address the intra- and inter-server connec-
tivity and their impact on the communication between micro-
services that should be well-performing to minimize end-to-
end latency. They propose an ILP placement model whose
objective function is to minimize the latency delay between
the different micro-services. They also propose some con-
straints specific to the end-to-end latency as well as the NFV
infrastructure. However, no resolution algorithm is developed
to demonstrate the capability of the approach to be considered
in real situations. In [19], the authors also develop a placement
solution that limits end-to-end latency and minimizes the ex-
change of messages between VNF. In order to reduce latency,
the authors focus on minimizing the communication delay
between the different VNF and underlying micro-services and
therefore, they create network micro-service bundles called
Affinity Aggregates which are a set of VNF or micro-services



that exhibit a heavy communication and should therefore be
deployed in a close way. [20] exploits the advantages of micro-
services (re-usability, light weightiness, and better scaling) to
overcome the performance degradation that NFV can generate
with monolithic NF. It proposes MicroNF, a framework based
on three axes: (1) a reconstruction of SFC upon reception in
order to re-use micro-services already deployed in the infras-
tructure and also to re-factor micro-services when possible; (2)
a micro-services placement which tries to consolidate them
on the same node (i.e. with the largest number of micro-
services related to the same VNF); and (3) a scaling approach
that attempts to balance the load between the network nodes
to avoid duplicating micro-service instances and thus limit
communications.

Mutualization consists of grouping two identical micro-
services belonging to the same SFC in a single one. It makes
possible first to shorten the length of the SFC and consequently
its latency, and second to save memory and CPU resources.
Such an approach has been studied in [20], [21] as part of the
functional decomposition of VNFs into microservices. These
research works particularly show that the mutualization of two
identical micro-services is not systematic. Indeed, it requires
checking the overall set of micro-services from the original
SFC to be sure that the processing of packet data will not be
affected. This is achieved thanks to a mutualization table as
proposed by [20] who focuses on this particular enhancement.
Besides, [21] also proposes a framework supporting micro-
services that includes an algorithm allowing the mutualization
of micro-services. However, it does not propose any model nor
algorithm for the placement and chaining of micro-services.

Through this survey of related literature, we observe that a
consequent work has been carried out in order to minimize
the latency of SFC, whether it relies on the routing and
placement modeling [1], [2], [7]–[10], VNF parallelism [11],
[13], [14] or micro-services decomposition and mutualisation
[15], [18], [21]. As highlighted in [20], we also state that the
micro-services approach used without mutualization, exhibits
a negative impact on the global latency of SFC. In a similar
way, the parallelism, used in a non-optimal way, can further
increase the latency instead of reducing it [14] and to the best
of our knowledge, it has only been considered for monolithic
VNF. Consequently, we propose in this paper a comprehensive
optimization model specific for a robust and flexible micro-
services orchestration leveraging both mutualization and opti-
mized parallelism.

III. A MICRO-SERVICE ORCHESTRATION MODEL

In this section, we present the micro-services placement
and chaining orchestration problem and then, we develop
its mathematical formulation. Wishing to optimise the SFC
latency and benefit from the agility offered by micro-services,
we propose an approach allowing to: (1) mutualize micro-
services through a pre-processing algorithm; (2) place and
chain micro-services through a MILP that also (3) efficiently
manages internal and external parallelization of micro-services

according to the infrastructure setup (i.e. number of nodes and
links as well as their available resources).

A. Problem Statement

Definition: The micro-services placement and routing
problem we study, is defined on a network graph G = (N,L),
where N is a set of nodes and L a set of links between
nodes. Q is a set of SFC requests, with each request q ∈ Q
being characterized by a source Sq , a destination Dq , a
nominal bandwidth Bq statistically representative for request
q, a maximum execution latency Λq and a set of micro-services
of different types to be traversed by an edge flow. The micro-
services placement and chaining optimization problem consists
in finding:

• The placement of micro-services over network nodes;
• The assignment of requests to micro-services already

placed;
• The chaining for each request,
subject to:
• Memory node capacity constraints;
• Micro-services forwarding and execution latency con-

straints;
• Parallelism execution constraints.
The optimization objective chosen in our work is the mini-

mization of the latency delay on service requests according to
their latency specification. Indeed, we consider that:

• The available nodes have no usage cost but the available
resources expressed in terms of CPU and memory are
limited;

• The available links have no usage cost but the flow rate
on each one is limited;

• The memory required for the deployment of micro-
services is similar for all micro-services;

• Sharing the usage of micro-services between different
SFC is not allowed.

B. Overall Approach

Our approach is developed with the aim of taking advantage
of the micro-service features in order to reduce the end-
to-end latency of SFC. It consists in two parts: (1) a pre-
processing algorithm that performs the mutualization, a pre-
parallelization on the set of SFC, and provides the Q set and
parallelism parameters to be used in our model, and (2) a
Mixed Integer Linear Programming (MILP) translating the
problem of placement and chaining of micro-services, which is
solved by taking into consideration the parallelism parameters
among other constraints.

1) SFC Pre-processing: The pre-processing phase needs
two-dimensional parallelism and mutualization tables as in-
puts, which indicate whether two micro-services are mutu-
alizable or parallelizable as developed in the literature [14],
[20]. To understand the pre-processing, let us take the example
depicted in Figure 1, where a request q is made up of an orig-
inal SCF containing 5 sequential micro-services. Supposing
that the tables indicate that micro-services 1 and 5 can be



mutualized and micro-services 2, 3 and 4 can be parallelized,
our algorithm builds a new SFC made up of 4 micro-services
as pictured in the second part of Figure 1. Note that depending
on the infrastructure constraints, the MILP of the second phase
may not necessarily lead to the placement and execution of
micro-services 2, 3 and 4 in parallel, even if this was allowed
in the pre-processing phase.

2) Managing Parallelized Micro-services: The pre-
processed SFC are provided to the model with some
parallelism parameters to carry out a placement and chaining.
The aim here is to minimize the sum of the gaps between
the required and achieved latency after deployment, for each
SFC while taking into account the infrastructure setup. The
key-point stands in the choice of service parallelization which
is managed by the model through the generation of forks and
mergers of two types:

• internal forking: a packet is duplicated within a node to
reach a set of further parallelized micro-services located
on the same node. This kind of internal parallelism does
not require copying data, nor merging, since, as reviewed
in sub-section II-B, technologies such as DPDK allow
shared memory to be used.

• external forking: a packet outgoing from one node is
duplicated to subsequent NF located on two or more
successor nodes. Such external parallelism implies a copy
of the packets to be sent to the different micro-services
deployed on different nodes and then a merging of the
resulting packets too.

This latter mechanism leads us to add a latency cost for
the external fork corresponding to the copy and merge time,
unlike the internal fork. The originality of the model lies then
in the fact that depending on its configuration, it decides which
micro-services to parallelize internally, externally or not at
all. However, this complicates the computation of the induced
latency. Indeed, when the model defines a placement, it also
has to indicate whether the micro-services on the nodes (if
parallelizable) are visited consecutively or not. In order to
know which micro-services are running in parallel within a
node, we use groups that gather them together.

To illustrate this principle, the example in Figure 2 shows 3
different possible deployments for request q, as introduced in
Figure 1. The first one (A) does not parallelize any micro-
services: although two are on the same node (i.e. micro-
services 2 and 3), they do not belong to the same group. In
this case, the resulting SFC is composed of a single group
(g1) on nodes B and D, and two groups (g1 and g2) on
node E. The second deployment (B) proposes an external
parallelization of micro-services 2 and 3 on two different
nodes, thus a single group (g1) per node. This induces an
additional latency corresponding to the copying and merging
operations. Finally, deployment (C) parallelizes micro-services
2, 3 and 4 by performing internal and external parallelism.
This time, a single group (g1) is assigned to each of nodes
B, C and D. In this case also, a fork cost is accounted
because the latter is external. Beyond, this SFC example

Fig. 1: Pre-processing example

and underlying infrastructure may lead to other possibilities,
actually depending on the memory capacities of each node.

C. Mathematical Formulation

Table I provides the set of notations used for the formulation
of our MILP formalizing the problem of placement and
chaining of micro-services.

In this model, we define seven decision variables. xnfq are
used to decide which micro-service f ∈ F of request q ∈ Q
should be placed on which node n ∈ N . ynfq allow to know
whether micro-service f ∈ F is placed on the nodes preceding
n ∈ N (n included) on the path related to request q ∈ Q.
Variables an1n2q are used to decide whether the link between
nodes n1 and n2 from set N is used for service request q ∈ Q,
all links being oriented in this model. Having allowed the
forks, we introduce variables ln1n2qh to decide whether the
link between nodes n1 and n2 from set N is used within
path h ∈ Fq of the chaining of request q ∈ Q. This allows
to define the set of possible paths for the chaining of each
SFC. Variables bfnqh indicate the existence of a fork on node
n ∈ N relative to a request q ∈ Q and path h ∈ Fq . Then,
the latency of request q ∈ Q finishing its process at node
n ∈ N is equal to the greatest latency of the different relative
paths. This requires to define a longest path, managing the
notion of group as introduced in section III-B2. A group g ∈
Fq is composed of a set of a single or several parallelized
micro-services assigned to node n ∈ N for request q ∈ Q
and for path h ∈ Fq . Since all the micro-services belonging
to the same group run in parallel, we use variable γnqfg to
indicate whether micro-service f ∈ F related to request q ∈ Q
is placed in group g ∈ Fq attached to node n ∈ N , and
variable σnqgh which corresponds to the latency of group g ∈
Fq relative to request q ∈ Q and path h ∈ Fq . Finally, in
order to minimize the overall gap between the required and
actual latency we introduce variable rq which represents the
gap latency for each request q ∈ Q .

This leads to the following model, consisting in minimizing
an objective function relative to the lag behind expected



Fig. 2: A deployment example

Sets
N Nodes

L in N ×N Links
Q Service requests
F Micro-services

Micro-service parameters
λf Execution latency

Rmf CPU resource requirements
Demand parameters

Sq Source
Dq Destination
Λq Latency
Bq Throughput

Fq in Q Micro-services composition
Infrastructure parameters

Mn Node memory
Rn Node CPU resource

∆n1n2 Link latency
Dan1n2 Link flow rate
CB Bifurcation cost

Parallelism parameters
Tf1f2 Parallelism possibility
Pf1f2q Parallelism possibility into service request

Model parameters
m Constant value guaranteeing compliance with con-

straints
Binary variables

xnfq = 1 if function f is placed on node n for request q
ynfq = 1 if function f is placed on node n or before for

request q
an1n2q = 1 if link (n1, n2) is activated for request q
ln1n2qh = 1 if link (n1, n2) is activated for request q for path

h
γnqgf = 1 if function f related to request q placed on node

n belongs to group g
bfnqh = 1 if there is a fork on node n for request q and for

path h
pnfq Intermediate variable

Continuous non-negative variables
rq Gaps between the required and achieved latency for

request q after deployment
σnqgh Latency of group g related to request q, node n and

path h
onq Order of node n in the chaining of request q

TABLE I: Notation table

latency and subject to the two dozen of constraints that we
describe subsequently.

The objective function (1) minimizes the latency delay, rq
of request q. The second term is relative to additional variables
used in the constraints.

min
∑
q∈Q

rq +
∑
n∈N

∑
q∈Q

∑
f∈Fq

∑
h∈Fq

ynf q + bfnqh + pnf q (1)

Constraints (2) and (3) guarantee that if there is an incoming
flow in a node for a certain service request q, and the node
is neither a source nor a destination node, an outgoing flow
must exist and vice-versa. Unlike a standard chaining problem,
outgoing flows can be greater or lower than incoming flows
and vice-versa, due to the fork-merge managed by the model.∑

e∈N

aenq ≥ ansq ∀q ∈ Q,n, s ∈ N ̸= Sq, Dq (2)∑
s∈N

ansq ≥ aenq ∀q ∈ Q,n, e ∈ N ̸= Sq, Dq (3)

In order to avoid cycles in the chain and to force it to be
elementary, constraints (4) ensure that each node has an order
in the chain and that this order is respected.

on1q ≥ on2q+an2n1q−m(1−an2n1q) ∀n1, n2 ∈ N (4)

The set of constraints (5) to (10) allow to set variables ynfq
to 1 in case function f is placed on node n or before for
request q.

ynf q ≥ xnf q ∀n ∈ N, f ∈ F, q ∈ Q (5)

an1n2q − 1 + xn1f q − xn2f q ≤ yn2f q

∀n1, n2 ∈ N, ∀q ∈ Q,∀f ∈ Fq (6)

yn1f q − 1 + an1n2q ≤ yn2f q

∀n1, n2 ∈ N, ∀q ∈ Q,∀f ∈ Fq (7)∑
n1∈N

yn1f q + an1nq ≤ pnf q

∀n ∈ N, ∀q ∈ Q,∀f ∈ Fq (8)

xnf q ≤ pnf q ∀n ∈ N, ∀q ∈ Q,∀f ∈ Fq (9)
ynf q ≤ pnf q ∀n ∈ N, ∀q ∈ Q,∀f ∈ Fq (10)

More specifically, constraints (5) allow to set variables ynfq
to 1 if xnfq equal to 1. Constraints (6) aim at setting variables
yn2fq to 1 if the relative function f is placed on node n1,
preceding node n2 and concerning request q. Constraints (7)
allow to set variables yn2fq to 1 if yn1fq equal to 1 and if n1 is



preceding node n2 concerning request q. The set of constraints
(8), (9) and (10) allow to set variables ynf q to 0 if function
f is not placed on node n and it is not placed on any of
the preceding nodes of n as well as their respective preceding
nodes.

Constraints (11) ensure that all micro-services related to
each request q are placed on the destination node or before on
the chain related to q.

ynf q ≥ yDq f q ∀q ∈ Q,∀f ∈ Fq,∀n ∈ N (11)

Constraints (12) to (14) guarantee that if two micro-services
are placed in the same group, they can be processed in parallel,
and this in two ways: the first states that the two micro-services
can be technically parallelizable, the second states that, in the
SFC, the two micro-services are parallelizable, i.e. none of
them is in the precedence list of the other.

γnqgf1 + γnqgf2 ≤ Tf1f2 + 1

∀n ∈ N, ∀q ∈ Q,∀g, f1, f2 ∈ Fq (12)
γnqgf1 + γnqgf2 ≤ Pf1f2q + 1

∀n ∈ N, ∀q ∈ Q,∀g, f1, f2 ∈ Fq (13)
σnqgh ≥ λf (γnqgf + lnn2qh − 1)

∀q ∈ Q, f ∈ Fq,∀n, n2 ∈ N, ∀h, g ∈ Fq (14)

Constraints (14) ensure that variables σnqgh are greater than
or equal to the execution latency of all the micro-services
belonging to group g on path h.

Constraints (15) allow variables rq to be equal to the gaps
between the required and achieved latency for request q which
do not respect their latency specification.∑

n1∈N

∑
n2∈N

ln1n2qh ∗∆n1n2
+

∑
n∈N

∑
g∈Fq

σnqgh

+
∑
n∈N

bfn ∗ CB − Λq ≤ rq ∀q ∈ Q,∀h ∈ Fq (15)

Constraints (16) and (17) respectively ensure that the CPU
resources and the available flow rate on each link are respected
for each node.∑

q∈Q

∑
f∈Fq

xnfq ∗Rmf ≤ Rn ∀n ∈ N (16)

∑
q∈Q

∑
f∈Fq

an1n2q ∗Dbq ≤ Dan1n2 ∀n1, n2 ∈ N (17)

Finally, the model includes the following types of variables.

xnfq ∈ {0, 1} ∀n ∈ N, f ∈ F, q ∈ Q (18)
ynfq ∈ {0, 1} ∀n ∈ N, f ∈ F, q ∈ Q (19)
an1n2q ∈ {0, 1} ∀n1, n2 ∈ N, q ∈ Q (20)
ln1n2qh ∈ {0, 1} ∀n1, n2 ∈ N, q ∈ Q, h ∈ Fq (21)
γnqfg ∈ {0, 1} ∀n ∈ N, q ∈ Q, f ∈ F, g ∈ Fq (22)
bfnqh ∈ {0, 1} ∀n ∈ N, q ∈ Q, h ∈ Fq (23)
pnfq ∈ {0, 1} ∀n ∈ N, q ∈ Q, f ∈ F (24)
rq ≥ 0 ∀q ∈ Q (25)
σnqgh ≥ 0 n ∈ N, q ∈ Q, g ∈ Fq, h ∈ Fq (26)
onq ≥ 0 n ∈ N, q ∈ Q (27)

Besides, the model also includes some additional con-
straints, not detailed here due to space constraints. Briefly, they
ensure that: (a) the placement of all the micro-services related
to each request is achieved; (b) the chaining passes through
the necessary micro-services; (c) the memory capacity of each
node is respected; (d) each chaining starts with the source node
and ends with the destination node related to each request; (e)
variables bfnqh are activated when an external fork takes place
on node n for request q and on the path h ; (f) the links related
to each path h are only active if they are active in the request
chain; (g) the flows for each path are respected; (h) each
path related to a request q passes through at least one micro-
services related to its request; (i) each deployed micro-services
belongs to a group. One can lastly notice that the constraints
of nodes ordering respect and micro-services ordering respect
were inspired by the work carried out in [2], [22]. This studied
problem is NP-complete. Indeed, by considering the particular
case with only one type of VNF, made of a single micro-
service without parallelism nor mutualisation option, it reduces
to the classical VNF placement and chaining problem that is
already NP-Complete [23].

IV. EVALUATION

A. Implementation

In order to validate our model and its performance under
various conditions, we have implemented it into CPLEX
v20.1.0. The C++ code is 1135 lines long and available at:
https://www.mosaico-project.org/outcomes for reproductibil-
ity. The correctness checking has consisted in verifying the
following bias: (1) absence of circuits, (2) deployment of
all micro-services related to each request, (3) respect of
the ordering between micro-services, (4) respect of memory
resource consumption, (5) correctness of latency computation,
and finally (6) correctness of parallelism and mutualization
in relation to the mutualization and parallelism tables. All
experiments were performed on a 11th gen. Intel Core i7-
1165g7@2.80GHz 1.69GHz computer with 16GB of RAM
and Windows 10 Prof. Educ. as the underlying operating
system.

B. Evaluation Scenarios

Our evaluation scenarios aims at (1) understanding the per-
formance of our model in realistic situations and (2) comparing
it with current competitors. We have especially considered
those standing for acknowledged approaches in the literature,
namely: (a) Monolithic VNF placement (Mono); (b) Micro-
services placement with neither mutualization nor paralleliza-
tion enhancements (Micro); (c) Micro-services placement with
mutualization enhancement (MicroM), and finally (d) Micro-
services placement with both mutualization and parallelization
enhancements (MicroMP); the latter standing for our model.

All the parameters we considered in our evaluation are
summarized in Table II and motivated subsequently. The
implemented topology, extracted from the SNDlib1 library, is

1Survivable fixed telecommunication Network Design – http://sndlib.zib.de/



5 9 14
0

5

10

15

20

25

30

#Micro-services

(a
)

L
at

en
cy

ga
p

(m
s)

Mono Micro
MicroM MicroMP

2 3 5
0

5

10

15

20

25

30

#SFC
4 7 10

0

5

10

15

20

25

30

#Nodes
+80% +50% +20%

0

5

10

15

20

25

30

Extra memory

5 9 14
0

2

4

6

8

10

#Micro-services

(b
)

N
um

be
r

of
us

ed
no

de
s

Mono Micro
MicroM MicroMP

2 3 5
0

2

4

6

8

10

#SFC
4 7 10

0

2

4

6

8

10

#Nodes
+80% +50% +20%

0

2

4

6

8

10

Extra memory

5 9 14
0

2

4

6

8

10

12

14

16

#Micro-services

(c
)

N
um

be
r

of
us

ed
lin

ks

Mono Micro
MicroM MicroMP

2 3 5
0

2

4

6

8

10

12

14

16

#SFC
4 7 10

0

2

4

6

8

10

12

14

16

#Nodes
+80% +50% +20%

0

2

4

6

8

10

12

14

16

Extra memory

Fig. 3: Histogram of the different successful measurements featuring the performance of our model (MicroMP) against three
competitors (Mono, Micro and MicroM). (a) Gap of latency between the SFC requirement and that computed by the placement
algorithm; (b) Number of nodes required to place the requested SFC; and (c) Number of links required to place the requested
SFC, according to (from left to right sub-figures): The number of micro-services, number of SFC, number of nodes and the
extra allocated memory resources. Each result is the average of eight repetitions bounded with 95% confidence intervals.

Parameter Range or value
Topology DFN-Verein European Telco
VNF Firewall, NAT, Traffic monitor, IPS
Micro-services Read (Rd), Header Classifier (HC), Modifier (Md),

Alert (Al), Drop (Dp), Check IP Header (CIH), HTTP
Classifier (HC), Count URL (CU), Payload Classifier
(PC), Output (Out)

SFC latency 5-10ms according to the SFC
Link latency 1ms
Micro-services
Proc. latency

1ms

VNF Proc. la-
tency

4ms

#SFC 2-5
SFC length 5-14 micro-services
#Nodes 4-10
Node capacity 3-10 instances of micro-services

TABLE II: Evaluation parameters

that of the DFN-Verein European telco. We have partitioned
it by selecting only some Point of Presence (PoP) for a given
region. Then, each region has been split into two layers: one
node acting as a regional PoP connected to other regional
PoPs according to the telco topology, but also acting as

an aggregation point for a few local nodes connected to it
through a regional loop forming a ring sub-topology. The
different SFC we consider are the reflect of those that have
been studied in the dedicated literature [9], [22] which are
composed of NF (Firewall, NAT, Traffic monitor and IPS)
whose decomposition into microservices is acknowledged. As
the core benefits of micro-services, we have considered the
mutualization and parallelization tables illustrated in Table III,
as defined in [20] and [11], where a ”X” in a cell means that
the related row and column micro-services can be mutualized
or parallelized, respectively. Finally, regarding the varying
parameters of our experiments, we have deliberately chosen
to limit the computation time, which may be very long in
case of exact-resolution, to a realistic order of magnitude to
respect what the usage of such a placement algorithm in a
real maintenance process of a virtual telco infrastructure could
be. As such, the computation time of each experiment has
been limited to 600s and, given this limit, the computable
instances of placement covers the scales provided in Table II
for the number of nodes, SFC numbers, SFC lengths and nodes
capacities. Overall, the results exposed subsequently required



Rd HC Md Al Dp CIH HC CU PC Out
Rd x
HC x x x x x
Md x x x x x
Al x x x x
Dp x x x x

CIH x x x x
HC x
CU x x x x
PC x
Out x

Rd HC Md Al Dp CIH HC CU PC Out
Rd x x
HC x x x x x x x x x x
Md x x x x x x x x
Al x x x x x x x x x
Dp x x x x x x x

CIH x x x x
HC x x x x x x x
CU x x x x x x x x x
PC x x x x x x x
Out x x

TABLE III: Parallelism (left) and mutualization (right) tables as defined in [20] and [11]

more than 30 hours of computation to encompass all cases.
Finally, the prescribed latency for SFC ranges from 5 to 10ms,
thus standing for those of realistic ultra-low latency use-cases.

C. Results Analysis
The different metrics we measure in our performance eval-

uation campaign aims at first considering the overall latency
of service chains as a prerequisite and then the resource
consumption to instantiate SFC over the telco infrastructure.
More precisely, this stands for (1) the sum of the differences
between the latency required by each SFC and the effective
latency after deployment, as depicted in first row of Figure 3;
(2) the number of nodes activated for the deployment of all
the SFC, an activated node being a node on which at least
one micro-service is instantiated, as depicted in second row
of Figure 3; and (3) the number of links activated for the
deployment of all SFC, as depicted in third row of Figure 3.

1) Latency Benefit: The first line of Figure 3 shows that
MicroMP performs better in terms of latency gap in the
different configurations under test. Moreover, this latency gain
does not require a higher consumption of resources. We also
notice that the more the system increases in size and load, the
greater the benefit of MicroMP is. The reason is that the more
micro-services there are, the more chances of parallelism and
mutualization there are, these two enhancements allowing the
actual latency reduction. One can also see that Micro is the
approach with the largest latency gap for all configurations.
This is due to its basic decomposition into micro-services
which generates a latency overhead since there are more
entities to deploy. This confirms again that the decomposition
into micro-services is relevant in terms of latency gain only
when using mutualization and parallelism enhancements. One
can also see from the last figure of the first row, that bringing
more available resources does not induce much gain in latency.
The three configurations +80%, +50% and +20% are indeed
almost equivalent regarding that metric.

2) Usage of Infrastructure Resources: The second and third
rows of Figure 3 represent the nodes and links usage of the
four approaches according to the different configurations. One
can see that the usage of resources is more important when
switching to the micro-services approach and this for all the
configurations. The reason is again that with the micro-services
approach, more entities have to be deployed, a VNF being
composed of 4 micro-services on average [20]. Nevertheless,
mutualization manages to reduce the consumption of resources

by reducing the number of micro-services to be deployed,
thus exhibiting a consumption equivalent to that of Mono.
Moreover, parallelism forces some of the micro-services to
be deployed on the same node, thus bringing a slight gain for
MicroMP as compared to MicroM and which, in some cases,
even exceeds Mono.

3) Deployment Agility: The third important aspect to notice
concerns the deployment agility. Indeed, it can be seen that for
some instances and under some configurations (e.g. #Micro-
services = 5, #SFC = 2), the model cannot find a solution for
Mono, despite a sufficient amount of infrastructure resources
for their deployment. Indeed, the breakdown into microser-
vices allows for better agility as compared to Mono because
the components are lighter and memory space management is
therefore easier to achieve.

D. Analysis of Computation Features

Mono Micro MicroM MicroMP
I Obj Dur Gap Obj Dur Gap Obj Dur Gap Obj Dur Gap
1 - - - 19 600 9 19 600 8 18 506 3
2 13 4 0 15 600 53 8 600 27 6 575 18
3 5 4 0 19 600 47 2 584 17 1 111 2
4 - - - 12 600 41 6 4 15 5 364 6
5 12 3 0 15 600 53 8 600 27 6 599 18
6 19 2 0 27 600 35 16 600 47 12 600 38
7 14 1 0 16 526 42 7 600 40 5 600 3
8 13 1 0 15 600 48 8 600 30 6 597 1
9 4 1 0 11 600 47 3 600 19 1 395 0

10 13 3 0 14 600 51 8 600 28 6 2 1
11 12 2 0 15 600 52 8 600 27 6 600 2
12 15 4 0 16 600 44 9 600 32 7 600 23

TABLE IV: Features of the different model computations,
with I: Instance, Obj (ms): Objective function, Dur (ms):
Computation duration, Gap (%): Latency gap.

Table IV summarises the average computation features of
CPLEX for the different instances. Each instance represents a
configuration setup with the values presented in Table II, and
it has been repeated eight times with different SFC to bring
some randomness. Regarding the computation time, limited
to 600s, we notice that for the Mono approach, the optimal
solutions were found much earlier (1,5 seconds on average)
contrary to the Micro approach for which the resolution time
is over our limit for almost all instances. In a similar way, the
gap with respect to the optimal solution of the Mono approach
is zero while that of Micro is around 45%. This indicates
that the solutions obtained for the Micro approach can be



improved if we allowed more computation time. Nevertheless,
with such a limited computation time, the Micro approach is
penalized. By contrast, regarding the MicroM and MicroMP
approaches, the computation time is below the limit for more
than 55% of the cases. In comparison to the Mono approach,
this reveals two insights: (1) with MicroM and MicroMP the
obtained solutions are not necessarily optimal and, in spite of
that, they are better than the optimal solutions of Mono. This
means that with more computing time, one could have still
better solutions for the MicroM and MicroMP approach; (2)
the switch to MicroM and MicroMP requires more computing
time due to the complexity of the approach, but less than the
Micro approach since there are fewer micro-services to deploy,
thus demonstrating the reasonable cost of these approaches.

V. CONCLUSION AND FUTURE WORK

The development of ultra-low latency applications has re-
quired the development of different models optimizing the
placement and chaining of VNF, but also the transition to
the micro-services approach in order to further reduce latency.
However, considering the micro-services approach without op-
timization controversially augments the latency and the mutu-
alization of redundant micro-services and their parallelization
appears as the expected enhancement to reveal the actual
performance gain of micro-services. In this paper, we have
proposed a micro-services orchestration approach composed of
a pre-processing algorithm and a comprehensive mathematical
model allowing the placement and chaining of micro-services
taking into account their mutualization and parallelism and
having as a main objective the reduction of the SFC latency to
reach strong prerequisites. With extensive computation of the
model, we have demonstrated that it exhibits the best latency
performance as compared to monolithic approaches and also
various micro-services alternatives. However, the resolution
of the model with an exact method is very expensive in
computation time which leads us to foresee the realization, in
our future work, of an approximate resolution method based on
a heuristic algorithm. Beyond, we plan to develop a dynamic
version which adapts the placement and chaining according
to the evolution of service demands and the infrastructure
resources.

ACKNOWLEDGMENT

This work is partially funded by the French ANR MO-
SAICO project, No ANR-19-CE25-0012.

REFERENCES

[1] K. Kaur, V. Mangat, and K. Kumar, “A comprehensive survey
of service function chain provisioning approaches in sdn and
nfv architecture,” Computer Science Review, vol. 38, 2020.

[2] B. Addis, G. Carello, and M. Gao, “On a virtual network
functions placement and routing problem: Some properties and
a comparison of two formulations,” Networks, vol. 75, no. 2,
pp. 158–182, 11 2019.

[3] A. Gupta, M. Farhan Habib, U. Mandal, P. Chowdhury, M. Tor-
natore, and B. Mukherjee, “On service-chaining strategies using
virtual network functions in operator networks,” Computer
Networks, vol. 133, pp. 1–16, 2018.

[4] R. Riggio, A. Bradai, D. Harutyunyan, T. Rasheed, and
T. Ahmed, “Scheduling wireless virtual networks functions,”
TNSM, vol. 13, no. 2, pp. 240–252, 2016.

[5] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near
optimal placement of virtual network functions,” in INFOCOM,
2015, pp. 1346–1354.

[6] W. Rankothge, F. Le, A. Russo, and J. Lobo, “Optimizing
resource allocation for virtualized network functions in a cloud
center using genetic algorithms,” TNSM, vol. 14, no. 2, pp. 343–
356, 2017.

[7] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker,
“Virtualizing the network forwarding plane,” in Proceedings of
PRESTO’10. ACM, 2010.

[8] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and
L. P. Gaspary, “Piecing together the nfv provisioning puzzle:
Efficient placement and chaining of virtual network functions,”
in IFIP/IEEE IM, 2015, pp. 98–106.

[9] M. C. Luizelli, W. L. Da Costa Cordeiro, L. S. Buriol, and
L. P. Gaspary, “A fix-and-optimize approach for efficient and
large scale virtual network function placement and chaining,”
Computer Communications, vol. 102, no. C, pp. 67–77, 2017.

[10] H. Moens and F. D. Turck, “Vnf-p: A model for efficient place-
ment of virtualized network functions,” in IFIP/IEEE CNSM,
2014, pp. 418–423.

[11] Y. Zhang, B. Anwer, V. Gopalakrishnan, B. Han, J. Reich,
A. Shaikh, and Z.-L. Zhang, “Parabox: Exploiting parallelism
for virtual network functions in service chaining,” in SOSR.
ACM, 2017, pp. 143–149.

[12] L. S. Foundation. Data plane development kit. [Online].
Available: https://www.dpdk.org/

[13] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “Nfp: Enabling
network function parallelism in nfv,” in SIGCOMM. ACM, 08
2017, pp. 43–56.

[14] S. Xie, J. Ma, and J. Zhao, “Flexchain: Bridging parallelism and
placement for service function chains,” TNSM, vol. 18, no. 1,
pp. 195–208, 2021.

[15] S. R. Chowdhury, M. A. Salahuddin, N. Limam, and
R. Boutaba, “Re-architecting nfv ecosystem with microservices:
State of the art and research challenges,” Network, vol. 33, no. 3,
pp. 168–176, 2019.

[16] G. Liu, Y. Ren, M. Yurchenko, K. K. Ramakrishnan, and
T. Wood, “Microboxes: High performance nfv with customiz-
able, asynchronous tcp stacks and dynamic subscriptions,” in
SIGCOMM, 2018, p. 504–517.

[17] A. Bremler-Barr, Y. Harchol, and D. Hay, “Openbox: A
software-defined framework for developing, deploying, and
managing network functions,” in SIGCOMM. ACM, 2016.

[18] H. Hassan, M. Jammal, and A. Shami, “Exploring microservices
as the architecture of choice for network function virtualization
platforms,” Network, vol. 33, no. 2, pp. 202–210, 2019.

[19] A. Sheoran, P. Sharma, S. Fahmy, and V. Saxena, “Contain-
ed: An nfv micro-service system for containing e2e latency,”
vol. 47, no. 5. ACM, 08 2017, pp. 12–17.

[20] Z. Meng, J. Bi, H. Wang, C. Sun, and H. Hu, “Micronf: An
efficient framework for enabling modularized service chains in
nfv,” JSAC, vol. 37, no. 8, pp. 1851–1865, 2019.

[21] S. Chowdhury, A. Rahman, H. Bian, T. Bai, and R. Boutaba,
“A disaggregated packet processing architecture for network
function virtualization,” JSAC, vol. 38, no. 6, 2020.

[22] A. Mouaci, E. Gourdin, I. LjubiĆ, and N. Perrot, “Virtual
network functions placement and routing problem: Path formu-
lation,” in IFIP Networking, 2020, pp. 55–63.

[23] B. Addis, M. Gao, and G. Carello, “On the complexity of
a virtual network function placement and routing problem,”
Electronic Notes in Discrete Mathematics, vol. 69, pp. 197–204,
2018.


