
HAL Id: hal-04029613
https://hal.science/hal-04029613v1

Submitted on 4 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A survey of Optimal Transport for Computer Graphics
and Computer Vision
Nicolas Bonneel, Julie Digne

To cite this version:
Nicolas Bonneel, Julie Digne. A survey of Optimal Transport for Computer Graphics and Computer
Vision. Computer Graphics Forum, 2023, 42 (2). �hal-04029613�

https://hal.science/hal-04029613v1
https://hal.archives-ouvertes.fr


EUROGRAPHICS 2023
A. Bousseau and C. Theobalt
(Guest Editors)

Volume 42 (2023), Number 2
STAR – State of The Art Report

A survey of Optimal Transport for Computer Graphics and
Computer Vision

Nicolas Bonneel1 and Julie Digne1

1CNRS, Univ. Lyon, France

Abstract
Optimal transport is a long-standing theory that has been studied in depth from both theoretical and numerical point of views.
Starting from the 50s this theory has also found a lot of applications in operational research. Over the last 30 years it has spread
to computer vision and computer graphics and is now becoming hard to ignore. Still, its mathematical complexity can make
it difficult to comprehend, and as such, computer vision and computer graphics researchers may find it hard to follow recent
developments in their field related to optimal transport. This survey first briefly introduces the theory of optimal transport in
layman’s terms as well as most common numerical techniques to solve it. More importantly, it presents applications of these
numerical techniques to solve various computer graphics and vision related problems. This involves applications ranging from
image processing, geometry processing, rendering, fluid simulation, to computational optics, and many more. It is aimed at
computer graphics researchers desiring to follow optimal transport research in their field as well as optimal transport researchers
willing to find applications for their numerical algorithms.

CCS Concepts
• Computing methodologies → Computer graphics; Computer vision;

1. Introduction

Optimal transport is a theory that has been mainly used to compare
probability distributions and interpolate between them. The optimal
transport problem was first stated by Monge in 1781 [Mon81] as
the problem of moving a pile of earth from one location to another
with minimum effort. While Monge did not succeed in solving
this problem, Kantorovich did more than 150 years later, with his
new linear programming formalism, in 1942 [Kan42]. While the
problem was formally solved, fast algorithmical solutions remained
limited. For decades this problem has thus remained computationally
intractable even for moderately coarse discretizations. With recent
advances in numerical methods and solvers, optimal transport has
finally found its way to solve realistic computer graphics and vision
related problems. It is now routinely used to solve problems in image
processing, geometry processing, rendering, and animation, as well
as many other fields – problems we will cover in breadth throughout
this survey.

While the mathematical theory behind optimal transport and nu-
merical techniques are largely presented in recent books [Vil09,
San15, PC17] and the state-of-the-art in numerical solvers is ex-
tensively developed in a recent survey [PC19], our state-of-the-art
report focuses on computer graphics and vision applications. Appli-
cations in image processing are more exhaustively covered in the
Habilitation of Papadakis [Pap15]. The aim of this survey is twofold.
First, it gives a brief and gentle introduction to optimal transport

for computer graphics and computer vision researchers who are
not necessarily comfortable with heavy mathematical developments
but desiring to follow optimal transport research in their own field.
Second, it gives optimal transport researchers a set of potentially
exciting applications to their research. To our knowledge, these
aspects are not covered by existing surveys. Researchers familiar
with optimal transport can directly skip to the application section
they are interested in. These applications are organized into sections
corresponding to different fields of computer graphics and computer
vision: image processing (sec. 4), rendering (sec. 5), geometry pro-
cessing (sec. 6), topological data analysis (sec. 7), and simulation
and animation (sec. 8). Table 6 is a good starter for an overview of
the possible applications of optimal transport.

2. Principles of optimal transport

While this report does not aim at fully exposing optimal transport
theory and numerical techniques, we briefly present the problem in
layman’s terms as well as broad classes of solvers. This will involve
sloppy notations and definitions that might hurt mathematically
inclined researchers – proper definitions and introductions to optimal
transport can be found in other work [San15, PC19]. For instance,
our exposition will not require knowledge of measure theory, and we
will merely refer to the optimal transport of nonnegative functions
or, at worst, set of Dirac distributions, seen as point sets.
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Figure 1: The Monge problem seeks the minimum cost transport
map T allowing to reshape a function f to another function g of the
same total integral (mass). This figure illustrates the 1-d case, but
the theory extends to functions over arbitrary dimensional spaces,
and even Riemannian manifolds.

2.1. The Wasserstein cost

2.1.1. The Monge problem

Monge was interested in moving a pile of earth from one location to
another with minimum amount of effort (Fig. 1). He formulated the
problem as an energy minimization problem, considering the cost
of moving the pile of earth (or of sand) as the sum of the costs of
moving each of its individual particles, each particle of earth being
moved from location x∈ X to location T (x)∈ X . The cost of moving
each particle from a location x to a location y is denoted c(x,y), and
is also called ground distance. Monge initially used c(x,y)= ∥x−y∥,
the distance traveled by the particle of sand, though this renders the
problem much more complicated. For many practical applications
in computer graphics, the quadratic cost c(x,y) = ∥x− y∥2 is used,
i.e., the squared distance, which has nice properties and physical
interpretation. We assume that the pile of earth to move has a shape
that can be represented by a function f over domain X , and we
want to give it a new shape g elsewhere in the domain X . The
Monge problem defines the transport cost W ( f ,g) between f and g
as follows:

W ( f ,g) =min
T

∫
X

c(x,T (x)) f (x)dx (1)

s.t. f (x) = g(x) |detJT (x)| ∀x ∈ X (2)

The optimization is performed over all possible ways to reshape
the function f using all possible warps T . Here, X is here an n-
dimensional Euclidean space, and the formulation extends to sur-
faces or Riemannian manifolds, replacing distances with geodesic
distances). Denoting x = (x0,x1, . . . ,xn) the space variable, the opti-
mization constraint 2 involves the Jacobian JT of the transformation
T = (T1, . . . ,Tn) defined at x as:

JT (x) =
[

∂Ti(x)
∂x j

]
i, j

(3)

and enforces “mass preservation”, i.e., that after reshaping f by
the warp T , the pile of sand matches g. One can see y = T (x) as a
change of variable, and constraint 2 as the well-known “change of
variable formula” for integration.

Of course, way beyond moving earth, this problem allows to re-
shape actual functions. The transport cost W ( f ,g) gives the optimal
cost of moving f towards g, assuming that the total mass (i.e., the
integral of) f equals that of g, and that these functions are never neg-
ative. A particular case of “non-negative functions having the same

integral” is non-negative functions of integral 1. This arises notably
when dealing with probability density functions. This framework has
thus met with large success in the probabilistic setting, to transport
probability density functions and compare them with this transport
cost W ( f ,g) (it also generalizes to probability distributions).

If c(x,y) = c(y,x), we have W ( f ,g) =W (g, f ), and if c(x,y) is a
distance between points x and y, then W ( f ,g) is also a distance be-
tween functions f and g. In this case, this guarantees that W ( f ,g) =
W (g, f ), that W ( f ,g) = 0 iff f = g, and that W respects the tri-
angle inequality W ( f ,g) ≥ W ( f ,h) +W (h,g) ∀h. In fact, when
c(x,y) = ∥x− y∥p for p ≥ 1, the function Wp( f ,g) =W ( f ,g)1/p is
called Wasserstein-p distance and is also a distance between func-
tions f and g. This distance is also called Earth Mover’s Distance
(EMD), in reference to the Monge problem.

2.1.2. The Kantorovich problem

δx

δy0

δy1

1
2

1
2

The Monge problem is non-linear, ex-
tremely difficult to solve in general, and
may not have solutions in contexts useful
to the computer scientist. For instance,
replacing the function f by a Dirac distri-
bution δx and function g by a sum of two
half Dirac distributions 1

2 δy0 +
1
2 δy1 , it

becomes impossible to find a one-to-one
warp T that sends the mass at a single x to two different locations
y0 and y1. Dirac distributions are often encountered when dealing
with discrete problems, e.g., attempting to discretize a continuous
problem or when sampling from a probability distribution. Fortu-
nately, Kantorovich came up with a solution that both simplifies the
resolution of the optimal transportation problem, and generalizes
the formulation to extend it to a broader class of objects. Now, one
does not attempt to find a warp (more often called transport map,
see Fig. 2 right) T : X → X that maps each particle to its new loca-
tion, but a transport plan P : X ×X → R that indicates how much
mass is transported between two locations. This led to the (sloppy)
formulation†:

W ( f ,g) =min
P

∫
X×X

c(x,y)P(x,y)dxdy (4)

s.t.
∫

X
P(x,y)dy = f (x) ∀x ∈ X (5)∫

X
P(x,y)dx = g(y) ∀y ∈ X (6)

P(x,y)≥ 0 ∀(x,y) ∈ X ×X (7)

where the optimization is now performed over all transport plans.
The constraints on the transport plans express the fact that the total
mass moved from each location x corresponds to the mass f (x)
present at location x (eq. 5), that the total mass received at location
y corresponds to what is needed at that location, that is g(y) (eq. 6),

† Beware that more formally, P is a measure and requires more care in
writing the integrals which should read

∫
X×X c(x,y)dP(x,y). Similarly, con-

straints 5,6 would require the notion of push-forward, which is beyond the
scope of our survey.

© 2023 The Author(s)



N. Bonneel and J. Digne / A survey of Optimal Transport for Computer Graphics and Computer Vision

f

g

x

y

P(x,y)

x

T
T(x)

Figure 2: Solution to the problem of Fig. 1. Left. The Monge solution
yields a transport map T that tells where the mass of f located at x
should move. Right. The Kantorovich solution yields a transport
plan P that tells how much mass is moved between all pairs (x,y)
of locations. This transport plan is very sparse. When there is no
Dirac or oddities, both solutions coincide, and the transport plan
is the graph of the transport map. In 1-d like here, this graph is
monotonically increasing. More generally, in higher dimension, it is
the gradient of a convex function.

and that the mass transport from each location and received by
another location cannot be negative (eq. 7), all these constraints
enforce mass conservation.

One advantage of this formulation is that it is more flexible, and
when Monge’s solution T exists, it coincides with that of Kan-
torovich by taking P = (Id,T ) with Id the identity function (Fig. 2).
Another advantage is that it yields a linear program. This is more
easily seen, from a computer scientist perspective, if one discretizes
the function f at m discrete locations (xi)i=1..m ∈ Xm and function
g at n locations (y j) j=1..n ∈ Xn :

W ( f ,g) =min
P ∑

1≤i, j≤m,n
c(xi,y j)Pi, j (8)

s.t.
n

∑
j=1

Pi, j = f (xi) ∀i ∈ {1 . . .m} (9)

m

∑
i=1

Pi, j = g(y j) ∀ j ∈ {1 . . .n} (10)

Pi, j ≥ 0 1 ≤ i, j ≤ m,n (11)

where the optimization is now performed over all m×n matrices P∈
Rm×n. This indeed corresponds to minimizing a linear combination
of variables, under both m+ n linear equality constraints and mn
positivity constraints.

Since it corresponds to a linear program, it admits a dual formula-
tion with the same optimal cost, which, in its continuous formulation,
gives:

W ( f ,g) =sup
φ,ψ

∫
X

φ(y)g(y)dy+
∫

X
ψ(x) f (x)dx (12)

s.t. φ(y)+ψ(x)≤ c(x,y) ∀(x,y) ∈ X ×X (13)

where ψ : X →R and φ : X →R are dual variables (the plus sign for
ψ depends on conventions, you may find it with a minus). Duality
can probably again be better understood from a computer scientist

f g

x

Figure 3: Using the map Tt = (1− t)Id + t T , one can smoothly
interpolate between the two functions shown in Fig. 1. This is called
displacement interpolation (here with t = 0.25,0.5,0.75, from red
to blue.

point of view in the discrete setting:

W ( f ,g) =max
φ,ψ

n

∑
j=1

φ jg(y j)+
m

∑
i=1

ψi f (xi) (14)

s.t. φ j +ψi ≤ c(xi,y j) 1 ≤ i, j ≤ m,n (15)

which now optimizes vectors φ ∈Rn and ψ ∈Rm under mn inequal-
ity constraints. Intuitively, this corresponds to the problem of an
transport company who charges the consumer an amount of money
ψ(x) for loading their truck at location x with 1 unit of mass and
charging again φ(y) for unloading their truck at location y of 1 unit
of mass. The company’s goal is to maximize their profit, under the
constraint that the cost of loading plus unloading one unit of mass
is not greater than the cost c(x,y) defined in the primal problem.
The dual formulation is sometimes used in linear program solvers,
and for solving the semi-discrete optimal transport problem (see
sec. 3.2).

2.2. Wasserstein barycenters

As mentioned previously, the optimal transport framework pro-
duces a distance between non-negative functions that have the
same integral when the cost of moving a particle from x to y is
c(x,y) = ∥x− y∥p. This notably allows to produce interpolations
between functions. The case p = 2 is particularly interesting. When
displacing particles of mass from x to their target T (x) (e.g., assum-
ing the Monge formulation), one may stop the motion of all particles
simultaneously, i.e., replacing the map T by Tt = (1− t)Id + t T for
some time parameter t. Doing so continuously warps f towards g
and the resulting interpolation, ft(x) = f (Tt(x))|detJTt (x)|, is called
displacement interpolation (Fig. 3). Displacement interpolation can
also be interpreted as moving along a geodesic between the two
functions with respect to the Wasserstein metric: any point on this
geodesic corresponds to an intermediate function during the interpo-
lation.

This interpolation can also be obtained by solving the following
optimization problem that resembles the one used for obtaining a
linear interpolation between any two points (replacing W2 by ∥.∥):

ft = argminh(1− t)W 2
2 (h, f )+ tW 2

2 (h,g). (16)

For instance, for t = 0.5, this amounts to finding a function h that
is as equidistant as possible to the functions f and g in term of
Wasserstein-2 distance.

The formulation as an energy minimization problem allows to

© 2023 The Author(s)
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generalize the notion of displacement interpolation to the case where
one wants to interpolate between more than two non-negative func-
tions of the same integral. This leads to the notion of Wasserstein
barycenter of a set of functions { fk}k with their corresponding
barycentric weights {λk}k as:

b = argminh ∑
k

λkW 2
2 (h, fk) (17)

For instance, the Wasserstein centroid of three functions f0, f1, f2
would be the Wasserstein barycenter of {( f0, 1

3 ),( f1, 1
3 ),( f2, 1

3 )},
i.e. b = argminh W 2

2 (h, f1)+W 2
2 (h, f2)+W 2

2 (h, f3).

2.3. Particular cases

There are simple cases which can be trivially solved.

2.3.1. The 1-d case

Computing the optimal transport map T between two 1-d functions
f and g can be easily achieved when the cost c(x,y) is a convex
function of the distance ∥x−y∥ (e.g., when computing Wp for p> 1).
We consider the cumulative sums:

F(x) =
∫ x

t=−∞
f (t)dt (18)

G(x) =
∫ x

t=−∞
g(t)dt (19)

The optimal transport is then:

T (x) = G−1(F(x)) (20)

Here G−1 denotes the inverse function. However, since g may be
sometimes zero, it means G(x) may be constant for a certain range
of x values, thus, G may not be injective, and G−1 may be ill defined.
It is thus necessary to define a more general inverse function:

G−1(x) = inf{y ∈ R;G(y)> x} (21)

In the discrete setting, F and G are obtained using discrete cumu-
lative sums (e.g., Matlab’s cumsum) or higher order integration
schemes (e.g., Newton-Cotes), and the inverse function can be ob-
tained using a line search. Computing the map for consecutive
discrete values of x allows to start the line search at the previously
found location, producing an O(m+n) cost algorithm.

In the case where f and
g actually consist in a sum
of the same number of uni-
formly weighted Diracs, a
transport map merely as-
sign each Dirac of f to a Dirac of g. It can be shown that in the
convex cost setting above, one can get the optimal transport map
simply by sorting the Diracs along the line from left to right, and
associating the kth Dirac of f with the kth Dirac of g.

In 1-d with convex cost, Wasserstein barycenters can also be
easily achieved by considering:

B−1 = ∑
k

λkF−1
k (22)

This allows to obtain B−1, the inverse cumulative sum of the desired

barycenter b, as a function of all {F−1
k }k, the inverse cumulative

sums of each input distribution. In the discrete setting, once the
inverse cumulative sum of the result is numerically computed, one
can obtain the Wasserstein barycenter b by numerical inversion
followed by numerical differentiation.

Costs that are concave functions of the ℓ2 distance between par-
ticles leads to much more complex algorithms [DSS12], and other
1-d extensions have been proposed (e.g., transporting on the cir-
cle [RDG11] or transporting Diracs towards a larger number of
Diracs [BC19]).

To simply compute the optimal transport cost, for more general
costs of the form c(x,y) = c(x− y), we can use [Vil09]:

W ( f ,g) =
∫ 1

0
c(F−1(x)−G−1(x))dx (23)

One dimensional transport is the basis for higher-dimensional
techniques that rely on 1-d projections.

2.3.2. Transporting Gaussians

In some cases, and in particular high-dimensional datasets, the dis-
tribution of data is well approximated by a Gaussian distribution,
and one needs to merely transport Gaussians. This can be easily
achieved. Interestingly, one can show that Wasserstein barycenters
of Gaussians are also Gaussians.

For the quadratic cost, the optimal transport cost between two
d-dimensional Gaussians N0 =N (µ0,Σ0) and N1 =N (µ1,Σ1) of
means µ0 ∈ Rd and µ1 ∈ Rd and covariance matrices Σ0 ∈ Rd×d

and Σ1 ∈ Rd×d is obtained by:

W2(N0,N1) = tr(Σ0 +Σ1 −2Σ0,1)+∥µ0 −µ1∥2 (24)

with Σ0,1 = (Σ
1/2
0 Σ1Σ

1/2
0 )1/2. The square roots 1/2 are understood

as matrix square roots (involving square roots of eigenvalues).

The displacement interpolation between two Gaussians N0 and
N1 is the Gaussian Nt =N ((1− t)µ0 + t µ1,Σt), with

Σt = [(1− t)Id+ t C] Σ0 [(1− t)Id+ t C] (25)

with C = Σ
1/2
1 Σ

+
0,1Σ

1/2
1 , denoting Σ

+
0,1 the Moore-Penrose pseudo-

inverse of Σ0,1.

When considering more than two Gaussians {Nk =N (µk,Σk)}k
with weights {λk}k, their Wasserstein barycenter is b =
N (∑k λkµk,Σ) with Σ obtained by solving a fixed point equation:

Σ
(n+1) = ∑

k
λk

(√
Σ(n+1)Σk

√
Σ(n+1)

)1/2
(26)

3. Numerical methods

Again, exhaustive coverage of numerical solvers can be found in the
recent survey of Peyré and Cuturi [PC19], and this section is aimed
at briefly exposing broad classes of solvers.

© 2023 The Author(s)
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3.1. LP solvers

Linear programming (LP) solvers provide exact solutions to the
discrete optimal transport problem. The optimal transport linear
program can be seen as a graph, where each of the m and n discrete
locations of the input and target functions are nodes, and moving
mass from location i to location j (i.e., when the entry (i, j) of the
transport plan matrix P is non-zero) amounts to connecting node
i with node j with an arc. An interesting property of this LP is
that it possess at most m+n−1 non-zero variables, i.e., the graph
of the optimal transport plan has at most m+n−1 arcs with non-
zero flow, among mn possible arcs, which makes it suitable for
sparse graph representations. Displacement interpolation between
two distributions can be obtained in this way by advecting particles
along arcs [BvdPPH11]. When the particles are uniformly weighted
and m = n, the optimal transport problems amounts to a Linear
Assignment Problem (LAP), i.e., the transport plan is actually a
one-to-one mapping, and there are only m non-zero arcs. Note that
while an LP formulation of Wasserstein barycenters (for more than
two distributions) is possible, existing solvers are limited to very
small problems [ABM16].

For the most general problem, with arbitrary cost functions, the
network simplex algorithm has shown to work fastest [BvdPPH11].
However, memory storage can still become a bottleneck for values
of m = n ≈ 40,000 (problems that typically take minutes to solve,
though this heavily depends on the cost function).

For problems structured on a grid with quadratic ground dis-
tance, it becomes possible to benefit from the separability of the
quadratic cost and split the optimal transport problem along each
axis, leading to faster solutions [ABGV18] (about 50x faster than
default network simplex for 128x128 grids, and works with 512x512
grids). Multiscale approaches may also be used in the Cartesian grid
setting [Sch16, OR20].

The special case of ℓ1 ground distance has also received a lot of
attention. To alleviate the computational complexity of LP solvers, in
the case of 2-d histogram to 2-d histogram mass transportation, Ling
and Okada [LO07] proposed to split the particle flow into sequences
of motions of magnitude 1. This drastically reduces the number
of variables and allows to define a network flow interpretation to
solve the problem efficiently. They further reduce the complexity
by introducing a tree-based algorithm extending the transportation
simplex to the ℓ1 case yielding the EMD-ℓ1 algorithm.

A state-of-the-art general purpose solver is the Network Sim-
plex of the LEMON C++ library [DJK11] adapted by Bon-
neel et al. [BvdPPH11] and found at https://github.com/
nbonneel/network_simplex.

3.2. Semi-discrete solvers

In the special case where one is interested in transporting a continu-
ous function towards a set of Dirac distributions (of the same total
mass), the Monge optimal transport problem leads to a solution that
can be expressed with a geometric construction called Laguerre’s
diagrams [AHA92]. If in addition the ground distance is quadratic,
this corresponds to a power diagram, i.e., a Voronoï diagram for
which the size of each cell can be controlled with a weighting pa-
rameter. An intuitive example of the semi-discrete optimal transport

5

5

5

5

5
1

1

1
1

1

Figure 4: Semi-discrete optimal transport leads to power diagrams.
Here, a set of 10 bakeries can produce either 5 units of bread (orange
dots) or 1 unit of bread (pink dots). Inhabitants of a uniform density
population are divided among these bakeries such that the total
transportation effort is minimized and their need for bread is exactly
satisfied. This leads to a cell decomposition where each inhabitant
in one cell will go to its associated bakery (arrows) – bakeries
producing more bread lead to bigger cells (in blue). Note that the
bakery sites are not necessarily inside their corresponding cells
(here, all bakeries producing 1 unit of bread are located outside of
their cell).

problem consists in a density of population desiring to get their
morning bread from a set of bakeries at specific locations. If the
bread supplies of all bakeries is unlimited, the optimal choice for
each inhabitant would be to go to the nearest bakery to buy its bread
– this leads to a Voronoï diagram partition of the space. However,
if the sum of the bread supplies of all bakeries exactly equals the
sum of the bread demands of all inhabitants, each inhabitant would
not necessarily go to its nearest bakery as its bread supply might be
exhausted by other customers. Instead, each bakery would attract
customers from a connected and convex polygonal neighborhood
(in the case of the quadratic ground distance), that may not neces-
sarily contains the bakery location (Fig. 4). The diagram produced
by other costs can be much more complex – e.g., for the ground
distance c(x,y) = ∥x−y∥, this leads to the Apollonius diagram, that
has curved edges.

This lends itself to efficient implementations, as power diagrams
are well studied geometric constructions that can be obtained by
computing a Voronoï diagram in a higher dimensional space. Typ-
ical semi-discrete solvers optimize an energy designed so that, at
optimality, the area of each power cell (i.e., the polygonal part of
the city going towards its optimal bakery, in the above example)
matches the mass of each Dirac (i.e., the amount of bread avail-
able at that bakery). This leads to fast, multiscale, implementations
in 2-d [Mér11] and 3-d [Lév15], or using second order optimiza-
tion schemes [Lév15, SWS∗15, KMT19], and extends to optimal
transport on the sphere [CQW∗19] or when the masses in the two
distributions are different [Lév22]. This is also relatively easy to
implement – e.g., as a student project or lab. This however suffers

© 2023 The Author(s)
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from the difficulty in implementing these constructions in higher
than 3-dimensional spaces.

Typical sizes of distributions handled by this setting by a state-
of-the-art solver involves up to millions of particles, in 3-d, on the
GPU [vHLM22]. Insights on semi-discrete optimal transport solvers
and their implementation can be found in the paper of Lévy and
Schwindt [LS18].

A fast semi-discrete C++ implementation in 3-d [Lév15] is avail-
able within the WarpDrive plugin of Levy’s Graphite software at
https://github.com/BrunoLevy/GraphiteThree.

3.3. Entropy regularized solver

By adding the entropy of the transport plan as a regularization term
in the Kantorovich minimization problem (eq. 4 and 8), it turns out
that the discrete optimal transport problem can be solved with the
help of iterative matrix multiplications and elementwise divisions.
The resulting algorithm is called the Sinkhorn algorithm. It is ex-
tremely easy to implement (a couple of lines of Matlab or Python
code), can be very fast, works with arbitrary costs and geometric
settings, and extends to the construction of Wasserstein barycen-
ters [CD14, SdGP∗15]. In the special case of grids and quadratic
ground distance, these matrix multiplications can advantageously be
replaced by fast Gaussian convolutions [SdGP∗15], and the imple-
mentation can be even faster and simpler to implement (also lending
itself well to labs or projects for students).

The downside is that the entropic regularization adds a small
amount of blur to the transport plans: the amount of mass leaving
location i will spread a little bit over its target location j (technically,
it is spread infinitely, but the mass traveling far away is negligible
– see Fig. 5). It will spread even more as the amount of added
entropy increases. While it is tempting to make the amount of added
entropy tend to zero to recover sharp transport plans or Wasserstein
barycenters, this approach leads to numerical instabilities as the
amount entropy decreases too much. Performing computations in
the log-domain stabilizes these computations, but also makes them
much slower [CPSV18].

Another downside of entropy regularized distances, denoted
Wε( f ,g), is that the resulting optimal energy is not a distance any-
more, while the corresponding non-regularized problem leads to
a distance. Specifically, with the entropic term, we do not have
Wε( f , f ) = 0 and the triangle inequality also largely breaks. An
interesting approach is to debias the result energy, and instead con-
sider W̃ε( f ,g) = Wε( f ,g)− 1

2Wε( f , f )− 1
2Wε(g,g). This enforces

that W̃ε( f , f ) = 0 by construction, and in practice, reduces the num-
ber of cases where triangle inequality is not satisfied. The resulting
energy is called the Sinkhorn divergence [FSV∗19]. This energy can
be used in an energy optimization routine to produce (approximate)
Wasserstein barycenters. In particular, using a single descent step
already produces plausible results, and amounts to linearizing the
problem [Fey20].

Nowadays, a state-of-the-art Python solver for Sinkhorn di-
vergences for scattered data, implemented on the GPU, with an
additional multiscale strategy, is that of GeomLoss [FSV∗19].
It supports discrete problems of about a million of data points

within seconds and is currently available at https://www.
kernel-operations.io/geomloss/.

Replacing entropy by other types of regularization is possi-
ble, such as regularizing by the quadratic norm of the transport
plan [ES18], but are far less used in practice for computer vision
and graphics applications.

3.4. Sliced optimal transport

An alternative functional for high-dimensional optimal transport
relies on optimal transport over projections on random one-
dimensional lines [RPDB12, Bon13]. The corresponding distance
between two functions is thus merely the average over all 1-d projec-
tions of 1-d optimal transport problems over these projections (the
projection of a function onto a straight line is the integral of that func-
tion over the hyperplane orthogonal to that line passing through each
point on that line). This can be computed efficiently using Radon
transform in the case of densities stored on a grid, or by projecting
points in the case of sums of Dirac distributions [RPDB12,BRPP15].
They lead to either Radon or Sliced optimal transport problems, and
can be used to compute Sliced and Radon Wasserstein barycenters.
They are also extremely easy to implement and very fast.

Contrary to entropic regularization or Sinkhorn divergences, this
does not rely on a parameter that makes the problem converge to the
“true” optimal transport problem as it tends to zero. Projecting on 1-d
lines makes the problem fundamentally easier to solve, but it does
not produce the same result, and does not converge to the classical
optimal transport problem, even as the number of 1-d projection
increases. However, when the cost writes as a power of the 1-d
distance, c(x,y) = |x − y|p, it also produces a distance between
functions, similarly to the Wasserstein-p distance. In this case, a
(loose) error bounds exist. Denoting SWp( f ,g) the corresponding
sliced Wasserstein-p distance in d dimension, one has [Bon13]:

SWp( f ,g)p ≤Cd,pWp( f ,g)p ≤Cd,pRp−1/(d+1)SWp( f ,g)1/(d+1)

(27)
for f and g supported in a ball of radius R and some constant Cd,p.

While sliced transport is easily implemented, reference Matlab
code for sliced and Radon barycenters can be found from the work of
Bonneel et al. [BRPP15] at https://github.com/gpeyre/
2014-JMIV-SlicedTransport.

3.5. Dynamic formulation

A quantity ft is preserved when it is advected by a vector field v if it
satisfies the conservation PDE:

∂ ft
∂t

+div( ftv) = 0 (28)

It can be shown that for the quadratic ground distance, a function ft
such that f0 = f and f1 = g satisfying this conservation PDE for a
vector field v(x, t) minimizing:

min
∫ 1

0

∫
X
∥v(x, t)∥2 ft(x, t)dxdt (29)

is the displacement interpolation between f and g. Intuitively, one
is looking for the motion of a gas shaped as f at t = 0 and g at
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Figure 5: Solution to the problem of Fig. 1 with increasing amount of entropy. From left to right, the Gaussian standard deviation used in the
convolutional approach of Solomon et al. [SdGP∗15] is σ = 2,5,10,20,50. As σ increases, the transport plan converges towards the trivial
transport plan P(x,y) = f (x)g(y).

t = 1 minimizing its kinetic energy. Rewriting these expressions
with the variables ( ft , ftv), the problem becomes convex and has led
to the popular Benamou and Brenier numerical technique [BB00]
and subsequent works [PPO14].

In computer graphics, the dynamic formulation has been
used for various problems such as computing geodesics on sur-
faces [SRGB14a], or for other 2-d problems [NG18], using dedi-
cated solvers.

The C++ implementation of the fast 2-d solver of Nader and Guen-
nebaud [NG18] is available at https://github.com/ggael/
otmap.

3.6. Other solvers

Another recent trend is to solve optimal transport problems us-
ing deep learning. It includes learning the optimal transport
plan [CDC22], the Wasserstein embedding [CFD18], or Wasser-
stein barycenters [LDCB22].

Generalizations of the optimal transport problems have also been
investigated. Notably, when the two functions being compared do
not have the same mass, this leads to the unbalanced and partial op-
timal transportation problems [CPSV18, BC19, Lév22], with similar
solutions (entropy regularized, sliced, semi-discrete or dynamical
approaches). Similarly, when the two functions live on two different
spaces and one only has access to pairwise distances within each of
these spaces that need to be matched, the corresponding problem
amounts to the Gromov-Wasserstein problem [Mém11].

Many different solvers are also available within the Python Op-
timal Transport library “POT” [FCG∗21], available at https:
//pythonot.github.io/. Among others, it includes linear
program, entropy-regularized, and sliced solvers. In Fig. 6, we sum-
marize the various solvers and problem settings encountered in
computer graphics and vision applications, which we detail next.

4. Applications to Image processing

4.1. Image retrieval

Probably the earliest use of optimal transport within the computer
graphics and vision literature consists in using the CIE-Lab color
distributions of images as a feature for image retrieval [RTG00], and
matching it using EMD. Due to low efficiency of optimal transport
solvers in the years 2000s (their LP solver took less than a second
for m = n = 100, and minutes for m = n = 1000), image colors were

first quantified. On average they used less than 9 color clusters and
the clusters spanned less than 25 units in any of the L, a and b axes.
This allows to retrieve images of the same color distribution within
a database – though they also proposed extensions for querying
other features with spatial and textural components. To alleviate
the linear search complexity of retrieval algorithms and general
speed issue, Indyk and Thaper [IT03] proposed an approximate
embedding of the optimal transport cost into Rk (with relatively
large k) equipped with the Manhattan distance in the case of the
cost c(x,y) = ∥x− y∥. This allows for the use of Locality-Sensitive
Hashing and thus, sublinear query times. Ling and Okada [LO07]
also applied their EMD-ℓ1 formulation for shape retrieval and shape
recognition using histograms of SIFT descriptors [Low04], shape
contexts [BMP02] and spin images [JH99].

For image retrieval, via histogram matching, a key feature is that
histograms might be non-normalized. Pele and Werman [PW08] pro-
posed to modify the original EMD formulation into ˆEMD by adding
a term accounting for the difference in total mass, which under mild
assumption is a metric even for non-normalized histograms. By fur-
ther thresholding ground distances above 2, and using their modified

ˆEMD, they turn the LP formulation into a linear-time algorithm,
since the maxflow iterations in the simplex algorithm are efficiently
reduced through ground distance thresholding. This proved very
efficient to match SIFT features [Low04] for which the histogram
magnitude conveys critical information. They later extended this
method to any threshold value, leading to flow network with dras-
tically reduced number of edges and faster computations [PW09]
with applications to SIFT matching, Lab histogram matching, and a
combination of both.

4.2. Color grading

Altering colors of images is certainly one of the most widely spread
application to illustrate one’s optimal transport algorithm. Specif-
ically, the goal is to transform the color distribution of an input
photograph or video frame so that the color distribution of the result
matches that of an exemplar image (Fig. 7).

To achieve this effect, the color distribution of an input image in
a given color space is first stored, discarding any spatial information.
The distribution can be stored either as a density on a grid, or
directly considering individual pixels as Diracs in that color space,
or using color clusters, or even considering the color distribution
as a Gaussian distribution. The color distribution of the exemplar
image is stored similarly. An optimal transport map between the
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Application LP Semi-discrete Entropy-regularized Sliced PDE Others
Image retrieval [RTG00, LO07,

PW08, PW09]
[IT03] (embedding)

Color grading [MS03, BvdPPH11,
RFP14, FSDH14,
TPK∗17]

[SdGP∗15, CPSV18,
TPK∗17, BPC16]

[PKD05, PKD07,
BRPP15, BC19]

[PK07, BSPP13] (gaussian)

Style transfer [LR21] [SHS∗17] [KSS19] (no mass preservation)
Image interpolation [Mér11] [SA20] [HZTA04, PPO14,

HMP15]
[CFTR17] (embedding, deep learn-

ing), [LDCB22] (deep learning)
Optical flow and image
matching [XLY∗22, LZYY20] [KKTH10]

Image segmentation [PR17] [PFR12] [CEN07, NBCE09] (1d)
Generative Models and
texture synthesis [GLR18, LR21,

HLPR22, LSC∗19]
[PCVS19] [RPDB12, TPG16,

HVCB21, BRPP15]
[HB95, MZD05] (1d), [HN18,
FXPA13, VDKCC20] (Gaussian),
[ACB17, GAA∗17] (deep learning)

Other image proc. appl. [TPG16] (denoising,
super-resolution)

[GRK∗22] (deep learning for
super-resolution)

Image stippling and
sampling [XLC∗16, dG-

BOD12, LdGKW19]
[QCHC17] [SGSS22, PBC∗20]

Reflectance manipula-
tion [BvdPPH11, GK18,

WKB14]
[SdGP∗15, BPC16,
LBFS21]

Computational optics
and imaging [AAMT15] [STTP14, MMT18b]

Shape comparison and
retrieval [LD09, LD11] [RPC10]

Shape interpolation [Lév15] [SdGP∗15] [RPDB12]
Shape registration [MMT18a] [SFL∗21, MCSK∗17,

ETLTC20, PRM∗21,
LLX21]

[BC19]

Shape reconstruction [GC-
SAD11, DCSA∗14]

[GCSAD11] (heuristics)

Shape parameterization [ZSG∗13, SWS∗15] [DT09]
Transport on surfaces [SV19] [SdGP∗15, PCVS19] [SRGB14a,

LCCS18]

Topological Data Anal-
ysis [TMMH14, VBT19] [LCO18]

Fluid simulation [GM18, dGWH∗15,
Lév22, QLDGJ22]

[QLDGJ22]

Animation [WCGG18] [ZSS22, GKK∗20,
MDZ∗21]

Figure 6: We summarize the solvers or problem settings used for the applications detailed in this STAR. Note that a solver can be used in
different settings – e.g., an entropy-regularized or sliced solver for a semi-discrete OT problem. This classification is thus only indicative.

input and exemplar distributions is then computed. Finally, the color
of each pixel of the input image is matched to its target color using
the optimal transport map or plan (in case of a plan, one color can
be matched with multiple targets – in that case, a weighted average
can be used to obtain a single target [SdGP∗15]).

Sliced [PKD05, PKD07, BRPP15] and unbalanced sliced [BC19]
formulations are efficient for solving the optimal transport prob-
lem in that case, but entropy regularization can be used as
well [SdGP∗15] or even using a simplex-based solver on color
clusters [MS03, BvdPPH11, RFP14, FSDH14]. Even faster is to con-
sider the closed-form expression obtained for Gaussian distributions
in the color space [PK07]. To illustrate 2-d optimal transport solvers,
the color distribution is sometimes stored in the CIE-Lab color space,
and the color transfer problem is separated into matching a 1-d lumi-
nance channel and 2-d chrominance channels [SdGP∗15, BSPP13].

Directly using the optimal transport result to match colors may
lead to quantization artifacts, since similar neighboring colors maybe
be stretched to visibly different colors. To alleviate these artefacts,
Rabin et al. proposed to regularize the transport plan directly by
filtering it using a nonlocal means-like filter [BCM05] adapted to
the space of transport maps [RDG10]. Later, Rabin et al. [RFP14]
directly add regularization within the linear program by relaxing
the mass preservation constraints. Similar regularization for color
transfer can be obtained via unbalanced or partial optimal trans-

port [CPSV18, BC19]. Pitié et al. instead propose a variational
formulation that enforces the resulting image’s gradient to be reg-
ularized towards the original image gradients [PKD07] in order to
reduce grain. Solving an optimal transport between the graphs of
two functions leads to the transportation Lp-distance, that can be
used to match colors accounting for spatial correlations [TPK∗17]
and can more generally be used to compare general functions (that
can be negative, and do not have the same mass).

Note that these methods often produce convincing results (see
Fig. 7 where we compared standard optimal transport based ap-
proaches to direct Adobe Photoshop color matching), but quan-
titative perceptual evaluation of the color transformed images is
challenging, and in practice, to our knowledge, not done. In this
context, it is hard to assess which technique in general works best.

Instead of matching one input image color distribution to one
exemplar, another goal can be to harmonize the colors of a set of
input images, e.g., to make them all look as if they had been shot
with the same camera (or with the same camera settings). In that
case, it can be useful to transfer the color of each input image to the
Wasserstein barycenter of the set of images [BRPP15]. A single im-
age can also be matched to multiple exemplars. In that case, its color
distribution can be projected to the nearest Wasserstein barycenter
of the exemplar images [BPC16], which is formulated as an opti-
mization problem, or Wasserstein barycenters can be used to obtain
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Photoshop

Gaussian
OT [PK07]

Continuous sliced
OT [PKD07]

Discrete sliced
OT [BRPP15]

Figure 7: From top to bottom. Example-based color grading using
Photoshop “Match Color”, optimal transport-based color grad-
ing using a Gaussian approximation [PK07], sliced optimal trans-
port using a continuous cdf-based transfer plus TV-based recon-
struction to reduce grain [PKD07] and sliced optimal transport
using a discrete 1-d matching [BRPP15] plus filtering to reduce
grain [RDG10]

interpolations between different color styles [BRPP15]. Finally, the
problem of the temporal consistency of per-frame color transfer in
the context of video color grading has been studied by exploiting
the differential geometry of Gaussian optimal transport [BSPP13].

4.3. Style Transfer

Optimal transport is not only useful for transferring color histograms,
it can transport all sorts of distributions. As such, it lends itself well
to the transport of illumination between image and examples. Shu
et al. [SHS∗17] tackle this problem for portrait relighting by trans-
porting histograms of normals, positions, colors (hence histograms
of 8-dimensional vectors, normals being identified as 2-d quantities)
between 3-d templates fitted to 2-d portraits. Interestingly, instead
of using an LP formulation, they returned to the original Monge
formulation, in order to avoid discontinuities in uniform color re-
gions. This high dimensional transport problem is solved efficiently
by using the sliced approximation.

In 2016, Gatys et al. [GEB16] defined the style of an image as
the Gram matrix of its CNN features, and used a gradient descent
to transfer style from an image to another. The core idea to match
the distribution of features of two images can be seen as an optimal
transport problem, and many subsequent methods have explored
this path. Kolkin et al. [KSS19] proposed to use relaxed optimal
transport for their style loss. This relaxation called Word Mover
Distance [KSKW15] drops the target mass conservation constraint.
Hence, an optimal solution moves the total mass of each point to
its nearest point in the target distribution. By inverting source/target
roles in this computation, and taking the maximum of the two ap-
proximations one gets the final relaxed EMD. The result is more
akin to a closest-point assignment than an optimal transportation,
but it has been presented and used as an optimal transport surro-
gate. The relighting problem is finally solved by a gradient descent
minimizing this relaxed EMD combined with a content loss and a
moment matching loss leading to an efficient content-preserving
style transfer.

Leclaire and Rabin [LR21] addressed style transfer using a
stochastic approximation of semi-discrete optimal transport in patch
space. For the continuous measure, they consider the Gaussian ran-
dom field synthesized patches distribution, and for the discrete mea-
sure they consider the discrete empirical distribution of the sample
patches. It works by computing multiple restricted optimal transport
problems between the source measure and a hierarchical simplifica-
tion of the target measure, given by multi-resolution clustering. A
blending step mixes the style feature with geometric features of the
source image.

Style transfer is intrinsically linked with texture synthesis. This is
exemplified by the seminal works of Gatys et al. [GEB15, GEB16],
who addressed both in a similar gradient descent on extracted fea-
tures and Gram matrix of the features. Many methods tackling one
of the problems can be adapted to the other [HVCB21, LR21], and
the reader should refer to Section 4.7 for more details.

4.4. Image interpolation

Optimal transport has also been considered as a tool to morph
images, notably with images of low structures such as fluids

© 2023 The Author(s)



N. Bonneel and J. Digne / A survey of Optimal Transport for Computer Graphics and Computer Vision

in which classical feature detection+matching algorithms might
fail [HZTA04]. This however supposes a notion of “mass” to be
matched with pixel color or intensity, and that this mass should
somewhat be preserved along the morphing, which is not intuitive
in the context of image morphing. Optimal transport may also split
mass (e.g., one eye on a face could be divided into two eyes during
the interpolation!), but solutions to enforce rigidity have been pro-
posed [HMP15]. To interpolate between sketches Courty et al. pro-
posed to learn a Wasserstein embedding of sketches, allowing then
to interpolate in the embedding space [CFTR17], however the results
remain blurry. For the same problem, Lacombe et al. proposed to
learn directly the barycenter prediction without building an embed-
ding [LDCB22]. Acknowledging the non-natural artefacts caused by
Wasserstein-based interpolation, Simon and Aberdam [SA20] pro-
posed to constrain the barycenters to follow an image prior given by
a GAN or a sparse prior. In practice this is done through an ADMM
optimization, by computing the Wasserstein barycenter and project-
ing it on the image prior manifold. The resulting interpolation avoids
unnatural artefacts (mass splitting...) but is mostly demonstrated on
background-less pictures of objects.

Nowadays, many other tools – notably based on deep learning –
achieve much better results, and optimal-transport based image inter-
polation is mostly used as illustrative of optimal transport algorithms
performance or behavior [Mér11, PPO14].

4.5. Optical flow and image matching

Similarly to image interpolation, optimal transport has been used
to estimate optical flow and match images. Within a differentiable
renderer, Xing et al. [XLY∗22] uses a differentiable Sinkhorn diver-
gence to match pixels between the current rendering estimate and
the reference rendering, where each pixel has a unit mass and the
ground distance accounts for color and positional distances. Liu et
al. [LZYY20] uses the Sinkhorn algorithm with a cosine similarity
ground distance between feature maps to establish semantic cor-
respondences between images. In a more specific setting, Kolesov
et al. [KKTH10] computes an optical flow of image sequences of
fire and smoke by considering that fire and smoke approximately
conserve their pixel intensity, using a dynamic formulation.

4.6. Image segmentation

Optimal transport has also been applied to the image segmenta-
tion problem. In the regional active contour framework Chan et
al. [CEN07, NBCE09] proposed to combine shape features with an
optimal transport approach to model regional statistics. It strives to
find an optimal image segmentation into 2 regions Σ,Σc, such that
the local histograms inside Σ (resp. Σ

c) can be well approximated
by a single histogram representing Σ (resp. Σ

c). This approxima-
tion is captured by a W1 distance. The segmentation functional
also includes a more traditional term aiming at reducing the re-
gion perimeter. Following this trend, Peyré et al. [PFR12] proposed
Wasserstein Active Contours, based on similar ideas but with an
explicit derivation of the active contour velocity. In addition, to
make the computation tractable they relied on sliced Wasserstein
distances. Papadakis [PR17] proposed a segmentation energy based
on the minimization of the Wasserstein-p optimal transport distance

between the histograms of the 2 segmented regions and two example
histograms. While the segmentation results are not on par with other
image segmentation techniques (even old graph cuts based methods),
the mathematical derivation for these algorithms is very interesting
and provides new insight on optimal transport driven functionals.

4.7. Generative Models and texture synthesis

Texture synthesis is a widely spread application of optimal transport
approaches, for both synthesizing new textures from one exemplar
image (either patch-based or using statistical models), or for inter-
polating between different texture models. A related application is
the synthesis of natural, non-stochastic, images.

Synthesizing textures. Multiple approaches exist to synthesize
new textures from an exemplar image. This includes pixel-based,
patch-based, or stochastic models.

The widely used Heeger and Bergen texture synthesis algo-
rithm [HB95] decomposes an exemplar image into steerable pyramid
coefficients, and then, from a Gaussian white noise image, iteratively
matches each sub-band of its own steerable pyramid decomposition
to the exemplar’s one using cdf-based 1-d optimal transport. Tartavel
et al. [TPG16] instead replace this matching with an LBFGS-based
optimization of a sliced optimal transport functional.

Optimal transport is also instrumental for spot noise-based tex-
ture synthesis. Discrete spot noise is defined as the addition of n
random translations of an input image – as n grows this can serve to
synthesize textures. It can also be seen as convolving a random point
set with the input image. This process yields a Gaussian Random
Field, a R2 field such that any vector of field values anywhere in R2

are distributed as a multivariate Gaussian. Galerne et al. [GLR18]
proposed to use optimal transport to constrain a spot-noise texture
synthesis method to match an exemplar texture. It starts by sam-
pling a spot noise texture, and then solves a semi-discrete optimal
transport problem between the set of possible 3×3 generated patches
(as a continuous distribution) and the set of exemplar patches (as
a discrete distribution). Each spot noise patch can then be trans-
formed to match a texture patch and the final image is obtained by
averaging. In a way it is mixing parametric models given by spot
noise, generating a texture as a stationary Gaussian Random Field
and nonparametric methods, such as patch-based texture synthesis.
Leclaire and Rabin’s fast semi-discrete optimal transport approxima-
tion using hierarchical decomposition of the target measure allowed
to improve this method numerically, allowing to use larger image
patches [LR21] (see Section 4.3).

Another way to include optimal transport into texture synthesis is
to use it as a loss for deep learning models. Heitz et al [HVCB21]
proposed to replace the features Gram matrix loss in texture synthe-
sis task [GEB15] with a sliced Wasserstein loss between features
(Fig. 8). Houdard et al. [HLPR22] later leveraged the semi-discrete
idea in a deep learning synthesis framework. Their method uses the
semi-discrete optimal transport map between the texture features
continuous distribution synthesized by a generator and the target
texture features discrete distribution as a loss to learn to synthesize
a stationary texture from a single example.

Optimal transport was also used as a preprocessing for texture
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Input labels Input texture

Target labels Synthesis result

Figure 8: Replacing the Gram matrix distance by a sliced Wasser-
stein loss in the approach of Gatys et al. [GEB15] produces better
texture synthesis and transfer results ; here, a texture synthesis
guided by a label mask [HVCB21].

patches. Heitz and Neyret perform patch-based texture synthesis
by blending patches taken from an exemplar image [HN18]. The
color distribution within each patch is considered Gaussian, and a
Gaussian distribution blending formula is used (without resorting to
optimal transport). However, to conform to this Gaussian distribution
hypothesis, in a precomputation step, patch color distributions are
made Gaussian by computing an optimal transport map between the
actual color distribution and a sampled Gaussian distribution, using
a linear program solver.

Interpolating between textures. Matusik et al. [MZD05] interpo-
late between multiple textures by first computing a (non-transport
based) warping between pairs of textures, warping them halfway,
and blending them using 1-d optimal transport (Fig. 9). More
precisely, after alignment using the precomputed warp, textures
are blended by decomposing them into steerable pyramid sub-
bands [HB95], and adjusting the bands’ histograms by using
the 1-d cdf-based formula for Wasserstein barycenters. Rabin et
al. [RPDB12] proposed to interpolate between textures by com-
puting sliced Wasserstein barycenters between the distributions of
the texture statistical textures. This method can be seen as a way
to generalize [HB95]: instead of considering only 1d distribution
it considers higher order distributions. Ferradans et al. [FXPA13]
proposed an optimal transport-based texture interpolation method in
the spot noise model. Static (resp. dynamic) textures are represented
as 2-d (resp. 3-d) stationary Gaussian processes. Optimal transport is
computed between these Gaussian random fields, and texture mixing
is achieved by sampling along the geodesics. To synthesize textures
that interpolate between more than two input textures, Bonneel et
al. use the Radon Wasserstein barycenter of input texture power
spectra, and apply a random phase [BRPP15]. In a similar setting,
Peyré et al. [PCVS19] better account for correlations between colors

by interpolating 3x3 Gaussian covariance matrices instead of scalar
values (see Sec. 6.6).

By considering the mean and covariance of a texture CNN fea-
tures, and using closed-form formulas for the Wasserstein-2 distance
between the estimated Gaussians, Vacher et al. [VDKCC20] inter-
polate textures along geodesics defined by the Wasserstein metric.
The results are reported to be better in terms of visual perception.

Synthesizing natural images. Optimal transport was also used in
the more general setting of natural image synthesis, in the context of
Generative Adversarial Networks (GAN). Arjovsky et al. [ACB17]
introduced Wasserstein GAN, which replaces the Jensen-Shannon
divergence with a Wasserstein-1 distance. Given a generator G, a
discriminator (called critic in the WGAN setting) D, µG the gener-
ated distribution, and µre f the reference distribution one wants to
learn, the WGAN loss writes:

LWGAN(G,D) = Ex∼µG [D(x)]−Ex∼µre f [D(x)]. (30)

D tries to maximize this loss which G tries to minimize in turn.
By using the Kantorovich-Rubinstein dual formulation, one gets
that for a given generator G, the optimal D can be constrained to
produce a measurable Lispchitz function using weight clipping so
that LWGAN ∝W1(µG,µre f ). Then G in turn tries to minimize this
Wasserstein-1 Distance, leading to more realistic samples. Wasser-
stein GAN perform better than regular GANs, avoiding vanishing
gradients and mode collapse problems, but they are still unstable
and slow to converge. Later improvements have been proposed to
stabilize the training, replacing weight clipping by a discriminator
gradient penalty [GAA∗17]. Wasserstein GANs are a broad image
generation technique, which can be used in a wide variety of applica-
tions. Lei et al. [LSC∗19] revisit the Wasserstein GAN architecture
with a semi-discrete optimal transport perspective. They consider
that G optimizes a transport map from the latent space to the true
data manifold, while D estimates the Kantorovich potential permit-
ting to compute the Wasserstein-1 distance between the synthesized
continuous distribution and the discrete target distribution. Using
this geometric view, they show that if the cost c(x,y) = h(x− y) is
a strictly convex function, the generator can be written in closed
form from the optimal D. While this is shown mainly theoretically,
some promising experiments are also shown. GAN (and WGAN) are
now superseded by Diffusion Model approaches [HJA20], for which
Optimal Transportation can also provide interesting insights. In that
context, De Bortoli [DB22] provided bounds on the Wasserstein-1
distance between the distribution synthesized by a diffusion model
and the true distribution. More generally, since the goal of any gen-
erative model is to learn a distribution of samples (images, shapes,
or data in general), then Optimal Transportation is a good way
of measuring the performance of the model, by computing the
Wasserstein-p distance between the generated distribution and the
target distribution.

4.8. Other image processing applications

Optimal transport has been also applied to other image processing
tasks, more marginally. Tartavel et al. use a sliced Wasserstein term
in a Total Variation (TV) based image restoration framework, and
applies it for denoising and super-resolution tasks [TPG16], with the
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Figure 9: A path in texture space interpolating between 26 different textures [MZD05]. After spatial alignment, textures are blended after
matching steerable pyramid sub-bands 1-d histograms [HB95] to their 1-d Wasserstein barycenters.

goal to recover details lost by the TV term by matching a distribution
of features to a prior distribution. Gazdieva et al. perform super-
resolution by learning an approximate optimal transport map from a
set of low resolution images to a set of (unpaired) high resolution
images [GRK∗22].

5. Applications in rendering

5.1. Image stippling and sampling

Semi-discrete optimal transport provides a way to measure the dis-
tance between a set of Diracs and a density. As such, it easily found
its place for problems related to the approximation of a density with
a set of Diracs, that is, the energy optimization problem consist-
ing in minimizing the optimal transport distance between a density
and a sum of Diracs. This approach finds applications for two re-
lated problems. First, that of stippling an image, for instance in the
context of artistic image stylization or for dithering an image in
the context of printing grayscale (or color) images with black (or
CMYK) ink droplets. Second, that of sampling a density (most often
the uniform distribution on a unit hypercube domain) for Monte
Carlo integration, and in particular for physically-based rendering.
While the first application mainly looks for visually pleasing point
distributions, the second application is more interested in reducing
the error or variance in integral estimators. Optimal transport offers
benefits for both, as it produces interesting blue noise properties [dG-
BOD12, PSC∗15].

The general idea behind these approaches is to initialize with a
random point set, and to iterate the computation of a semi-discrete
optimal transport computation step between the current point set
and a density (uniform or not), and a centering step that moves each
sample towards or at the location of the centroid of its power cell, in
a spirit similar to Lloyd’s algorithm [Llo82].

Stippling an image has been proposed as an application for several
semi-discrete approaches [XLC∗16, dGBOD12] and state-of-the-
art results were obtained by the “BNOT” approach [dGBOD12]
(Fig. 10, left, only recently outperformed by a non optimal transport
based approach [ARW22]). A different, much faster but approxi-
mate, solver on 2-d grids has been proposed [NG18] and allows

to generate optimal transport stippling patterns visually similar to
that of de Goes et al. [dGBOD12]. Qin et al. instead uses entropy-
regularized optimal transport for sampling multiple classes (e.g.,
for color stippling), but also to sample meshes [QCHC17]. Their
algorithm should be general but is demonstrated in two dimensions
(or on surfaces embedded in 3-d). A sliced approach also allows for
multi-class color stippling [SGSS22]. An interesting generalization
relates to the optimal transport approximation of a density by other
non punctual measures [MM99], such as a single (long) continuous
curve [LdGKW19] (Fig. 10, right).

Sampling for rendering involves different constraints. While im-
age stippling usually restricts the problem to the approximation
of non-uniform 2-d densities, sampling for rendering generally re-
quires higher-dimensional densities, albeit generally uniform (they
are usually non-linearly transformed to match the desired distri-
bution for importance sampling afterwards). This adds difficulties
as the semi-discrete optimal transport problem is much easier in
the low-dimensional setting. Even in the case of 2-d or 3-d integra-
tion problems, semi-discrete optimal transport sampling has shown
benefits in term of integration error because the resulting point
distribution exhibits blue noise properties [PSC∗15]. In the higher
dimensional setting (up to 20-d), a sliced approach has notably been
proposed for physically-based rendering applications [PBC∗20] by
enforcing blue noise properties both in the high-dimensional space
and in its lower dimensional projections. This approach also works
for the task of multi-class blue noise sampling. Sliced multi-class
sampling has also been proposed by Salaün et al. [SGSS22] with a
custom energy that tends to produce blue noise spatial error distri-
bution in the image plane, by producing one point set per pixel such
that neighboring pixel samples are well interleaved in a blue noise
fashion.

5.2. Reflectance manipulation

Displacement interpolation can be used to obtain intermediate Bidi-
rectional Reflectance Distribution Functions (BRDFs) between two
input BRDFs. While for parameterized BRDF models, it is often
more intuitive to directly interpolate BRDF parameters, this is not
the case for BRDFs that are captured by gonioreflectometers and
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Figure 10: Semi-discrete optimal transport allows to solve the problem of approximating a density with discrete distributions. This finds
applications in image stippling when the target distribution is a set of Diracs [dGBOD12], or stylization when the target distribution is a
continuous curve [LdGKW19]

Ref. White noise Sobol Sliced OT

Figure 11: Sliced Optimal Transport Sampling reduces variance in Monte Carlo physically-based rendering applications by optimizing
sample location in high dimension to uniformly cover the unit hypercube [PBC∗20].

thus only accessible by their measurements at discrete locations.
To achieve that, Bonneel et al. [BvdPPH11] interpolate each 2-d
slice of two 4-d measured BRDF, per color channel (or wavelength),
by advecting gaussian particles along a path on the hemisphere ob-
tained by solving the optimal transport linear program. Solomon et
al. [SdGP∗15] adopt a similar slicing strategy, but uses an entropy
regularized solver to produce Wasserstein barycenters, using fast
approximate spherical Gaussian convolutions. For car paint interpo-
lation, Golla and Klein [GK18] use both a parametric model, and dis-
placement interpolation of color clusters in the CIE-Lab color space
for metallic flakes using a linear program solver. Optimal transport
can be used to densify sparse BRDF measurements, by triangulating
the set of incoming directions, and interpolating the corresponding
2d slices between different incoming directions [WKB14], or by
projecting a sparse BRDF onto a database of denser BRDFs us-
ing optimal transport [BPC16]. The Sinkhorn divergence between
BRDFs is also shown to correlate well with perceptual dissimilarity
measurements [LBFS21].

5.3. Computational optics and imaging

Optimal transport has a relatively long history in solving non-
imaging optic problems [GO03]. Specifically, one problem is to
redirect some incoming light distribution via a mirror or lens so as
to produce a specific reflected or refracted light distribution, e.g.,

an image. Intuitively, mass conservation translates into light energy
preservation, and a transport plan would dictate the shape of the
mirror or lens, which makes optimal transport an appropriate tool
for solving this kind of problem.

In the work of Schwartzburg et al. [STTP14] a lens is designed by
first computing a set of normals using semi-discrete optimal trans-
port. Here, a flat light emitting surface is discretized into centroidal
Voronoi cells, and the semi-discrete optimal transport plan between
this discretization and the target light distribution on the flat receiver
surface produces one-to-one correspondences between the Voronoi
cells of the emitter and the power diagram cells produced by the
semi-discrete optimal transport map on the receiver. Using Snell’s
law, the distribution of normals over the lens surface is then com-
puted, and an optimization reconstructs the corresponding surface
(Fig. 12, left).

In the far-field reflector design problem of Andre et
al. [AAMT15], a light distribution at infinity (on the sphere of
directions, as opposed to a near-field receiver surface) is prescribed
and should be produced by a point light reflecting off a mirror
whose shape needs to be found. The reflector is designed as a set
of intersecting paraboloids whose focal point correspond to the
point light location and the focal distances need to be determined,
and the paraboloids axis cover the set of desired directions. They
solve a linear program formulation of optimal transport with cost
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c(x,y) = − log(1 − x.y) for an incoming light direction x and a
paraboloid of axis y, between a discretization of the point light direc-
tional intensity distribution and a discretization of the desired light
distribution on the sphere. The resulting transport plan indicates
how much light from a incoming direction reaches any outgoing
direction after being reflected. It also turns out that the solution to
the dual linear program directly gives the desired focal distances,
and thus solves the problem.

Meyron et al. [MMT18b] generalize the non-imaging optic prob-
lem (Fig. 12, right). They show that all the problems of obtaining
a target near-field or far-field image from a given collimated or
punctual light source whose light is refracted in a lens or reflected
over a mirror that can be concave or convex, can all be solved via
a semi-discrete optimal transport problem with quadratic cost, up
to a change of variable in the power diagram weights. They solve
the semi-discrete optimal transport using a damped Newton scheme,
with automatic differentiation.

6. Applications in Geometry Processing

6.1. Shape Comparison and retrieval

Mesh surface comparison can be performed using optimal trans-
port [LD09,LD11], by mapping simply connected Riemann surfaces
to unit disks and transporting the domains onto each other using
a ground distance invariant to Möbius coordinate changes. By dis-
cretizing the two domains, the optimal transport problem can be
solved using a linear program solver. This method is limited to sim-
ply connected surfaces and inherits linear program solver limits, i.e.,
the sampling of the unit disks should remain relatively small for the
transport to be computed.

Similarly to image retrieval, 2-d and 3-d shape retrieval can also
benefit from optimal transport tools, by computing shape signatures
and matching these signatures using optimal transport. Rabin et
al. [RPC10] compute a shape signature by sampling points on the
surface and computing quantiles of geodesic distances distributions.
They then match these descriptors using the sliced Wasserstein-1
distance.

6.2. Shape Interpolation

Optimal transport based image interpolation is only partially satis-
fying because features can get split in a non semantic way, while
other methods would match image features and yield much more
natural interpolations. For 2-d or 3-d shapes, the problem is however
slightly different. Take for instance two spheres or two icosahedra.
Matching features would be impossible (a sphere has no meaningful
feature) or error-prone (an icosahedron has repeated features). By
considering the shapes as boundaries of indicator functions, and nor-
malizing the mass, one can match the shapes as 2-d or 3-d densities
using optimal transport, and perform displacement interpolation.

Rabin et al. [RPDB12] already proposed interpolating between
shapes using sliced Wasserstein barycenters. The volume of the
shape is first sampled uniformly and the sliced barycenter is com-
puted between these discrete distributions. Lévy [Lév15] proposed
to use semi-discrete optimal transport for interpolating between two
tetrahedral meshes M and M′, given an additional number of desired

vertices k. The algorithm is strikingly simple: one starts by sampling
M′ with a set Y = (yi)i=1···k of points. The semi-discrete transport
between Y and M is then computed as a power diagram restricted
to M, from which one can extract the dual regular triangulation.
A correspondence between the triangles of this triangulation and
the ones of the restricted Delaunay of Y on M′ can be established
since they are related to the same yi, and the common topology can
be found by looking for the triangles that exist in both (i.e., the
corresponding cells do not degenerate). The vertices positions are
linearly interpolated between the barycenters of the power cells on
M and the yi on M′. This provides an efficient way to interpolate
between meshes without resorting to feature point computation and
matching (Fig. 13).

Instead of sampling the shape volume, Solomon et al. [SdGP∗15]
considered shapes a indicator functions discretized on 2-d or 3-
d grids and, proposed to compute interpolation between several
voxelized shapes using fast convolutional Wasserstein distances.

Although problems are less obvious than for image interpolation,
optimal transport-based shape interpolation still faces issues: the in-
terpolated shapes might split and have more connected components
than what would be expected, which is due to optimal transport
being topology agnostic.

6.3. Shape Registration

The optimal transportation problem consists in matching data. As
such, a natural application is to look for reliable and consistent
pointwise correspondences between shapes.

Point Cloud to Point Cloud Discrete formulation of optimal trans-
port naturally leads to solutions of point clouds (i.e., sets of Dirac)
processing problems. In the work of Bonneel and Coeurjolly [BC19],
a gradient flow of a sliced partial optimal transport energy allows
to advect a set of points in 3-d towards a larger set of points. They
introduce a 1-d partial optimal transport algorithm and use it in a
sliced context to propose a variant of the Iterative Closest Point
(ICP) point registration algorithm [BM92]. In classical ICP, a rigid
transformation between the input point cloud and the nearest neigh-
bor of each input point in the target point cloud is estimated – a
possible issue is that many input points can be matched to the same
nearest neighbor. Using partial optimal transport, injectivity is guar-
anteed and this issue cannot happen. In the proposed approach, the
input point cloud is advected towards the target point cloud via
the sliced partial optimal transport gradient flow, and the rigid (or
similarity) transform is computed between the input point cloud and
the advected point cloud (Fig. 14).

Shen et al. 2021 [SFL∗21] add an entropy-regularized unbalanced
optimal transport [CPSV18] layer to a deep learning architecture
as a drop-in replacement of closest-point matching, along with con-
fidence weights. Specifically, an optimal transport plan leads to
a one-to-many point matching that is not suitable for registration
problems, but one-to-one matching can be approximately recov-
ered by a weighted average of the many matches of soft transport
plans [SdGP∗15]. They apply this to rigid, affine or deformable
transformation estimation to register point sets, and use a deep
learning architecture to directly predict model parameters.
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Figure 12: Left. A brain caustic obtained from a light panel and optimized lens by Schwartzburg et al. [STTP14]. Right three images. A lens
producing an image of a train from a collimated light by Meyron et al. [MMT18b].

Figure 13: 3-d mesh interpolation between 6 volume shapes and
a ball, performed by Lévy [Lév15] using semi-discrete optimal
transport. Optimal transport allows to interpolate between shapes
of different topology, and for which feature points would be hard to
compute.

Optimal transport has also been used for scene flow estimation.
Li et al. [LLX21] uses the Sinkhorn algorithm to match consecu-
tive point clouds in time using a ground distance accounting for
differences in point position, colors, and estimated normals.

Point Cloud to Mesh. Mérigot et al. [MMT18a] introduced semi-
discrete optimal transport to compute distances between a point
cloud and a mesh. As done traditionally [AHA98], the problem is
cast into a power diagram weight optimization, by considering the
intersection of the power diagram with the mesh. A damped Newton
algorithm is proposed to for finding the power diagram weights,
with proven convergence in linear time under mild conditions. They
propose two applications to this algorithm, remeshing and Iterative
Closest Point. For remeshing, they use the continuous measure on
the mesh as a target triangle density measure and the mesh vertices
as the point set, which produces a remeshing as the dual of the
computed Laguerre diagram. Optimal transport-based Iterative
Closest Point is another interesting application of this algorithm,
since it allows to drop the costly assignment step and replace it by
a semi-discrete optimal transport computation between a constant
measure on the mesh and a constant discrete measure on the point
set. The alorithm then associates each point of the point set with the
barycenter of the corresponding power cell, yielding faster empirical
convergence. Dropping the nearest neighbor search also permits to
better handle far-away initial poses.

Mesh to Mesh To register a mesh onto another mesh, Mandad et
al. [MCSK∗17] relied on Sinkhorn iterations to compute a transport
map and deducing a variance-minimizing correspondence. To do
so, they rely on a surface discretization and aim at minimizing the

variance of transported neighborhoods, by alternating between relo-
cating samples to local barycenters and solving an optimal transport
problem. Optimal transport is computed via Sinkhorn iterations,
relaxed to allow for small changes of mass, and a coarse-to-fine
strategy. Eisenberger [ETLTC20] introduced Deep Shells extending
the Smooth Shells [ELC20] correspondence framework. It replaces
the non-differentiable costly correspondence search step with an
entropy-regularized optimal transport computation. This change
makes all steps of the smooth shells approach differentiable, and
thus trainable in an end-to-end manner. This approach interestingly
mixes optimal transport with the functional map approach. The de-
velopment of entropy-regularized tools for optimal transportation
led to other breakthrough for functional maps shape registration via
Sinkhorn filters [PRM∗21]. While this is not directly an optimal
transport approach, it benefited from advances in this field.

6.4. Shape Reconstruction

The shape reconstruction problem can be seen in a similar light as
the point cloud to mesh registration problem.

De Goes et al. [GCSAD11] proposed to compute the distance
between a 2-d mesh and a (noisy) 2-d pointset where points are
located on curves. In this setting, optimal transport is computed by
first assigning each point to the nearest mesh edge and distribut-
ing its mass regularly on the edge. The corresponding cost can be
computed in closed form. This principle is applied to curve recon-
struction: starting from an initial Delaunay triangulation of the point
set, vertices are iteratively removed by choosing the point whose
removal increases the optimal transport distance least, and the tri-
angulation is adapted accordingly. Final edges are filtered out by
removing edges without any mass, and vertex positions are opti-
mized to minimize the transport cost (with frozen transport plan).
Digne et al. [DCSA∗14] extended the problem to the 3-d setting.
They discretize a constant measure on regularly sampled bins on
the simplices, and formulate the optimal transport problem as a
linear program between points and simplices, with additional con-
straints enforcing the piecewise constant measure condition. To
make the problem tractable, local problems are considered itera-
tively. Applications to mesh reconstruction, similary to de Goes et
al. [GCSAD11], and sharp edge recovery (e.g., after a Marching
Cube-based reconstruction) are proposed by alternating between
the relocation of vertices to minimize transport cost with frozen
transport plan, and transport plan update. Arguably the setting of
both methods is not a “true” optimal transport since the continuous
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Figure 14: A sliced partial optimal transport gradient flow can be used instead of nearest neighbor queries in the ICP algorithm to register
point sets. Left. Initial configuration. Middle. Classical ICP to register the point sets using rotation, translation and scaling. Since many points
are matched to the same nearest neighbor, this leads to a degenerate configuration in the scaling factor. Right. The sliced optimal transport
solution enforces injectivity and leads to a correct registration.

measure on the simplicial complex has to be optimized as well: we
only know its total mass and that it is piecewise constant on the
simplices.

6.5. Shape Parameterization

Shape parameterization corresponds to the task of unfolding a mesh
on a planar or spherical domain, and has also attracted optimal trans-
port applications. Parameterization methods usually target some
quantity (areas, angles, distances) preservation. The most common
mapping is conformal mapping which preserves angles but can
exhibit large area distortions (Fig. 15). To reduce this distortion, Do-
minitz and Tannenbaum [DT09] first compute a conformal param-
eterization of a mesh onto a sphere, and then compute the optimal
transport map between the conformal factor and a uniform density
over the sphere using a PDE-based gradient flow formulation and
multiresolution solver using Discrete Exterior Calculus (DEC). The
UV coordinates are then advected along this flow. This allows to
produce area-preserving mapping of low angle distortion. Zhao et
al. [ZSG∗13] use a similar intuition but rely on a semi-discrete
optimal transport solver to transport the conformal factor of the
embedding onto a disk to the uniform density over that disk. UV
coordinates are then moved towards the centroid of their power cells.

Instead of transporting the conformal factor, Su et al. [SWS∗15]
directly transports the area of neighboring triangles in a conformal
map parameterization onto the disk or sphere towards the uniform
measure using semi-discrete optimal transport. They again move
UVs coordinates towards the centroid of their corresponding power
cells to obtain an area-preserving map. This further serves to com-
pute a Wasserstein-2 distance between surfaces by comparing their
mapped domains and then be used for mesh retrieval [SWS∗15].

6.6. Transport on Surfaces

Instead of transporting mass on Euclidean domains, it is also pos-
sible to transport densities defined on Riemann surfaces. Solomon
et al. [SRGB14a] considered the problem of computing the optimal
transport between densities on a manifold surface M represented as

Figure 15: Semi-discrete optimal transport allows to reduce area
distortion of conformal parameterizations [ZSG∗13]. These param-
eterizations can be used for shape matching [SWS∗15].

a mesh and linked it with geodesics computation. It uses a varia-
tional formulation casting the Wasserstein-1 distance between two
densities defined on M as solving a flow with constraints on the
boundaries of M and divergence of the flow. More precisely, the
method looks for a tangential vector field V on M:

W1(µ0,µ1) = inf
J

∫
M
∥V (x)∥dx

s.t.∇·V (x) = µ1(x)−µ0(x)

V (x) ·n(x) = 0 ∀x ∈ ∂M

(31)

where n(x) is the normal to the boundary ∂M at point x ∈ ∂M.

The flow lines of J are known to be geodesics on M. The vector
field can be easily decomposed using the Helmoltz-Hodge decompo-
sition, and projected on a spectral basis which allows for an efficient
Finite Elements discretization. This formulation is both fast and
accurate, and yields a family of geodesic distances, depending on
the size of the spectral basis, ranging from a purely spectral dis-
tance to the “canonical” geodesic distance. However this method
cannot be applied for quadratic costs, and does not support smooth
interpolation.

An alternative to using a dynamical optimal transport formulation
is to rely on entropic regularization, and use a heat kernel instead
of a distance [SdGP∗15], since both are related by Varadhan’s for-
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mula [Var67]. However the resulting interpolations remain blurry,
as expected when using entropy regularization.

Lavenant et al. [LCCS18] proposed a dynamic formulation
for quadratic costs. It is based on a similar discretization of the
Benamou-Brenier definition on a manifold, but it is strictly con-
vex and more amenable to interpolation computation than the
Wasserstein 1 method [SRGB14a]. It is also less blurry than
entropy-regularized variants or convolutional Wasserstein dis-
tances [SdGP∗15].

Solomon and Vaxman [SV19] proposed to interpolate between
two tangent vector fields defined on a mesh. It uses optimal transport
as a way of matching the vector field singularity in an interesting
way. Singularities have – possibly negative – indices (i.e. classifica-
tion) that sum to the same value for two smooth tangent vector fields
on the surface. Therefore these singularity indices can be considered
as mass to be transported. A variant of discrete optimal transport is
presented, allowing for negative mass, and it is solved using a linear
program solver, which is completely tractable, since the number of
singularities is low. The rest of the vector field is constructed using
other dedicated optimization schemes. Going higher in dimension,
Peyré et al. [PCVS19] considered the transport of tensor-valued
distributions on a mesh surface using quantum-entropy regularized
optimization, which in practice leads to a modified Sinkhorn algo-
rithm. They applied their algorithm to the interpolation of orientation
fields (as opposed to vector fields) and metric tensors for anisotropic
remeshing.

7. Applications in Topological Data Analysis

In topological data analysis, data can be analyzed via their per-
sistence diagram, an object accounting for birth and death of fea-
tures along a filtration [EH08]. A natural question when dealing
with such objects is to compute distances and persistence diagrams,
and optimal transport is particularly well suited for these tasks.
Turner et al. [TMMH14] proposed a Wasserstein barycenter com-
putation based on the auction algorithm for point matching, but
it was extremely slow. Lacombe et al. [LCO18] proposed to use
the Sinkhorn algorithm to compute distances between persistence
diagrams discretized on a grid. To avoid the discretization step and
the rasterization effects it can cause, Vidal et al. [VBT19] proposed
a progressive Wasserstein barycenter computation technique. It iter-
atively decreases the Fréchet energy while increasing the accuracy
of the computation, leading to more accurate results and better
computation times.

8. Applications to simulation and animation

8.1. Fluid simulation

Brenier’s polar factorization theorem [Bre91] indicates that optimal
transport provides a projection of any map to the closest volume-
preserving map. By considering the incompressible Euler equations
as a flow under a volume-preserving map (i.e., one starts with the
identity map, and at each time step, this map is transformed by a
divergence-free velocity field), Gallouët and Mérigot proposed a
Lagrangian fluid simulation scheme based on semi-discrete optimal
transport [GM18] inspired by the discrete optimal transport scheme

of Brenier [Bre00], which they illustrate in 2-d. The idea is to start
with a set of particles covering the unit square along with initial
velocities. Then, at each time step, one advects the particles accord-
ing to their velocities, computes a semi-discrete optimal transport
map between a uniform density on the unit square and the advected
particles thus defining power cells (see Sec. 3.2), and finally pushes
the particles towards the barycenter of their power cells in order
to recover incompressibility. This formalizes the optimal-transport
based fluid simulation heuristic presented earlier by de Goes et
al. [dGWH∗15]. Then, Lévy extended the approach to handle free-
boundary fluids [Lév22], by considering a partial optimal transport
problem, and illustrate it in 3-d (Fig. 16), with viscosity and sur-
face tension added. Considering the weights of the power cell of
each fluid particle as a Lagrange multiplier of mass preservation
constraint, an additional Lagrange multiplier is introduced to re-
ceive the entire mass of the empty space unoccupied by fluid. The
fluid interface is shown to be the intersection between power cells
and a balls, which makes the modeling of the interface accurate. To
make the fluid simulation faster, Qu et al. [QLDGJ22] leverage semi-
discrete entropy-regularized optimal transport to avoid computing
costly power diagrams, by applying Sinkhorn algorithm between
particles and a uniform density grid.

8.2. Animation

Shape animation through optimal transport is a difficult task since
optimal transport can break shapes and does not have any topolog-
ical preservation guarantees. However it is extremely powerful at
modeling unstructured data evolution. Zhang et al. [ZSS22] propose
to interpolate unstructured freeform objects between user-provided
keyframes by combining optimal transport with Continuous Nor-
malizing Flows (CNF) [CRBD18]. Here, the Sinkhorn divergence is
used to replace the Kullback-Leibler divergence in the CNF frame-
work. It is also used to ensure that the trajectories adhere to the
keyframes by computing Wasserstein barycenters in between ODE-
advected keyframes. Webanck et al. [WCGG18] proposed to interpo-
late between clouds keyframes using pointwise density matching. In
a different context, optimal transport was used to interpolate between
point clouds captured from plants at several timesteps [GKK∗20]:
plant scans are segmented and the segments are matched across
time. A Sinkhorn-regularized optimal transport is then computed
in-between the matched segments, yielding interpolated point cloud
sequences. Interestingly this method copes with the necessary topol-
ogy preservation by matching segments, hence ensuring that optimal
transport does not break the plant structure.

Another way to use optimal transport is for parameterizing shapes
inside a shape space. Ma et al. [MDZ∗21] used Wasserstein barycen-
ters to model soft underwater swimmers, that are optimized via
differentiable swimming simulation, yielding better swimming per-
formances. Here optimal transport serves to parameterize the shape
space and optimize easily the shape geometry, since it is fully differ-
entiable using the formulation of Bonneel et al. [BPC16].

9. Other applications

Optimal transportation has been applied to a wide variety of other
problems far beyond computer graphics and vision, from eco-
nomics [Gal18] to operations research. We shall give a few words
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Figure 16: Free-boundary 3d fluid simulation including viscosity and surface tension, by projecting velocities on divergence-free velocity
fields using semi-discrete optimal transport, with 500k power cells [Lév22]

on notable applications, either related to the computer graphics and
vision communities, or widely adopted by their communities.

For music interpretation, optimal transport has been applied to
music transcription, i.e. recovering the notes from a music spec-
trum [FFCE16]. Henderson and Solomon [HS19] used 1-d optimal
transportation to match pitches between two audio signals yield-
ing a natural portamento (i.e., a transition) even between different
polyphonic instruments.

In cosmology, optimal transport has been used to reconstruct
accurate acoustic baryon variations, using a dedicated algorithm
based on semi-discrete optimal transport [vHLM22]. The idea is to
compute a displacement interpolation between a uniform density
(the universe at time zero) and the current distribution of mass in
the universe.

In text retrieval and analysis, document distances can be com-
puted by computing words embedding and comparing the words
distribution in the Euclidean space, using Relaxed EMD [KSKW15].

Optimal transport has also been used extensively in the
broader machine learning literature, as a way to cope with semi-
supervision [SRGB14b] or to perform transfer learning [CFTR17].

In genomics, genes or gene signatures can be extracted from
different cells at several times, and unbalanced optimal transport
can be used to recover developmental trajectories by coupling these
data over time [SST∗19]. The Gene Mover’s Distance [BCG∗21]
computes the similarity between two cells by computing an earth
mover’s distance with a ground distance consisting of the ℓ2 distance
in a 200-dimensional euclidean embedding of genes.

10. Discussion and conclusion

In this survey of optimal transport applications, we encountered
various uses of optimal transport, notably for interpolation purposes.
For such applications, care must be taken as optimal transport is
agnostic to topology changes and semantics. For instance, interpolat-
ing between two sketches will produce a result which is well defined
from an optimal transport perspective, but might not be interesting
for the application: connected components might break and merge
throughout the process, and semantics may be lacking. For unor-
ganized matter, such as clouds, fluids, smoke, this is an acceptable
behavior, but it is not the case for structured data such as human,
animals or object shapes. When the input data do not directly repre-
sent probability distributions, one issue for this type of application
is the interpretation of the input data (e.g., pixel intensities) as mass
that ought to be preserved during interpolation.

This survey explored the many facets of optimal transport appli-
cations, from archetypal applications such as image color grading
to more advanced or niche albeit interesting applications, or even
applications whose main purpose is to illustrate one’s optimal trans-
port algorithm behavior. While optimal transport’s main downside
is its computational cost, many fast relaxations or approximations
have been proposed and continue to be developed. Still, scaling to
millions of variables remain to this day a challenge in time critical
applications, preventing its wide integration in many computational
problems.
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