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Sources

Final version can be found :

http://fitness-landscape.com
or,
https://www-lisic.univ-littoral.fr/~verel/

Slides :

http://fitness-landscape.com/talks/ppsn2020-tuto-fitness-landscapes.pdf
and code :

http://fitness-landscape.com/RESEARCH/code-tutorial-ppsn2020.zip
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Program for today

1. The Basics of Fitness Landscapes
2. Geometries of Fitness Landscapes
3. Local Optima Network
4

. Multi-objective Fitness Landscapes
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1. The Basics of Fitness Landscapes

Fitness Landscape Analysis
Understanding and Predicting Algorithm Performance
for Single- and Multi-objective Optimization
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QOutline

1. The Basics of Fitness Landscapes

e Introductory example
o Brief history and background

N

. Geometries of Fitness Landscapes
3. Local Optima Network

o

. Multi-objective Fitness Landscapes
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Single-objective optimization

@ Search space : set of candidate solutions
X
@ Objective fonction : quality criteria (or non-quality)
f: X—=>R

X discrete : combinatorial optimization
X C IR" : numerical optimization

Solve an optimization problem (maximization)

X* = argmaxy f

or find an approximation of X™*.
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Context : black-box optimization

X — . — f(x)

No information on the objective function definition f

Objective fonction :

@ can be irregular, non continuous, non differentiable . . .

@ given by a computation or a simulation
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Real-world black-box optimization : an example
PhD of Valentin Drouet, Saclay Nuclear Research Centre (CEA), Paris

ing and goal

X —> — f(x)

STEAM FLOW
LOAD SET POINT REGULATION

conTROL
s

-
’ i E ‘GENERATOR POWER
(73778)—> | — AP

r REACTOR —

CORE BORON.

[‘:r
Multi-physic simulator
”
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Search algorithms

(implicite) enumeration of a subset of the search space

@ Many ways to enumerate the search space

o Exact methods : A*, Branch&Bound . ..
e Random sampling : Monte Carlo, approximation with

guarantee, bayesian optimization, ...

Local search / Evolutionary algorithms

Neighborhood
% Neighbor Initialization ® Sselection
! % L0 °
Solution ® * ee > o o
] % @ e O
N 1%
R x’l Replacement Random
N,
\‘~~ ______ /’ X:}’%‘ Variation
Accept? x Xx
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Stochastic algorithms with a single solution (Local Search)

@ X set of candidate solutions (the search space)
@ f: X — IR objective function

@ N(x) set of neighboring solutions from x

Neighborhood
8 Neighbor
. X
Solution % %
0 * ®
»
\\ x:, 8
‘\\ ’I,
Accept?

So, we need a tool to study this...
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Motivations on fitness landscape analysis

For the search to be efficient, the sequence of local optimization
problems must be related to the global problem J

Main motivation : “Why using local search”

@ Study the search space from the point of view of local search
= Fitness Landscape Analysis

@ To understand and design effective local search algorithms
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Fitness landscape :

origin and definition
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original plots from S. Wright [Wri32]

€. Qualitative Change

A Increased Mutation
or reduced Selection
4NV, 4NS very large

8

Increased Selection
or reduced Mutation of Environment
4NU, &NS very larqe 4NU,4NS very large

”

[G)

F. Division into local Races

in two dimen-

of the field of gene

tiveness.

FiGure 2—Di
sions instead of many thousands. Dotted lines represent contours with respect to adap-

D. Close Inbreeding

4NU,4NS very small
Ficure 4—Field of gene combinations occupied by a population within the general field

of possible combinations. Type of history under specified conditions indicated by relation

Inbreeding igion inta locs

E. Slight
41:[?1“, 4NS medium

to initial field (heavy broken contour) and arrow.

source : Encyclopaedia Britannica Online
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Fitness landscapes in (evolutionary) biology

@ Metaphorical uphill struggle across a “fitness landscape”

e mountain peaks represent high “fitness”
(ability to survive/reproduce)
o valleys represent low fitness

@ Evolution proceeds :
population of organisms
performs an “adaptive walk”
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Fitness landscapes in (evolutionary) biology

@ Metaphorical uphill struggle across a “fitness landscape”

e mountain peaks represent high “fitness”
(ability to survive/reproduce)
o valleys represent low fitness

@ Evolution proceeds :
population of organisms
performs an “adaptive walk”

be careful : "2 dimensions instead of many thousands”
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Fitness landscapes in biology and others sciences

In biology :

@ model of species evolution

Extended to model dynamical systems :

@ statistical physic
@ molecular evolution
A @ ecolo
o &y
J"""\‘ \ ‘
”.',3‘35:(32/:’:'.'.0‘}\\ A’h&\\ ° |
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Fitness landscapes in biology

2 sides of Fitness Landscapes

@ Metaphor : most profound concept in evolutionary dynamics

e give pictures of evolutionary process
o be careful of misleading pictures :
“smooth low-dimensional landscape without noise”

e Quantitative concept : predict the evolutionary paths

X — X

e Quasispecies equation : mean field analysis
Xt

e Stochastic process : Markov chain
Pr(xes1 | xt)

e Individual scale : network analysis
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Fitness landscape for combinatorial optimization [Sta02]

Fitness landscape (X, NV, ) :

Fitness
@ search space :
X
@ neighborhood relation :
N X = 2X
@ objective function :
f:X—>R
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What is a neighborhood ?

Neighborhood function :
N X —2X

Set of “neighbor” solutions
associated to each solution

Fitness

N(x)={y € X |y =op(x)}

Search space

15/27
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What is a neighborhood ?

Neighborhood function :
N X —2X

Set of “neighbor” solutions
associated to each solution

Fitness

N(x)={y € X |y =op(x)}
N(x) ={y € X | Pr(y = op(x)) > 0}
N(x)={y € X | Pr(y = op(x)) > ¢}

Search space
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What is a neighborhood ?

Neighborhood function :

N X —=2X
Set of “neighbor” solutions
Fitness " associated to each solution
/’h’\
/””"‘?\“
t.’.",, N(x) = {y € X | y = op(x)}
N or
N(x) = {y € X | Pr(y = op(x)) > 0}
or
N(x)={y € X | Pr(y = op(x)) > ¢}
or

N(x) ={y € X | distance(x,y) = 1}
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What is a neighborhood ?

Neighborhood function :
N X —2X

Fitness

Set of “neighbor” solutions
associated to each solution

Search space

N(x)={y e X |y =op(x)}
or
Neighborhood must be N(x)={y € X | Pr(y = op(x)) > 0}
based on the operator(s) or
used by the algorithm N(x)={y € X | Pr(y = op(x)) > ¢}
or
Neighborhood < Operator N(x) = {y € X | distance(x, y) = 1}
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sitioning and goal

Typical example : bit strings

Search space : X = {0,1}V
N(X) = {y € X | dHamming(Xay) = 1}

Example :
N(01101) = {11101,00101,01001,01111,01100}
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Typical example : permutations

Traveling Salesman Problem :
find the shortest tour which cross one time every town

Search space : X = {o | 0 permutations }

N(x) = {y € X | y = opaopt(x)}
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More than 1 operator...?

What can we do with 2 operators (ex : memetic algorithm) ?
M) ={yeX|y=op(x)} No(x)={yeX|y=opo(x)}
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More than 1 operator...?

What can we do with 2 operators (ex : memetic algorithm) ?
M) ={yeX|y=op(x)} No(x)={yeX|y=opo(x)}

Severals possibilities according to the goal :

e Study 2 landscapes : (X, N1, f) and (X, Ny, f)
@ Study the landscape of “union” : (X, N/, f)

N=MUN ={y € X |y=opi(x) or y = opa(x)}
@ Study the landscape of “composition” : (X, N, f)

N ={y€X|y=opoop(x)with op,op € {id,op1,0p>}}
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Rice's framework for algorithm selection [Ric76]

Algorithm selection

XEF

PERROBHEMCE
SPACE

F
- FEATURE
EXTRACTION

E@EF = B 5i500)

N4

Rice, J. R. (1976). The algorithm selection problem. Advances in computers, 15, 65-118.
”

p{a,x)
FEATURE SELECTION ALGORITHM | PERFORMANCE
SPACE MAPPING SPACE MAPPING
(L R—

||p|| = ALGORTTHM PERFORMANCE

o
PER
PERFORMANCE

positioning and goal
©00000
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Fitness landscape analysis

Algebraic approach, grey-box :

Af = \(f — F)

Goals

Understanding of the
the search space structure

Additional Selection: Design of
knowledge - representation, algorithm
- objective fonction,
- neighborhood, algorithm, etc.

[MWS01] [TPCO8]  [Fon99)
[Mwo2] [LIo8] [AZS02]
[Col+06] [MFoo]  [MFoO]

[Ma+11] [AR14] [Ma+12]

Statistical approach, black-

Problems ~~ Features

positioning and goal

O®@0000

box :

~> Algorithm ~- Performances

Fitness landscape analysis

Prediction
of performance

Offline selection ~ Parameters Adaptive selection
of algorithm tunning of algorithm

[Xu+08]
[Gre95]
[LLY11]
[Me+11]

/\

Offline extraction
of features

Online extraction
of local features

Parameters
control

[SP94]
[Fia-+10]
[BP14]
[GLS16]
[Jan+16]
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J. J. Grefenstette, in FOGA 3, 1995.[Gre95]

" Predictive Models Using Fitness Distributions of Genetic Operators”

" An important goal of the theory of genetic algorithms is to build predictive models of how well genetic algorithms

are expected to perform, given a representation, a fitness landscape, and a set of genetic operators. (...)"

FD,,(F,) = Prob(F, = fitness of offspring | parents have mean fitness F,)
Regression: y = 0.216 +0.677x, r = 0.992

— Select Representation and Operators
I ‘ |
08-| ) M
Test Representation and Operators Fun?ss 06 * WM Los

0 02 04 06 08 1
I I I

of
J{ Offspring 0.4 | 04
02" o2
Evaluate Predictive Model of GA
0 0
T T T T
J{ 0 02 04 06 08 1
Fitness of Parent
0 10 20 30 40 50 60 70 80 90 100
Acceptable Expected Result? 1 L1 - Ll
No Dynamic Estim R
08| a
Yes 06
Population
Average | Loa
Run the GA 02| Loz
. . o T T T T T T T T
Figure 1: Predicting GA Performance 0 10 20 30 40 50 60 70 80 90 100

Genarations
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Typical use cases of fitness landscapes analysis

@ Comparing the difficulty of two landscapes :
o one problem, different encodings : (X1, N1, f1) vs. (X2, N2, f2)
different representations, variation operators, objectives . ..
Which landscape is easier to solve ?

@ Choosing one algorithm :

e analyzing the global geometry of the landscape

Which algorithm shall | use?

© Tuning the algorithm’s parameters :

e off-line analysis of the fitness landscape structure

What is the best mutation operator ? the size of the
population ? the number of restarts? ...

@ Controlling the algorithm’s parameters at runtime :

e on-line analysis of structure of fitness landscape

What is the optimal mutation operator according to the
current estimation of the structure?
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Back to the definition

Fitness landscape (X, N\, f) is :
an oriented graph (X, ') with weighted nodes given by f—values}

@ Model of the search space

@ Not specific to a particular
local search
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Fitness landscape and complex systems

Complex system : local vs. global properties

@ Sample the neighborhood to have information
on local features of the search space

@ From this local information, deduce global feature such as
general shape, difficulty, performance, best algorithm . ..

= Analysis using complex systems tools
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Short summary for this part

Studying the structure of the fitness landscape
allows to understand the difficulty,
and to design good optimization algorithms

The fitness landscape is a graph (X, N, f) :

@ nodes are solutions and have a value (the fitness)

@ edges are defined by the neighborhood relation

pictured as a real landscape
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2. Geometries of Fitness Landscapes

Fitness Landscape Analysis
Understanding and Predicting Algorithm Performance
for Single- and Multi-objective Optimization
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QOutline

1. The Basics of Fitness Landscapes
2. Geometries of Fitness Landscapes

e Ruggedness and multimodality
o Neutrality

3. Local Optima Network

4. Multi-objective Fitness Landscapes
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Metrics, features of fitness landscape

Main idea

The "shape” of the neighborhood (local description)
is related to
the dynamics of the local search, and its performance

Main questions

@ How to design relevant metrics?
e What are the meaning of the metrics (benefits, and caveats) ?

@ How to estimate the metrics?

In the following, a (short) comprehensive list of metrics with their
intuition, and their estimation
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Multimodal fitness landscapes

Local optima x*

no neighboring solution with strictly better fitness value
(maximization)

Vx € N(x¥), f(x)<f(x¥)

Fitness

Search space

nota : If /' is modified (distance, op), the local optima are modified

3/43



multimodality
0@0000000

Typical example : bit strings

Search space : X = {0,1}V
N(X) = {y e X | dHamming(Xay) = 1}

Example :

x = 01101 and fi(x) = f(x) = fz(x) =5

11101 [ 00101 | 01001 | 01111 | 01100
Al 4 2 3 0 3
H| 2 3 6 2 3
f| 1 5 2 2 4

Is x is a local maximum for f1, f;, and/or 37 l
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Sampling local optima

Basic estimator (Alyahya, K., & Rowe, J. E. 2016 [AR16])

Expected proportion of local optima :

Proportion of local optima in a sample of random solutions

o Complexity : n x |NV]|
@ Pros :
unbiased estimator

@ Cons :
poor estimation when expected proportion is lower than 1/n

5/43
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Sampling local optima by adaptive walks

Adaptive walk
(x1,%2,...,xp) such that xj11 € N(x;) and f(x;) < f(xj+1)

Hill-Climbing algorithm (first-improvement)

Choose initial solution x € X
repeat
choose X’ € {y € N(x) | f(y) > f(x)}
if f(x) < f(x’) then
x X'
end if
until x is a Local Optimum

Basin of attraction of x*

{x € X | HillClimbing(x) = x*}.
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Multimodality and problem difficulty

The core idea :

@ if the size of the basin of
attraction of the global
optimum is “small”,

Finess @ then, the “time” to find the
| global optimum is “long”

Optimization difficulty :
Number and size of the basins of
attraction (Garnier et al. [GK02])

Search space

Feature to estimate the basins size :

o Length of adaptive walks

complexity : sample size x £ x ||

7/43
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Multimodality and problem difficulty

Length of adaptive walk

Length of adaptive walk

ex.

200

180
160
140
120
100
80
60
40
20

64 128 256

260

240
220

180
160
140
120
100

nk-landscapes with n = 512

The core idea :

@ if the size of the basin of
attraction of the global
optimum is “small”,

o then, the “time” to find the
global optimum is “long”

Optimization difficulty :
Number and size of the basins of
attraction (Garnier et al. [GK02])

Feature to estimate the basins size :
o Length of adaptive walks

complexity : sample size x £ x ||
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Practice : the Squares Problem

a program design problem ?

Squares Problem (SP)

Find the position of 5 squares
in order to maximize inside
squares the number of brown
points without blue points

1000

250

1000

Candidate solutions

X = ([0,1000] x [0,1000])®

X1 X2
1 577 701
2 609 709
3 366 134
4 261 408
5 583 792

Fitness function

f(x) = number of brown points
— number of blue points
inside squares

A\
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Source code in R : ex01.R

Source code : http://fitness-landscape.com/

Different functions are already defined :
@ main : example to execute the following functions

@ draw and draw_solution :
draw a problem and the squares of a solution

@ fitness_create:
create a fitness function from a data frame of points

@ pbl_create and pb2_create :
create two particular SP problems
@ init :
create a random solution with n squares

@ hcngh:
hill-climbing local search based on neighborhood

9/43
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multimodality ruggedness neutrality neutral networks
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Neighborhood

@ Execute line by line the main function

@ Define the neighborhood_create which creates
a neighborhood : a neighbor move one square

10/43
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Adaptive walks to compare problem difficulty

Pre-defined functions :

@ adaptive_length :
run the hill-climber and compute a data frame with the length of
adaptive walks

@ main_adaptive_length_analysis :
Compute the adaptive length of two different SP problems

@ Execute line by line the main adaptive length analysis
function to compute a sample of adaptive walk lengths

@ Compare the lengths of adaptive walks for the two SP
problems

@ Which one is more multimodal ?
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Random walk to estimate ruggedness

0.65

Ay W»ﬂfWWw’WW\M«W

Random walk :

@ (x1,x2,...) where x;1+1 € N(x;) and equiprobability on NV (x;)
The idea :

o if the profile of fitness is irregular,

@ then the “information” between neighbors is low
Feature :

@ Study the fitness profile like a signal
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Rugged /smooth fitness landscapes

065 ‘ ‘ ‘ ‘ Autocorrelation function of the
06| ] time series of fitness-values along a
2 055 .rb rj M ‘ random walk [Wei90] :
£ l
i OSJWJ{A ‘ #\ h ‘ ’) “M W
o] i o — L) = () = )
o4 0 200 400 600 800 1000 Var( f(Xi ))
Step
- Autocorrelation length 7 = ﬁ
z e “How many random steps such that
g; correlation becomes insignificant”
é @ small 7 : rugged landscape
= @ long 7 :
40 60 80 100
lag n complexity : sample size ~ 103
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Results on rugged fitness landscapes (Stadler 96 [Sta96])

Ruggedness decreases with the size of those problems

’ Problem ‘ parameter ‘ p(1)
symmetric TSP n number of towns 1-— %
anti-symmetric TSP n number of towns 1-— nfl
Graph Coloring Problem n number of nodes 1-— (aioi)n

« number of colors
NK landscapes N number of proteins 1-— %
K number of epistasis links
random max-k-SAT n number of variables 1-— n(1f2_k)
k variables per clause

14/43



ruggedness
00000

Rugged /smooth fitness landscapes : sign epistasis

Xl yl XI y|
+ -
5 8 8
3 Ly
+ +
X Yy X y

Degree of epistasis :
Ratio of " negative” square

References :

Biology : Poelwijk et al. [PKWTO07]
EA : Basseur et al. [BG15]

complexity : sample size ~ 2.103
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Fitness distance correlation (FDC) (Jones 95 [Jon95])

Correlation between fitness and distance to global optimum

0.7 0.8
0.65 0.75
06 e, 07
g o055 i 8
4 a1 | 2 o065
£ 05 T i
0.45 T, 0.6
0.4 0.55
0.35 0.5
0 5 10 15 20 25 0 5 10 15 20 25
Distance Distance
4 " “ ”n
easy hard

Classification based on experimental studies

@ p < —0.15 : easy optimization
@ p > 0.15 : hard optimization
@ —0.15 < p < 0.15 : undecided zone
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Fitness distance correlation (FDC) (Jones 95 [Jon95])

Correlation between fitness and distance to global optimum

0.7 0.8
0.65 0.75 k
. 0‘;2 = ¥ | | i i . o7 B
g U A HUHITE g oes
£ os :3”!”‘ 15 =
0.45 N E ! 1 | ¥ 06 .
04 " 055
0.35 0.5
0 5 10 15 20 25 0 5 10 15 20 25
Distance Distance
“easy” “hardH
@ Important concept to understand search difficulty
@ Not useful in “practice” (difficult to estimate)
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Practice : computing the autocorrelation function

Source code ex002.R :

@ mutation _create :
Create a mutation operator,
modify each square according to rate p,
a new random value from [(x — r,y — r),(x + r,y + r)].

@ main :
Code to obtain autocorrelation function

o

@ Define the function random walk to compute the fitness
values during a random walk

@ Execute line by line the main function to compute a sample of
fitness value collected during a random walk

@ Compare the first autocorrelation coefficient of the SP
problems 1 and 2
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Neutral fitness landscapes

Neutral theory (Kimura ~ 1960 [Kim83])

Theory of mutation and random drift

Many mutations have no effects on fitness-values

Fitness
@ plateaus

@ neutral degree

@ neutral networks
[Schuster 1994
[SFSH94], RNA
folding]
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Objects of neutral fitness landscapes

Description of multimodal fitness landscapes is based on :
@ Local optima

@ Basins of attraction

Description of neutral fitness landscapes is based on :
o Neutral sets :
set of solutions with the same fitness

@ Neutral networks :
neutral sets with neighborhood relation
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Neutral sets : density of states
0.06
0.05
. 0.04
Fitness % 008
l" : 0.02
"ﬂ"-!l«v
%’l& W Ll .
\" = 340 30 360 370 380 30 400

Fitness

Density of states (D.O.S.)

Search space

@ Introduced in physics

Set of solutions with same fitness (Rosé 1996 [REA96])
@ Optimization
(Belaidouni, Hao 00 [BHOO])
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Neutral sets : density of states

Informations given :

@ Performance of random

0 search
0% @ Tail of the distribution is an
004 indicator of difficulty :

o the faster the decay, the
harder the problem

0.03

Frequency

0.0:

S

@ But do not care about the
neighborhood relation

0

=

N ™
¥ w0 W0 a0 B W 40

Finess Features :

o Average, sd, kurtosis . ..

complexity : sample size
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Neutral sets : fitness cloud [verel et al. 2003]

e (X, F,Pr) : probability
space

@ op: X — X stochastic
operator of the local search

Fitness Cloud of op

Fitness f(op(s))

Conditional probability density
function of Y given X

Fitness f(s)
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Fitness cloud : a measure of evolvability

Fitness f(op(s))

Evolvability

Ability to evolve : fitness
in the neighborhood vs
Average  fitness of current solution

" Prob. increase

Stand. dev.
@ Probability of finding
better solutions

@ Average fitness of
better neighbors

@ Average and standard

Fitness f(s) dev. of fitness-values

23/43



neutrality
000000800

Fitness cloud : comparing difficulty

Average of evolvability

Fitness f(op(s))

Avg(op 1)

Avg(op 2)

Fitness f(s)

@ Operator 1?77 Operator 2
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Fitness cloud : comparing difficulty

Average of evolvability

Fitness f(op(s))

Avg(op 1)

Avg(op 2)

Fitness f(s)

Operator 1 > Operator 2
Because Average 1 more
correlated with fitness
Linked to autocorrelation
Average is often a line :

e See works on Elementary
Landscapes (Stadler, D.
Wihtley, F. Chicano and
others)

o See the idea of Negative
Slope Coefficient (NSC)
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Fitness cloud : comparing difficulty

Probability to improve

@ Operator 177 Operator 2

pHop 1)

Prob. to Improve

pHop 2)

Fitness f(s)
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Fitness cloud : comparing difficulty
Probability to improve

Prob. to Improve

plop 1)

ptiop 2)

Fitness f(s)

@ Operator 1 > Operator 2

@ Prob. to improve of Op 1
is often higher than
Prob. to improve of Op 2

@ Probability to improve is
often a line

@ See also works on
fitness-probability cloud
(G. Lu, J. Li, X. Yao
[LLY11])

@ See theory of EA and fitness

level technics
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Fitness cloud : estimating the convergence point

Py

@ Approximation (only
approximation) of the
fitness value after few
steps of local operator

Average

A

@ Indication on the quality
of the operator

Fitness f(op(s))

@ See fitness level technic

fo fl f2f3

Fitness f(s)
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Fitness
Fitness

=8

Basic definition of Neutral Network

@ Node = solution with the same fitness-value

@ Edge = neighborhood relation
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Neutral degree

Neutral neighborhood

Set of neighbors which have the same fitness value

Nneutral(x) = {X, e N(X) | f(X,) - f(X)}

Nota : f(x") = f(x) can be replaced by |f(x") — f(x)| < e.

Neutral degree
Number of neutral neighbors : N eutrar(x)

Neutral rate

. : . IWVneutral(x)
Relative number of neutral neighbors : NG
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Estimation of the neutral rate with random walk

@ The neutral rate can be estimated with a random walk : J

(x1,x2,--.,x0) where x¢11 € N(xt)

Neutral rate estimation [evoCOP 17] [LDV'17]

H{(xe, xer1) @ f(xe) = Fxea), t € {1, —1}}
/-1

Nota : With single random walk, fitness distribution, autocorrelation of fitness,

probability of improvement, neutral rate can be estimated
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Neutral network : other metrics

@ Size

avg, distribution . ..
\ @ Neutral degree
/ s distribution
-

| G

2 3 a

Frequency

55555555
Neutral Degree

© Autocorrelation of the
neutral degree
e neutral random walk
e autocorr. of degrees

© Evolvability metrics,
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Practice : computing the neutral rate

Source code ex003.R :

@ main :
Code to compute the neutral rates

v

@ Define the function neutral_rate to compute the neutral
rate estimated with a random walk

@ Execute the main function to compute the neutral rate

@ Compare the neutrality of the SP problems 1 and 2
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Practice : Performance vs. fitness landscape features

Explain the performance of ILS with fitness landscape features? J

@ 20 random SP problems have been generated : pb_xx.csv

@ The performance of lterated Local Search has been computed
in perf_ils_xx.csv (30 runs)

@ Goal : regression of ILS performance with fitness landscape
features
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Practice : Performance vs. fitness landscape features

Source code exo004.R :

@ fitness_landscape_features :
Compute the basic fitness landscape features

@ random_walk_samplings :
Random walk sampling on each problem (save into file)

@ fitness_landscape_analysis :
Compute the features for each problems

@ ils_performance :
Add the performance of ILS into the data frame

@ main :
Execute the previous functions
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Practice : Performance vs. fitness landscape features

@ What are the features computed by the function
fitness_landscape_features?

o Execute the random walk samplings function to compute
the random walk samples

@ Compute the correlation plots between features and ILS
performance (use ggpairs)

@ Compute the linear regression of performance with fitness
landscape features
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Practice : example of results

Adaptive walk lengths Random walks

pbl is "easier" than pb2

v

Correlation between features

\\\\\

pbl : p(1) = 0.9856, nr = 0.513
pb2 : p(1) = 0.9872, nr = 0.498

v

ILS perf. prediction (lin. mod.)

= R?2=0.69
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Short summary

Geometries :
Multimodality, ruggedness, neutrality

Metrics/features based on the neighborhood :
probability to improve, fitness distribution, sign, etc.
Covariance of the metrics across search space :
autocorrelation, pearson/spearman/kendall correlation,
entropy, etc.

e Estimation of metrics/features :
random sampling, random walk, adaptive walk, etc.
sample size, length, number : use sampling methodology
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3. Local Optima Network

Fitness Landscape Analysis
Understanding and Predicting Algorithm Performance
for Single- and Multi-objective Optimization



complex systems  definitions basins of attraction LON features understanding performance predicting performance
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QOutline

1. FheBasies-of Fitness-tandseapes
2. Geemetries-of FitnessLandseapes
3. Local Optima Network

o Features from the network, algorithm design and performance
e Performance prediction and algorithm portfolio

4. Multi-objective Fitness Landscapes
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Joint initial work with

@ Gabriela Ochoa, University of StirlingUK
@ Marco Tomassini, University of Lausanne, Switzerland

@ Fabio Daolio, University of Stirling, UK
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basins of attraction LON features v standing performance predicti

000 000

Key idea : complex system tools

Principle of variable aggregation

A model for dynamical systems with two scales (time/space)

@ Split the state space according to the different scales

@ Study the system at the large scale
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Key idea : complex system tools

Principle of variable aggregation

A model for dynamical systems with two scales (time/space)
@ Split the state space according to the different scales

@ Study the system at the large scale

Variable aggregation for fitness landscape

@ At solutions level (small scale) :
o .
X P X ° Stochastlg local search opera}tor
e Exponential number of solutions
e Exponential size of the stochastic matrix
of the process (Markov chain)

@ Projection on a relevant space :
o Reduce the size of state space
e Potentially loose some information
o Relevant information remains when

p(op(x)) = op'(p(x))
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Key idea : complex system tools

Principle of variable aggregation

A model for dynamical systems with two scales (time/space)
@ Split the state space according to the different scales
@ Study the system at the large scale

Variable aggregation for fitness landscape

@ At solutions level (small scale) :

X _°° . x ° Stochastig local search opera}tor
e Exponential number of solutions
pl lp e Exponential size of the stochastic matrix

, of the process (Markov chain)
op .
E— E @ Projection on a relevant space :

o Reduce the size of state space
e Potentially loose some information
o Relevant information remains when

p(op(x)) = op'(p(x))
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Key idea : complex system tools

Complex network

Bring the tools from complex networks analysis to study the
structure of combinatorial fitness landscapes

Methodology

o Design a network that represents the landscape

o Nodes : local optima
e Edges : a notion of adjacency between local optima

o Extract features :

e ‘“complex” network analysis

@ Use the network features :

e search algorithm design, difficulty ...

J. P. K. Doye, The network topology of a potential energy landscape : a static
scale-free network., Phys. Rev. Lett., 88 :238701, 2002. [Doy02]

4/46



complex systems
oooe

Energy surface and inherent networks

Inherent network

@ Nodes : energy minima

o Edges : two nodes are connected if the energy barrier
separating them is sufficiently low (transition state)

®)]
(a) Energy surface @ ) ’
(b) Contours plot : . ‘
partition of states space into | b «
basins of attraction

\\ O////@\h\\f

(c) Landscape as a network

F. H Stillinger, T. A Weber. Packing structures and transitions in liquids and solids. Science, 225.4666 , p. 983-9,
1984. [SW84

J. P. K. Doye, The network topology of a potential energy landscape : a static scale-free network. Phys. Rev. Lett.,
88 :238701, 2002. [Doy02]
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Basins of attraction in combinatorial optimization
Example of a small NK landscape with N =6 and K =2

.0 .. .. .. o Bit strings of length N =6
e 2% = 64 solutions

® ® ° ° @ one point = one solution
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Basins of attraction in combinatorial optimization
Example of a small NK landscape with N =6 and K =2

o Bit strings of length N =6

@ Neighborhood size = 6

@ Line between points =
solutions are neighbors

@ Hamming distances between
solutions are preserved
(except for at the border of
the cube)
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Basins of attraction in combinatorial optimization
Example of small NK landscape with N =6 and K =2

The color represents the
fitness-values

@ high fitness

® |ow fitness
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Basins of attraction in combinatorial optimization
Example of small NK landscape with N =6 and K = 2

@ Color represent fitness value
19 @ high fitness
® [ow fitness
— o —7 point towards the
BB solution with highest fitness
in the neighborhood

Why not making a Hill-Climbing
walk on it?
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Basins of attraction in combinatorial optimization
Example of small NK landscape with N =6 and K =2

one basin of attraction

e ® ‘# @ Each color corresponds to
‘e ."-

@ Basins of attraction are
interlinked and overlapped

@ Basins have no “interior”

10/46
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Basins of attraction in combinatorial optimization
Example of small NK landscape with N =6 and K = 2

@ Basins of attraction are interlinked and overlapped !
@ Most neighbors of a given solution are outside its basin

11/46
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complex systems

0000 000000

Local optima network

(;/’—‘t:> 0.185
X
0. 29

0.65

LON features

understanding performance
0000000

predicting performance
0000000

@ Nodes :
local optima
o Edges :
transition probabilities

0.055
fit=0.7046
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Local optima network

Definition : Local Optima Network (LON)
Oriented weighted graph (V, E, w)
@ Nodes V : set of local optima {LOy,...,LO,}

@ Edges E : notion of connectivity between local optima
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Local optima network

Definition : Local Optima Network (LON)
Oriented weighted graph (V, E, w)
@ Nodes V : set of local optima {LOy,...,LO,}

@ Edges E : notion of connectivity between local optima

v

2 possible definitions for edges

o Basin-transition edges :
transition between random solutions from basin b; to basin b;

([OTVDO8], [VOTO8], [TVO08], [VOT10])

o Escape edges :
transition from Local Optimum i to basin b;

(EA 2011, GECCO 2012, PPSN 2012, EA 2013 [DVOT13])

v
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Basin-transition edges : random transition between basins

ejj between LO; and LO; if 3 x; € bj and x; € bj : xj € N(x;)

Prob. from solution x to solution x’

p(x = x') = Pr(x’ = op(x))

Prob. from solution s to basin b;
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LON with escape edges

Definition : Local Optima Network (LON)

Orienter weighted graph (V, E, w)
o Notes V : set of local optima {LOs,...,LO,}

@ Edges E : notion of connectivity between local optima

Edge ej; between LO; and LO;
if 3x : distance(LO;,x) < D and x € b;

Weights
wjj = ﬂ{x e X | d(LO;,X) <D, x¢& bj}

can be normalized by the number of solutions at
distance D

N
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LON with escape edges

Definition : Local Optima Network (LON)

Orienter weighted graph (V, E, w)
o Notes V : set of local optima {LOs,...,LO,}

@ Edges E : notion of connectivity between local optima

Edge ej; between LO; and LO;
if 3x : distance(LO;,x) < D and x € b;

Weights
wjj = ﬂ{x e X | d(LO;,X) <D, x¢& bj}

can be normalized by the number of solutions at
distance D

N

15/46
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Methodology

Design, and understand LON metrics
on tunable enumerable problem instances
nk-landscapes, gap, ubqp, flow-shop

Understand, and predict algorithm performances
on enumerable instances

Define sampling techniques for large size instance

Understand, and predict algorithm performances
on large instances
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NK-landscapes
[Kauffman 1993] [Kau93]

x €{0,1}" f(x) = %27:1 fi(Xj, Xiy - - -5 X3, )

Two parameters

@ Problem size n
@ Non-linearity k < n
(multi-modality, epistatic interactions)
o k=0 : linear problem, one single maxima
N
e k=n—1:random problem, number of local optima N2—+1

note : similar results for QAP and flowshop
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Basins of attraction features

e Basin of attraction :
o Size :
average, distribution ...
e Fitness of local optima :
average, distribution, correlation ...
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Global optimum basin size vs. non-linearity degree k

N=16 ——

N=18 e

@ Basin size of maximum
~ decreases exponentially
iy with non-linearity degree

0.001

0.0001

Normalized size of the global optima’s basin

e = Difficulty of
L A (best-improvement)
hill-climber from a random

1e-05

Size of the global maximum basin solution
as a function of
non-linearity degree k
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Fitness of local optima vs. basin size

i The highest, the largest ! |
8 1000 ’
H @ On average, the global
g @ . . . .
E optimum is easier to find
S than one given other local
, optimum
0.5 0.55 0.6 0.65 0.7 0.75 0.8 ) )
finess of local optima @ ... but more difficult to find,
Correlation fitness of local as the number of local
optima vs. their corresponding optima increases
basins sizes exponentially with k
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Features form the local optima network

nv : fvertices

Iv : avg path length
dj = 1/wj

@ /o : path length to best

fnn : fitness corr.

(F(x), f(y)) with (x,y) € E
wii : self loops

wcc . weighted clust. coef.
zout : out degree

y2 : disparity

knn : degree corr.

(deg(x), deg(y)) with (x,y)

predicting performance

€ E

21/46
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Structure of the local optima network

o NK-landscapes (small instances) :
most of features are correlated with k
relevance of the LON definition

—— Basins
-+~ Esc.D1

P(wiW)

average clustering coefficient

ot
random - sﬂ.\"’

0.001 001 041 i LER) 50 | 500
w out-degree

@ LON is not a random network (NK, QAP, FSSP) :
highly clustered network,
distribution of weights and degrees have long tail ...
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Example : clustering coefficient for NK-landscapes

1.01
—e— Basins
€ -+- Esc.D1
3 08 -=- Esc.D2
=
[
Q
o
2 0.6
k5
E
S 0.4
(9]
j=2)
o
[ .
z 0.2

@ Network highly clustered

o Clustering coefficient decreases with the degree of
non-linearity k
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LON to compare instance difficulty
Local Optima Network for the Quadratic Assignment Problem (QAP) [DTVO11]

— Community detection, Funnel, Fractal dimension

Random instance

Real-like instance

9] [¢]
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the structure of the LON is related to problem difficulty J
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Configuration : LON to compare algorithm components (1)

comparaison of operators for the Flowshop Scheduling Problem J

= .
L . 150
. .
- - B .
s )
508 2
§ Operator ; 100- Operator
% B3 exchange 5 B3 exchange
£ B8 insertion o B8 insertion
5 .
o6 . g :
E g
3 < s0-

SRR

Number of Machines

.
3
0.4 *
9 5 6

5 6

7 8
Number of Machines
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Configuration : LON to compare algorithm components (2)

comparaison of the hill-climbing’s pivot rule for NK-landscapes :
First vs. Best improvement HC ’

K e/, Y d dpest
b-LON | f-LON | b-LON | f-LON | b-LON | f~LON | b-LON | f-LON

2 0.81 0.96 0.326 0.110 56 39 16 12
4 0.60 0.92 0.137 | 0.033 126 127 35 32
6 0.32 0.79 0.084 | 0.016 170 215 60 70
8 0.17 0.65 0.062 | 0.011 194 282 83 118
10 | 0.09 0.53 0.050 | 0.009 206 340 112 183
12 | 0.05 0.44 0.043 | 0.008 207 380 143 271
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Information given by the local optima network

Advanced questions

@ Can we explain the performance from LON features ?
@ Can we predict the performance from LON features ?

@ Can we select the relevant algorithm from LON features ?
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Correlation matrix (small size problem instances)
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LON features vs. performance : simple correlation

Algorithm : lterated Local Search on NK-landscapes with N = 18

Performance : ert = E(T;) + (%) T oo

ny dbest d fnn Wii cv zout Yy knn
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understanding performance

ILS performance vs LON metrics

NK-landscapes [DVOT12]
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average distance to the global optimum

Expected running time

VS.

Average shortest path to the global optimum
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features  understanding performance

ILS performance vs LON metrics
Flow-Shop Scheduling Problem [EA'13]
2= Operator D=2
e

Estimated Run-Length with Restarts

102+ oot vt vt o] e .
o' 10® 10®° 10* 10° 10" 10® 10®°  10°
Average Length to the Global Optimum

Expected running time
vs.
Average shortest path to the global optimum
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LON features vs. performance : multi-linear regression

understanding performance
00000e0

© Multiple linear regression on all possible predictors :

log(ert) = Bo + Brk + B2 log(nv) + Balo + - - - + Broknn + €

@ Step-wise backward elimination of each predictor in turn

Predictor Bi Std. Error p-value

(Intercept) 10.3838  0.58512 9.24.10~*
lo 0.0439  0.00434 1.67-10-20
zout —0.0306  0.00831 2.81-10704
y2 —7.2831  1.63038 1.18-107
knn —0.7457  0.40501 6.67-10702

Multiple R? : 0.8494, Adjusted R? : 0.8471
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understanding performance
00000Oe

LON features vs. performance : multi-linear regression

for the Flowshop Scheduling Problem using exhaustive seIectionJ

1P ‘ log(Nv) ccw Fron knn r log(Lopt) log(Ly) wii Y2 kout ‘ G adjR?
1 2.13 265.54 0.574
2 —5.18 1.43 64.06 0.675
3 1.481 0.895 —0.042 | 16.48 0.700
4 —2.079 1.473 0.540 —0.032 8.75 0.704
5 —2.388 —1.633 1.470 0.528 —0.030 5.97 0.706
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predicting performance
©000000

Sampling methodology for large-size instances

Two mains techniques (Thomson et al. [TOVV20]) :

@ Random walk on local optima network

@ Adaptive walk lon local optima network
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predicting performance
0®00000

Sampling methodology for large-size instances

From the sampling of large-size complex network :
@ Random walk on the network
@ Breadth-First-Search

35/46



predicting performance
00®0000

Set of estimated LON features for large-size instances

fit
wii
zout
Y2
knn
wcc
fnn

LON metrics

Average fitness of local optima in the network
Average weight of self-loops

Average outdegree

Average disparity for outgoing edges
Weighted assortativity

Weighted clustering coefficient

Fitness-fitness correlation on the network

Ihc
mlhc
nhc

Metrics from the sampling procedure

Average length of hill-climbing to local optima
Maximum length of hill-climbing to local optima
Number of hill-climbing paths to local optima
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predicting performance
000®000

Performance prediction based on estimated features

Optimization scenario using off-the-shelf metaheuristics :
TS, SA, EA, ILS on 450 instances for NK and QAP

Performance measures :
average fitness / average rank

Regression model :
multi-linear model / random forest

@ Set of features :
e basic : 1* autocorr. coeff. of fitness (rw of length 10°)
Avg. fitness of local optima (10° hc)
Avg. length to reach local optima (10% hc)
e lon : see previous
e all : basic and lon features

Quality measure of regression :
R? on cross-validation (repeated random sub-sampling)
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R? on cross-validation for NK-landscapes and QAP

Sampling parameters : length ¢ =

100, sampled edge m = 30, deep d =2

predicting performance
0000®00

NK QAP

Mod. Feat. Perf. TS SA EA ILS avg TS SA EA ILS avg

Im basic  fit 0.8573 0.8739 0.8763 0.8874 0.8737 -38.42 -42.83 -41.63 -39.06  -40.48
Im lon fit 0.8996 0.9015 0.9061 0.8954 0.9007 0.9995 1.0000 1.0000 0.9997 0.9998
Im all fit 0.9356 0.9455 0.9442 0.9501 0.9439 0.9996 0.9997 0.9999 0.9997 0.9997
Im basic rank 0.8591 0.9147 0.6571 0.6401 0.7678 0.2123 0.8324 -0.0123 0.4517 0.3710
Im lon rank 09517 0.9332 0.7783 0.7166 0.8449 0.7893 0.9673 0.8794 0.9015 0.8844
Im all rank  0.9534 0.9355 0.7809 0.7177 0.8469 0.6199 0.9340 0.8577  0.9029 0.8286
rf basic  fit 0.9043 0.9104 0.9074 0.8871 0.9023 0.8811 0.8820 0.8806 0.8801  0.8809
rf lon fit 0.8323 0.8767 0.8567 0.8116 0.8443 0.9009 0.9025 0.9027  0.9019  0.9020
rf all fit 0.8886  0.9334 0.9196 0.8778 0.9048 0.9431 0.9445 0.9437 0.9429 0.9436
rf basic rank 0.9513 0.9433 0.7729 0.8075 0.8687 0.9375 0.9653 0.8710 0.9569  0.9327
rf lon rank  0.9198 0.9291 0.7979 0.7798 0.8566 0.9308 0.9630 0.8820 0.9601  0.9340
rf all rank  0.9554 0.9465 0.8153 0.8151 0.8831 0.9381 0.9668 0.8779 0.9643 0.9368
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predicting performance
00000®0

Observed vs. estimated performance

@ On the 32 possibles cases (Mod. x Feat. x Algo.),
the best set of features : all 27 times, lon 12 times, basic 6 times

@ With linear model : basic set is never the one of the best set,
lon features are more linearly correlated with performance

@ Random forest model obtains higher regression quality :
basic can be one of the best set (2 times)
Nevertheless, 7/8 cases, all features are the best one

250
250
250

200
200

200

Estimation
100 150
Estimation
100 150
Estimation
100 150

50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
Performance Performance Performance

basic, R? = 0.9327 lon, R? = 0.9601 all, R? = 0.9643
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Portfolio scenario

@ Portfolio of 4 metaheuristics : TS, SA, EA, ILS

predicting performance

O00000e

@ Classification task : selection of one of the best metaheuristic

@ Models : logit, random forest, svm

@ Quality of classification :

error rate (algo. is not one of the best) on cross-validation

Avg. error rate

Probl.  Feat. logit rf svm cst rnd
basic 0.0379 0.0278 0.0158

NK lon 0.0203 0.0249 0.0168 0.4711 0.6749
all 0.0244 0.0269 0.0165
basic 0.0142 0.0107 0.0771

QAP lon 0.0156 0.0086 0.0456 0.4222 0.6706
all 0.0161 0.0106 0.0431
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Conclusions and perspectives

@ The structure of the local optima network . ..
...can explain problem difficulty

@ LON-features can be used for performance prediction

@ The sampling methodology gives relevant estimation of LON
features for performance prediction and algorithm portfolio

v

@ Reducing the cost and improving the efficiency of the sampling

@ Other (real-world, black-box) problems and algorithms

@ Understanding the link between the problem definition
and the LON structure

@ Studying the LON as a fitness landscape at a large scale
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4. Multi-objective Fitness Landscapes
» Brief overview of (evolutionary) multi-objective optimization
» Features to characterize multi-objective fitness landscapes

» Performance prediction and algorithm selection



Motivations

Multi-objective optimization problems are hard

Understanding what makes a problem difficult, and how
Understanding what makes algorithms work well (or not)
Learning about the problem structure to design better algorithms

Models to explain and predict the performance of algorithms
based on (relevant) problem features

Models to understand the dynamics and behavior of algorithms



Global Picture

Features

» Expensive features to understand difficulty (problems vs. algorithms)

» Low-cost features for prediction (performance, selection, configuration)

Problems
» Multi-objective NK landscapes (pmnk-landscapes)

» Multi-objective quadratic assignment problem (mQAP)

Algorithms
» Global vs. local dominance-based search algorithms

» State-of-the-art EMO algorithms (decomposition, dominance, indicator)



Multi-objective Optimization
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Multi-objective Shortest Path
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Multi-objective Shortest Path

cost
t O
O
@ fastest
® some paths
© are better
O
® o
® ® which path
is optimal?
O
@ cheapest
> time



Single vs. Multi-objective
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Pareto Dominance

A

2 (max) O dominates O
------------ @ O dominatedby @
.............................................. O

o E
> 1 (max)




Pareto Dominance

A

2 (max)

> 1 (max)



Pareto Dominance

2 (max) ! empty
O
‘ ................................................
\ non-dominated
® O
O O
O O
O
© O
O
> 1 (max)




Pareto Dominance

2 (max)

A

@ <« - non-dominated,
@ <« Pareto-optimal,
A/‘/ efficient
O
© O O
O O
O
© O
O
> 1 (max)




Pareto Dominance

A

2 (max)

@ <« non-dominated,

@ <« Pareto-optimal,
A/‘/ efficient

> 1 (max)




Pareto Dominance

A

2 (max)
optimum {2 +— @ « _

@ <« Pareto-optimal,
A/‘/ efficient

non-dominated,

optima t1

> 1 (max)




Pareto Front
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Challenges

Variables: many, heterogeneous, intricate structure
Objectives: many, heterogeneous, black-box (expensive)

NP-completeness: deciding if a solution is Pareto optimal
is difficult for many multi-objective optimization problems

Intractability: number of Pareto optimal solutions
(non-dominated vectors) typically grows exponentially

What about a Pareto set approximation?
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Pareto Set Approximation

Rule of thumb

» closeness to the (exact) Pareto front

» well-distributed solutions in the objective space

A -
Quality indicators S ?'r’(‘f’/’f"’c
——
» scalar value that reflects <>"<5>__:
approximation quality <>
e.g. HV, EPS, IGD, R-metrics 0 _____
>




population

EMO Algorithms

parents offspring

selection Xx3 variation % K %k ok replacement

new
population
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EMO Algorithms

(1) Decomposition approaches
» multiple aggregations of the objectives (e.g. weighted-sum)
e.g. MOSA, MOTS, TPLS, MOEA/D
(2) Dominance-based approaches
» search process guided by a dominance relation
e.g. NSGA-Il, SPEA2, PAES, PLS, SEMO, AeSeH
(3) Indicator-based approaches

» search process guided by a quality indicator

e.g. IBEA, IBMOLS, SMS-EMOA, HypE
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Global vs. Local EMO Search

local search

multi-objective hill-climber

PLS
[Paquete et al. 2004]

A {Xo}
repeat
select x € A at random
for all X' s.t. ||[x—X'||; =1do
A < non-dominated
solutions from AU {x’}
end for
until stop

global search
multi-objective (1 + 1)—EA

G-SEMO
[Laumanns et al. 2004]

A {Xo}
repeat
select x € A at random
x' + x
flip each bit x/ with a rate +
A < non-dominated
solutions from AU {x’}
until stop
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What Makes a Multi-objective
Optimization Problem Difficult?




(Single-objective) nk Landscapes

[Kauffman 1993]

max f(x) = l Z

n

n
j=1

s.t. x; € {0,1}

» number of variables n

G (X -

Y

)

iel,..

» non-linearity k < n (variable interactions, epistasis)

» contributions values (¢j) ~[0,1]

LN}

Xj Xj1 X2
000
001

X1 X2 oo X1 e X Xj2 Xn 111

0.9
0.1

0.6
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omnk Landscapes

[Verel et al. 201 3]

n

1 l
max f(x) = ;Z cH X X0 ) i€ (1,...,m)
j=1

s.t. x; € {0,1}

number of variables n

relation

tive cor|

unknown for

Avg objec

non-linearity k <n «—
black-box problems

number of objectives rr/

objective correlation p > -=1/(m-1)

lation

tive corre

Avg objec

http://mocobench.sf.net



Objective 2

Objective Correlation
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large landscapes

Experimental Setup

1000 landscapes generated by a design of experiments

» number of variables n e [64, 256]
» non-linearity k € [0, 8]
» number of objectives m € [2, 5]

» objective correlation p e [-1/(m=1), 1]
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large landscapes

Experimental Setup

Algorithms

» NSGA-Il vs. IBEA vs. MOEA/D (default setting, population size = 100)
Performance

» 20 independent runs per instance, fixed budget of 1 000 000 evaluations

» (Expected) hypervolume relative deviation (hvrd)

Statistics
» Correlation = Spearman (non-parametric)

» Regression = random forest (default setting)
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large landscapes

n, k, m, p vs. Pertormance

1e+00 A

1e-03 A

hvrd

1e-06 -

100 150 200
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NSGA-Il  —-0.01

IBEA 0.03
MOEA/D -0.07

250
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1e+00 A

1e-03 A
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= |BEA
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k n
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1e+00 A

1e-034 ¢

1e-064

cor (m, hvrd)
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1e+00 -

1e-03 A
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rho

cor (p, hvrd)
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—-0.08
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mean decrease in the Gini index of node impurity
o
w

-
o
1

o
(63}
1

large landscapes

Variable Importance

Model (regression, RF) = hvrd ~ (n, k_n, m, p)

.
NSGA-I] m]
rho
(n]
1el04 36l04 1el03 SGLOS

mean decrease of prediction accuracy

% var explained: 87.63

mean decrease in the Gini index of node impurity

w
1

N
1

—_
1

IBEA

il

1e-03 3e-03 1e-02

mean decrease of prediction accuracy

% var explained: 87.77
P

3e-04

mean decrease in the Gini index of node impurity

0.2+

0.1+

_
1 IMOEA/D
rho
) .
5el05 1el04 3el04 5el04

mean decrease of prediction accuracy

% var explained: 77.81
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Multi-objective
L andscape Features




Global Features

+ PO

f2 f2
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supporte
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» fi
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solution space and
Pareto graph
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1.

sampling

| ocal Features

sampling
» walk (xo, X1, ..., X|)
S.t. Xt € N(Xt_’|)

2. measures

» avg

» r1 (first
autocorrelation)

» length |

> >

random walk

dom
metrics

f1

f2
4 adaptive walk

..................

hv

...lf.?::.@ metrics

» f1
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BENCHMARK parameters (4)

n number of (binary) variables
k n proportional number of variable interactions (epistatic links) : k/n
m number of objectives
P correlation between the objective values
GLOBAL FEATURES FROM full enumeration (16)
#po proportion of Pareto optimal (PO) solutions
#supp proportion of supported solutions in the Pareto set
hv hypervolume-value of the (exact) Pareto front
#plo proportion of Pareto local optimal (PLO) solutions
#slo_avg average proportion of single-objective local optimal solutions per objective
podist_avg average Hamming distance between Pareto optimal solutions
podist_max maximal Hamming distance between Pareto optimal solutions (diameter of the Pareto set)
po_ent entropy of binary variables from Pareto optimal solutions
fdc fitness-distance correlation in the Pareto set (Hamming dist. in solution space vs. Manhattan dist. in objective space)
#cc proportion of connected components in the Pareto graph
#sing proportion of isolated Pareto optimal solutions (singletons) in the Pareto graph
#lcc proportional size of the largest connected component in the Pareto graph
lcc dist average Hamming distance between solutions from the largest connected component
lcc hv proportion of hypervolume covered by the largest connected component
#fronts proportion of non-dominated fronts
front_ent entropy of the non-dominated front's size distribution

LOCAL FEATURES FROM RANDOM WALK sampling (17)

hv_avg_rws
hv_rl rws
hvd_avg_rws
hvd_rl_rws
nhv_avg_rws
nhv_rl_rws
#1lnd_avg_rws
#1nd rl1 rws
#lsupp-avg_rws
#lsupp-rl_rws
#inf_avg rws
#inf rl1 rws
#sup_avg_rws
#sup_rl_ rws
#inc_avg_rws
#inc_rl rws
f_cor_rws

average (single) solution’s hypervolume-value

first autocorrelation coefficient of (single) solution’s hypervolume-values

average (single) solution’s hypervolume difference-value

first autocorrelation coefficient of (single) solution’s hypervolume difference-values

average neighborhood'’s hypervolume-value

first autocorrelation coefficient of neighborhood’s hypervolume-value

average proportion of locally non-dominated solutions in the neighborhood

first autocorrelation coefficient of the proportion of locally non-dominated solutions in the neighborhood
average proportion of supported locally non-dominated solutions in the neighborhood

first autocorrelation coefficient of the proportion of supported locally non-dominated solutions in the neighborhood
average proportion of neighbors dominated by the current solution

first autocorrelation coefficient of the proportion of neighbors dominated by the current solution
average proportion of neighbors dominating the current solution

first autocorrelation coefficient of the proportion of neighbors dominating the current solution

average proportion of neighbors incomparable to the current solution

first autocorrelation coefficient of the proportion of neighbors incomparable to the current solution
estimated correlation between the objective values

LOCAL FEATURES FROM ADAPTIVE WALK sampling (9)

hv_avg_aws
hvd_avg_aws
nhv_avg_aws
#1nd_avg_aws
#lsupp-avg_aws
#inf_avg_aws
#sup_avg_aws
#inc_avg_aws
length_aws

average (single) solution’s hypervolume-value

average (single) solution’s hypervolume difference-value

average neighborhood’s hypervolume-value

average proportion of locally non-dominated solutions in the neighborhood

average proportion of supported locally non-dominated solutions in the neighborhood
average proportion of neighbors dominated by the current solution

average proportion of neighbors dominating the current solution

average proportion of neighbors incomparable to the current solution

average length of Pareto-based adaptive walks




small landscapes

Experimental Setup

60480 instances generated by factorial design
(30 per setting)

» number of variablesn e {10, 11, 12,13, 14, 15, 16}
» non-linearity ke {0,1,2,3,4,5,6,7, 8}
» number of objectives m € {2, 3, 4, 5}

» objective correlation p > =1/(m-1)
o €{-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8, 1}
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small landscapes

Pairwise Feature Correlation
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large landscapes

Experimental Setup

1000 landscapes generated by a design of experiments

» number of variables n e [64, 256]
» non-linearity k € [0, 8]
» number of objectives m € [2, 5]

» objective correlation p e [-1/(m=1), 1]
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large landscapes

Pairwise Feature Correlation
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large landscapes

Experimental Setup

Algorithms

» G-SEMO + I-PLS

Performance

» 30 independent runs per instance, fixed budget of 100 000 evaluations
» (Expected) epsilon approximation ratio to best non-dominated set

Statistics

» Regression = extremely randomized trees
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large landscapes

Prediction Accuracy

MAE

MSE

adjusted R?

algo. | setof features avg std avg std avg std avg std rank
all features 0.003049  0.000285 | 0.000017  0.000004 | 0.891227  0.024584 | 0.843934  0.035273 | 1
© local features 0.003152  0.000295 | 0.000018  0.000004 | 0.883909  0.026863 | 0.838126  0.037457 | 1
E local features (random walk) 0.003220  0.000314 | 0.000019  0.000004 | 0.878212  0.028956 | 0.849287  0.035833 | 1.5
7 local features (adaptive walk) | 0.003525  0.000329 | 0.000023  0.000006 | 0.854199  0.032339 | 0.834089  0.036799 | 5
O {p,m,n, k.n} 0.003084  0.000270 | 0.000017  0.000003 | 0.892947  0.020658 | 0.888440  0.021528 | 1
{m,n} 0.010813  0.000830 | 0.000206  0.000030 | -0.303336  0.188046 | -0.330209  0.191923 | 6
all features 0.004290  0.000430 | 0.000034  0.000008 | 0.886568  0.026980 | 0.837249  0.038710 | 1
" local features 0.004359  0.000423 | 0.000035 0.000008 | 0.883323  0.027274 | 0.837309  0.038030 | 1
S local features (random walk) 0.004449  0.000394 | 0.000036  0.000008 | 0.879936  0.026335 | 0.851421  0.032589 | 1
o local features (adaptive walk) | 0.004663  0.000403 | 0.000039  0.000008 | 0.871011  0.025903 | 0.853219  0.029476 | 3.5
{p,m,n, k_n} 0.004353  0.000320 | 0.000033  0.000006 | 0.889872  0.024505 | 0.885235  0.025537 | 1
{m,n} 0.016959  0.001473 | 0.000472  0.000077 | -0.568495  0.228629 | -0.600836  0.233343 | 6

random subsampling cross-validation

(50 iter., 20/10 split)
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GSEMO
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large landscapes

Experimental Setup

Algorithms

» NSGA-II vs. IBEA vs. MOEA/D (default setting, population size = 100)

Performance

» 20 independent runs per instance, fixed budget of 1 000 000
evaluations

» (Expected) hypervolume relative deviation (hvrd)

Statistics

» Classification = extremely randomized trees, decision tree (default)
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mean decrease in the Gini index of node impurity
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large landscapes

Feature Importance w1

Model (regression, RF) =
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large landscapes

Algorithm Selection

Algorithm portfolio = {NSGA-II, IBEA, MOEA/D}

Model (classif, RF) = {algo} ~ (n, k_n, m, p, {features})

error rate of best average performance

error rate of best statistical rank

set of features mean std rank mean std rank
all features 0.122222 0.031033 | 1 0.012727 0.014110 | 1
local features 0.123030 0.030521 | 1 0.013737 0.014103 | 1
local features (random walk) 0.118788 0.029187 | 1 0.013333 0.012149 | 1
local features (adaptive walk) || 0.130303 0.029308 | 1 0.015354 0.014026 | 1
{o,m,n,k_n} 0.125859 0.028875 | 1 0.014141 0.013382 | 1
{m,n} 0.413333 0.045533 | 6 0.197374 0.043778 | 6

random subsampling cross-validation

(50 iter., 90/10 split)
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large landscapes

Algorithm Selection

Model (classif, decision tree) = {algo} ~ (n, k_n, m, p, {features})

494 12 493

#Ind_avg_aws <0.12

>=0.12
NSGA-II MOEA/D
469 11 185 25 1 308
/ \ / \
hvd_avg_rws >= 0.008 hv_avg_aws >= 0.18\
< 0.008 <0.18
NSGA-II MOEA/D NSGA-II MOEA/D
375 11 56 94 0 129 /22 1 12\ 3 0 296
#Ind_avg_ rws <0. 037 hv_r1_rws < 0.96\
>= 0.037 >= 0.96
NSGA I MOEA/D NSGA-II MOEA/D error = 12.61%
77 0 33 17 0 96 21 0 4 118

(best in avg)
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Multi-objective QAP

[Knowles et al. 2002]

min f(x) = i idxixjei]; ke {l,...,m}

xeX i=1 j=1
number of variables n

number of objectives m

objective correlation p

'\
instance type type /

unknown
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Experimental Setup

1000 instances generated by a design of experiments

» number of variablesne [ 30, 100 ]
» number of objectivesme[2,5]
» objective correlationpe[-1,1]

» instance type type € { uniform , real-like }
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Experimental Setup

Algorithms
» NSGA-II vs. IBEA vs. MOEA/D (default setting, population size = 100)
Performance

» 20 independent runs per instance, fixed budget of 1 000 000 evaluations

» (Expected) hypervolume relative deviation (hvrd)
Statistics

» Correlation = Spearman (non-parametric)

» Prediction = random forest, decision tree (default setting)
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Features vs. Performance

hvrd

hvrd

hvrd

0.30 A

0.10 A

0.03 -

0.01
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T T T T T T T T T T T T
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10 30 100 300 0.0lOO 0.(;25 0.0lSO 0.0I75 0.1l00 0.1I25 0.2)0 0.l25 0.I50 0.I75 1.;)0 1e«:-18 1e-:-26 1e-:-34 1e-:-42
length_aws sup_avg_aws Ind_avg_aws hv_avg_aws

=== NSGA-Il == IBEA = MOEA/D
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correlation with hvrd

Features vs. Performance
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lmportance of Features

Model (regression, RF) = hvrd ~ (n, m, p, type, {features})

NSGA-II (R2 =0.96)

N < i T T i i
© 2O~ 0 5 10 15 20

3. .
N\ mean increase of mse (scaled)

IBEA (R2 =0.98)

mean increase of mse (scaled)

0
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5 20

B 0009
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\ 2 e

\(\6 @XQ/ . .

e [] [] [] [] []

o 2O~ 0 5 10 15 20
e

MOEA/D (R2 = 0.78)
. o
Oy ®

mean increase of mse (scaled)
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Algorithnm Selection

Algorithm portfolio = {NSGA-II, IBEA, MOEA/D}
Model (classit, RF) = {algo} ~ (n, m, p, type, {features})

subset of features classification error | error predicting statistical best
{n,m} .1962 .0332
{type,n,m, p} 1197 .0072
{*_rws,n,m} 1114 .0062
{*_aws,n, m} 1125 .0065
{*_rws, length _aws,n,m} .1089 .0056
{*_rws, x_aws,n,m} 1077 .0063
{x_rws, x_aws, type,n,m, p} .1078 .0063
random classifier .6667 .3810
dummy classifier (MOEA /D) 4200 .1040

random subsampling cross-validation
(100 repetitions, 80/20% split)



lmportance of Features

Model (classit, RF) = {algo} ~ (n, m, p, type, {features})

- o
22

®
®
®
®
®
W] ¢
®
®
®
®
®

\(\0/ CI) é 1I0 1I5 2I0
mean decrease in accuracy (scaled)



lmportance of Features

Model (classit, decision tree) = {algo} ~ (n, m, p, type, {features})

302 118 580
m<4

>=4

2?3 113 114 ?9 ) 46?
length_aws < 99 Ind_r1_rws < 0.57\
i >= 99 >= 0.57
269 51 107 !625 29 48 0 1 458
hv_avg_ rws < 302e+18 inc_r1 rws >= 0.52

; >_ 302e+18 ; < 0.52

2 62 2 o5 0 2 classif error =17.5%
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Algorithnm Selection

Algorithm portfolio = {NSGA-II, IBEA, MOEA/D}
Model (classit, RF) = {algo} ~ (n, m, p, type, {features})

subset of features classification error | error predicting statistical best
{n,m} .1962 .0332
{type,n,m, p} 1197 .0072
{*_rws,n,m} 1114 .0062
S m} 1125 ATATAYAS
| {*_rws, length _aws,n,m} .1089 .OOg_g'_I
{*_TWws, x-aws,n,m} 1077 .00
{x_rws, x_aws, type,n,m, p} .1078 .0063
random classifier .6667 .3810
dummy classifier (MOEA /D) 4200 .1040

random subsampling cross-validation
(100 repetitions, 80/20% split)
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Automated Selection

Low-cost features extracted from search budget (~ 5%)
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Multi-objective Landscapes

» Design and quantity landscape features that capture
problem difficulty and search performance

» Understand why a problem is hard, why an algorithm is
good

» Scalability (#var, #obj) partly explain complexity,
importance of ruggedness and multimodality
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» Landscape-aware automated algorithm selection and configuration

» Landscape-aware parameter control

PPSN 2020
» Fitness landscapes for stochastic operators E Session 4 (Thu)

» Population and set-based fitness landscapes, parallel, crossover...
» Multi-objective landscapes visualization
» Continuous fitness landscapes

» Links with other theoretical approaches
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