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INTRODUCTION

Within the framework of structural dynamics, modal analy-

sis is a practical tool to predict vibrations in order to prevent or

utilize them. As a challenging topic in the field of modal anal-

ysis, nonlinear modal analysis is focused by many researchers

[1]. Nonsmooth modal analysis is a special form of nonlinear

modal analysis, in which governing equation of targeting system

involves indifferentiable functions of the state. To perform non-

smooth modal analysis, a method combing Frequency Domain

Boundary Element Method (FD-BEM) and Harmonic Balance

Method (HBM) is applied.

SYSTEM OF INTEREST

The system of interest embeds two one-dimensional bar with

same cross-section area facing each other through a common

unilateral contact interface, as shown in Figure 1. The system

is non-dimensionalized respect to the first bar, as shown in Ap-

pendix. The wave equation governs dynamics within each bar.

The first bar’s boundary at x = 0 is attached to a linear spring,

thus linear robin boundary condition is applied. The second

bar’s boundary at x = 0 is clamped thus homogeneous Dirich-

let condition is applied. The unilateral contact interface be-

tween two bars are described by Signorini boundary condition.

By defining the Signorini residual r(u(1, t),ux(1, t),w(ℓ, t)) =
ux(1, t)+max[ρ(u(1, t)+w(ℓ, t)− g0)− ux(1, t),0], where ρ is
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FIGURE 1. System of interest

an arbitrary strictly positive constant, Signorini boundary condi-

tion be expressed as a combination of the contact force equilib-

rium ux(1, t) = αwy(ℓ, t) and the equality [1]

r(u(1, t),ux(1, t),w(ℓ, t)) = 0. (1)

SOLUTION METHOD

The FD-BEM, as its name implies, is a frequency-domain

form of BEM which is appropriate when periodic solutions are

targeted. In this section, the derivation process is only shown on

bar 1 to be concise. The Fourier Transform along time of the

displacement u(x, t) (an equivalent definition holds for w(y, t))
leads to the well-known one-dimensional autonomous Helmholtz
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equations

ûxx(x,ω)+ω
2û(x,ω) = 0, x ∈]0,1[ (2)

respectively, where κ =ω/c is the frequency number for the sec-

ond bar. Then Holmholtz equation is transformed into a weighted

residual form, where the weight function is the fundamental solu-

tion to the Helmholtz equation [2]. Via integral by parts, targeted

boundary integral equation (BIE) is achieved for bar 1:

2û(x,ω) =û(0,ω)cosωx+ û(1,ω)cos(ω(1− x))

−
1

ω
(p̂(0,ω)sinωx− p̂(1,ω)sin(ω(1− x)))

(3)

In Equation (3), p̂(0,ω) = −ûx(0,ω) and p̂(1,ω) = ûx(1,ω)
were used to follow the traditional notation in BEM, in the con-

text of linear elasticity and small strains considered in the present

work. The same time-domain conventions are used in the re-

mainder. The same applies to Reading (3) on the boundary

{0}∪{1} leads to the two linearly independent equations for the

first bar

[

ω 0 −ω cosω sinω

−ω cosω sinω ω 0

]









û(0,ω)
p̂(0,ω)
û(1,ω)
p̂(1,ω)









=

(

0

0

)

, (4)

Periodicity Since periodic solution are targeted, bound-

ary terms u(1, t) ,p(1, t) are assumed in the forms of two distinct

Fourier series with a common frequency Ω

p(1, t) =
1

2
a0 +

∞

∑
n=1

an exp( jnΩt)

u(1, t) =
1

2
b0 +

∞

∑
n=1

bn exp( jnΩt)

(5)

where the complex coefficients an and bn are the new unknowns

of the problem.

Boundary Condition Considering Robin boundary

condition in frequency domain kû(0,ω) + p̂(0,ω) = 0 as well

as periodicity assumption, Equation 4 simplifies to

ωn(ωn − k cotωn)bn +(k+ωn cotωn)an = 0 with ωn = nΩ.
(6)

Another equation set for bar 2 could be derived by similar ap-

proach:

−κn cosκnℓ fn + sinκnℓdn = 0 with κn = nΩ/c. (7)

where complex coefficients dn and fn are discrete Fourier co-

efficients for q(ℓ, t) and w(ℓ, t). q(ℓ, t) is normal strain on the

Signorini boundary in bar 2, similar to p(1, t).

Unlike the above Dirichlet and Robin boundary conditions

which can be explicitly expressed in terms of the unknown

Fourier coefficients, the Signorini condition has no explicit form

in the frequency domain. Instead, a numerical version of the

Harmonic Balance Method is performed on (1) into the sys-

tem of nonlinear implicit equations with coefficients (an,bn, fn),
n = 0,1,2, . . . (gathered in vectors a ,b,f)

gn(a,b, f) =
∫ T

0
exp( jnΩt)r(a,b, f)dt = 0, n = 0,1,2, . . .

(8)

where T = 2π/Ω is period of targeted periodic motion. In other

words, the Signorini condition is satisfied in a weighted residual

sense only, as achieved in any Galerkin-like strategy. Along with

contact force equilibrium

an = αdn, ∀n (9)

Signorini condition is enforced.

Discretization and numerical approximation Dis-

cretization comes into the proposed solution strategy when the

Fourier expansions (5) are truncated to a finite number m of har-

monics, such that we define u(m)(1, t) ≈ u(1, t) and p(m)(1, t) ≈
p(1, t). A second level of discretization lies in the computation

of the integrals (8). It was found that the computed solutions

were not sensitive to that numerical aspect. Accordingly, it was

decided to compute the integrals (8) via a simple Riemann sum

approximation with a subinterval ∆t = T/(nhm) where T is tar-

geted motion period, and nh, a coefficient governing the accuracy

of the approximation, and chosen as nh = 30 after a convergence

check.

The system of nonlinear equations including Equations (6),

(7), (8) and (9) is then solved numerically using a trust-region

dogleg [3] solver, a built-in numerical solver of Matlab®, even

though the equations are not expected to be sufficiently smooth,

due to (8).

Continuation Once discretization is achieved, the task of

finding periodic solutions translates into an equivalent multidi-

mensional root finding problem of the form F(a,b,d, f,Ω) = 0,

where Ω is the unknown fundamental frequency of the Fourier

series. To search for continuous families of periodic solutions

and construct the desired solution branches, continuation tech-

niques shall be implemented. In this work, the classical sequen-

tial continuation technique [4] is used where Ω is successively
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FIGURE 2. Backbone curve of the first mode
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FIGURE 3. Strain (dashed) and position (solid) at the contact inter-

face: bar 1 [ ] and bar 2 [ ].

increased by a small given increment on a given interval of in-

terest: the nonlinear system is solved for the Fourier coefficients

only.

PRELIMINARY RESULT

In this section, some preliminary result was found with set-

ting ℓ= 2.2, c= 1, α = 1, k = 0.5. With such settings, the natural

frequency of each bar are in vicinity of each other: natural fre-

quency of bar 1 is ω
(1)
1 ≈ 0.653 rad−1 and natural frequency of

bar 2 is ω
(1)
1 ≈ 0.714 rad−1. Harmonics are truncated at m = 20

in this simulation.

A family of periodic solution was found in range

[ω
(1)
1 ,1.46ω

(1)
1 ]. The backbone curve is shown in Figure 2. In

range [ω
(1)
1 ,ω

(2)
1 ], hardening mode 1 of bar 1 interact with soften-

ing mode 1 of bar 2. In range [ω
(2)
1 ,1.46ω

(1)
1 ], both bars exhibits

hardening mode 1. One of the solution is shown in figure 3.

CONCLUSION
An combination between FD-BEM and HBM is extended to

two-bar unilateral contact case. Its capability has been proved

by some preliminary results. It worth noting although solutions

has been found, detailed analysis of nonlinear/nonsmooth phe-

nomenons, such as subharmonic and internal resonance, are still

to be performed.
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Appendix A: Non-dimensionalization of the system
The non-dimensional variables are introduced via an overbar

notation which is then omitted: •̄ is the non-dimensional version

of •: x̄ = x/L1, ȳ = y/L1, t̄ = t/τ , ū = u/L1, and w̄ = w/L1 with

the characteristic time τ = L/c1 where c1 =
√

E1/A1. Deriva-

tives of u are found using the chains rule: ux = L1ūx̄x̄x = ūx̄ and

ut = L1ūt̄ t̄t = L1ūt̄/τ . Higher derivatives can be found in a similar

way: uxx = ūx̄x̄/L1 and utt = L1ūt̄ t̄/τ2. For the second bar, when

considered, we have wt = L1w̄t̄/τ and wtt = L1w̄t̄ t̄/τ2. Mean-

while c̄ = c2/c1 and bar length ℓ̄ = L2/L1 for the second bar

are introduced. Non-dimensional boundary conditions are also

applied. For the Robin boundary condition, non-dimensional

spring stiffness k̄ = k/(EA) is introduced. Also, ratio α = E1/E2

is introduced for two-bar contact condition. In the remainder, the

upper bar notation is dropped for simplicity and all considered

quantities are non-dimensional.
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