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ABSTRACT

Deep convolutional networks (convnets) in the time–frequency do-
main can learn an accurate and fine-grained categorization of sounds.
For example, in the context of music signal analysis, this categoriza-
tion may correspond to a taxonomy of playing techniques: vibrato,
tremolo, trill, and so forth. However, convnets lack an explicit con-
nection with the neurophysiological underpinnings of musical timbre
perception. In this article, we propose a data-driven approach to
explain audio classification in terms of physical attributes in sound
production. We borrow from current literature in “explainable AI”
(XAI) to study the predictions of a convnet which achieves an almost
perfect score on a challenging task: i.e., the classification of five com-
parable real-world playing techniques from 30 instruments spanning
seven octaves. Mapping the signal into the carrier-modulation domain
using scattering transform, we decompose the networks’ predictions
over this domain with layer-wise relevance propagation. We find
that regions highly-relevant to the predictions localized around the
physical attributes with which the playing techniques are performed.

Index Terms— Layer-wise relevance propagation, scattering
transform, playing technique recognition, music signal analysis.

1. INTRODUCTION

Our scientific understanding of sound production has grown consid-
erably since the early years of computer music [1, 2]. For example,
the mechanics of a piano can be simulated with enough precision so
as to allow faithful synthesis [3]. However, for other instruments, we
lack a closed-form description of the interaction between player and
instrument [4]. Such is the case, in particular, when this interaction
belongs to the “extended” vocabulary of playing techniques: tremolo,
vibrato, staccato, and so forth [5]. This is because the gesture of the
performer is more difficult to specify for extended techniques than
the so-called “ordinary” technique [6].

Meanwhile, the renewed interest for machine learning in audio
signal processing has advanced the state of the art in the task of
playing technique classification [7]. This task is motivated by the key
role of playing techniques in the computational analysis of musical
performance [8]. Of particular interest is the subfamily of “periodic
modulation techniques” (PMT), in which the musician alternates
quickly between two positions: e.g., pressing and releasing a key to
produce a trill [9]. In comparison with the ordinary technique, a PMT
audio signal modulates periodically in amplitude, in frequency, or
both.

For this reason, the scattering transform offers a judicious choice
of feature map for PMT classification. Indeed, it represents the audio

Supported by an Atlanstic2020 project on Trainable Acoustic Sensors
(TrAcS). Companion website: https://github.com/changhongw/examod.

signal x in terms of a tensor Sxwhich is indexed by time t, first-order
wavelet frequency λ1, and second-order wavelet frequency λ2 [10].
Prior research has proven an approximate closed-form expression
for an idealized model of PMT, in which both the carrier and the
modulator are sinusoids of respective frequencies ω1 and ω2 [11].
Under this idealization, the energy in Sx has a local maximum at
the scattering path (λ1, λ2) = (ω1, ω2). Yet, real-world PMT’s
involve non-sinusoidal carriers and modulators [12]. The correspond-
ing Sx yields several nonzero regions in the scattering transform
domain [13].

Passing the tensor Sx as input to a supervised classifier has
led to state-of-the-art performance over several datasets for playing
technique recognition [14]. It has also allowed to match subjective
ratings of auditory similarities between playing techniques across
different instruments and mutes [15]. Another strong tendency of
recent research is to switch from shallow classifiers (e.g., support vec-
tor machines) to deep learning (e.g., convnets) [16, 17]. But despite
the growth of data-driven approaches to musical acoustics [18], the
perceptual underpinnings of playing technique recognition remains
poorly known. What makes the difference, for example, between a
vibrato and a trill [19, 20]? Answering this kind of research question
requires insight on the spectrotemporal characteristics of the audio
signal at hand, and not simply an accurate classification.

In this article, we propose to characterize real-world playing
techniques in terms of sparse activations in feature space. A prior
publication has tackled this problem with unsupervised dictionary
learning [21] over magnitude spectra. The originality of our approach
is that it is supervised: rather than decomposing the tensor Sx, it
decomposes the prediction of a deep neural network f over the
domain (λ1, λ2). The resulting decomposition does not measure
which pairs (ω1, ω2) are present in x; but more specifically, which
are relevant to the value of f(Sx). We decompose the predictions
using the layer-wise relevance propagation (LRP) method, which
explains pre-trained models’ predictions by associating each neuron a
relevance score. Although LRP has led to many publications in image
and text processing [22], it has been rarely applied to speech [23, 24]
and never to music. Our main finding is that LRP aligns with current
knowledge about sound production and musical gestures.

2. LAYER-WISE RELEVANCE PROPAGATION

2.1. Deep Taylor decomposition

We define a neural network f of depth M recursively over layers:

fm(Sx)[j] = ρ

Nm−1∑
i=1

Wm[i, j]fm−1(Sx)[i] + bm[j]

 , (1)



where Wm and bm are the matrix of weights and vector of bias
in layer m, and ρ is a rectified linear unit (ReLU). i and j index
neurons in layer m − 1 and layer m, respectively. Let ym denote
the layer-wise output of the network, i.e. ym = fm(Sx). The
relevance at the deepest layer, which takes yM−1 as input, is defined
as the prediction itself: RM (yM−1) = fM (Sx). Our goal is to
decompose RM into shallower layers until reaching R0 at the level
of the input f0(Sx) = Sx. We seek an LRP rule of the form:

Rm−1(ym−2)[i] =

Nm∑
j=1

Lm(ym−1)[i, j], (2)

in which the link matrix Lm preserves total relevance:
Nm−1∑
i=1

Lm(ym−1)[i, j] = Rm(ym−1)[j]. (3)

Before identifying Lm, we impose that relevance Rm and activation
ym should be proportional over each node j [25]:

∀x, Rm(ym−1)[j] = cm[j]ym[j], (4)

with cm[j] an unknown proportionality factor. In this case,
Rm(ym−1)[j] = 0 is equivalent to ym[j] = 0, which defines
a plane in dimension RNm−1 according to Eq. (1). We then define
a search direction dm ∈ RNm−1 and solve for a root point ỹm−1

from:{
cm[j]ρ

(∑Nm−1

i=1 Wm[i, j]ỹm−1[i] + bm[j]
)
= 0,

ỹm−1[i] = ym−1[i] + αmdm[i],
(5)

where αm is a scalar. We then obtain for every j:

ym−1[i]− ỹm−1[i] =

∑Nm−1

i=1 Wm[i, j]ym−1[i] + bm[j]∑Nm−1

i=1 Wm[i, j]dm[i]
dm[i].

(6)
To identify Lm, we perform a deep Taylor decomposition [26], com-
prising a series of Taylor decompositions of the relevance recursively
at each node. Specifically, we do a Taylor expansion of the function
Rm at the root point ỹm−1:

Rm(ym−1)[j] =

Nm−1∑
i=1

∂Rm[j]

∂ym−1[i]

∣∣∣∣
ym−1=ỹm−1

(
ym−1[i]− ỹm−1[i]

)
+O

(
∥ym−1[i]− ỹm−1[i]∥

2) . (7)

Neglecting the higher-order terms in Eq.(7) and injecting Eq.(6)
into Eq.(7), we obtain the base formula for deriving different LRP
rules [26]:

Rm−1(ym−2)[i] =

Nm∑
j=1

Wm[i, j]dm[i]∑Nm−1

i=1 Wm[i, j]dm[i]
Rm(ym−1)[j].

(8)

2.2. Baseline rule: LRP-0

According to the simplest rule, known as LRP-0, the search direction
is defined as dm[i] = ym−1[i] [26]. Therefore, according to Eq. (8),
we obtain the relevance redistribution formula:

Rm−1(ym−2)[i] =

Nm∑
j=1

Wm[i, j]ym−1[i]∑Nm−1

i=1 Wm[i, j]ym−1[i]
Rm(ym−1)[j].

(9)
To avoid division by zeros, LRP-ε rule adds a small positive number ε
to the denominator of Eq. (9).

2.3. Advanced rule : LRP-[ε, z+]

LRP-z+ rule searches the nearest root point on the segment
({ym−1[i]1Wm[i,j]≤0}, {ym−1[i]}) and the name “z+” originates
from [26] which defined z+ij = W+

m[i, j]ym−1[i]. LRP-z+ consid-
ers only the contributions of positive weights W+

m[i, j]:

Rm−1(ym−2)[i] =

Nm∑
j=1

W+
m[i, j]ym−1[i]∑Nm−1

i=1 W+
m[i, j]ym−1[i]

Rm(ym−1)[j].

(10)
LRP-[ε, z+] is a composite rule which applies the LRP-ε rule for con-
volutional layers and the LRP-z+ rule for fully connected layers. We
refer to [25] for a complete list of propagation rules. We implement
LRP in Python via the Zennit package1 .

3. APPLICATION TO PLAYING TECHNIQUE
CLASSIFICATION

3.1. Scattering transform

As a biological plausible surrogate for human perceptual judgments
of isolated audio events [15], the scattering transform decomposes
audio signals using wavelet convolutions, modulus nonlinearities, and
average pooling. The first-order scattering transform S1x maps the
signal x into the time–frequency domain, by convolving it with a
wavelet filterbankψλ1

, taking modulus and averaging with a lowpass
filter ϕ:

S1x(t, λ1) =
(∣∣x ∗ψλ1

∣∣∗ϕ)(t). (11)

S1x is essentially a constant-Q transform (CQT) which is a
commonly-used representation for music signal analysis [16, 17].
Yet, the averaging loses temporal modulations, which are critical to
the discrimination of PMTs. To recover this information, we perform
a second-order decomposition of the unaveraged S1x with a wavelet
filterbank ψλ2

[10]:

S2x(t, λ1, λ2) =
(∣∣∣|x ∗ψλ1

|∗ψλ2

∣∣∣∗ϕ)(t). (12)

We use Sx = S1x+S2x as input to a convenet for playing tech-
nique classification. Backpropagating the predictions using the LRP
rules in Section 2, we obtain the relevance score R0(Sx)[t, λ1, λ2],
which shows the contribution of each element in Sx.

3.2. Deep convolutional network

We train a convnet with 3 convolutional layers and one dense layer.
Each convolutional layer comprises a one-dimensional convolution
unit, a batch norm, a ReLU, and an average pooling. The dense layer
is followed by a softmax unit. The input to the convnet is the tensor of
scattering coefficients, either S1x or Sx. The corresponding feature
dimensions are 74 and 1200; and the number of trainable parameters
are 10.3 K and 2.1 M. For both cases, the network is trained with
early stopping and a batch size of 32. We use weighted cross-entropy
loss due to the unbalanced classes.

3.3. Studio On Line dataset

We use a subset of the Studio On Line dataset (version 0.9HQ) [7] that
includes five types of PMTs: tremolo, flatterzunge, trill, bisbigliando,
and vibrato. We call this subset SOL-PMT, which contains 2530,

1https://github.com/chr5tphr/zennit
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Fig. 1. Local relevance map R0(Sx) of five periodic modulation techniques. (a): log-spectrogram; (b): scattering coefficients Sx = S1x+S2x
(F0=fundamental frequency); (c): R0(Sx) yielded from LRP-ε rule; and (d) R0(Sx) using LRP-[ε, z+] rule. λ1 and λ2 are the carrier and
modulation frequency, respectively.

1523, 1035, 286, and 190 examples, respectively, for the five classes.
SOL-PMT offers large intra-class variability for PMTs in terms of
instrument (11 instrument families and 30 types of instruments), pitch
(C\1-34.6 Hz to B7-3951.1 Hz), dynamics (pianissimo to fortissimo),
and with/without mute. The sampling rate of the dataset is 44.1 kHz.

4. RESULTS AND DISCUSSION

4.1. Evaluation

We extract the scattering features for the SOL-PMT dataset with 8 and
2 filters per octave in the first- and second-order. The averaging scale
of the lowpass filter is 213, resulting in a frame size of T = 213 (186
ms). Coefficients with carrier frequencies below 32 Hz are removed
as those coefficients represents spectro-modulations that are inaudible.
The disparate length of audio examples are fixed into 218 samples
(around 6 seconds) by truncating or zero-padding. The full feature
map Sx for each audio example is then sized 1200× 32, where 1200
is the feature dimension and 32 is the number of time frames. After
randomly shuffling the data, we split each playing technique class

into training, validation, and test subsets by a 6:2:2 ratio for each
instrument. We provide a full description of the split and the file IDs
on the companion website.

Table 1 lists the classification accuracy for each PMT class. The
nearly perfect scores demonstrate the effectiveness of Sx for PMT
recognition. The considerable performance drop after removing S2x
from the full feature map verifies the importance of S2x for the
discrimination of PMTs.

Vibrato Trill Tremolo BisbigliandoFlatterzunge

S1x 72.50 70.33 92.23 88.33 79.61
S1x+S2x 97.50 98.56 99.80 98.33 100.0

Table 1. Classification accuracy (%) for each playing technique class
using the first-order (S1x) and full (Sx = S1x+ S2x) scattering
coefficients.
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Fig. 2. Class-wise aggregated relevance maps for the five periodic modulation techniques in the test set. Top: averaged scattering coefficients
Sx = S1x+ S2x; bottom: top-5 argmax aggregated relevance value R0(Sx).

4.2. Local relevance maps

Decomposing the predictions f(Sx) to the input Sx, we obtain
1200× 32 relevance values R0(Sx) for each test audio. To obtain
example-wise (local) relevance maps, we average the relevance over
the 32 time frames and visualize it in terms of carrier-modulation
pair, i.e. (λ1, λ2). Fig. 1 displays the local explanation maps of five
test examples, each from one class at the same pitch A4=440 Hz
(except A#4=466 Hz for trill). (a) is the log-spectrogram showing
the spectro-temporal characteristics of each technique, followed by
their corresponding Sx visualizations in (b). The column ticked by 0
in each subfigure in (b) is S1x and the remaining colored region is
S2x, as annotated in the left subfigure. Those regions in (c) and (d)
correspond to the relevance values for S1x and S2x, respectively.

Fig. 1 (c) and (d) are the relevance maps R0(Sx) for each class
by applying the LRP-ε and LRP-[ε, z+] rule, respectively. A core
observation is that relevance scores are localized around the modu-
lation rate of the playing techniques, e.g. 8 Hz for trill and 32 Hz
for flatterzunge. Indeed, these are the physical attributes with which
the playing techniques are performed according to our knowledge
of music gestures. Additionally, relevance values do not positively
correlate with scattering energy. High energy regions in Sx, e.g. with
λ2 > 64 Hz for trill, tremolo, and flatterzunge, do not show strong
evidence in the corresponding relevance maps.

Another finding is that S1x, equivalent to CQT, exhibits low
relevance values for all PMTs as compared to S2x. Although S1x
is conceptually equivalent to many popular audio front ends in deep
learning considered for a wide range of tasks and indeed shows a
large amount of energy (see Fig. 1 (b) and Fig. 2 top), our experiments
show that it has few impact on the decisions of a classifier that jointly
considers S1x and S2x for PMT classification.

Comparing R0(Sx) derived from (c) LRP-ε and (d) LRP-[ε, z+]
for each playing technique class, we notice that the latter provides
more contrasted relevance values. To quantify the effect of LRP rules,
we calculate the kurtosis of R0(Sx) for each class over its test exam-
ples. The mean kurtosis obtained from the LRP-ε and LRP-[ε, z+]
rule are 13.82 and 19.22, respectively; and the corresponding standard
deviation are 8.81 and 13.72. The higher values from the LRP-[ε, z+]
rule verify our observations in Fig. 1 (c) and (d). Therefore we use
LRP-[ε, z+] rule for class-wise relevance aggregation.

4.3. Class-wise aggregation

We propose to derive class-wise explanations by aggregating local
relevance maps in the test set. For a specific class, we first register the
locations of the top-n maximal values of each local relevance map
Rk

0(Sx):

Pk(n) = {(λ1, λ2)}n = argmaxn
λ1,λ2

Rk
0(Sx), (13)

where k = 1, ...,K indices the test examples of this class. Let Ik be
a λ1 × λ2 matrix where Ik(λ1,λ2)∈Pk

= 1 and Ik(λ1,λ2)/∈Pk
= 0.

Summing Ik over the test examples derives the class-wise aggregated
map: R0(Sx) =

∑K
k=1 Ik.

Fig. 2 bottom shows the top-5 argmax, i.e. n = 5 in Eq. (13),
aggregated relevance maps for the five PMT classes. To show the
corresponding input, we display the averaged scattering coefficients
over the test examples for each class (see Fig. 2 top). Similarly to
Fig. 1, the left column in each subfigure corresponds to S1x and the
remaining colored region is S2x. The class-aggregated relevance
maps further support our findings from the local maps in Section 4.2.
The relevance values are more localized and globally structured verti-
cally with high values at the modulation rate of the playing techniques
across pitch. This means that the convnet successfully enforces the
pitch invariance that is needed for the task at hand. S1x almost shows
no relevance to the prediction as compared to S2x. For a given class
like vibrato, low energy regions in S2x exhibit high evidence, proba-
bly because they are discriminative to the other PMTs.

5. CONCLUSION

We propose a framework to explicitly connect networks’ predictions
to the physical attributes of audio signals. This is achieved by map-
ping the signal into a carrier-modulation domain using scattering
transform, a surrogate of auditory perception. We then decompose
the predictions of a convnet trained for playing technique classifi-
cation to this domain using the layer-wise relevance propagation
method. Our findings show that highly relevant regions are localized
around the modulation rates of playing techniques, regardless of pitch.
This explicit connection between networks’ predictions and physical
attributes of audio signals, fully data-driven, opens new avenues for
sound production and music gesture analysis.
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[22] Wojciech Samek, Grégoire Montavon, Sebastian Lapuschkin,
Christopher J Anders, and Klaus-Robert Müller, “Explaining
deep neural networks and beyond: A review of methods and
applications,” Proceedings of the IEEE, vol. 109, no. 3, pp.
247–278, 2021.
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Alexandre Guérin, “CRNN-based multiple DoA estimation
using acoustic intensity features for Ambisonics recordings,”
IEEE Journal of Selected Topics in Signal Processing, vol. 13,
no. 1, pp. 22–33, 2019.
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[26] Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder,
Wojciech Samek, and Klaus-Robert Müller, “Explaining non-
linear classification decisions with deep Taylor decomposition,”
Pattern recognition, vol. 65, pp. 211–222, 2017.


