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Abstract

The mathematical text in its published form, as we are most used to reading
it, is a carefully structured and polished means of communicating results to the
scientific community. It is, as Reuben Hersh put it, the ‘front’ of mathematics. In
this paper, I propose to look at the ‘back’ of mathematics, at what happens in the
privacy of drafts, which can certainly be seen as the mathematician’s laboratory.
Considering that these preliminary texts are a part of the mathematical practice —
and indeed a crucial one — I will show that they allow us to understand the shap-
ing of mathematics in deep and significant ways. Using a selection of examples, I
will focus on questions related to the materiality of mathematical texts, how tex-
tual elements and mathematical practices work with each other, the processes of
writing in mathematics, and the choices made in writing a text deemed suitable for
communication to the scientific community.

1 Introduction
In modern and contemporary mathematics, the first means of diffusion of (new)
mathematical knowledge is very often the written text. Such texts, which are the
core medium for mathematicians, but also for historians and philosophers of math-
ematics are, of course, the result of a fairly long process. This process is often
made invisible to readers, who are presented with a polished, reconstructed and
restructured version of the author’s initial work.

In [Hersh(1991)], Reuben Hersh suggested, using an idea from sociologist Erv-
ing Goffman, that there is a “front” and a “back” of mathematics: areas in which
the public is admitted, areas in which it is not. Similarly, albeit more provocatively,
in 1963, Nobel Prize winner Peter Medawar gave a talk entitled “Is the scientific
paper a fraud?”1 in which he suggested that the norms of writing for scientific pub-
lication did not reflect how research truly happened, in particular because of the
very rigid structure of the papers, the setup of a narrative falsely reconstructing the
research process, and the dehumanization of the discovery process. In this paper,
I would like to make the case for looking at the “back” of mathematics, the parts
of mathematics which are not written for the public, and argue that, as Medawar

1[Medawar(1991)]

1



stated, our conception and understanding of mathematical research are biased by
such publication norms, and that epistemological and methodological reflections
tend to miss what really happens in the research process. To do so, I will be using
a specific kind of archival material, namely mathematicians’ drafts.2

A core methodological point of my analysis will be the rejection of a supposed
divide between the contents of scientific texts and their materiality. Such an ap-
proach was in parts initiated by Karine Chemla’s suggestion to jointly use history
of mathematics and history of text. In the introduction of her 2004 book, History
of science, history of text, she explains that the starting point of this approach is
“the hypothesis that [scientific] texts, as such, are to be presumed to be historical
objects in every respect”:

In a first, weaker sense, [texts] are historical objects simply because
they were produced at different times and within given working com-
munities. However, in a second, stronger sense [. . . ] they are historical
objects because they were produced, as texts, at the same time as the
concepts, results and theories which they contain were, and essentially
contribute to the shaping and sharing of these ideas.
In other words, we reject the presupposition that, once concepts, re-
sults or theories have been obtained by other ways, in an immaterial
space, they are merely transcribed in a textual form that remains indif-
ferent to them. (...) [We assume that] the texts elaborated in the course
of the practice of science belong, as such, to the outcome of the sci-
entific work, along with the concepts, results, or theories, in intimate
interaction with which they were shaped. [Chemla(2004), viii]

In this light, it should be clear that mathematicians’ drafts are tools for their re-
search. They are their laboratory, the place where we can witness the steps of
their research, some of which were erased from the publication. As such, drafts
give us an internal view of mathematical practice, which can be different from the
idealised image of a very normed, somewhat rigid, text, which we have become
used to – especially in contemporary mathematics – and they allow us to better un-
derstand the shaping of mathematical ideas, results or theories. Not only do these
sources provide us with additional elements on their author’s mathematics, of cru-
cial importance for the history of mathematics,3 but they also force us to reconsider
some of what we thought we knew by studying only published works. For exam-
ple, in [Descotes(2010)], Descotes presents a mathematical manuscript of Pascal’s,
discovered while working on the Recueil original of Pascal’s Pensées, which re-
veals – unlike what his published works suggest – that Pascal used symbolism and
computations to support his geometrical reasoning. Historians of mathematics are
also familiar with Carl Siegel’s and Harold Edwards’ arguments against an image
of Riemann as a purely conceptual mathematician:4 relying on his Nachlass, they
argued that Riemann’s so-called conceptual mathematics, in fact, relied deeply
on computations – or, as Edwards puts it, Riemann “did not venture into these
higher realms without doing a lot of serious computation to lay the groundwork

2I will consider as drafts all private research manuscrits, not written to be communicated to another
reader. It will not matter, here, whether they are ‘just’ working manuscripts without specific publication
intents or part of a process that led to a published work.

3See, for example, [Lützen(1990), Knobloch(2004), Sauer and Schütz(2020), Bustamante(2022)]
4[Siegel(1932), Edwards(2010)]
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for his flights” [Edwards(2010), 64]. In my own work,5 I showed that a simi-
lar observation can, in fact, be made for Dedekind’s researches on modules and
Dualgruppen (equivalent to our concept of lattice). Rather than flying into the ab-
stract set-theoretic realms of Dualgruppen right away, or even as soon as he could,
Dedekind laid a rather thick ground of computations, concrete examples, tables,
diagrams, etc., seemingly going against his statements that mathematics should be
essentially “conceptual”.6

At the same time, it is important to acknowledge that drafts are a very spe-
cific type of manuscripts, insofar as they show intermediate states of writing, and,
most often, were not written to be read by anybody but their author. Hence, they
require caution in interpreting them. In addition to careful critical historical anal-
ysis, it is useful to consider methods from literary studies, which have been study-
ing writers’s drafts for a long time, and in particular the approach called “critique
génétique”, genetic criticism:

The term critique génétique was coined by Louis Hay in 1979 in the
title of a collection of essays, Essais de critique génétique. Genetic
critics focus on the temporal dimension of writing and regard a work
of literature as a process rather than a product. The end result remains
inextricably bound up with its textual memory, that is, the numerous
textual transformations that preceded its publication. [...] [Their] main
objective [...] is to examine the writing mechanisms and to reconstruct
the genesis of the literary work by studying notebooks, manuscripts,
typescripts, and proofs, focusing on the “potentiality” of writing. The
confrontation of a published text with all its previous versions gives
the reader an idea of what it might have become. Genetic critics study
the contingencies of the writing process as research objects in their
own right, independent from the publication of a finished product (a
“corrected” text). [Van Hulle(2009), 3]

In this paper, I will raise several issues in these directions. I will propose to
discuss textual practices developed by mathematicians in their research. I will do
so using (mostly) a selection of drafts from Leibniz (Gottfried Wilhelm Leibniz
– Bibliothek Niedersächsische Landesbibliothek Hannover, abbreviated in LH),
Richard Dedekind (Cod. Ms. Dedekind, Niedersächsische Staats-und Univer-
sitätsbibliothek Göttingen), and Élie Cartan (fonds 38J, Académie des Sciences
de Paris). The selection of sources, here, is admittedly subjective. It should be
clear that it is not at all meant as an exhaustive look into textual and mathematical
practices in drafts, but as a way to open the door and encourage us to look behind
the scene whenever possible. Drafts have been overlooked as historical sources
because they show temporary states of mathematics. I believe that this is what
makes them most interesting.7

5[Haffner(2018a), Haffner(2023)]
6Another example of a new light shed by studying drafts is Clare Moriarty’s recent paper on

the draft of Maclaurin’s Treatise on Fluxions and what it reveals of the initial ideological concerns
of its author [Moriarty(2022)]. There is a number of recent or ongoing works using archival mate-
rial akin to drafts, many of which I will cite in this paper – there is also a considerably larger num-
ber of available (yet often unexploited) notebooks and drafts that are awaiting exploration. My own
project funded by the Émergence(s) program of the Ville de Paris, “Brouillons mathématiques” gathers a
small team of historians and philosophers focused on such issues (see http://www.item.ens.fr/
brouillons-mathematiques-projet-emergences-2022-2026/).

7Of course, archives contain many unpublished works, in more or less finished states. As we know,
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2 Written tools and artefacts for research
In mathematical drafts, even more so than in mathematical texts in general, the
variety of writing practices is striking. Indeed, drafts being a private space of
writing, the writing in drafts is freed from practical constraints related to printing,
and freed as well from a number of disciplinary, sociological norms for publication.
In their drafts, the mathematician is free to write however and wherever they like.
Compared to publications (and in large part to letters as well) which are written
to be read, drafts present striking material characteristics. Each page has its own
semiotics. This material singularity is important, as it testifies to the multiplicity of
writing practices used by mathematicians throughout their work. It is also striking
to observe that this diversity of practices can be observed in the work of one and
the same mathematician as well, suggesting that different textual practices are used
for different reasons and produce different sorts of knowledge. And drafts are,
of course, a privileged place to observe mathematical invention, in particular the
production of notations, signs, written tools and artefacts for research, which will
be the focus of this section.

As should be clear, writing, in its different forms and shapes, is the mathemati-
cian’s main tool to convey and materialize thought. How a mathematician writes
gives us concrete information about the conceptual and textual paths followed, and
provides precious clues to understand their processes of working and the genesis
of mathematical concepts and texts. Hence, it is essential to pay attention to the
uses, and indeed the changes in uses of notations, tables, diagrams and other writ-
ten tools, as well as computations, hypotheses, proofs, and so on, as they testify of
the mathematical work as it is being done.

I have written elsewhere about Dedekind’s drafts,8 and the shaping of written
tools and artefacts to accompany and support his mathematical practice. I have
highlighted the genesis – or more exactly geneses – of his notations for computing
with modules in a way that is not only efficient but also allows him to put forward
structural properties of Dualgruppen. Directly related to these notations and their
role in computations, is Dedekind’s use of spatialization of writing: how he ar-
ranged his writing on the paper sheet to guide computations, how he used spatial
arrangements of writing to clarify and arrange the results of said computations, and
how he devised spatial tools, in particular columns and tables, but also diagrams,
to both support his research and conceptualize his results. This is striking not
only in that his careful crafting of notations and written visualization tools is, in-
deed, efficient both computationally and visually to explore the theory of modules
and generalize it to the more abstract structure of Dualgruppen, but also because
Dedekind famously advocated for mathematics relying on “concepts” and internal
characteristics, rather than on “representations”. Drafts thus reveal large parts of
Dedekind’s mathematical practice that were effectively hidden when writing the
version of his work he considered suited for communication to the scientific com-
munity.

Rather than repeat myself with Dedekind’s drafts, I would like to point out how
some of these aspects of draft writing can be found in other authors. As there are
obvious limits of space in this paper, I will concentrate on two authors, namely

many of them have been published and served greatly in advancing our understanding of the history of
mathematics. This is not my focus in this paper. I would rather like to focus, here, on aspects of mathematics
in the making, on temporary steps before the completion or final stages of a readable or publishable text.

8[Haffner(2018a), Haffner(2023)]
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G. W. Leibniz9 and Élie Cartan.

2.1 Cartan’s notational changes
Élie Cartan’s notebooks show how notational choices are ingrained in personal
practice. Cartan, a prominent French mathematician of the late 19th to mid-20th
century, left a rather large archive, which is kept at the Académie des Sciences
in Paris (fonds 38J). In this archive, there are over fifty notebooks, covering most
periods of his career from 1893 to 1947.10 Those are beautiful sources, but Car-
tan’s mathematics is notoriously difficult, and so are his notebooks. Nevertheless,
they provide a compelling inside view of his works, with mathematical research,
reading notes, lecture plans, bibliographies, administrative notes, and, more rarely,
some personal notes. Cartan’s notebooks do not follow any sort of thematic order,
and all the above types of work – as well as the various mathematical subjects he
investigated – are blended together in the notebooks. As such, his notebooks are
testimonies of a moment of his work. One of the most remarkable aspects of these
notebooks is the amount of extremely dense computations, and Cartan’s use of it
to understand and explore various mathematical subjects. Of course, any sort of
computing is deeply reliant on notations, but it is interesting to note that, in Car-
tan’s notebooks, changing notations played an important role in his mathematical
practice. As it would be difficult to do justice to Cartan’s drafts in such a limited
space, let me concentrate on a typical (and understandable) case of switching nota-
tions to further mathematical understanding: when reading and taking notes about
other people’s works.11

For a friendly example, let us look at Cartan’s notes on Dirk Struik’s 1922 doc-
toral dissertation Grundzüge der Mehrdimensionalen Differentialgeometrie (Foun-
dations of multidimensional differential geometry).12 Cartan’s notes start on p. 51,
in section “6. Parallel Vn−1” (where Vn−1 are n− 1-dimensional manifolds with
arbitrary quadratic measure). Below is a correspondence between the beginning
of Struik’s and Cartan’s texts, with similar colors indicating corresponding con-
tents:13

9While I do not pretend to possess any sort of expertise on Leibniz’s manuscripts as I might have been
able to build for Dedekind’s, the material available is too amazing to be overlooked. My remarks on Leibniz
have greatly benefited from my discussions with members of the ERC project PHILIUMM, to whom I am
very grateful.

10See http://eliecartanpapers.ahp-numerique.fr/ and [Haffner(2017a)].
11On note taking as a private scientific practice, see [Bustamante(2020), Bustamante(2022)].
12[Struik(1922)]
13Unless stated otherwise, translations are mine
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Struik Cartan

Let the parameter lines xa1 be geodesic lines
and xa1 , their arc length, calculated from the
corresponding intersection point with a deter-
mined Vn−1 parameter e.g. with xa1 = 0. Then,
there is (71) ga1 a1 = e′a1

· e′a1
= 1; and the

∞1Vn−1 : xa1 = const. are the locus of the end-
points of the same arcs, which are traced on the
geodesic xa1 -lines from xa1 = 0.
Then, e′a1

is the unit vector, and it satisfies the
equation:

(72) e′a1

1·∇e′a1
= 0

or
(73) aa1a1 aλ = aa1a1 aλ = 0

Consider a family of Vn−1 and a congruence of
geodesics forming filling the entire space with
all the Vn.
Consider in one point en the unit vector tangent
to the geodesic (C ), e1,e2, ...,en the vectors tan-
gent to the Vn−1.
We express the hypotheses in the following way
1. For[?] ω i = 0 (i < n), we have den = 0,
which gives us
(1) γ i

nn = 0 γn
n n = 0 (i = 1, ...,n−1)

2. d(e2
n)= 0 ωn

n +∑k ωk
neken = 0, which gives

us in
(2) γ i

nn +∑k γk
n i + eken = 0

From (71) follows, according to (32):
(74) aa1λ aa1 = aλa1

aa1 = 0.
Thus:
(75)

∂ga1λ

∂xa1 = aa1a1 aλ +aλa1
aa1 = 0

and the ga1λ are also independent from xa1 .
Now, we assume that the parameter lines xa1 are
orthogonal to xa1 = 0. Then, there is for xa1 = 0:
(76) e′a1

.e′
λ
= ga1λ = 0. Since according to

(75) the ga1λ are not dependent of xa1 , they are
all zero:
(77) ga1λ = 0,
and the parameter lines are also orthogonal to
all ∞1Vn−1 : xa1 = const.

This being set, let us express the fact that the
arcs of geodesics comprised between two given
Vn−1 are all equal, that is, δ (ds) = 0 (d on Vn−1,
δ on the C ) or δ (ωb

n (d)) = 0.
We have δωn

n (d) = δωn
n (d) − dωn

n (δ ) =

∑
i=n−1
i=1 ω i(δ ) − ωn(d)ωn

n (δ ) which gives us
the n−1 equations
(3) γn

i n− γn
n i = 0.

Let us express now that one of the Vn−1 be-
ing orthogonal trajectory [?] of C , the other
ones are as well. Now, we have d(eien) = ωn

i +

∑k ωk
i eken+ωn

n eien+∑ωk
neiek or, according to

(1) d(eien) = γn
i n +∑i γk

i neken

[Struik(1922), 51] (Fonds 38J, 1-54, 10)
Struik then gives the following theorem:

If through each point of a Vn−1 the geodesic lines normal to it are
drawn and on them from the Vn−1 equal arcs are traced, then the lo-
cus of the end points is again a Vn−1 normal to the geodesic lines.
[Struik(1922), 51]

Cartan’s version unfolds and reformulates the contents in the following way:

If the Vn−1 intersect equal arcs of the geodesics, we have (3) and the
equations of (4) become (according to (2))

d(eien) = ∑(γk
i n− γ

k
n i)eken

linear and homogeneous eq[uations] such that if [for] (Vn−1)0 the eien
are null, they are null for all the Vn−1. Hence, by placing constant arcs
on the geodesics normal to (Vn−1)0, the locus of the endpoints is again
a Vn−1 normal to the geodesics.
Conversely, if the Vn−1 are orthogonal to the (C ), then we have, ac-
cording to (2) γn

n i = 0 according to (4) γn
i n = 0 hence, the [equations]

(3) are verified, and the Vn−1 decompose equal arcs of the geodesics.
(Fonds 38J, 1-54, 11)
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Cartan’s notes continue for several pages, but it would takes us too far to follow
his reading (and rewriting) of Struik.14 What matters, here, is the observation
that to better understand, and to a certain extent appropriate, what he is reading,
Cartan reformulates it in his own notation. In many cases, Cartan merely translates
results and proofs in his own language, so his notational changes might as well be
a question of taste.15 Still, it suggests further that this notational adjustments help
reframing and clarifying notions and results. This is further supported by the fact
that it happens fairly often that, in his own computations, Cartan interrupts himself
and “start[s] again differently” or “reformulate[s]” his computations.

2.2 A very cursory glimpse in Leibniz’s drafts
Leibniz’s drafts provide a wealth of material to study written tools and artefacts.
Let me start with notations.16 A well-known example of witnessing the birth of
notation is the introduction of the dx notation, in Methodi tangentium inversae
exempla (Examples of the inverse method of tangents (1675), A VII, 5, 324),17

in which Leibniz introduces both the
∫

sign and the dx notation. The signs are
introduced (and used, for the first page and half) in the following way:

∫
wz =

y2

2
or wz =

y2

2d
[In the margin:]

∫
sum, d difference. [Leibniz and Child(2008), 93

(the marginal note is not included in Child’s translation)]

On the next page, in the midst of his reasoning, a marginal note states a notational
change:

Remark dx. is the same as x
d ., that is, the difference between two clos-

est x. (A VII, 5, 32418)

And from there, Leibniz uses the dx notation. This notational change is certainly
neither trivial nor inconsequential – despite being made in a marginal note – for
his calculus, considering the emphasis he put on his symbolism.

That being said, Leibniz’s drafts also provide us with an important warning
not to put too much weight on notations alone in general. An example of this (but
certainly not the only one) is the manuscript Elemens du calcul (LH 35, 4, 12, Bl.
1-2),19 a text on the foundations of algebra with a list of axioms for elementary
algebra (on numbers and magnitudes). It opens with:

14The interested reader can look directly at Cartan’s notes here: http://eliecartanpapers.
ahp-numerique.fr/items/show/37.

15This is not to say that his reading of his contemporaries’ works never led to important breakthroughs
in his own research, as his reading of Weyl’s or of Einstein’s works testify.

16Notations in Leibniz’s mathematics have been fairly well studied, first in [Cajori(1929)], but also
in [Serfati(2005), Knobloch(2010), Trunk(2016), Waszek(2018), Gentil(2021)]. Yet the sheer amount of
manuscripts available makes this question a still largely to be explored one

17Citations for Leibniz manuscripts are from the so-called Akademie edition [Leibniz(1923 -)]. VII des-
ignates the seventh series on mathematical writings. 5 means the fifth volume. This precise text is translated
and commented in [Leibniz and Child(2008)] (see also [Hofmann(1974)], chap. 13).

18Child’s translation does not reproduce this note – although both Gerhardt’s original edition and the
2008 edition by the Leibniz-Akademie do.

19See [Rabouin(2021)].
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Figure 1: LH 35, 5, 9 Bl. 2 .

Any number can be marked by a letter, an imaginary number, ou by
any other character one wishes, of those there are many; as long as this
character is not already assigned to some meaning in the calculus in
which this number must enter. Hence, a number, known or unknown,
determined or undetermined, can be marked by a, b, x, y. A, B, C.�.%. ♀.
even 10. 11, 12, etc. 100,101, etc.20 but these numbers then only sig-
nify letters and are used to mark some relation that exist between the
numbers we mark. And we must, then, distinguish them by some mark
from the numbers they usually signify. (LH 35, 4, 12, Bl. 1)

More interesting is the definition of several signs for some of the operations, as well
as for parentheses (for which he uses a comma, a vinculum or proper parentheses):

(5) The Number a∩ b or a.b, or ab is the product of a multiplication
of the number a by the number b. (. . . )
(6) The number a∪b or a : b, or a

b , is a number which multiplied by b
gives a. (LH 35, 4, 12, Bl. 2)

In his list of axioms, Leibniz uses notations indifferently, writing, for example:

(7) 0.a = 0
0∩1 = 0 0∩2 = 0 0∩3 = 0 etc.
(8) 1a = a
1∩1 = 1 1∩2 = 2 1∩3 = 3 etc. (Ibid.)

This is not uncommon in Leibniz’s mathematical practice, as in a number of his
contemporaries, such as Descartes or Van Roomen, who switch notations without
a qualm, both in private papers and in (some) letters. This suggests that even if one
has the impression that a notation is more efficient than another, actors worked,
apparently without trouble, with several notations, prompting us to be careful about
the so-called ‘power’ of notations.

Leibniz’s manuscripts, of course, harvest a wealth of unpublished works in
which he develops such written tools.21 Knobloch, in [Knobloch(2004)] in partic-
ular, showed very well how, for Leibniz, the use of “text as process” (as stated in
the title of his paper) supports a use of writing in which text “serv[es] the art of
invention, [. . . ] the visualization of his thoughts, theorems, and proofs”, how it is
“used to fix insights” to “think by writing” [Knobloch(2004), 51]. Textual artefacts
are, for Leibniz – and certainly for many mathematicians – effectively tools:

20This is a reference to Leibniz’s attempts to denote the coefficients of equations by sequences of numbers
in order to make writing determinants easier.

21See, among others, [Knobloch(2004)], [Trunk(2016), Gentil(2021)] on ambiguous signs, or Arilès
Remaki’s rich PhD dissertation [Remaki(2021)].
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Tables, illustrations, and figures play a crucial role in Leibniz’s mathe-
matical thinking. They enable him to find rules, laws, and regularities;
in other words, they serve the art of invention, sometimes successfully,
and sometimes not. (Ibid., 52)

This is very explicitly stated by Leibniz himself:

[T]he art of inventing famous theorems, regarding the intelligible, con-
sists in painting or hearing their representations, because they them-
selves cannot be painted or heard. (. . . ) And in observing some sen-
sible beauties in them. They will enable us to understand a theorem
or the property of the intelligible thing, or at least that which is of
such a nature that it produces, so to say, these apparitions if it is ex-
pressed by these characters. (A VII 1, 598. Quoted and translated in
[Knobloch(2004), 63])

Leibniz’s seemingly deep trust in the efficiency of such written tools should, of
course, be taken with a grain of salt – especially since it concerns, here, a diagram-
matic representation of the distribution of prime numbers, which Leibniz hoped
to use to find a law of distribution of prime numbers (see [Knobloch(2004), 57-
63]). Yet, it is undeniable in Leibniz’s drafts that writing, its spatialization and its
dynamics, is a multifold tool indispensable for mathematical research.

Among the most powerful of such tools are tables, which, according to Knobloch,
have two main roles, a dynamic role and a static one:

While the dynamic role of tables [...] consists in serving the art of
invention, the static role of tables serves to avoid repeated calculations
at future times. According to Leibniz, such a table is the best way of
fixing the results which have been calculated once and for all. The
tables can be used to find a needed value. While the purpose of the
first use of tables, as we were told, is to reduce tables to calculations,
the purpose of the second use of tables is to replace calculations by
tables. (Ibid., 64)

Knobloch cites a number of examples on number partitions, permutations when
computing the powers of polynomials, symmetric functions, and more. More re-
cently, Arilès Remaki showed, in [Remaki(2021)], the complexity and richness
of Leibniz’s tabular practice(s) in questions related to combinatorics, to quadra-
tures and to exponentiation. Tables, he argues, are “both a general mechanism
for analysis and for computation, a mode of presentation, or a classification tool”
(ibid., 592). Tables support Leibniz’s mathematical research, largely as a powerful
heuristic tool – to answer given questions but also to ask new questions – but also,
in some instances, as a tool for proofs. Remaki shows how tables can function
as simple lists, but also as “exposing the procedure to generate” elements (ibid.,
313); how using and inventing tables relies on a “deep reflection on the notion of
disposition”, that is, how to arrange its elements; how tables are used to “study
the relations between terms and places in order to extract a rule, a universal law,
which characterizes all the terms” (ibid., 314); and how “it is thus possible that the
inductive practice of tables constituted, in a first time, for the young Leibniz, an
apodictic mode both satisfying and suitable to determine a result without doubt”
(ibid., 590).

In many aspects, these observations about Leibniz’s tabular practices, and more
largely about his use of written artefacts and spatialization of writing, are in line
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with those I made on Dedekind’s use of columns, tables and diagrammatic repre-
sentations, in his researches on modules and Dualgruppen [Haffner(2023)]. For
Dedekind, tables, lists and diagrams are parts of a larger toolbox developed to sup-
port his computations. They help him organize his computations and their results,
and visualize properties, relations and patterns. Tables, in particular, are both a
result – since they contain the ordered results of computations – and a device for
further computations – since they help shorten and verify the computations. Such
textual elements of practice give us clues to better understand research practices,
discovery practices, which are largely invisible in publications even though they
are an essential part of the mathematician’s activity. And while they are, most of
the time, erased from published works (especially since the 19th century), such
practices are, in fact, a fundamental and even founding part of the theoretical ac-
tivity. This also supports the idea that mathematics is not solely an activity of
proving, but indeed can contain elements of experimental practice.

2.3 Computations and experimentations
Experimental aspects of mathematical research appear salient and fairly striking
when working with drafts.22 Experimentations in mathematics is not a new sub-
ject, nor is it a subject specific to drafts.23 However, drafts do show a certain preva-
lence of experimentations and inductive approaches among mathematicians who
are not, in fact, classified as experimental mathematicians (neither by themselves,
nor by commentators). Leibniz advocated for calculations as a sort of experimen-
tation (La vraie methode (1677), A VI 4, 4-5), and although he recognized that
induction is sometimes misleading, his manuscripts show a rather abundant use of
this approach.24 Even Dedekind, who not only advocated against computations as
grounding mathematics but openly disliked them, can be observed as developing
research processes that are primarily experimental computations, which he uses to
explore properties of his objects. Indeed, as I have mentioned, Dedekind’s drafts
on module and Dualgruppe theories are filled with computations, and they tell
us that through computations, Dedekind was observing the laws, trying to iden-
tify which ones are general, which ones are fundamental, by trial and error. It is
strikingly different from his publications.25

To give more substance to this picture, let me illustrate it with some excerpts
of Cartan’s notebooks. As I mentioned earlier, Cartan’s notebooks reveal the ex-
tent to which his mathematical practice relied on computations. It is fairly clear

22While I will concentrate on computations for mainly incidental reasons – they are the approach favored
by the authors I am studying –, it should be clear that similar observations can certainly be made concerning
diagrammatic experimentations. There are instances in the history of mathematics, of course: Leibniz used
diagrams, as [Knobloch(2004)] shows well, and we also find diagrams in Riemann’s, Hurwitz’s, or even
Dedekind’s drafts. Mathematician and theoretical computer scientist Viviane Pons, who works on algebraic
combinatorics at the Laboratoire de Recherche en Informatique at the Université Paris-Saclay, argues for an
experimental approach in mathematics (see https://www.youtube.com/watch?v=3LZiZKgVjaU
or https://www.lri.fr/˜pons/docs/EAUMP/introduction.pdf), and her own notebooks –
which are visible in these links and which she showed me personally – are covered in diagrams, sometimes
for dozens of pages.

23Of course, experimental mathematics is an approach argued for by a number of mathematicians (see,
for example, the journal titled and dedicated to Experimental mathematics). For historical sources, see
[Echeverria(1992), Echeverria(1996), Goldstein(2008), Goldstein(2011)].

24See [Remaki(2021), 245], for example.
25Riemann’s computations can certainly also be interpreted as experimentations, to some extent.
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that Cartan used computations as a way to explore and experiment. Computations
appear to be his main, most important tool to think about and explore a given math-
ematical subject. Unlike Leibniz, Cartan did not make any statement about using
something akin to the inductive method. As observers, though, there is a number
of clues that point towards this interpretation of his drafts. His notebooks showcase
a recurring method: in a given mathematical framework but not necessarily with a
precise starting question, Cartan studies the behavior of the relevant mathematical
objects through computations, observes the properties that are brought out, makes
an hypothesis, and attempts to prove it. To observe this, we are lucky to have not
only Cartan’s many pages of computations, but also his very explicit annotations:
what he wants to study, when he makes a mistake, when he notices something
interesting, when he changes approaches, when he tries and succeeds or fails to
prove something. . . Cartan is engaged in a dialogue with himself,26 in his drafts,
and through this inner dialogue, we can follow the steps of his reasoning.

For example, on pages 149 sqq of 38J 1-37, in researches on what he called
“Espaces de plans” (spaces of planes, a type of manifold), Cartan considers the
links between the coefficients of the structure equation and those giving the de-
composition into linear (and later irreducible) groups of the group of the surface.
He starts with the structure equation

ωh00ωabc = ∑Aαβγ ωαβγ

and sets up to prove the following theorem:

Theorem: if ωh00ωabc = ∑Aαβγ ωαβγ , the coefficients Aαβγ are the
same as those giving the decomposition of the product of 2 linear
groups (a1x1+a2x2+ ...)h and (a1x1+ ...)a−b(a12x12+ ...)b−c. (Ibid.,
150)

From there, he looks briefly at the “general case” and states a result which he
comments as being “very important”:

In the formula ωhk0ωabc = ∑Aαβγ ωαβγ , the coefficients Aαβγ are the
same as those giving the decomposition of the product of 2 irreducible
groups of dominant weights hx+ ky, ax+by+ cz. (Ibid., 151)

The next step is to consider a higher dimension, that is p = 4 (since the previous
pages considered the case p = 3). After some computations, and a proof modelled
explicitly on the previous one, Cartan is able to show the theorem “if one of the
factors is ωh000”. He then proves that it is also true “if one of the factors is ωhk00”
and as well for ωhkl0. From there, he concludes:

This is probably general. (Ibid., 153)

a statement which he briefly justifies.27

Computations can also raise new questions in Cartan’s notebooks. In 38J 1-
38, for example, after some very short computations under the title Réseaux à
invariants ponctuels et tangentiels égaux (Lattices with punctual and tangential
invariants), Cartan arrives at a conclusion he calls a “paradox”:

26This is something that Knobloch also notes in Leibniz’s drafts [Knobloch(2004), 77]. It is certainly not
the case of every mathematician.

27I could not locate a related result in Cartan’s publications (but I could have missed it). The notebook
contain a number of researches on manifolds and generalised spaces, some related to these pages, many not.
See http://eliecartanpapers.ahp-numerique.fr/items/show/21.
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Figure 2: Fonds 38J, 1-37, 153.

If these are surfaces R and if the lattice is that of projective def[ormations],
the asymptotes of (A1) do not correspond to that of (A2). (38J, 1-38,
267)

where a surface R is a projectively deformable surface, and A1, A2 are the Laplace
transforms of a point A. After a few lines of computations justifying this “para-
dox”, Cartan notes that it is “Something to study” and:

It seems that the conjugate lattice of the first also has punctual tangen-
tial invariants. Curious! (Ibid., 268)

Cartan continues these researches further in the notebook,28 but following them
would lead us too far. Let me just mention that it is related to surfaces R and Jonas
surfaces and the researches that eventually led to what he called “surfaces E” in
[Cartan(1944)].

3 Processes of redaction
In the previous section, I focused on written practices related to what one would
call the research process – the back of mathematics. In the following, I would like
to consider the process of writing a readable, fully redacted text – the elaboration
of what would be the front of mathematics. These two aspects arguably represent
different processes, different practices of writing. These modes of writing are com-
plementary in the creative mathematical process, and likely both indispensable.

In writing a text that would be not only readable but hopefully publishable, at
least that could be communicated to the scientific community, a lot of ‘external’
criteria come into play, such as disciplinary and sociological norms of what text
is acceptable, and practical aspects related to printing. These are not questions
I will try to address, here. Rather, I will continue to focus on internal textual
aspects, and analyze the process of writing such a text. Of course, it could be
tempting to distinguish between the type of documents used in the first part of
this paper as being part of the discovery process, and the redaction of readable
texts as a justification process. One of the core goal of the following paragraphs
is to show that it is fairly more complicated than that. First, I will use an example
from Dedekind’s archive to illustrate that conceptual clarification and thinking by
writing are still at play in these steps of writing. Then, I will propose a selection
of examples from recent secondary literature to further illustrate the possibilities
offered by a genetic analysis of mathematical texts.

28http://eliecartanpapers.ahp-numerique.fr/items/show/22
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3.1 Dedekind’s terminological fine-tuning in Was sind und
was sollen die Zahlen?
Dedekind’s famous essay on the natural numbers Was sind und was sollen die
Zahlen?29 was published in 1888. In this book, Dedekind wants to provide a
general, rigorous definition for the sequence of natural numbers. He defines an
abstract concept named “simply infinite system”, of which the sequence of natural
numbers is an instance. To do so, he develops a set-theoretical arsenal, based on
two concepts: mappings, which he calls Abbildungen, and sets, which he calls
Systems.

We know from Dedekind’s correspondence with Heinrich Weber, and from his
archive, that an early version of Zahlen was started in the 1870s, which he left aside
for about ten years. In Cod. Ms. Dedekind III-1, we find three sets of texts that
can be identified as drafts of Zahlen:30 pp. 1-13, second draft (1887); pp. 15-27,
first draft (1872-78);31 pp. 30-45, third draft (1887).32 The first set of manuscripts
dated from 1872-78 is a bit complex: there are three texts following, completing
and correcting each other. The three together do not make a coherent whole, there
are repetitions and gaps. The drafts are organized in a two-column layout, with the
left column containing the main text, and the right column containing corrections
and additions – a fairly standard layout for Dedekind’s redacted texts. In the right
column, some additions and corrections seem to be more or less simultaneous with
the writing, while some can be traced to the second or third draft (by the use of
notations only introduced in those later versions). Material aspects and contentual
aspects allow us to understand the chronology of the writing and better understand
its stratigraphy. The sets of 1887 drafts are more standard. Dedekind uses the two
column presentation in all of these drafts.33

My aim, in the following, is not to offer strikingly new insights on Dedekind’s
concept of number, but to look at the genesis of the text itself, at the process of
writing. As the text itself is fairly long, I will focus on the concept of mapping,
which appears early in the text and does not require much context.34

In 1872-77 In the first layer, Dedekind does not introduce the notion of mapping
but of ”distinctly (deutlich) mappable”, which is a one-to-one correspondance:

29[Dedekind(1888)]. I will refer to it as Zahlen.
30See [Sieg and Schlimm(2005)] for an analysis of the changes in Dedekind’s concept of number re-

flected in these manuscripts.
31These documents were published in [Dugac(1976), 293-308]
32A lot of the pages of this third draft are notes. In those that are redactions, many are crossed out, and

some are written with a pencil. This is not the last version in the sense of the version sent to the printer
(which, as far as I know, we do not have).

33In fact, this type of layout is fairly standard, we find it in some of Leibniz’s texts, in some of Cartan’s,
in Borel’s notebooks. . .

34The concept of mapping is an important concept in Dedekind’s mathematics, used in many areas of his
works, and which is subjected to a number of transformations through its uses in number theory, function
theory, set theory... It is not my purpose, here, to analyse the changes of the concept of Abbildung, I only
wish to study its definition in the versions of Zahlen.
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A system S is called distinctly
mappable in a system T if for each
thing contained in S (origin) a (associ-
ated, corresponding) thing in T (image)
can be specified such that to different
origins correspond different images.

[Late addition] Mapping ϕ of a system
S A into a system T . To any thing a of A
corresponds (is determined by a) a thing
a|ϕ = b of the system B. Distinctness of
application ϕ : a′|ϕ = b and a′′|ϕ = b
different if a′ et a′′ different.

(Cod. Ms. Dedekind III 1, 16v)

The definition of Abbildung added in the right column uses a notation introduced only
in the third layer of the draft, so it was likely added later.

In the second layer, Dedekind does not define either mappable systems nor
mappings. He was likely satisfied with the definition of mappable system given
previously. He does define “image” for sets and studies some properties of map-
pings. A notion of “distinct” (deutlich) mapping is introduced later, somewhat in
the middle of the text.

In the third layer, Dedekind gives an actual definition of Abbildung in the main
text, with, again, the notion of image and its properties as stated in the second draft.
“Distinct mappings” are moved up after mappings, making their introduction less
ad hoc and more part of a structured paragraph on mappings.

1. [Definition]. By a mapping ϕ of a system S, we understand a
law according to which for any thing a contained in S is generated
a determined thing, which must be called the image of a and denoted
by the sign a|ϕ . (Cod. Ms. Dedekind III 1, 23r)

This is followed by the definition of images (as sets), and by:

4. Definition. A mapping ϕ of a system S is called distinct if the im-
ages of a|ϕ , b|ϕ of different things a,b contained in S are themselves
different. (Ibid.)

Note, here, a shift in focus: sets were the central concept in the previous definition,
but in this new one, Dedekind is giving more importance to mappings.

In 1887 For the 1887 version, I will concentrate on the first draft (and second
overall). This draft is the most complete of the last two, and contains most of the
conceptual and textual modifications. Mappings are defined in §2, with a num-
ber of additions (Cod. Ms. Dedekind III 1, 2v). The page is again divided in
two columns, the left-hand side one for the main text, the right-hand side one for
the corrections. The right-hand side column is, in this part of the text, almost com-
pletely filled (see Figure 3), showing corrections and additions, with the substantial
addition of a new section – I will come back to that. The material aspects of the
manuscript immediately suggest that there was a number of back and forth to write
these paragraphs. As a matter of fact, these back and forth give us a beautiful view
of the conceptual clarification of (some aspects of) the Abbildung concept.

First, Dedekind gave the definition of an Abbildung (Figure 4, in the frame
number 1 in red):

Definition and notation. By a mapping ϕ of a system S, we mean a
law according to which to each determined element s of a system S
belongs a determined thing denoted by ϕ(s) (or ϕ(s) corresponds to
the element s, ϕ(s) is generated by from s), ϕ(s) is called the image
of s (and s is the original image [Urbild] (?), the model [Vorbild] (?);
the origin [Original] (?), the source [Ursprung] (?) of s).
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Since for the time being (in this §.) we deal only with S and with a
certain mapping ϕ of it of a certain system S, simple large Latin letters
shall denote exclusively parts of S, and for convenience the image ϕ(s)
shall be denoted more briefly by s′.

Then, he gave propositions 14 to 17 (Figure 4, in the frame number 2 in blue)35.
In this paragraph, Dedekind added two “Nota Bene” (highlighted in purple in Fig-
ure 4). Their place in the text shows clearly that they were not added later, but
their being in square brackets suggests a specific status, which remains relatively
unclear. Indeed, these NB add important information on the reciprocity of the
propositions in relation with a yet-to-be-introduced notion of distinctness (Deut-
lichkeit). As such, they give clues about what is expected to follow in the text.

14. Definition. A′ represents the system (image of A), whose elements
are the images a′ of the elements a of A.
15. [Proposition]. If A3B, then A′3B′ (from 1. 14. 1.). – [NB: the
converse is allowed only if it is a mapping such that we will call a
distinct [deutlich] later.]
16. [Proposition]. The image of M(A,B,C...) whose system is, ac-
cording to 7., a part of S, is M(A′,B′,C′). Proof. (. . . )
17. Proposition. The image of G(A,B,C) is a part of G(A′,B′,C′).
Proof (. . . ) [NB: with the hypothesis of the distinctness [Deutlichkeit]
of the mapping, the proposition will later be made stronger, see 15.]

In the margin, Dedekind wrote the definition of a “distinct mapping” (deutliche
Abbildung), and three propositions numbered 15*, 15** and 17* (green frame
number 3 in Figure 4). We will see, a little further down the line, why it is clear
that this part was written before the paragraph just above it. The definition is the
following:

The mapping of the system S is called distinct [deutlich] when two
different elements a, b from the system S also have different images
a′,b′. Under this condition, the following is true:
15*. Proposition. If A′3B′, then A3B.
15**. Proposition. If A′ = B′, then A = B.
17* Proposition. G(A′,B′,C′...) is the image of G(A,B,C).

One may notice that the definition, unlike the definition of a mapping, and most of
the propositions in the text, is not numbered. This, along with the specific number-
ing of the following propositions, suggests that this was written as a complement
to the definition 13 of an Abbildung and, of course, after propositions 14-17 writ-
ten in the left column. The propositions 15*, 15**, 17* are the ones alluded to in
the NB. Hence, with these propositions, the NB are obsolete but Dedekind did not
delete them.

Dedekind then develops some properties of distinct mappings (yellow frame
number 4 in Figure 4):

In each determined mapping of a system S is also contained a deter-
mined mapping of each part T of S; this latter is determined by the
fact that the image of each element t contained in T is the same thing
t ′ which t, as an element of S, has as its image. If the mapping of S

35There is little difference between these propositions and the published ones.
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is distinct [deutlich], the mapping of T contained in it is also distinct
[deutlich].
Each distinct [deutlich] mapping of a part T of S is contained in a
distinct [deutlich] mapping of S (or can be extended into one), by tak-
ing as the image of each element of S not contained in T this element
itself.

Let me now turn to the paragraph written above the definition of a deutliche Ab-
bildung (orange frame number 5 in Figure 4). This was likely added later than the
paragraphs just described (frames 1 to 4 on Figure 4). The fact that the writing
is pressed down is a clue that it was added later, but more importantly the con-
tents of this paragraph significantly change the text. Indeed, it contains not only a
correction of the structure of both paragraphs, but also a change of terminology:

§2.a. Similarity of a mapping, similar systems
For this, best a special § !!!

Instead of distinct [deutliche] better similar [ähnliche] mapping! Con-
verse or reverse thereof. The definition of similar systems [10 July
1887] A, B (there is a similar mapping of A such that B is the image of
A). Then it will state later: S is called infinite if it is similar to a proper
part of itself.

The change of terminology is significant, as it shows a shift in Dedekind’s con-
ception. “Distinct” suggests that the property that interests him is the fact that the
images of two distinct elements are two distinct elements. By switching to “simi-
lar”, it suggests that what is of interest is the fact that the mapping (here, a bijection
since it is from S into itself) preserves such properties.

Finally, Dedekind added three propositions at the bottom (brown frame number
6 in Figure 4), which all contain the word ähnlich, and were thus written after this
addition. In the left column:

If A, B are similar systems, then each proper part of A is also similar
to proper part of B.
If A and B are similar systems, then each system C similar to B is also
similar to B A.

In the right column:

Moreover, there is something to say about the composition of mappings:
B = ϕ(A),C = ψ(B) = ψϕ(A). If ϕ and ψ are similar mappings, then
so is ψϕ .

More interesting, even, than this change of terminology mid-definition is the
fact that these modifications were not made at the same moment(s) of the writing
process. Indeed, the next few pages of the text still contain deutlich and Deut-
lichkeit. Following the terminological change provides a lot of information about
the profoundly non-linear nature of this writing process.

A first (but neither the strongest nor the deepest) clue of this non-linearity, is
the fact that in the paragraph §3 on ”mappings of a system onto itself”, the num-
bering of propositions and definitions does not take into account the propositions
15* to 17*, it starts at 18 rather than 21. (It does not take into account the addi-
tional paragraph either.) The paragraph itself does not consider distinct / similar
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Figure 3: Cod. Ms. Dedekind III 1, 2v.
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Figure 4: Cod. Ms. Dedekind III 1, 2v., modified by E. H.
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mappings.36 On the other hand, at the end of §3, Dedekind wrote proposition 36
and three additional propositions, making it 39, and the paragraph §4, on the defi-
nition of the finite and the infinite, does start at definition number 40. Paragraph §4
then seems to take into account the additions that were made in the previous para-
graph (but only in §3), and adjusted his numbering. This further suggests that the
additions in §2 – at least starting from the propositions 15* to 17* – were written
relatively late in the process, maybe even after writing §4.

In this paragraph, Dedekind defines an infinite system using deutlich and refer-
ring to §2 (not §2a):

40. Definition. S is called an infinite system, if there is a distinct
mapping from S, such that the image of S is a proper part of S; in the
opposite case S is called a finite system. (Cod. Ms. Dedekind III 1,
3v, transl. altered in [Sieg and Schlimm(2005), 149])

Likewise, in the entire §4, Dedekind uses the word deutlich. We have here a clue
that Dedekind, at that point was working with the definition of Deutlichkeit, but
only with that definition – hence, before the correction of terminology and of the
structure of the text. This is a further clue about the chronology of the corrections
in §2.

In the interest of honesty, and to underline how cautious it is necessary to be
when interpreting written traces in this context, let me mention that the numbering
of propositions in paragraph §5 starts at 50, while §4, which starts at 40, only con-
tains five numbered propositions and definitions. It would be tempting to assume
that Dedekind decided to count all additional propositions, including in notes and
in §2a., but this is unlikely (and does not round up to 50!). Indeed, the following
paragraphs all start at a multiple of ten (the next highest after the last number in the
previous paragraphe, so if a paragraph ends at proposition 56, the first proposition
of the next paragraph will be 60). It is, in fact, more likely that Dedekind gave up
on the idea of following the numbers from paragraph to paragraph in this version
of the text. Still, since it was not the case up to §4, we can nevertheless hypoth-
esize that the additions in §2 were done after §4 – the additional notes to the 4th
paragraph use the word deutlich – or maybe during.

Paragraph §5 allows us to close this investigation of Dedekind turning distinct
into similar. The page, again, bears traces of significant changes. In particular, the
right column contains corrections of the contents and title initially written in the
left column (see Figure 5).37

The left column states the following:

§5 The sequence of natural numbers
If S is an infinite system, there is thus a distinct mapping ϕ of S such
that the image S′ is a proper part of S. Then, I choose an element of
S which is not in S′, and I examine the property of the image-chain
N of this element. I disregard the accidental special nature of the el-
ements of N completely here, retain only their distinguishability and
only consider the mutual relations in which they stand to one another
according to the former mapping, I name the elements n of N natural

36However, the published version gives a definition of the mapping of a system onto itself that mentions
the Abbildung being either similar or not.

37The blue and purple circles were added by me to locate the use of deutlich and ähnlich, as explained
below.
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numbers or numbers for short, and N the sequence of natural [ordinal]
numbers. (Cod. Ms. Dedekind III 1, 4r)

This first definition, rather informal, thus uses the word deutlich. It is also used at
the end of the paragraph. Note that this definition does not contain the abstract con-
cept of simply infinite system, the core of Dedekind’s theory of natural numbers.
The correction in the right column reads:

§5 The simply infinite systems.
(Sequence of natural numbers)

Definition. A system N is called simply infinite when there exists a
similar mapping ϕ of N which fulfils the following conditions in itself,
namely such that N is the image-chain of an element not contained in
ϕ(N). Any such mapping ϕ of N can be called an order [Anordnung]
[numerical] of N. The elements of N (with respect to this order) can
be called natural numbers.
51. Propositions. In any infinite system S, a simply infinite part N is
contained.
N a simple sequence or order. (Ibid.)

This is indeed a deep and crucial correction, as it drastically changes how the se-
quence of natural numbers is defined. However, this is not my focus, here. Rather
let me draw the reader’s attention to the fact that Dedekind uses the term ähnlich,
and not deutlich. The deutlich used in the left paragraph is the last we meet,
after that, Dedekind uses ähnlich / Ähnlichkeit. In fact, we can observe in that
paragraph a correction that was likely added after the new definition, as it uses
Ähnlichkeit. See Figure 5, where the occurrences of deutlich are circled in blue
and those ähnlich and Ähnlichkeit are circled in purple.

It is relatively safe to state that this terminology change was made at this mo-
ment of the writing process. Both the additional properties and the change of
terminology thus happened fairly late after to the initial introduction of the notion.
Finally, there is a reference to Ähnlichkeit and to §2 in §5 (Cod. Ms. Dedekind
III 1, 5r, Definition 60), which tells us that making the paragraph on similar map-
pings a paragraph of its own was likely not a decision made exactly at the same
moment as changing the definition. But it was, indeed, made while writing the text
– not once it was finished –, as we also find references to §2a in §6 (Cod. Ms.
Dedekind III 1, 9r, Proposition 100). We would need more clues to assess exactly
the timing of that change, which we do not have. Still, we are able to point quite a
narrow time frame, and to underline how Dedekind was thinking by writing. The
non-linear chronology of his writing is striking, and shows that a core basic con-
cept (the distinct / similar mapping) was not fully clarified when Dedekind wrote
this version of the text, and only came close to its full final form when Dedekind
arrived at the definition of a simply infinite system – the most central concept of
the essay.

3.2 Some additional examples
A genetic analysis of the writing process can also provide other types of valuable
insights. Let me give, here, a selection of examples where a genetic approach has
given or is giving such insights.
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Figure 5: Cod. Ms. Dedekind III 1, 4r., modified by EH.
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In my own (ongoing) work on the edition of Riemann’s Gesammelte mathema-
tische Werke und wissenschaftlicher Nachlass by Dedekind and Heinrich Weber, I
show how a joint use of the Dedekind-Weber correspondence and Dedekind’s and
Riemann’s manuscripts (Cod. Ms. Riemann, Niedersächsische Staats-und Uni-
versitätsbibliothek Göttingen) allows to unfold a muti-layered construction of the
texts, in which the editors themselves played a significant role by correcting and
completing the texts.38

In [Joffredo(2019)], Thierry Joffredo gives a beautiful example of using the
methods of genetic criticism, along with a careful codicological analysis of the
manuscripts and a thorough investigation of Cramer’s correspondence, thus recon-
stituting a textual and conceptual biography of the Introduction à l’analyse des
lignes courbes algébriques. Doing so, he “shed[s] light on the steps of writing the
book, the variations of the perimeter of its subject and the strengthening of the au-
thor’s demands, the consideration of his contemporaries’ works and of correspon-
dences, its initial goals and the various functions (scientific, social, scholarly) [the
author] gave his work in construction, the structural changes of the book through
the versions of its manuscript” [Joffredo(2019), 237].

In [Krömer(2023)], Ralf Krömer uses Bourbaki’s archive to investigate the his-
tory of duality in the works of members of the Bourbaki group, both individually
and as a collective. To better understand the shaping of their collective reflection
on duality, Krömer proposes to reconstruct the writing process of the Chapter II
of the book Algèbre of Bourbaki’s Éléments de mathématique. To do so, he uses
the successive drafts of the Éléments, called Rédactions, together with the minutes
of the meetings of the group and the vast correspondence network of the mem-
bers.39 Each Rédaction constitutes a different state of the text, and each is written
by a different author. In some Rédactions, the author is identified – for this case,
identified authors are Jean Dieudonné, Charles Ehresmann, and Claude Chevalley
– but some Rédactions do not provide this information. The drafts circulate among
Bourbaki members, are widely discussed (in meetings and in letters) and rewritten
accordingly, making it a truly collective text, with a sometimes complex genesis.
Krömer tracks the changes made on two propositions on duality in vector spaces
(and the solution of linear equations). He notes a number of controversial points
related to duality which, throughout the collective writing process, shed light on
how the individual conceptions of duality of the members collide, and he high-
lights how the resolution (or lack thereof) of their disagreements (in particular, a
debate between Dieudonné and Chevalley, who give very different definitions of
duality [Krömer(2023), 280 sqq]) eventually leads to the final published version.
Krömer’s reconstitution of the writing process allows him to raise important points
on the conception of duality (in particular “whether duality is necessarily symmet-
ric [. . . ] [a] problem [. . . ] closely tied to [. . . ] the relation of the algebraic and
the topological dual” (ibid., 293)) in that context, and on the “rather difficult func-
tioning of the Bourbaki group at that time” (ibid., 282). It also sheds (additional)
light on important epistemological and historical issues, such as the debate around
choosing the ‘right’ generality, and the acceptance (or avoidance) of the axiom of
choice.

38See [Haffner(2017b), Haffner(2018b), Haffner(2021)] and hopefully, more to come.
39See http://archives-bourbaki.ahp-numerique.fr/.
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The reader will not be surprised to read that many examples of complex redac-
tion processes can be found in Leibniz’s archive. In [Remaki(2021), 179 sqq], Re-
maki reconstitutes Leibniz’s first attempts to answer Huyghens’ challenge to com-
pute the sum of the inverse of triangular numbers, using the only two manuscripts
addressing that question: De Summa Numerorum Triangularium Reciprocorum
(A VII, 3, N.1) and Differentiæ Numerorum Harmonicum et Reciprocorum Tri-
angularium (A VII, 3, N.2), in which Leibniz tries two different (but ultimately
inefficient) methods: decomposition of fractions and the method of differences.40

By analyzing the material and textual clues in both of Leibniz’s manuscripts, Re-
maki unfolds a possible chronology of writing that shows how Leibniz’s work
on this question is spread over two manuscripts (LH 35 3B 10 Bl. 5 and LH 35
12 2 Bl. 197), with parts of his computations “inserted in another text on alge-
bra” [Remaki(2021), 180]. The manuscript (LH 35 3B 10 Bl. 5) contains the first
method and elements of the second one on differences. The manuscript (LH 35
12 2 Bl. 197) contains the second method, in between unrelated researches on al-
gebra. The reconstitution of the writing process, albeit hypothetical, suggests that
these two manuscripts should be read together, as the elements of the method of
differences in the first manuscript could be, in fact, the end of the researches in the
second one (see [Remaki(2021), 181]). This is all the more insightful as it shows,
as Remaki underlines, how underestimated “the schemas of differences and dia-
grams in general” had been (ibid., 181).

Studying Leibniz’s manuscripts with a genetic approach also allows unveil-
ing past editorial choices that deeply modified the text, which can have crucial
repercussions on our reading of it. In a joint work with David Rabouin, we are
considering such cases, in relation to reflections on how to best edit such texts
so as to faithfully showcase their genesis, insofar as it gives us critical material
to understand Leibniz’s thought. A typical example is the edition of the De Arte
characteristica inventoriaque analytica combinatoriave in mathesis universalis (A
VI, 4, 315-331)41 which, in its edited version, looks like a text that went through
three preliminary versions (Ansatz 1 to 3) and a definitive one (Endgültige Fas-
sung). The manuscript (LH 35, 1, 27, Bl. 3 sqq) tells a completely different story:
there is only one text, with several layers of corrections on the first folio (3r and
3v), whose entire contents was subsequently crossed out, making the page 4r the
de facto beginning of the text – but this page was already written in the first version
(i.e., before the corrections in the first folio). Hence, rather than several versions
of the text, we have a unique text with a relatively complex stratigraphy of cor-
rections. Of course, the edition of such a text is not simple, if one wishes to offer
a critical, exhaustive edition of the drafts. One reason is that such layers of text
cannot be accurately represented statically. Another reason is the status of a com-
pletely deleted part of text, such as the first folio: how can we, in fact, edit it as a
variant?42

40These are Leibniz’s first mathematical works, in which we witness the beginning of his method of dif-
ferences. In these manuscripts, Leibniz only attempt to compute the said sum, but later he tries to generalize
his approach to pyramidal numbers. These works are also identified as the origin for Leibniz’s harmonic
triangle.

41The title is not Leibniz’s but the editors’.
42On (the difficulties of) editing Leibniz, see also [Costa and Pasini(2019)].
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4 Concluding remarks
Drafts open doors to the mathematician’s workshop, they reveal practices and
methods which are often erased from the published text and, as such, offer ac-
cess to the working processes of mathematicians. By studying the materiality of
writings, invention of written artefacts, tools and notations, inductive and experi-
mental aspects of research, etc., we gain invaluable information on the shaping of
mathematical knowledge and its multiple forms. This rich material gives us keys
to better understand the genesis of knowledge and texts, to better understand the
links between the steps of conceptual development and the different modes of writ-
ing, to better understand the variety of means involved in the production of new
mathematical knowledge.
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E (eds) Duality in 19th and 20th century mathematical thinking, Birkhäuser,
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