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The flow of charge and entropy in solids usually depends on collisions decaying quasiparticle mo-
mentum. Hydrodynamic corrections can emerge, however, if most collisions among quasiparticles
conserve momentum and the mean-free-path approaches the sample dimensions. Here, through a
study of electrical and thermal transport in antimony (Sb) crystals of various sizes, we document
the emergence of a two-component fluid of electrons and phonons. Lattice thermal conductivity
is dominated by electron scattering down to 0.1 K and displays prominent quantum oscillations.
The Dingle mobility does not vary despite an order-of-magnitude change in transport mobility.
The Bloch-Grüneisen behavior of electrical resistivity is suddenly aborted below 15 K and replaced
by a quadratic temperature dependence. At Kelvin temperature range, the phonon scattering
time and the electron-electron scattering time display a similar amplitude and temperature depen-
dence. Taken together, the results draw a consistent picture of a bi-fluid where frequent momentum-
conserving collisions between electrons and phonons dominate the transport properties.

INTRODUCTION

Hydrodynamic corrections [1] to transport properties
of solids can emerge when the travelling quasiparticle en-
dures momentum-conserving collisions outweighing the
momentum-relaxing ones. Their signatures have been
reported for electrons in mesoscopic metals [2–7] and
for phonons in bulk insulators [8–11]. The possible role
played by phonons in the emergence of hydrodynamic
effects in the electronic fluid [12] has become a sub-
ject of recent theoretical attention [13–16]. It remains
to be seen if momentum exchange between electron and
phonon baths can generate experimental signatures other
than phonon drag [17], the well-known non-diffusive ther-
moelectric response of heat-carrying phonons coupled to
the electron bath [18].

Bulk semimetals are promising platforms for this in-
vestigation. Their small Fermi surface pockets implies re-
duced Umklapp electron-electron scattering. Transport
studies have found that a significant fraction of electron-
electron scattering conserve momentum in WP2 [6, 21]
and in Sb [22], generating a downward departure from
the Wiedemann-Franz (WF) law around T∼10 K, near
the onset of the ballistic regime. Magnetic imaging ex-
periments [14] find a Poiseuille profile of electron flow
in the same temperature range in WTe2. According to
theoretical calculations, phonons play a prominent role
in the emergence of this hydrodynamic window [14], a
conjecture supported by Raman scattering experiments
in WP2 [23].

Here, we present direct evidence for an unprecedented

case of phonon-electron coupling in bulk antimony.
We find that the thermal diffusivity of phonons dis-
plays a non-monotonous temperature dependence with a
Poiseuille peak as observed in several other solids. In con-
trast to all other cases, however, instead of entering a bal-
listic regime upon further cooling, the phonons continue
to exchange momentum with charge carriers down to 0.1
K and display quantum oscillations of their thermal con-
ductivity. The phononic viewpoint from thermal trans-
port is complemented by the electronic viewpoint stud-
ied from electrical transport. As expected in the Bloch-
Grüneisen picture of electron-phonon (e-ph) scattering,
the exponent of resistivity increases when the system is
cooled below the Debye temperature, but the steady en-
hancement is suddenly interrupted. Below T≈15 K, the
electrical resistivity becomes purely T -square. We argue
that this is because the smallness of phonon wavevec-
tor does not allow Umklapp events and therefore e-ph
scattering does not contribute to resistivity. Around 1K,
the amplitude and the temperature dependence of the
phonon scattering time (extracted from phonon conduc-
tivity) and the e-e scattering (extracted from electronic
transport) match each other in amplitude and tempera-
ture dependence. The most plausible explanation for this
is that colliding electrons exchange phonons as previously
suspected [14].

Our scenario is backed by comparisons between the
transport properties of antimony and metals with larger
(i.e. copper or tungsten) and lower (bismuth or black
phosphorous) carrier densities. There is roughly one
charge carrier per 1000 atoms in antimony. The Fermi
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FIG. 1. Electrical and thermal conductivity in Sb crystals along the bisectrix crystallographic orientation. a
Temperature dependence of the electrical resistivity ρ of four different Sb crystals of different sizes. Larger samples show lower
residual resistivity. The inset shows the magnetoresistance of these crystals at T=2 K. b Lattice thermal conductivity of the
same four Sb samples. Data from a previous report on a Sb rod [19] is also included. The solid line represents theoretical
lattice thermal conductivity considering only three-phonon scattering events (and neglecting four-phonon scattering as well as
scattering by electrons). Note that the opening gap between experiment and theory with cooling. c Temperature dependence
of the electronic and phononic contributions to the total thermal conductivity in sample S4. The procedure for separation
is discussed in detail in the supplement [20]. The inset shows the temperature dependence of the electronic Lorenz number
Le = κeρ/T normalized by L0, the Sommerfeld value.

surface is small enough to push the mean-free-path of
electrons close to ballistic, but also sufficiently large
to render electrons capable of scattering phonons when
phonon-phonon collisions cease to decay the heat current
well below the Debye temperature.

RESULTS

Fig.1 shows the temperature dependence of electrical
resistivity and thermal conductivity in antimony. As dis-
cussed in the supplement [20], the electronic κe, and the
phononic κph components of the total thermal conductiv-
ity, κ, can be easily separated thanks to the large sensi-
tivity of κe to magnetic field (a consequence of the huge
magnetoresistance) and the field independence of κph.
As seen in Fig.1.b, κph peaks at T ∼ 10 K and (in con-
trast to the strong size dependence of κe [22]) does not
show any dependence on the sample size at low temper-
ature. We will discuss the implications of this feature
below. This figure also shows the theoretical κph com-
puted from the phonon spectrum. The calculations have
neglected scattering by electrons, the finite sample size
and defects. They are also restricted to three-phonon
scattering events. As seen in the figure, the experimen-
tal and the theoretical κph are close to each other at
room temperature. However, there is a deficit in the mea-
sured κph, compared to the predicted one. The difference
grows with cooling. Similar theoretical calculations yield
a quantitaive account of the experimental data down to
low temperature in Si [24], GaAs [25], PbTe [26], SnSe

[27], Al2O3 [28], and In2O3 [29]. Scattering of phonons
by electrons is the most plausible reason that this is not
the case of antimony.

In the vicinity of its peak, κph depends on the sam-
ple size. This is more clearly seen in Fig.2.a, which
shows the temperature dependence of κph/T

3 and its
prominent peak. Fig.2.b), shows the lattice specific heat
Cph below 20 K. It does not follow a T 3 behavior, but
is in excellent agreement with our first-principle calcu-
lations of the phonon spectrum (see the details in the
supplement[20]). This agreement implies that the dis-
crepancy between theoretical and experimental κph is not
a matter of phonon spectrum, but due to a scattering
mechanism neglected by the theory.

One can extract the temperature dependence of
phonon thermal diffusivity by combining the two sets of
data and using Dph = κph/Cph. It is shown in Fig2.c
(left y-axis) and reveals three distinct regimes. Above
15 K, Dph decreases with increasing temperature. In the
temperature window between 2 K and 10 K, Dph displays
a maximum and minimum, both strongly dependent on
sample size. Finally, below 1 K, thermal diffusivity be-
comes sample-independent again and continues its en-
hancement without saturation down to 0.1 K.

In the high-temperature regime, phonon-phonon Umk-
lapp collisions set the magnitude of thermal diffusivity.
The intermediate temperature regime is analogous to
what has been observed in several other solids, includ-
ing Bi [31] and black phosphorus [10], two other column
V elements, and diagnosed as a signature of phonon hy-
drodynamics [8]. In contrast to those materials, the low-
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FIG. 2. Thermal conductivity, heat capacity and thermal diffusivity of phonons. a Phononic thermal conductivity
κph, plotted as κph/T

3 as a function of temperature. b The phononic specific heat Cph divided by T 3 together with a previous
report [30]. The solid line represents ab initio calculations. c The lattice thermal diffusivity Dph (left y-axis) and phonon
mean-free-path lph (right y-axis) vs. temperature. Note the emergence of a size-dependent peak and a minimum in the T=2-15
K temperature range. Orange arrows indicate the temperature below which Dph and κph become size-dependent.

temperature thermal diffusivity of Sb does not become
not ballistic, but returns to an intrinsic behavior.

The phonon mean-free-path can be extracted using
the relation `ph = 3Dph/<vs>, with <vs> ≈ 2900
m.s−1 [32]. lph remains well below the typical sample
size. Fig.3 compares the temperature dependence of `ph
in Sb with Black phosphorus [10] and Bi [31, 33]. Below
the hydrodynamic window, phonons in Bi and Black P
become ballistic: `ph saturates to a value which scales
with the crystal size. In the case of Sb, the phononic
mean-free-path shows no evidence of ballistic transport
down to T = 100 mK and becomes independent of the
sample size.

Thus, phonons in antimony continue to be scattered
down to 0.1 K in spite of their long wavelength. We
will show below that this is due to the coupling between
acoustic phonons and electronic quasiparticles. In this
new intrinsic regime, a typical phonon goes through nu-
merous momentum-exchanging events with electrons be-
fore colliding with the boundary of the crystal. Note also
the large value of the hydrodynamic correction to the
mean-free-path which follows from the large ratio of the
Poiseuille peak and Knudsen minimum in antimony. It
becomes as large as five in the largest samples, compared
to 0.4 in the two other solids. Thin graphite [11], and

solid 4He [34] display a hydrodynamic correction compa-
rable to what was found in samples S3 and S4 of this
study.

Further evidence for coupling to electrons comes from
quantum oscillations of κph shown in Fig.4.a. The os-
cillations, extracted by subtracting a monotonous back-
ground, are periodic in 1/B and their amplitude depends
on the sample size (See the supplement [20]). The ex-
tracted frequencies [20] (fα = 100T and fβ = 350−380T)
are in good agreement with previous reports for this con-
figuration [35–37]. Quantum oscillations of the thermal
conductivity have been observed in other semimetals and
explained in different manners (See the supplement for
details [20]). Here, they can safely be attributed to the
phononic component. As seen in figure 4.b, their am-
plitude is four orders of magnitude larger than what is
expected for any oscillation in the electronic component,
given the amplitude of σxx oscillations and the WF law.
In addition, the σxx and κxx oscillations are out of phase.
This implies that the enhancement of the electronic den-
sity of states (caused by the evacuation of a Landau level)
pulls down the phononic thermal conductivity, as would
happen if phonons were strongly coupled to electrons.

Let us now turn our attention to the electrical proper-
ties. Figure 5.a shows quantum oscillations of the elec-
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FIG. 4. Quantum oscillations of lattice thermal conductivity a The oscillatory component of the thermal conductivity
δκ is shown (normalized as δκ/κph) for sample S4 as a function of 1/B for various temperatures. Graphs are shifted vertically
for clarity. The scale bar corresponds to a relative amplitude of 10% . b Comparison of the oscillations observed in the thermal
conductivity δκ and in the electrical conductivity (multiplied by the Sommerfeld value and temperature). Note the four orders
of difference in amplitude of oscillations in TL0σxx and in κph.

trical resistivity (the Shubnikov-de Haas effect) in the
samples. The Dingle analysis (Figure 5.b) yields a mo-
bility, µD, which is more than two orders of magnitude
lower than the transport mobility, µtr, extracted from
the residual resistivity. A similar observation ( that is
µD � µtr) has been reported in other dilute metals
[38, 39]. In the present case, we find that in all the
four samples, in spite of the ten-fold variation in resid-
ual resistivity and µtr, µD is identical. This indicates
that suggesting that µtr, set by collision time between

momentum-relaxing events, varies from sample to sam-
ple. On the other hand, µD, set by the broadening of the
Landau levels, is intrinsically bound. We will see below
that this can also fit in our scenario.

The temperature dependence of resistivity provides
a crucial piece of information. Its exponent γ (ρ =
ρ0 + Aγ × T γ), does not show a T 5 behavior at low
temperature (inset of figure 6.a). One can quantify it
by taking the logarithmic derivative after subtracting

residual resistivity: γ = ∂ ln(ρ−ρ0)
∂ lnT . This procedure was
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previously applied to extract the exponent of resistiv-
ity in cuprates [40], in heavy fermions [41] and in stron-
tium titanate [42]. The temperature dependence of γ is
shown in Fig.6.a. In the standard (Bloch-Grüneisen) pic-
ture of electron-phonon scattering, resistivity is T -linear
above the Debye temperature, θD (or an effective De-
bye temperature sometimes called the Bloch-Grüneisen
temperature) and evolves towards a T 5 behavior upon
cooling. Here, γ ∼ 1 indeed at high temperature and
increases with decreasing temperature. However, this in-
crease is abruptly interrupted around 15 K (orange ar-
row in Fig.6.a). Below this temperature, and down to
≈0.1 K, γ ∼ 2, with no sign of a higher exponent due to
phonon scattering. The same procedure was applied to
six Sb samples with different residual resistivities. As
seen in in Fig.6.b) all samples show a similar behav-
ior. This observation confirms the intrinsic nature of
the abrupt shift to γ ∼ 2 and indicates a suppression
of resistive electron-phonon scattering at low tempera-
ture. The remaining T 2-dependent resistivity is associ-
ated with electron-electron collisions, which scales with
the inverse of the Fermi energy (See the supplement [20]).

It is instructive to compare the evolution of the resis-
tivity exponent in Sb with that of other metals. Fig-
ure 6.c) shows the temperature dependence of γ in Sb
(averaged over all six samples samples), and in five
other metals. These are semi-metallic WP2 (n = p =
2.5 × 1021cm−3) [21] , W (n = p = 2 × 1022cm−3) [43]
, and Mo(n = p = 1 × 1022cm−3) [43] as well as no-

ble metals, Cu (n = 8 × 1022cm−3) [44] and Ag (n =
6×1022cm−3) [44]. In almost all cases, when the temper-
ature decreases to one-tenth of the Debye temperature,
the exponents increases to 5. This is clearly the case
of Ag and Cu. Similar behaviour is found in elemental
W and Mo. Nevertheless, because of their lower elec-
tronic densities, they display a dominant T-square be-
havior when T � 0.1ΘD. The prefactor of this T-square
resistivity is, however, much smaller than in Sb (See the
supplement [20]). In contrast to these, the exponent of
resistivity in Sb never attains five and suddenly drops to
two around 15 K. A similar but less drastic behavior can
be seen in WP2. The comparison shows that relaxation
of the electron momentum via scattering with phonons
vanishes most rapidly in Sb. This is not surprising given
its lower Fermi energy and smaller Fermi surface.

The sudden interruption of the growth in the exponent
of resistivity in Sb is concomitant with the emergence of
the hydrodynamic phonon thermal diffusivity (See or-
ange arrows in Fig.2 and Fig.6a). There is a simple way
of linking the two features. Below 15 K, Umklapp col-
lisions among phonons become rare and ph-ph collisions
conserve momentum. Therefore, a momentum yielded to
a phonon during a collision will not be lost to the momen-
tum sink by Umklapp. Rather, it will eventually return
to the electron bath through another e-ph collision. The
only remaining way for electrons to loose momentum is
either elastic collisions or by inelastic resistive collisions
with other electrons, still a significant fraction of e-e col-
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lisions [22]. As a consequence, γ ≈ 2, from 10 K down to
0.2 K. This interpretation paves the way to explain other
remarkable features found in this study, such as the quan-
tum oscillations of the lattice thermal conductivity and
the intrinsic nature of the Dingle mobility, and the fact
that the phonon and electron scattering time converge at
low temperature (see below).

DISCUSSION

Usually, phonon hydrodynamics is expected to emerge
in a finite temperature window sandwiched between the
ballistic and the diffusive regimes [1, 8]. In this hy-
drodynamic window, the shortest time scale is set by
the momentum-conserving collisions between phononic
quasiparticles. Our case has a twist. As sketched in fig-
ure 7.a, below ∼ 15K, momentum-conserving collisions
between phonons become prominent, but as the temper-
ature is reduced further, ph-ph scattering is less frequent
than electron-phonon scattering (τNph−ph > τNph−e). Be-
low ∼1 K, the shortest time scale for a phonon corre-
sponds to momentum exchange events with an electron
and not with another phonon (or the boundary). In con-
trast to the common hydrodynamic picture, this new hy-
drodynamic regime extends down to ∼0.1 K, instead of
being replaced by a ballistic regime.

Fig.7.b shows the temperature dependence of the typi-
cal phonon scattering time. One can distinguish between
two sub-regimes for this e-ph bi-fluid. Above T≈0.5 K,
the phonon scattering time, τph, increases with cooling
following (τph ∝ T−2). More specifically, the extracted
τph is quantitively close to τe−e, the typical time be-
tween two momentum-conserving e-e collisions, extracted

from the electronic component of the thermal conductiv-
ity (discussed in detail in ref. [22]). The most plausible
explanation for this is to assume that at least a size-
able fraction of e-e collision events consist in exchanging
phonons. Such an idea has been put forward decades
ago in other contexts [45, 46]. Below T≈0.5 K, τph sat-
urates towards a T−1/2 behavior. This may correspond
to a shrinking phase space for an e-ph collision following
τ−1 ∝ qph

δkF
∝ T 1/2, where δkF =

√
2πm∗kBT/~ is the

thermal thickness of the Fermi surface.
Fig.7.c shows the temperature dependence of the typ-

ical electron scattering time, which is much longer than
the phonon scattering time. As we saw above, the Dingle
analysis of quantum oscillations yields another time scale,
which is 2-3 orders of magnitude shorter than the trans-
port time and does not vary from a sample to another.
Given that thermal and electric transport by electrons
yield a quasi-identical scattering time, the difference with
the Dingle time cannot be due to the sampling of small-
angle collision events. On the other hand, exchanging
back and forth a momentum of ~qp with phonons will
widen the Landau levels by an energy of ∼ ~vF qph. As
seen in Fig.7.c, this gives the right order of magnitude
for the experimentally observed Dingle time. However,
there is another possible explanation for this. Unavoid-
able point defects (extrinsic atoms), which give rise to
the finite Hall resistivity of this compensated metal, can
lead to a short Dingle time (See the supplement [20] for
details). Introducing controlled disorder will be a way to
discriminate between the two possibilities.

In summary, we carried out a detailed study of ther-
mal conductivity in antimony samples of different sizes.
We found that the phonon mean-free-path displays a
non-monotonous temperature dependence, signaling that
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FIG. 7. Hydrodynamic regimes. a Evolution of the different wavevectors as a function of T . Three different regions are
identified. b Temperature dependence of the phonon scattering time extracted from the thermal diffusivity of samples S1 and S4
as a function of T . Above T∼15 K, momentum-relaxing ph-ph collisions dominate. For 1 < T < 15 K, momentum-conserving
ph-ph collisions lead to a size-dependent decrease in the effective scattering time. Below T∼1 K, the most frequent events
are momentum-conserving e-ph collisions and the phonon scattering time is close to the e-e scattering time extracted from
κe. c Temperature dependence of the electronic scattering time extracted from the electrical resistivity of samples S1 and S4
alongside the Dingle scattering time. Also shown are the typical time between e-ph collisions (solid black line) and the typical
time of electron-defect collisions estimated from the Hall resistivity (see supplement for details [20]).

phononic heat transport in antimony becomes hydrody-
namic like bismuth and black phosphorus. In contrast to
the latter, however, the phonon mean-free-path remains
much shorter than the sample size. We argued that this
is due to the formation of an electron-phonon bi-fluid,
where electrons frequently transmit and receive phonons.
Remarkably, around 1 K, the phonon scattering time and
the electron-electron scattering time have the same am-
plitude and the same temperature dependence.
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Supplemental Material for “Formation of an electron-phonon bi-fluid in bulk anti-
mony”

SAMPLES AND METHODS

The samples used in this study are presented in table S1. They were previously described in detail in ref. [22].
The thermal conductivity measurements were performed with home-built one-heater-two-thermometers setups in a
Quantum Design PPMS. Different temperature sensors were used for different temperature ranges. Between 80 mK
and 4.2 K, Cx-1010 Cernox chips 1010 and RuO2 thermometers were used in a dilution fridge. Between 2K and 40
K, Cx-1030 Cernox chips were used and between 20 K and room temperature, type E thermocouples were used. The
overlaps between different sets of experimental data were consistent

Our setups were designed to allow the measurement of both the thermal conductivity, κ and the electrical resistivity,
ρ with the same electrodes. The thermometers were either directly glued to the samples with Dupont 4922N silver
paste or contacts were made using 25µm-diameter silver wires connected to the samples via silver paste (Dupont
4922N). Contact resistance was inferior to 1Ω. The thermometers were thermally isolated from the sample holder by
manganin wires with a thermal conductance several orders of magnitude lower than that of the Sb samples and silver
wires. The samples were connected to a heat sink (made of copper) with Dupont 4922N silver paste on one side and
to a RuO2 chip resistor serving as a heater on the other side. Both heat and electrical currents were applied along the
bisectrix direction. The heat current resulted of an applied electrical current I from a DC current source (Keithley
6220) to the RuO2 heater. The heating power was determined by I × V where V is the electric voltage measured
across the heater by a digital multimeter (Keithley 2000). The thermal conductivity was checked to be independent
of the applied thermal gradient by changing ∆T/T in the range of 10%. Special attention was given not to exceed
∆T/T |max = 10%.
The thermometers were calibrated in-situ during each experiment and showed no evolution with thermal cycling.
Special attention was given to suppress any remanent field applied to the sample and self-heating effects.
The accuracy of our home-built setups was checked by the recovery of the Wiedemann-Franz law in an Ag wire at
B = 0T and B = 10T through measurements of the thermal conductivity and electrical resistivity. At both magnetic
fields, the WF was recovered at low temperatures with an accuracy of 1% [21].

Sample Size (mm3) RRR ρ0 (nΩ.cm) s (µm) `0 (µm) ρ0 s (pΩ m2)

1 ([0.25±0.05× 0.5× 4.1) 260 159 350 17 0.56
1b (0.2× 0.5× 4.6) 250 164 320 16 0.49
2 (0.4× 0.4× 4.1) 430 94.6 400 28 0.38
3 (1.1× 1.0× 10.0) 3000 13.4 1050 197 0.14
3∗ (1.1× 1.0× 7.0) (cut from 3) 3000 13.4 1050 197 0.14
4 (1.0× 5.0× 10.0) 1700 24.1 2240 110 0.54
5 (3.0× 1.0× 10.0) 3700 11.1 1730 238 0.19
6 (1.7× 1.8× 10.0) 4200 9.8 1800 270 0.18

TABLE S1. Details of the samples. The Sb crystals used in this study were oriented along the bisectrix crystallographic
axis. s =

√
width× thickness represents the average diameter of the conducting cross-section. The residual resistivity ratio

is defined as RRR = ρ300K
ρ0

. The carrier mean free path `0 was calculated from the residual resistivity and the expression
for Drude conductivity assuming three spherical hole and three spherical electron pockets. This is a crude and conservative
estimation, because the mean free path of hole-like and electron-like carriers residing in different valleys is likely to differ. Also
given is the product of ρ0s, a measure of crystalline perfection.

SEPARATING ELECTRONIC AND LATTICE COMPONENTS OF THERMAL CONDUCTIVITY

Our starting point is to assume that at each temperature the thermal conductivity has two components, The first
is not modified by magnetic field, but the second is reduced by magnetic field. Specifically, we found that the field
dependence of thermal conductivity at each temperature can be described by the following expression:

κ(B) = κ0 +
T

A+ CBn
(S1)
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FIG. S1. Evolution of the thermal conductivity of sample S4 with magnetic field for temperatures ranging from 0.4 K to
200 K. The left panel, which focus on temperatures below 5 K, illustrates the suppression of the field-dependent κ (i.e. the
electronic part) upon application of a fraction of a Tesla to the sample. The remaining constant κ (modulo the oscillating
part) is associated with the phonon contribution κph. At higher temperatures, featured on the right panel, increasing magnetic
fields are required to suppress the electronic component and a clear saturation is not visible above 28 K. The phononic thermal
conductivity is then evaluated from a fit to κ = κph + T/(α+ βBγ) shown as solid lines.

Here, T is temperature and B is the magnetic field. κ0, A and C are temperature-dependent parameters and n ≈ 2
is yet another parameter. As seen in Fig. this expression provides an adequate description of experimental data at
all temperatures. It is natural to identify the two components of thermal conductivity as κph = κ0 and κe = T

A+CBn .
Note that the functional form of the latter represents the expected orbital thermal magnetoresistance of the electronic
quasi-particles.

The separation of the two components leads to Fig.1.c of the main text. The extracted electronic term combined
with electric resistivity quantifies the Lorenz number, which can be compared with the Sommerfeld value. As expected,
the WF law is valid at both high temperature and zero temperature limits.

As shown in the inset of Fig.1.a The magnetoresistance of antimony is very large at cryogenic temperatures. This
is a consequence of the notoriously mobile charge carriers of Sb [37]. Below 45 K, the thermal conductivity becomes
flat above a threshold field. At 5 K and below, a field as low as 1 T enhances the electronic thermal resistivity
by many orders of magnitude. Therefore measuring thermal conductivity at 1T yields lattice thermal conductivity.
Subtracting the latter from the zero-field thermal conductivity yields the electronic component.

THEORETICAL PHONON SPECTRUM, SPECIFIC HEAT AND THERMAL CONDUCTIVITY

The phonon calculations were performed using the density functional perturbation theory [47] approach as imple-
mented in the pseudopotential-based planewave code Quantum-ESPRESSO [48]. We used cutoffs of 75 and 750 Ry
for the basis-set and charge-density expansions, respectively. The exchange and correlation interactions were approx-
imated within the local density approximation. A 20× 20× 20 k-point grid was used in the Brillouin zone integration
with a Gaussian smearing of 0.001 Ry. The dynamical matrices were calculated on a 6 × 6 × 6 q-point grid, and
Fourier interpolation was used to obtain the phonon dispersions and density of states. We used the fully-relativistic
pseudopotential generated by Dal Corso [49], and spin-orbit interaction has been taken into account in our calcula-
tions. The phonon contribution to the specific heat capacity was calculated within the quasiharmonic approximation
using the pyqha code [50]. Fully-relaxed structural parameters of a = 4.4066 Å, α = 58.30◦, and x = 0.26346 were
used in these calculations. The calculated phonon dispersions and density of states (DOS) are shown in Fig. S2.

Phonon contribution to the thermal conductivity of antimony was calculated from first principles by taking into
account the three-phonon scattering interactions. We used the frozen-phonon approach as implemented in the thir-
dorder.py [51] code with quantum-espresso as the DFT driver to calculate the third-order interatomic force
constants (IFCs). The frozen-phonon calculations were performed on 8 × 8 × 8 supercells with a 5 × 5 × 5 k-point
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FIG. S2. (Top) Calculated phonon dispersions of Sb plotted along the path X (0.5, 0,−0.5) → K (0.3719, 0,−0.3719) → Γ
(0, 0, 0) → T (0.5, 0.5, 0.5) → W (0.7562, 0.5, 0.2438) → L (0.5, 0, 0) → Γ (0, 0, 0) → X (−0.5, 0,−0.5). The coordinates are
given in terms of the reciprocal lattice vectors. (Bottom) Calculated phonon DOS of Sb in the low-frequency region. The peaks
in the phonon DOS correspond to changes in the slope of the acoustic branches near the Brillouin zone center. This implies
that interatomic force constants between atoms at larger distances are sizeable.

grid. The calculated second- and third-order IFCs were used to construct the linearized Boltzmann transport equation
(BTE)

Fλ = τλ(vτ + ∆λ), (S2)

where τλ is the relaxation time of the phonon mode λ obtained using perturbation theory, vτ is the mode’s group
velocity, and ∆λ is the correction to the population of the mode λ obtained from the simple relaxation time approach.
Eq. S2 was solved iteratively using the shengbte package [51] to obtain the lattice thermal conductivity tensor καβ ,
which is given by the expression

καβ =
∑
λ

Cλv
α
λF

β
λ . (S3)

Here, Cλ is the contribution of mode λ to the specific heat obtained from the phonon dispersions. A 28× 28× 28 grid
was used in the solution of the BTE.
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FIG. S3. a The oscillatory part of the thermal conductivity δκ of the four Sb samples presented in this study is plotted
(normalized by κph) as a function of 1/B at T=2K. The oscillatory part was extracted by removing a polynomial fit to the
total κ. The curves are shifted for clarity. The period of the main oscillation is the same, but a slight misalignment leads to a
beating of different frequencies (80 < f < 110T). b Amplitude of the Fourier transform (TF) of δκ shown in a) for the four Sb
samples. The amplitude was normalized by the peak value. The frequency f = 100T is dominant for all 4 samples.

Our calculation of thermal conductivity neglects the scattering of phonons with the sample boundary, impurities,
and electrons. A comparison of the calculated and experimental thermal conductivities of antimony shown in Fig. 1(c)
of the main text shows that the calculated values overestimate the experimental ones. The disagreement is small above
100 K, where phonon-phonon scatterings play a dominant role in degrading heat transport. At lower temperatures,
the disagreement becomes larger, suggesting that the neglected scattering mechanisms play a more important role
in impeding heat transport. In insulators such as Si [24], GaAs [25], PbTe [26], SnSe [27], Al2O3 [28], and In2O3

[29], theoretical calculations that ignore boundary scattering show remarkable agreement with experiments at low
temperatures near the peak in thermal conductivity. Therefore, the overestimation of the thermal conductivity by our
calculations in antimony, which is metallic, suggests that the electron-phonon scatterings play a large role in impeding
heat transport at low temperatures in this material.

OSCILLATIONS OF THE LATTICE THERMAL CONDUCTIVITY

As discussed in the main text, the lattice thermal conductivity shows quantum oscillations at high magnetic field.
Fig.S3.a shows the oscillating component of the thermal conductivity normalized by the phononic thermal conductivity
κph, δκ/κph, in the four different samples studied here at T = 2K. The amplitude of the oscillations is sample
dependent. The amplitude of the oscillation is largest in the larger samples (S3 and S4). The Fourier transform of
δκ (Fig.S3.b) reveals a common frequency f = 100 T between the different samples. Small variation around this
central value are associated with a small misalignment of the magnetic field along the trigonal axis of the device. This
frequency is reminiscent of the frequency f = 100T observed in the oscillations of the magnetoresistance (see [37] and
references within) and associated with the hole pockets of the FS.

Similar oscillations of the thermal conductivity, periodic in inverse of magnetic field, were reported half a century
ago, and poorly investigated, in Bi [52], Sb [53] and graphite [54]. More recently, they have been observed in a
variety of semimetals : NbP (and attributed to an ambipolar contribution) [55], TaAs (related to variations of the
electron-phonon coupling) [56], TaAs2 [57], NbAs2 [57] and in magneto-acoustic properties such as in NbP [58].

DINGLE ANALYSIS OF THE QUANTUM OSCILLATIONS

The Dingle temperature discussed in the main text has been extracted from the analysis of quantum oscillations in
resistance (Rxx). The oscillating component δRxx (determined after the subtraction of a background by a polynomial
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background in S4 at T = 0.2K as a function of B−1. b Fourier transformation of δRxx shown in a). c Temperature dependence
of the trace of the QOs at low magnetic field : the onset of the lowest frequency (fα) is independent of the temperature below
4K. d Dingle plot for the different temperatures sweeps.

fit) and its Fourier transform (TF) are shown at T = 0.2 K on Fig.S4.a and Fig.S4.b respectively. The TF spectrum
is dominated by two mains frequencies : fα = 100 T and fβ ≈ 350 T, which correspond respectively to the hole and
electrons pockets. Due to a small misalignment of the magnetic field with the trigonal direction both frequencies are
split. The sub-frequencies are labelled αi and βj . A zoom on the low magnetic field oscillations (shown in Fig.S4.c)
shows that the onset for the emergence of these quantum oscillations (µDB ≈ 1 where µD is the Dingle mobility) is
almost unchanged from T = 0.2 K up to 5 K and that µD is of the order 0.4 T−1.

This is confirmed by the Dingle analysis of the oscillations. Fig.S4.d shows the so-called ”Dingle plot” where
log(A/RT ), where A is the amplitude of the Fα peak in the TF and RT = X

sinh(X) where X =αm∗T
B with α = 14.694

and m∗=0.1m0, is plotted as a function of the average magnetic field of the window on which the TF is done. In
this analyse a sliding window of two Tesla has been used. In the context of the Lifshitz-Kosevich formalism [59], we
expect that :

log(
A

RT
) = −αTDm∗ ×

1

B
(S4)

For different temperatures, the field dependence of log( A
RT

) is linear. From Eq.S4, we find a Dingle temperature
TD = 8±2.5 K, independent of the temperature and of the residual resistivity. The error bars are estimated including
the systematic errors of the background subtraction, the size of the window used for the TF and the fit itself.

ELECTRON-HOLE COMPENSATION AND DEFECT CONCENTRATION

Due to the charge conservation, a semi-metal is expected to be perfectly compensated with an equal number of
electron, n, and hole p concentrations. In other words, one expects that in a perfectly stoichiometric sample n=p. In
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FIG. S5. Magnetoresistivity and Hall effect. a The resistivity (ρ22) and b the Hall effect (ρ12) for the samples S0 (in
red from [37]) (e) and S3 (in blue) for an electrical current along to the bisectrix direction and a magnetic field parallel to the
trigonal direction at T = 2 K. The dotted lines are fitted using the semi-classical model described in [37]. Inset in b) : log-log
plot of the Hall effect for S0 and S3. The black dotted line indicates a T 3 dependence expected in the simplest picture of an
uncompensated isotropic electron and hole Fermi surface pockets of same mobility according to Eq.SS5 when B << BK .

real materials, however, this charge compensation is inevitably broken by the presence of impurities.

A departure from perfect compensation, δn = p − n leads to two distinct signatures in the transport properties.
The first is found in the magnetoresistance. Assuming perfect compensation, the magnetoresistance is expected to
scale as ∝ B2 with no saturation. But a finite δn would lead to a saturation above a threshold magnetic field of
BK = 2n

δnµ . This is a simple picture with isotropic pockets of electron and hole of the Fermi surfaces with an identical
mobility, µ. The second signature of finite δn is a non-linear Hall response in the high-field regime. When µB >> 1,
the Hall resistivity, ρxy(B), can be written as [60] :

ρxy(B) ≈ B

e

(n− p)B2

(n+p)2

µ2 + (n− p)2B2
=

B3

e(n− p)
1

B2
K +B2

(S5)

When the two conditions B < BK and µB >> 1 are satisfied, the Hall resistivity is expected to show a B3

dependence. A more elaborate model allows to quantify the components of the mobility tensor together with δn
by a fit to the angle-dependent magnetoresistance [37]. Fig.S5 compares the experimental magnetoresistance and
Hall resistivity in two Sb samples, S0 [37] (RRR = 400) and S3 (RRR = 3000), with a fit using this model. The
high-mobility sample (S3) displays a large magnetoresistance and a larger Hall response, indicating that it is more
stoichiometric. From these fits, we can estimate δn

n to be 3 × 10−4 in S3 and 7 × 10−4 in S0. Combined with the
carrier density of Sb (n ' p ' 5.5× 1019 cm−3), this implies an impurity density in the range of 1.6− 3.8× 1016 cm−3

and an average distance between impurities of the order of 30− 40 nm. This is two orders of magnitude longer than
the average distance between the Sb atoms (≈ 0.3 nm) and corresponds to a purity in the range of 1 ppm or less.

By dividing the distance between the impurities by the average Fermi velocity (vF ≈ 4 × 105 m.s−1) one finds
τe−imp. ≈ 0.07− 0.1 ps, as shown in Fig.4.d of the manuscript. This time scale is 2-3 orders of magnitude lower than
the scattering time yielded by residual electrical (or thermal) resistivity and close to the Dingle scattering time. It
is therefore plausible that scattering by point-like impurities decreases the Dingle mobility by widening the width of
Landau levels without affecting the flow of momentum or energy and thus leaving the transport mobility unchanged.
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FIG. S6. Prefactor of the T 2-resistivity in Bi [61], graphite [62], WTe2 (this work), Sb ([22]), WP2 [21], in Mo [43] and in W
[43, 63] as a function of the Fermi temperature TF of electrons and holes. The Fermi energy is as low as 20 meV in Bi and as
large as 3 eV in W. Note that carrier density is similar in Sb and WTe2, but not their Fermi energy. This is because electrons
and holes are much lighter in Sb.

T-SQUARE RESISTIVITY IN SEMI-METALS

Figure S6 shows the magnitude of the T 2-dependent resistivity prefactor A in various semi-metals as a function of
their Fermi energy. One can see that the larger the Fermi energy, the larger A. This confirms that A scales with the
size of the phase space of electron-electron scattering. Indeed, employing twice the Pauli exclusion principle leads to
A ∝ (T/TF )2. For a more detailed discussion of this ‘extended Kadowaki-Woods scaling’ see [64].


