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This paper is an attempt at providing a fuzzy set formalization of case-based reasoning
and decision. Learning aspects are not considered here. The proposed approach assumes
a principle stating that ‘‘the more similar are the problem description attributes, the more
similar are the outcome attributes.’’ A weaker form of this principle concluding only on the
graded possibility of the similarity of the outcome attributes, is also considered. These two
forms of the case-based reasoning principle are modelled in terms of fuzzy rules. Then an
approximate reasoning machinery taking advantage of this principle enables us to apply
the information stored in the memory of previous cases to the current problem. A
particular instance of case-based reasoning, named case-based decision, is especially
investigated. A logical formalization of the basic case-based reasoning inference is also
proposed. Extensions of the proposed approach in order to handle imprecise or fuzzy
descriptions or to manage more general forms of the principle underlying case-based
reasoning are briefly discussed in the conclusion. Q 1998 John Wiley & Sons, Inc.

I. INTRODUCTION

Ž .Case-based reasoning amounts to inferring from known case s which are
similar enough to a newly encountered situation, that what is true in the known

Ž .case s might still be true, up to some suitable adaptation, in this new situation.
Case-based reasoning may be viewed as a particular form of analogical reason-
ing, since an analogy is a relational statement of the form: D is in the same
relation w.r.t. C as B is w.r.t. A, which is usually seen as a way of ‘‘guessing’’ D,

UThis paper is a revised and expanded version of a conference paper.1
†Author to whom correspondence should be addressed.
‡The authors should be cited alphabetically, in spite of this address-based presenta-

tion.



knowing A, B, and C. Analogical reasoning was investigated for a long time in
Artificial Intelligence2, 3, 4 and the interest in this research was considerably
renewed by the development of case-based reasoning and analogical reasoning;
see Kolodner,5 Aamodt and Plaza,6 Py7 for surveys. Any attempt to provide a
general formalization of this common way of reasoning raises several critical
issues, especially on such questions as

v The definition and practical elicitation of similarity measures.
v The retrieving of relevant cases.
v The logical modelling of the inference mechanism.
v The adaptation of the retrieved cases in order to extrapolate plausible values for

Ž .the variable s of interest in the current situation.
v The incomplete, imprecise, or even uncertain, description of available cases, or of

the current problem.

Although these different steps apparently require some graded notion of similar-
ity and some approximate reasoning capabilities, there were rather few attempts
for introducing fuzzy set-based tools in analogical reasoning until recently, up to
some exceptions.8, 9, 10, 11, 12 However, in case-based reasoning, some works fo-
cused on the handling of fuzzy descriptions in the retrieval step,13, 14, 15 on the
learning of fuzzy concepts from fuzzy examples,16 on the integration with
rule-based reasoning,17 and very recently on the logical modelling of the infer-
ence mechanisms based on similarity measures.18 See Dubois and Prade19 for a
general overview on similarity-based approximate reasoning.

This paper provides a more systematic investigation of the potentials of
fuzzy logic-based approaches for the different issues mentioned above. It is also
an attempt at formalizing the basic patterns of case-based reasoning and
decision. Let us first specify how case-based reasoning is viewed in this paper.

A case is viewed as a n-tuple of precise attribute values, this set of
attributes being divided in two nonempty disjoint subsets: the problem descrip-
tion attributes subset, and the solution or outcome attributes subset, denoted by
SS and TT, respectively. These subsets are defined according to the problem we

Ž .deal with. A case will be denoted as a tuple s, t where s and t stand for
complete sets of precise attribute values of SS and TT, respectively. In order to
perform a case-based reasoning we assume that we have a finite set M of known

w Ž .xcases or precedents, called case base or memory M is thus a set of pairs s, t ,
and a current problem description, denoted by s , for which the precise values0
of all attributes belonging to SS are known. Then case-based reasoning aims at
extrapolating or estimating the value t of the attributes in TT, for the current0
problem. It is therefore assumed everywhere in this paper that the memory only

Žincludes completely informed cases with the exception of the conclusion
.section .

In the case-based reasoning setting it is also assumed that the attributes
belonging to the outcome set can be related, in some way, to the problem
description attributes. The goal of case-based reasoning is to estimate the value



Ž .of the outcome attribute s of the current case taking into account the case base
of precedents M. We may think of several ways for doing this. A first approach
consists in looking for similarities and regularities inside the memory of cases
by, for instance, clustering the cases into classes, and then by induction building
rules which can be applied to the current problem s . This learning-based0

Žapproach whose learning step may be developed independently of any particu-
.lar s , or on the contrary conditioned by the consideration of a particular s is0 0

not investigated in this paper. In the following, it is rather assumed that a basic
Ž .principle holds, stating that ‘‘similar situations give or may give similar out-

comes.’’ Therefore, a similarity measure between problem descriptions and a
Žsimilarity measure between outcomes are needed and supposed to be given or

.obtained in a preliminary step not investigated here .
As previously stated, case-based reasoning amounts to inferring, from a

known case which is similar enough to the encountered situation, that what is
true in the known case might still be true in this situation. In order to guarantee
the validity of the result of the inference, the above mentioned principle relating
the similarities of situations to the similarities of outcomes is supposed to hold.
This idea was emphasized for a long time in analogical reasoning, see, e.g.,
Bourrelly et al.20 In particular, Davies and Russell,21 and Russell22 proposed to
control the inference process by means of explicitly stated functional dependen-
cies expressing that if two descriptions are identical with respect to the values of

Ž .a set SS of attributes, they should also be identical with respect to an other
Ž .attribute s TT. However, this form of metarule or principle is too restrictive for

two kinds of reasons:

Ž . Ž .i Perfect identity is required rather than graded similarity, and nothing is said in
case of approximate identity.

Ž .ii The functional dependencies forbid to have identical cases w.r.t. to SS which
differ w.r.t. attributes in TT, which is not very realistic in practice. Indeed two
very similar second-hand cars might be sold at different prices, for instance.

Prade,9 Arrazola et al.,23 and Lea Sombe24 suggested some remedies to these´ ´
two limitations in terms of fuzzy functional dependencies. In this paper, a more
systematic discussion of the modelling and use of the case-based reasoning
principle is provided.

In this work, the similarity measure between cases is given by two fuzzy
relations S and T defined on the set of problem description attributes SS and on
the set of outcome attributes TT, respectively. We suppose that these fuzzy

Žrelations are primitive notions and known in advance although we might think
.of learning them from the set of precedents stored in the memory . Methods for

obtaining fuzzy relations, or checking their adequacy are out of the scope of this
paper. Nevertheless, see Appendix A on how to build global similarity measures
from elementary ones pertaining to single attributes, and for technical defini-
tions.



Expressed in terms of the fuzzy relations S and T , the implicit case-based
reasoning principle can be expressed by the following rule:

‘‘The more similar are the problem description attributes in the sense of S,
the more similar are the outcome attributes in the sense of T.’’

A problem in the framework of our case-based reasoning model will be
Ž .denoted by a 4-tuple M, S, T , s where M stands for a case base or memory, S0

and T stand for the similarity relations, and s stands for the current case. The0
goal of case-based reasoning is to estimate the outcome t corresponding to the0
current problem s .0

Throughout this paper we will refer to what we call deterministic case-based
Ž .problems M, S, T , s when the above principle is applicable, otherwise we will0

Žrefer to nondeterministic problems where only a weaker form of the principle,
concluding only on the possibility that the outcome attributes are similar, can be

.used . We use the term ‘‘deterministic’’ since, as it will become clear in next
section, when the strong principle holds, a problem description s indeed

Ždetermines the outcome t in the sense that two identical problem descriptions
.should be associated with the same outcome .

Section II describes the fuzzy set modelling of deterministic and nondeter-
ministic case-based reasoning problems. Section III discusses case-based deci-
sion making. Section IV provides a logical formalization of the deterministic
case. Concluding remarks briefly discuss various extensions of the proposed
approach.

II. A FUZZY SET FRAMEWORK FOR CASE-BASED
REASONING AND DECISION

Ž 25 .Fuzzy rules see Dubois and Prade for an introduction provide a tool for
modelling the above expressions of the implicit case-based reasoning principle.
We first consider the deterministic situation.

A. Deterministic Problems

In the deterministic setting, the principle is supposed to express that ‘‘the
Ž . Ž .more similar s and s , the more similar t and t ’’ where s , t and s , t are1 2 1 2 1 1 2 2

cases of M. This can be modelled by the constraint

; s , t , s , t g M , S s , s F T t , t 1Ž . Ž . Ž . Ž . Ž .1 1 2 2 1 2 1 2

Ž w x.where S and T are fuzzy relations§ they range on 0, 1 . S and T are supposed
w Ž . Ž . Ž . Ž .xto be symmetric ;s , s , S s , s s S s , s , T t , t s T t , t , and reflexive1 2 1 2 2 1 1 2 2 1

Ž . Ž .§In this paper, we use the notations S s , s and T t , t for denoting the degrees1 2 1 2
Ž . Ž .of similarity for simplicity, rather than using the notations m s , s and m t , tS 1 2 T 1 2

commonly used in the fuzzy set literature where they distinguish between a fuzzy set F
Ž . Ž .and its membership function m . Thus, in all the paper, we write F u instead of m u .F F



w Ž . Ž . x;s , S s , s s 1, T t , t s 1 . Technically speaking, such a relation is named1 1 1 1 1
a proximity relation in the fuzzy set literature. In the following, we shall often
refer to it as a similarity relation, although in its technical sense a fuzzy similarity

Žrelation is supposed to enjoy some kind of generalized transitivity an assump-
.tion which is not required here for S and T .

Ž .It is worth noticing that 1 should be understood in the following way: the
similarity of s and s constrains the similarity of t and t at a minimum level,1 2 1 2

Ž . Ž . Ž .i.e., S s , s is a lower bound of T t , t . In particular if S s , s s 1 then1 2 1 2 1 2
Ž . Ž .T t , t should be 1 also. Expression 1 corresponds to the representation of a1 2

gradual rule in the sense of Dubois and Prade26 and Prade.27 In particular,
Ž x;a g 0, 1 , we have

s , s g S « t , t g T 2Ž . Ž . Ž .1 2 a 1 2 a

�Ž X. Ž X . 4where S s s, s , S s, s G a is the a cut of S and T is similarly defined. Soa a

Ž .2 expresses that when s and s are close, t and t should be at least as close.1 2 1 2
Ž . Ž .Clearly, when S s , s s 0, T t , t is no longer constrained. Moreover, if T is1 2 1 2

Ž . Ž .such that T t , t s 1 m t s t separating property of T , then the classical1 2 1 2
functional dependency

s s s « t s t 3Ž .1 2 1 2

Ž . Ž . Ž .is a consequence of 1 or 2 using the reflexivity of S. Constraint 1 is then
Ž .clearly stronger than 3 . In the paper, we always assume that T is separating in
Ždeterministic problems i.e., if M agrees with the strong version of the case-based

. Ž .reasoning principle . Constraint 1 can be indeed viewed as a particular type of
Ž 28 29fuzzy functional dependency see Raju and Majumdar, Dubois and Prade,

30 .Bosc et al. , where the separating property of T is often hypothesized.
Ž .Let us now examine how 1 is used in the case-based inference process. Let

Ž .s, t g M, we have for the current situation s0

S s, s F T t , tŽ . Ž .0 0

where t is unknown. Thus, the constraint defines a set of possible values for t ,0 0
� Ž . Ž .4 Ž .namely t , S s, s F T t, t . Since it applies for any s, t in M, we obtain the0 0 0

following set E of possible values for t0

X < XE s t g TT S s, s F T t , t . 4� 4Ž . Ž . Ž .F 0
Ž .s , t gM

Note that E may be empty if T is not permissive enough. For instance, assume
Ž X. Ž < X <. Ž X. Ž <that SS s TT s R, S and T are defined by S s, s s L s y s , T t, t s K t yL K

X <. �Ž . Ž .4t with L and K given in Figure 1, M s 7, 10 , 3, 12 and s s 5. Then0
2Ž . Ž . Ž .S s , 7 s S s , 3 s . Thus, t according to case 7, 10 is such that t s 10 "0 0 0 03

Ž .0.66 while according to case 3, 12 we get t s 12 " 0.66, and thus E s B.0
Ž .When E / B, an interpolation mechanism is embedded in 2 ; see Appendix B

where it is shown how this mechanism can be captured by fuzzy gradual rules.
The nonemptiness of E can be guaranteed by the coherence of the set of fuzzy



Figure 1.

gradual rules which can be built from M, S, and T. Namely, these fuzzy rules
Ž . Žare obtained by stating that for each s, t g M, the more similar to s in the

. Ž .sense of S a value in SS is, the more similar to t in the sense of T the
Ž . X X Ž X.associated value in TT should be, or more formally, ; s, t g M, ;s , ; t , S s, s

Ž X.F T t, t . The coherence of this set of gradual rules is equivalent to the
following condition:

� Ž . Ž . 4;N : M, and for all families of positive values a s, t , s, t g N
Ž Ž ..in the unit interval, F S s / B implies F = 5Ž .Ž s, t .g N a Ž s, t . Ž s, t .g N

Ž Ž ..T t / Ba Ž s, t .

w Ž . w Ž .x Ž .with S s resp. T t being the fuzzy set of values in SS resp. is TT close to s
Ž .x Ž .resp. t . Equation 5 clearly guarantees the nonemptiness of E. Dubois, Prade,
and Ughetto31 address the formal definition of the coherence of a set of fuzzy

Ž .rules, its equivalence with the condition 5 in the case of gradual rules, and
supply practical checking procedures.

Ž .The condition 5 has a major influence on the building of a memory. Two
options can be envisaged: the similarity relations S and T are prescribed and

� 4 Ž .augmenting M with a new case c is possible only if M j c verifies 5 .
Alternatively, the similarity relations are updated each time a case c is entered

Ž .into M, so as to maintain the coherence requirement 5 . This topic is out of the
scope of the paper.

B. Nondeterministic Problems

Ž .Clearly, if we want to apply the principle expressed by 1 , the case-base M
Ž . Ž . Ž .should satisfy 1 for any pair of cases s , t and s , t , and even satisfy the1 1 2 2

Ž .coherence condition 5 in order to ensure that E is not empty. This require-
ment may be felt to be too strong in some practical applications where M may

Ž . Ž X. Xfor instance simultaneously include cases like s, t and s, t with t / t , which
Ž . Ž .violates 3 , and thus 1 . In such a case, we suggest to use a weaker version of



the case-based reasoning principle stating that ‘‘the more similar s and s , the1 2
more possible t and t are similar.’’ A proper understanding of this principle1 2
requires that the intended meaning of ‘‘possible’’ in this metarule be clarified;

Ž .this will be done in the next paragraph. A nondeterministic fuzzy dependency
rule is thus of the form

Ž .‘‘the more similar is s to s in the sense of S , the more possible is the0
Ž .similarity of t to t in the sense of T .’’0

It should be pointed out that this rule only concludes on the possibility of t0
being similar to t. This acknowledges the fact that, often in practice, a database
may contain cases which are rather similar with respect to the problem descrip-
tion attributes, but which are somewhat distinct with respect to outcome

Ž .attribute s . This emphasizes that, in this type of situations, case-based reason-
ing can only lead to cautious conclusions.

Rules of the form ‘‘the more X is A, the more possible Y is B’’ correspond
to a particular kind of fuzzy rules called ‘‘possibility rules.’’32 They express that
‘‘the more X is A, the more possible B is a range for Y,’’ which can be

Ž .understood as ‘‘;u, if X s u, it is possible at least at the degree A u that Y
lies in B.’’ When B is an ordinary subset, it clearly expresses that

Ž . Ž .i If ¨ g B, ¨ is possible for Y at least at the level A u if X s u; and
Ž .ii If ¨ f B, nothing is said about the minimum possibility level of value ¨ for Y.

It leads to the following constraint on the conditional possibility distribution
Ž Ž .p representing the rule where p ¨ , u estimates to what extent Y s ¨ isY < X Y < X

.possible when X s u , namely

p ¨ G A u if ¨ g BŽ . Ž .Y < X

p ¨ G 0 if ¨ f BŽ .Y < X

When both A and B are fuzzy sets it generalizes into

;u g U, ;¨ g V , min A u , B ¨ F p ¨ , u 6Ž . Ž . Ž . Ž .Ž . Y < X

Ž . � 4This clearly gives back the above expression when B ¨ g 0, 1 . Dubois and
25 Ž .Prade provide a full justification of 6 by decomposing B into nonfuzzy level

� Ž . 4 33cuts B s ¨ , B ¨ G a . This model of fuzzy rule is close to Mamdani’sa

original proposal in fuzzy logic-based control.
ŽSince we apply the principle ‘‘the more similar are s and s in the sense of0

. Ž .S , the more possible is that t and t are similar in the sense of T ,’’ the fuzzy0
set of possible values tX for t is given by0

p tX G min S s, s , T t , tX 7Ž . Ž . Ž . Ž .Ž .t 00

� 4 Ž . XClearly, what is obtained is the fuzzy set t (T s T t, ? of values t which are T
Ž .similar to t, ‘‘truncated’’ from above by the global degree S s, s of similarity of0



Ž .s and s . The inequality in 6 , which leads to a max-based aggregation of the0
Ž .contributions obtained from the comparison with each case s, t in the memory

M of cases, acknowledges the fact that each new comparison may suggest new
possible values for t .0

Ž . Ž .Since 7 applies to all the pairs s, t g M, we obtain the following fuzzy set
X Ž Ž X. Ž X..E of possible values t for t E t s p t0 t0

E tX s max min S s, s , T t , tX 8Ž . Ž . Ž . Ž .Ž .0
Ž .s , t gM

Ž .Note that if T reduces to the ordinary equality, 7 gives

E t s max S s, s 9Ž . Ž . Ž .0
Ž .s , t gM

Ž .i.e., t is all the more possible as a value for t , when there exists a case s, t in0
Ž .the memory such that s and s are more similar in the sense of S .0

Remark. Besides, a much stronger kind of dependency knowledge of the form
‘‘the more similar the values of s and s , the more certain the similarity of t0 0
and t ’’ can be also modelled by so-called certainty rules.32 It corresponds in our
problem to the constraint

E tX F max T t , tX , 1 y S s, s 10Ž . Ž . Ž . Ž .Ž .0

Ž .w.r.t. one case s, t which expresses, in possibility theory, that it is certain at
Ž . X Ž .least at the degree S s, s that t g T t . Considering all the cases in M we get0

E tX F min max T t , tX , 1 y S s, s 11Ž . Ž . Ž . Ž .Ž .0
Ž .s , t gM

We might think of using certainty rules in case-based reasoning. But, they
are not appropriate since they do not enable us to modulate the width of the
neighborhood around t in terms of the similarity between s and s , they only0

� 4 Ž . Ž .attach a level of uncertainty to t (T s T t , depending on S s , s , as ex-0
Ž . Ž . Ž .pressed by 10 . When S s, s s 0, the case s, t has no influence on E given0

Ž . Ž . X Xby 11 ; when S s, s s 1, t is a possible value for t insofar as t is similar to t0 0
Ž . Ž . Ž .where s, t g M, as expressed by 11 . However, S s, s has no influence here0

on the neighborhood of values around t which is considered; this contrasts with
Ž . Ž . Ž . Ž .4 where the inequality S s, s F T t, t , ; s, t g M, constrains the similarity0 0
to t of the possible values of t .0

III. CASE-BASED DECISION

A. Gilboa and Schmeidler’s Approach

Computing the result of a case-based inference is not only a matter of
retrieving similar relevant cases, even if no adaptation is to be performed, as



shown by the case-based decision paradigm. Recently, Gilboa and Schmeidler 34

advocated a similarity-based approach to decision where a case is described as a
Ž .triple problem, act, result and where a decision-maker’s nonnegative utility

Ž .function u assigns a numerical value u r to a result r. When faced with a new
situation s , the decision-maker is supposed to choose an act a which maximizes0
a counterpart of classical expected utility used in decision under uncertainty,
namely

U a s S s , s ? u r 12Ž . Ž . Ž . Ž .Ýs , M 00
Ž .s , a , r gM

where S is a nonnegative function which estimates the similarity of situations,
here the similarity of the current situation s against already encountered ones0

Ž .stored in the memory M. Moreover it is assumed that if two cases s, a, r and
Ž X X X. X X X Žs , a , r belong to M, then if s s s and a s a then r s r holds i.e., results

.are uniquely determined by the act applied to the context of a given problem ,
Ž . Ž . Žand ; s, a, r g M, '!a such that u r / 0 i.e., it means that only the best act in

. 34context s is stored in the memory . Gilboa and Schmeidler give an axiomatic
derivation of this U maximization, within a formal model.

The case-based reasoning framework of the previous section and the above
approach to decision problems agree in a particular case. Let us regard the

Ž . ŽŽ . Ž .. ŽŽ . Ž .. Ž .triples s, a, r as cases s, a , u r and assume S s, a , s , a s S s, s . It is0 0
Ž .then possible to relate 12 to the approach of Section II A in the deterministic

Ž .case. Indeed, let us try to estimate the utility u r attached to the act a applied0
Ž .to the current problem description s . Then 4 yields0

X < XE s u S s, s F T u r , u 13� 4Ž . Ž . Ž .Ž .Fa 0
Ž .s , a , r gM

Then assume that the set of situations s in M where a given act a was
experienced, can be linearly ordered into s , . . . , s , s , s , . . . , s . We suppose1 iy1 i iq1 n
that there exists a fuzzy proximity relation S such that for s , there exists only0

Ž . Ž . Ž .one pair of situations s , s such that s , a, r g M, s , a, r g M,i iq1 i i iq1 iq1
Ž . Ž . Ž . Ž .S s , s ) 0, S s , s ) 0 and moreover that S s , s q S s , s s 1. Note0 i 0 iq1 0 i 0 iq1

Ž . Žthat it entails S s , s s 0 since S is reflexive and s can be anywhere ini iq1 0
. Žbetween s and s . However, the ordering of the situations s in M associ-i iq1 i

.ated with an act a somewhat accounts for an idea of proximity between them
Žin the sense that s can be considered as closer to s and s than to s ori iy1 iq1 iyk

.s for k ) 1 . We can then associate with S a fuzzy relation T such thatiqk
Ž Ž .. Ž Ž .. Ž .T t, u r q T t, u r s 1, ; t. Then the set E defined by 13 contains onlyi iq1 a

one element e equal toa

e s S s, s ? u r s S s , s ? u r q S s , s ? u rŽ . Ž . Ž . Ž . Ž . Ž .Ýa 0 i 0 i iq1 0 iq1
Ž .s , a , r gM

Ž .Thus, a particular case of 12 can be obtained by the fuzzy functional depen-
dency method of Section II A. See Appendix B for a detailed justification. This

Ž .is due to the fact that for particular S and T , 13 embeds a linear interpola-



Ž .tion mechanism. Note that one way of satisfying the requirement S s , s q0 i
Ž .S s , s s 1 for S when the problems s in M can be linearly ordered, is in0 iq1

fact to assume that S is locally defined in the neighborhood of each problem s
Ž .by S , in such a way that S s, s decreases to 0 when s goes away from s ands s 0 0

coincides with one of the two closest neighbors of s in M. Then it is easy to
Ž . Ž . Ž .make S s , s q S s , s s 1. Equation 13 could be more generally useds 0 i s 0 iq1i iq1

Ž .instead of 12 , for estimating the worth of act a in situation s . However, a0
set-valued utility is obtained.

Ž .Note that 12 is also akin to the fuzzy vote procedure used by Bensana et
35 Ž .al. for selecting a scheduling decision b in a situation s from a set of rules0

Ž i. Ž i. Ž i. Ž Ž i.‘‘if s is S then the recommended act is a with weight w ’’ where w can
Ž i..be viewed as the utility of the result of the act a as the one maximizing an

index of the form

U a s S Ž i. s ? w Ž i. 14Ž . Ž . Ž .Ý 0
Ž i.i : asa

where S Ž i. is a fuzzy set describing a fuzzy class of situations. At the reasoning
Ž . Ž .level, the above decision procedures 12 and 14 make use of similarity notions

which can be viewed as the amount of ‘‘stretching’’ of the typical situation
Ž Ž i.described in the condition part of the rule i.e., the tolerance expressed by S

.for extending the range of use of the rule to encompass the current problem s .0
ŽThis idea of stretching a set of interpretations compatible here with the

.condition part of a rule is also explicitly at work in the logical approach
Ž .presented in Section IV which encodes the approach of Section II A .

Ž .Although 12 looks like an expected utility expression where probabilities
are replaced by similarity degrees, its intuitive interpretation is quite different
from the decision under uncertainty situation. First, note that there is no

Ž . Ž .constraint on the sum Ý S s, s . In particular, maximizing 12 is not equivalents 0
to maximizing

Ý S s, s ? u rŽ . Ž .Ž s , a , r .g M 0XU a s 15Ž . Ž .s , M0 Ý S s, sŽ .Ž s , a , r .g M 0

since the normalizing factor depends on act a.
Ž .The underlying idea in 12 is to look for acts that in several similar

Ž .situations had results with a high utility. However, a drawback of 12 is its
unability to distinguish between an act for which there is only one case in M
very similar to s which led to a good result, and an act for which there are0
many cases in M, all of them with a high degree of similarity to s but which led0

Ž .to rather poor results: this may then yield estimates U a which favor thes , M0

second act. Namely, we cannot distinguish between the two following types of
Ž . Ž .‘‘extreme’’ situations where it is possible to have U a - U a :s , M 1 s , M 20 0

Ž . U Ž U. Ž U. Ž U U.i For act a , '!s such that S s , s is high, u r is high and s , a , r g M1 0 1
Ž . Ž .and S s , s is zero for any other s such that s, a , r g M;0 1



Ž . Ž .ii For act a , 's , . . . , s , with n sufficiently large, such that s , a , r g M,2 1 n i 2 i
Ž . Ž . Ž .S s , s is high for i s 1, n and u r is low but nonzero while S s , s is zero0 i i 0

Ž .for any other s such that s, a, r g M.

Thus, it may look strange to prefer act a , which always gave rather poor2
results in situations similar to s , to act a which gave a very good result in a0 1

Ž . Ž .situation quite similar to s even if this situation is unique . Moreover, 120
somewhat compensates between good results r and bad results rX attached to

X Žthe same act a for distinct problems s and s which are both similar to s if we0
Ž . Ž X X. .have both s, a, r and s , a, r in M .

B. Alternative Approach

Another approach to case-based decision is to look for acts which for
similar problems always gave good results. Then, for a given act a, we are
interested in computing a degree of inclusion of the fuzzy set of problems which
are similar to s and where act a was experienced, into the fuzzy set of0
situations where act a led to good results.

The utility function u, like the similarity S, is now supposed to range on the
w x Ž X.real interval 0, 1 , with the following interpretations: S s, s s 1 means perfect

X Ž X. Xsimilarity of s and s , S s, s s 0 means that s and s are not at all similar as
Ž .previously, while u r s 1 means that the result r is among the excellent ones

Ž . Ž .the best one we may imagine , while u r s 0 means that r is among the worst
Ž .ones. Thus, the fuzzy set of situations similar to s is represented by S s s0 0

� 4s (S, and u is the membership function of the fuzzy set G of good results.0
Ž .Under this scaling hypothesis, note that 12 is nothing but the scalar fuzzy

36 Ž .cardinality of the intersection of the fuzzy set S s of situations similar to sa 0 0
where a was applied and of the fuzzy set G of situations where good resultsa

Ž .were obtained for act a using the product for defining intersection pointwisely .
Ž . Ž .In case we would normalize 12 into 15 , as previously suggested, we would

Ž . < Ž .compute a genuine inclusion degree of S s into G , of the form S s la 0 a a 0
< < Ž . < Ž < < .G r S s where A denotes the cardinality of A . However, more qualitativea a 0

inclusion degrees are also worth considering.
Let us introduce the following type of degree of inclusion which also

Ž .enables us to select the act s a, if any, which for problems similar to s always0
gave good results,

U# a s min S s, s ª u r 16Ž . Ž . Ž . Ž .s , M 00 Ž . Ž .s , r : s , a , r gM

Ž . Žwhere 16 is a multiple-valued implication connective i.e., x ª y increases with
� 4.y, decreases with x, and coincides with material implication on 0, 1 . It seems

natural to require that

v Ž . � <Ž . Ž . 4 � <Ž . Ž .U# a s 1 only if s s, a, r g M, S s, s ) 0 : s s, a, r g M and u r ss , M 0041 .
v Ž . Ž . Ž . Ž .U# a s 0 as soon as 's, S s, s s 1, s, a, r g M and u r s 0.s , M 00



Thus, act a receives the greatest rate only if it led to results with the maximum
Ž .satisfaction degree i.e., 1 in all the situations which have a nonzero similarity

Ž .degree with s and where a was applied . The act a receives the smallest rate if0
w Ž . xthere exists a situation s fully similar to s i.e., S s , s s 1 where a completely0 0

w Ž . xfails i.e., u r s 0 . This suggests to choose an implication x ª y of the form
Ž .x ª y s n x H y where n is an involutive negation function and H a disjunc-

tion operation. It can be checked that it is enough for having the above
w xrequirements satisfied. In case of a purely ordinal use of 0, 1 , where only the

Ž . 5ordering of the levels is meaningful, we are led to use x ª y s max 1 y x, y ,
i.e.,

U# a s min max u r , 1 y S s, s 17Ž . Ž . Ž . Ž .Ž .s , M 00 Ž . Ž .s , r : s , a , r gM

Ž .which expresses that the existence of a case s, a, r in M does not penalize act
a w.r.t. s , if r is a good result, or if s is not similar to s .0 0

U# is a rather drastic criterium since it requires that in all thes , M0

problems similar to s , act a led to good results. A more ‘‘optimistic’’ behavior0
can consist in selecting all the acts which led to a good result for at least one
problem similar to s , i.e., the dual criteria0

UU a s max min u r , S s, s 18Ž . Ž . Ž . Ž .Ž .s , M 00 Ž . Ž .s , r : s , a , r gM

U Ž .Thus, U a is maximum as soon as it exists a case corresponding to as , M0

problem completely similar to s where the act a led to an excellent result.0
Ž . Ž .Interestingly enough, 17 and 18 can be viewed as the counterparts of

qualitative expectations recently introduced in decision making under uncer-
37 Ž .tainty, just as 12 may be seen as a kind of counterpart of the classical

expected utility.
Ž . Ž .Expressions 17 and 18 make sense for case-based decision only when

they take into account acts a that are experienced in at least some situation s
Ž . Ž .such that S s, s s 1. Otherwise, it could happen that U# a is very high0 s , M0

Ž . Ž .while S s, s is very low for all triples s, a, r g M. To overcome this problem,0
Ž .a possible way is, for each act a, to renormalize¶ the fuzzy set S s over thea 0

Ž .situations s such that s, a, r g M. But to keep track of the absence of
Ž . Ž . w Ž .situations very similar to s , a soft discounting of 17 and 18 once S ?, s is0 0

x Ž .already renormalized should be also performed. Namely, letting h a, s sS 0

5 Ž .Since max 1 y x, y s 1 if and only if y s 1 whenever x ) 0. On an ordinal scale,
Ž .1 y ? is replaced by the order-reversing function of the scale.
¶There are several ways of renormalizing a fuzzy set F. If the scale is numerical

XŽ . Ž . w � Ž . < 4xthe usual option is to define F u s F u r max F u u g U , while if the scale is
YŽ . Ž . YŽ . Ž .qualitative we may define F u s F u for u / u and F u s 1, where F u s0 0 0

� Ž . < 4max F u u g U .



� Ž . <Ž . 4max S s, s s, a, r g M , we can define0

normU# a s min h a, s , U# aŽ . Ž . Ž .Ž .s , M S 0 s , M0 0
19Ž .

U U normU a s max 1 y h a, s , U aŽ . Ž . Ž .Ž .s0 , M S 0 s , M0

norm U norm Ž . Ž . Ž .where U# and U are computed by applying 17 and 18 once S ?, ss , M s , M 00 0

is renormalized. This preserves the inequality UU G U# between thes , M s , M0 0w Ž . xpessimistic and the optimistic utilities which only holds if S ?, s is normalized ,0
U U Ž .i.e., we have U s , M G U# . Thus U s , M a is maximal as soon as0 0s , M0

Ž .i There exists a case corresponding to a problem completely similar to s where0
the act a led to an excellent result; or

Ž . Žii Act a has never been applied to a situation somewhat similar to s so if we are0
.optimistic we should consider it .

Ž .On the other hand, U# a is 0 when there is no situation similar to s in M.0s , M0

Dubois and Prade give some more details on this proposal elsewhere.38

This approach can be also related to the approach proposed in Section II B
for the nondeterministic case. This point of view leads to estimate the utility of
act a for problem s by the fuzzy set E of possible values tX defined as0 a

E tX s max min S s, s , T u r , tX 20Ž . Ž . Ž . Ž .Ž .Ž .a 0
Ž .s , a , r gM

or, as

E u r s max S s, s 21Ž . Ž . Ž .Ž .a 0
Ž .s , a , r gM

Ž . Ž .when letting T be the classical identity relation. Then, 17 and 18 can be also
viewed as scalar summaries, which are pessimistic and optimistic, respectively, of

Ž .the fuzzy set of utility values whose membership function is given by 21 .
Ž . Ž . 39Indeed 17 and 18 are weighted median operations.

Besides, it would be possible in practice to make U# less drastic by onlys , M0
Ž .requiring that for most cases rather than all where a is present, the obtained

results are good when the situation is similar to s , thus allowing for a few0
exceptions, e.g., Dubois and Prade40 describe a way of introducing such a
quantified procedure for a different, but formally analogous problem.

IV. A SIMILARITY LOGIC SETTING
FOR CASE-BASED REASONING

In this section we propose a setting, closer to logical formalisms than the
one described in Section II A, for the inference processes that take place in
case-based reasoning systems when solving deterministic problems. The ap-
proach is inspired by the logical formulation of case-based inference proposed
by Plaza et al.,18 which in turn relies on two kinds of graded consequence



relations that play a major role in similarity-based reasoning as shown by Dubois
et al.41, 42 For another attempt at formalizing case-based reasoning inference in
a logical setting, see the paper by Lieber and Marquis.43

The underlying idea is that when a current problem description s is0
Ž .compared with a precedent case s, t of the memory M, there are two basic

steps:

Ž .i Comparing s with s, by means of the similarity relation S; and0
Ž .ii Extrapolating the problem solution t for s to s , according to their similarity0

Ž .degree computed in i .

Our aim is to provide a logical account for the whole inference process.
However, before that we introduce the notions of approximate and proximity

42 Ž .entailments due to Dubois et al. which pertain to the inference steps i and
Ž .ii , respectively.

A. Background

Let LL be a finitely generated propositional language, V its set of Boolean
interpretations, and let S be a similarity relation on V. Ruspini44 defines the

Ž < . Xdegree I p v to which an interpretation v is close to some model v of aS
Ž X .proposition p v * p , i.e.,

< XI p v s sup S v , v 22Ž . Ž .Ž .S
X

v *p

w U xThis defines, for each proposition p, the fuzzy set p of interpretations which
are close to p, by just considering

U <w xp v s I p v 23Ž . Ž .Ž .S

w U x w U x � <w U xŽ . 4The fuzzy set p is such that its a level cuts p s v p v G a , fora

Ž x w xa g 0, 1 , define a family of nested approximations of the set p of models of
w U xp, i.e., at each level a , p is the set of interpretations which are a similar toa

p. Based on this idea, the following graded approximate entailment41, 42 is defined
by

a w U xv * p iff v g p 24Ž .a

and more generally,

a w U x w x w U xq * p iff v g p for all models v of q , i.e., iff q : p 25Ž .a a

a Ž < .which can be equivalently expressed as q * p iff I p q G a , where I isS S
Ž < . Ž < .generalized for pairs of propositions by I p q s inf I p v . It is known asS v * q S

the implication degree of p given q. For a context given under the form of some
proposition K, it will be also useful to introduce the following notation

q * a p iff q n K *a p 26Ž .K



Ž . Ž .For modelling step ii above, we are viewing a case p, q , where p and q are
taken as any pair of propositions of LL , as a kind of extrapolative entailment
relation between p and q, with the following intended meaning: given a certain
context K, p implies q in the classical sense, but moreover, if p is ‘‘close’’ to
being true then q is also close to being true. In other words, in that context, the
neighborhood of models of p should lie in the neighborhood of the models of q.
This is in accordance with the view in Section II A of a case as a gradual fuzzy

w U x w U xrule ‘‘the more v in p , the more v in q ,’’ which is therefore expressed as

w U x w U xp v F q v , for all models v of K 27Ž . Ž . Ž .

Furthermore this notion of entailment, called proximity entailment, can be easily
w U xŽ . w U xŽ . w U xŽ . w U xŽ .graded as well, just by noticing that p v F q v iff p v mª q v

s 1, mª being the implication function defined by residuation from a t-norm
m.a Given such an implication mª , it is natural to define

< a U Uw x w xp ' q iff p v mª q v G a , for all models v of K 28Ž . Ž . Ž .K

a < aIt is worth mentioning that * and ' coincide only when K is uninforma-K K
w xtive, i.e., when K s V. However it is easy to show the following relationship

between approximate and proximity entailments,

X a < b X ambif p * p and p ' q then p * q 29Ž .K K

This inference pattern can be read as follows: if pX makes p a-true and, in a
given context K, p extrapolatively entails q to the degree b then, in the same
context K, pX makes q a m b-true.

B. Logical Modelling of Case-Based Inference

Now we exploit the logical framework just introduced in the previous
subsection to reformulate the inference process involved in the case-based
reasoning problems presented in Section II A. The main ideas are the following
ones:

v Ž .Step i is formulated as computing the approximate entailment degree of s by s .0
v Ž .Each case s, t is modelled as a proximity entailment, given a suitable context K.
v Ž . Ž .Step ii is then, due to the inference pattern 29 , formulated as computing the

approximate entailment degree of t given s in the context of K.0

First of all, we need to introduce some notations. Given the sets of attribute
predicate symbols SS and TT, corresponding to problem description attributes

Ž .and to the outcome attributes, respectively, L resp. L will denote the set ofSS TT
Ž . Ž .atomic formulas of the form A c , where A g SS resp. A g TT and c is an

attribute value. Actually L and L are nothing but a set of propositionalSS TT

Ž � w x 4.aThe use of a residuated implication x mª y s sup z g 0, 1 , x m z F y is also
in accordance with the semantics for the so-called gradual fuzzy rules.26, 32 See Appendix
A for some background on t-norms m.



variables since we will not deal with object variables. This simplifies the
semantical notion of interpretation. An interpretation will be just a value
assignment for each attribute. We will denote by V and V the set ofS T
interpretations for L and L , respectively, and we define V s V = V .SS TT S T
Assuming that the problem descriptions and outcomes are complete sets of
precise attribute values for attributes in S and T , we can identify problem
descriptions with interpretations of V and outcome descriptions with interpre-S
tations of V .T

According to the previous sections, we assume to have a similarity S on VS
and a similarity T on V . Then one can define the product similarity S = T onT
V by

S = T s , t , s , t s min S s , s , T t , tŽ . Ž . Ž . Ž .Ž . Ž .1 1 2 2 1 2 1 2

and it is easy to check that the corresponding marginalsUU of S = T on V andS
V are S and T , respectively.T

�Ž .4Given a case base M s s , t , and taking into account that problemi i ig I
and solution descriptions are indeed interpretations of V and V , respectively,S T

Ž . Ž .step i amounts to computing the similarity degree S s , s between the currenti 0
description and the precedent cases, while the context K needed to perform the

Žextrapolative inference i.e., the logical counterpart of our ‘‘deterministic princi-
. �Ž . <w U xŽ . w U xŽ . 4ple’’ is assumed to be of the form K s s, t s s mª t t G b si i i

�Ž . < Ž . Ž . 4s, t S s , s mª T t , t G b , where the parameters b are usually taken toi i i i
Ž Ž .be 1 this is the situation that exactly corresponds to the expression 1 of our

.deterministic principle†† , but in general they could be assigned a lower value,
denoting a weaker form of gradualness between s and t . Then, the wholei i

Ž . Ž .inference process described by i and ii can be formulated as follows,

from s * a i s0 i

s Eb i ti K i

infer s * a imb i t0 K i

Ž .where a s S s , s . In terms of the level-cuts, the inferred result is thati 0 i
w x w U xs n K : t , for all i g I. Therefore, the estimated solution t for s0 i a mb 0 0i i

should verify

<t g t T t , t G a m b� 4Ž .F0 i i i
Ž .s , t gMi i

Ž .which reduces to 5 when b s 1 for all i g I.i

UU Ž .Given a similarity R on U = V, its marginal R on U is defined as R u , u sU U 1 2
� ŽŽ . Ž .. < 4sup R u , ¨ , u , ¨ ¨ g V , for all u , u g U.1 2 1 2

Ž . Ž . Ž .††Notice that the condition S s , s mª T t , t G b is equivalent to S s , s mi i i i
Ž . Ž .b F T t , t , which is a more general constraint than expression 1 .i i



V. CONCLUSIONS AND FURTHER WORK

In this paper we are concerned with the modelling of some aspects of
case-based reasoning and decision using fuzzy set-based techniques, as well as
their applicability. The basic tool is the use of fuzzy proximity relations both
between problem descriptions and between outcomes of the cases. These
proximity relations allow us to give a precise meaning to the implicit principle
underlying deterministic case-based reasoning, i.e., ‘‘the more similar the prob-
lem descriptions, the more similar their outcomes,’’ by interpreting each case in
the memory as a gradual fuzzy rule. This interpretation was also formalized in a
logical setting by means of similarity-based graded consequence relations. Fur-
thermore, a weaker form of the above principle was proposed in order to cope
with ‘‘nondeterministic’’ problems. Fuzzy possibility rules were then used instead
of gradual rules to model these nondeterministic cases.

The ideas contained in this paper are a starting point regarding the
potential of fuzzy techniques and models for case-based reasoning. We envisage
to further develop these ideas in at least four different aspects.

Ž .i It may be useful to extend the inference power by taking into account not only
similarities but also dissimilarities between the cases and the current problem
by means of different types of gradual rules. These rules may allow, for
instance, to express generalized functional dependencies of the form ‘‘the less
similar s and s , the less similar t and t ,’’ etc. More generally, we may take0 0

Žadvantage of dependencies, like ‘‘the more similar s and s according to a0
. Ž .given subset of attributes , the more possible for t the value s obtained from t0

by taking into account, in a specified way, the amount of dissimilarity between s
Ž .and s according to another set of attributes ,’’ as already suggested in Lea´0

Sombe.24 An example of such a generalized dependency is ‘‘if two second-hand´
cars are similar but their mileages differ from some amount x, then the

Ž .difference between their prices is about f x .’’
Ž .ii Dealing with cases whose attributes ¨alue are imprecise or unknown: when the

description of cases is pervaded by imprecision or uncertainty, we can no longer
be sure about the identity or even the approximate equality of two feature
values. Let us assume that our information about feature values is represented
by means of possibility distributions. Let p and p X be two possibility distribu-

Ž .tions pertaining to the same feature x for two different cases. p u s 1 means
Žthat the value u is completely possible for x note that several distinct values u

X . Ž .and u may be completely possible for x , while p u s 0 means that value u is
totally impossible for x. Then we can compute to what extent it is possible and
it is certain, respectively, that the two ill-known feature values are similar in the
sense of the fuzzy relation S by

S s sup min S u , ¨ , p u , p X ¨Ž . Ž . Ž . Ž .Ž .Ł
u , ¨

and

N S s inf max S u , ¨ , 1 y p u , 1 y p X ¨Ž . Ž . Ž . Ž .Ž .
u , ¨

Ž . Ž . Ž .respectively. When '!u , p u s 1, '!¨ , p ¨ s 1 and ;u / u , p u s 0,0 0 0 0 0
XŽ . Ž . Ž . Ž .;¨ / ¨ , p ¨ s 0, then Ł S s N S s S u , ¨ , i.e., we recover the com-0 0 0

pletely informed situation case. Note also that when S reduces to the perfect



Ž . Ž . Ž .identity, i.e., S u, ¨ s 1 m u s ¨ and S u, ¨ s 0, otherwise, N S is always
zero as soon as the information on the two cases is not precise and certain. The

Ž . Ž .possibility and necessity degrees Ł S and N S are easy to compute for
Žtrapezoidal possibility distributions, and can be aggregated by min operation or

.its weighted version; see Appendix A , still keeping their possibility and
necessity semantics. See Dubois and Prade45 for details.

Ž .iii Incorporating learning capabilities: as we already mentioned in the introduction,
a possible approach could consist in looking for similarities and regularities
inside the memory of cases by, for instance, clustering the cases into classes,
and then building rules by induction which can be applied to the current
problem s . Another learning aspect would be that of assessing the relevance0
of attributes along the lines proposed by Plaza et al.46 We may also think of
building the similarity relations S and T from the memory M in such a way

Ž Ž ..that the set of cases leads to a coherent set of fuzzy rules in the sense of 5 ;
this may include a step where very similar cases in M are in fact fused into one
fuzzy case.

Ž .iv Using interpolation for case adaptation: the fuzzy set-based model presented in
Section II A, as well as the logical model proposed in Section IV, incorporate a

Ž 41, 42.natural interpolation mechanism see Dubois et al. which may be very
helpful for the case adaptation step, especially when the outcome attribute
domains are of numerical nature.

The authors are grateful to Enric Plaza for valuable comments and discussions on
preliminary drafts of this paper. The authors acknowledge partial support of the
CSICrCNRS grant called ‘‘Similarity based-reasoning and its applications.’’ Francesc
Esteva, Pere Garcia, and Lluıs Godo were also partially supported by the E. U.´
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APPENDIX A: SIMILARITY MODELING
BASED ON FUZZY RELATIONS

The evaluation of the similarity between two multiple-feature descriptions
of cases is crucial in case-based reasoning. Usually a global similarity degree
between two cases given by a multiple-feature description is obtained by
aggregating degrees of similarities pertaining to each feature.

In this appendix we introduce the notion of fuzzy proximity and similarity
relations, and we study some aspects of the representation of a proximity

Ž .relation which pertain to their elicitation , and the aggregation of a family of
similarity relations.

While reflexivity and symmetry are minimal properties that are clearly
Ž .required when evaluating the closeness of cases thus, by proximity relations ,

Ž .extended transitivity is not always compulsory in case based reasoning. Indeed,
in case-based reasoning, given a current situation s , in order to retrieve the0
most similar cases from the repertory M, we estimate the similarity of s with0
each of the situations s in M pairwisely, but we do not compute the similarityi
between s and s by transitivity from the similarity of s and s and that of s0 i 0 i i
and s . Transitivity may even be thought to be an undesirable property in somej
settings, since s may be somewhat intermediary between two situations which0
are not close themselves.

However, for the sake of completeness, our refresher on fuzzy proximity
and similarity relations contains a discussion of the modelling of various forms

Ž .of transitivity including a softening thereof in the fuzzy setting.

Basic Definitions

The concept of similarity relation is essentially a generalization of the
concept of an equivalence relation.47 A similarity relation S, in the sense of fuzzy
set literature, is a binary fuzzy relation defined on a set U satisfying the three



following properties

Ž . Ž .i ;u g U, S u, u s 1.
Ž . Ž . Ž . Ž .ii ;u g U, ;¨ g U, S u, ¨ s S ¨ , u , symmetry .
Ž . Ž . Ž . Ž . Ž .iii ;u g U, ;¨ g U, ;w g U, S u, ¨ m S ¨ , w F S u, w , m-transitivity .

w xwhere m is a binary operation defined on 0, 1 such that 0 m 0 s 0 m 1 s 1 m
Ž . Ž .0 s 0, 1 m 1 s 1. Fuzzy relations satisfying i and ii are called proximity

relations. The operation m is usually a t-norm operation, that is, m is a
w xnondecreasing operation on 0, 1 satisfying associativity, commutativity, 1 being

the neutral element and 0 being an absorbent element. Noticeable t norms are
Ž .min, product, and Lukasiewicz operation, i.e., max 0, a q b y 1 . See Ovchinni-

kov 48 for a recent overview on similarity relations.
Sometimes a stronger property than reflexivity is required for proximity

relations:

Ž X. Ž .i ;u g U, S u, ¨ s 1 if and only if u s ¨ .

Ž X.If i holds, the proximity relation is said to be separating. Interestingly enough,
if a proximity relation is separating then it is always m transitive for m being
the ‘‘smallest’’ t norm operation, i.e.,

min a, b if max a, b s 1Ž . Ž .a m b s ½ 0 otherwise

Similarity relations are closely related to the idea of distance. In particular if S
is based on the Lukasiewicz t-norm, 1 y S is a pseudometric, and m-transitivity
is equivalent to the triangle inequality; the min-transitivity, which is stronger,
corresponds to ultrametrics.

m-transitivity can be also easily interpreted in terms of composition of
Ž .fuzzy relations, namely iii can be written

S( S : S A1Ž .m

Ž . Ž . Ž .where ( composition is defined as S( R u, w s sup S u, ¨ m R ¨ , w andm m ¨
fuzzy set inclusion is pointwisely defined by an inequality between membership

Ž . Ž Ž ..functions. We write ( simply if m is the min t-norm. Clearly, iii or A1
extends transitivity to degrees of similarity which are intermediary between 0

Ž .and 1 transitivity of nonfuzzy relations is retrieved as a particular case . In the
following we shall encounter weaker forms of transitivitylike properties where
the similarity or approximate equality slightly deteriorates when applying transi-
tivity.

Many similarity measures which are often used in case-based reasoning
make a quite neat distinction between those elements which are considered to
be similar from those which are considered dissimilar by means of some
threshold. Just as an extreme case consider, on the set of real numbers, the
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nonfuzzy similarity relation defined as

< <1 if x y y F «
S x , y sŽ . ½ 0 otherwise

This type of relations are clearly not transitive. However, even if a relation
is m-transitive for some operation m, the corresponding notion of extended
transitivity can be very weak. For instance, in the case of m being the Lukasiewicz

Ž .t-norm, m transitivity does not restrict at all the value of S x, z as soon as
Ž . Ž .S x, y q S y, z F 1 for all y. The situation in that sense would be very

different if the relation is min-transitive, which is much stronger.

Representation of Proximity Relations

A key issue is then the problem of the practical definition of elementary
proximity or similarity relations. This was discussed by many authors from
cognitive and formal philosophy points of view, see, e.g., Rosch and Mervis,49

Niiniluoto.50 In the following we only consider the easiest, but often-encoun-
tered, situation where we deal with a numerically valued feature, in particular

Žwe consider that this feature is valued on the real numbers. It can be extended
.when the domain of the feature values is discrete but linearly ordered. In this

subsection we consider two types of representation:

v The first one given by means of a class of fuzzy numbers centered on 0. These
fuzzy numbers are used to measure how much x is close to y, assuming that x is

Ž .approximately y if and only if x y y is approximately 0 and this is measured by a
fuzzy number L centered on 0.

v The second one given by means of a class of fuzzy numbers centered on 1. These
fuzzy numbers are used to measure how much x is close to y, assuming that x is

Ž .approximately y if and only if xry is approximately 1.

Following the first suggestion given before, an approximate equality can be
modelled by a fuzzy relation S of the form

< <S x , y s L x y y A2Ž . Ž .Ž .L

which depends on the difference between feature values x and y. For instance,

< <d q « y x y y
; x , ; y , S x , y s max 0, min 1,Ž .L ž /ž /«

< <¡1 if x y y F d
~ < <0 if x y y ) d q «s A3Ž .¢ < <d q « y x y y r« otherwiseŽ .

where d and « are, respectively, positive and strictly positive parameters which
modulate the approximate equality, that is, we consider the family of fuzzy sets



 

whose membership functions are defined i n Figure A.1. T hese fuzzy s ets L  are
centered in 0 and L dŽ .s LŽyd. in order to ensure the symmetry of the
approximate equality relation.

Then the elicitation only requires the identification of two t hresholds: iŽ .  d 
which determines the upper limit of the difference between x and y to which
the user is completely indifferent, and iiŽ .  d q « which corresponds to the 
smaller difference for which the user considers that the two values are not at all
similar. Notice that, in general the resulting approximate equality relation SL is 
not m-transitive for the usual t-norm operations mŽ . because of the fuzzyŽ .
threshold determined by d / 0 and « .

Observe that the equality relation SL , defined b y L , i s r eflexive and 
symmetric. It is separating if and only if d s 0.

The m-transitivity property for S is expressed by the following inequalityL

< < < < < <L x y y G L x y z m L z y yŽ .Ž . Ž .

or equivalently

L a q b G L a m L b for any a G 0 and b G 0Ž . Ž . Ž .

Observe that the trivial fuzzy relations defined by the fuzzy sets L and L ,1 2
Ž . Ž . Ž .where L a s 1 for any a, and L 0 s 1, L a s 0 otherwise, satisfy the1 2 2

m-transitivity. It is easy to prove that when m is min conjunction or product-
conjunction only these trivial fuzzy relations fulfil the m-transitivity. However, if
m is the Lukasiewicz-conjunction, we have:

v Ž . Ž Ž . Ž . . Ž .When d ) 0, L a q b G max 0, L a q L b y 1 if and only if L a s 1 for
any a.

v When d s 0, it is easy to check that all the fuzzy relations defined by the fuzzy
sets of the family described in Figure A.1 satisfy Lukasiewicz-transitivity. See
Klawonn and Kruse.51

Figure A.1.



Ž .XThe min composition of two fuzzy relations S and S of the form A2L L
amounts to the addition of two fuzzy numbers L and LX, where L [ LX is
defined by

X < < < < X < <L [ L x y y s sup min L s y t , L u y ¨Ž . Ž . Ž .Ž . Ž .
< < < < < <s , t , u , ¨ : xyy s syt q uy¨

Ž 45.and can be easily computed e.g., Dubois and Prade since if L is defined by
the two parameters d and « , and LX similarly by d X and « X, then L [ LX is
defined by d q d X and « q « X. Then the degradation of the transitivity is clearly

Žexpressed by the enlargement of L into L [ L expressed by the increase of the
.parameters , that contains L. Note that if we use sup-m convolution for

computing L [ L, when m is Lukasiewicz t-norm, then L [ L s L if d s 0
Ž 52 .Dubois and Prade and if the shape of L is linear.

ŽFollowing the second suggestion the relationship ‘‘x is close to y’’ between
.real values may be also understood as ‘‘the quotient xry is close to 1,’’ in the

sense that the possible values of xry are restricted by a fuzzy set P modelling
‘‘around 1.’’ In other words, we define a proximity relation S such thatP

S u , ¨ s P ur¨ A4Ž . Ž . Ž .P

Ž . Ž . Ž . Žwhere P is a fuzzy number which satisfies P 1 s 1, P t s P 1rt to ensure
. Xthe symmetry of S . Then, given two fuzzy relations S and S , their composi-P P P

tion results in a simple fuzzy arithmetic calculus on P and PX. Namely,

S (S X u , w s sup min P ur¨ , PX ¨rwŽ . Ž . Ž . Ž .Ž .P P
¨

s sup min P s , PX t s P(PX urwŽ . Ž . Ž . Ž .Ž .
Ž .s , t : s?tsurw

where ( denotes the extension of product to fuzzy numbers. Thus,

S (S X s S X A5Ž .P P P(P

This expresses that x is close to y in the sense of S X . It again accounts for theP(P
degradation of the transitivity since P(P > P and thus S > S .P(P P

Aggregation of Similarity Relations

If we assume that each feature is associated with an attribute domain
equipped with a similarity relation, modelling approximate equality on this
domain, the problem is then to aggregate the degrees of similarity between the
objects pertaining to each feature into a global similarity measure. This means
that the resulting measures should still have properties like reflexivity, symme-
try, and m-transitivity. In general min-combination preserve reflexivity and
symmetry properties. With respect to the transitivity, it is worth noticing that if



ŽŽ . Ž .. Ž . Ž .S and S are m transitive then S x , x , y , y s S x , y m S x , y1 2 m 1 2 1 2 1 1 1 2 2 2
ŽŽ . Ž .. Ž Ž . Ž .. Žand S x , x , y , y s min S x , y , S x , y for 2 features but it canmin 1 2 1 2 1 1 1 2 2 2

.be easily generalized to n features are still m transitive.
It is clear that min-combination gives the minimum value to the similarity,

and thus keeps the most discriminating value as a global value of the similarity,
while the max-combination gives as a value the least discriminating one. Other
well-known combination operations like averages, take values between min and
max but will not preserve transitivity.

Moreover we may think of a weighted aggregation if we consider that we
are dealing with a fuzzy set of features having different levels of importance. For
instance, if we aggregate the similarity degrees by means of min operation, a
weighted version can be given by

S x , y s min max S x , y , 1 y l A6Ž . Ž . Ž .Ž .i i i i
is1, n

Ž .with max l s 1, where case x resp. y is described by the vector of featureis1, n i
Ž . Ž Ž ..values x , . . . , x resp. y , . . . , y and l is the level of importance of the ith1 n 1 n i

feature. Clearly l s 1 means that the feature is fully important for the assess-i
ment of the global similarity, while if l s 0, the feature is not taken intoi
account. An easy computation shows that reflexivity, symmetry, and m-transitiv-
ity are preserved by this weighted aggregation. Moreover, separation is also
preserved if l / 0 for all i s 1, 2, . . . , n. See Dubois and Prade39, 45 for ai

Ž .justification of A6 and other weighted conjunctions. More generally, one could
think of weights l being a function of the particular values that some attributesi
can take, in order to capture situations in which one attribute may be more
important than another one. For a full account of aggregation of fuzzy relations,
see the book by Fodor and Roubens.53

APPENDIX B: FUZZY GRADUAL RULES AND SUGENO
AND NISHIDA’S INTERPOLATION METHOD

The purpose of this appendix is to provide the reader with a brief account
Žof the relation between fuzzy gradual rules which were used in the paper for

.discussing deterministic case-based reasoning problems and interpolation
mechanisms, since Gilboa and Schmeidler’s34 approach to case-based decision,
recalled in Section III A, reduces to classical interpolation in some particular
cases.

Sugeno and Nishida’s54 fuzzy control method starts from rules with non-
Ž . Žfuzzy conclusion parts of the form ‘‘if X is A then Y s b x ’’ we do not deali i

.here with compound conditions for simplicity , and computes the output y as
the weighted sum

Ý A x ? b xŽ . Ž .i i i
y s B1Ž .

Ý A xŽ .i i



Ž .where the A s are fuzzy sets defined in U, the b x s are scalar values in V, andi i
y ranges on V. In practice, in fuzzy control, U and V are subparts of the real

Ž . Ž .line. Equation B1 indeed looks like interpolation. When b x does not dependi
on x, this result can be obtained by applying Zadeh’s55 approximate reasoning
combination and projection approach viewing the rules as gradual rules express-
ing that ‘‘the closer X is to a , the closer Y is to b ,’’ i.e., modelling them asi i

Ž . Ž .inequality constraints of the form A u F B ¨ . Then the subset of V obtainedi i
by combining the results of the rules for the input X s x is given by0

Ž . Ž .min A x ª B ¨ where the implication defined by a ª b s 1 if a F bis1, n i 0 i
and a ª b s 0 if a ) b, encodes the above interpretation of the rules. When

wthe A s and B s make suitable fuzzy partitions of U and V, respectively, in thei i
Ž . xsense that ;u, Ý A u s 1 , which is in particular the case with the usuali i

partitions made of triangular membership functions as in Figure B.1, it can be
shown that the fuzzy subset of V which is thus obtained is nothing but the

� 4 Ž .singleton y computed by Sugeno’s method B1 . Let us explain the situation in
more details.

Let us consider a collection of gradual rules of the form ‘‘the closer X is to
Ž .a , the closer Y is to b ’’ where a , b , i s 1, n are pairs of scalar values. Thei i i i

first problem is to represent ‘‘close to a ,’’ by means of a fuzzy set A . It seemsi i
Ž . Ž .natural to assume that A a s A a s 0 since there are special rulesi iy1 i iq1

Ž .adapted to the cases X s a , X s a . Moreover, if u / a , A u - 1 foriy1 iq1 i i
Ž .u g a , a , since information is only available for u s a . Hence A shouldiy1 iq1 i i

Ž . � 4be a fuzzy interval with support a , a and core a . Besides, by symmetry,iy1 iq1 i
since the closer x is to a , the further it is from a , A should decreaseiy1 i iy1

ŽŽ . . ŽŽ . .when A increases, and A a q a r2 s A a q a r2 s 0.5. Thei i i iq1 iy1 iy1 i

Figure B.1.



simplest way of achieving this is to let

w x;u g a , a , A u q A u s 1Ž . Ž .iy1 i iy1 i

an example of which are triangular-shaped fuzzy sets as in Figure B.1. Clearly,
the conclusion parts of the rules should involve fuzzy sets B whose meaning isi
‘‘close to b ,’’ with similar convention. In other words, each rule is understood asi
‘‘the more X is A , the more Y is B ,’’ i.e., here ‘‘the closer X is to a , thei i i
closer Y is to b .’’ In that case the output associated with the precise inputi
X s a, where a - a - a isiy1 i

B s a ª B l a ª B s B l BŽ . Ž . Ž . Ž .a aiy1 iy1 i i iy1 iiy1 i

where ª is the implication defined above in this appendix, and so a ª B
Ž . Ž .corresponds to the level cut B , with a s A a , a s A a , and a qa iy1 iy1 i i iy1

Ža s 1. Then, it can be easily proved without the assumption of a triangulari
. Ž .shape that there exists a unique value y s b such that B b s 1, which exactly

corresponds to the result of a linear interpolation, i.e., we have b s a ? b qiy1 iy1
a ? b . See Figure B.2.i i

It is a theoretical justification for Sugeno and Nishida’s54 inference method
where the conclusion parts of the rules are precise values b and where a lineari

Ž .interpolation is performed on the basis of the degrees of matching a s A a , ini i
the particular case of single input rules. Hence reasoning with gradual rules
does model interpolation, linear interpolation being retrieved as a particular
case. The more complicated case of gradual rules with compound conditions,
i.e., rules of the form ‘‘the more X is A , . . . , and the more X is A , the1 1 n n

Ž 56 .more Y is B’’ is studied in detail in Dubois, Grabisch, and Prade ; in this
Ž .more general case, where the ‘‘and s ’’ in the compound condition are modelled

Ž . Ž .Figure B.2. The core of a ª B l a ª B is the result of a linear interpola-i i iq1 iq1
tion.



by a fixed operation like ‘‘product’’ or ‘‘min,’’ the gradual rule approach only
gives an approximation of the result obtained by Sugeno and Nishida’s method.

Let us now apply the above results to the case-based decision problem
considered in Section III A. Take the a s as situations s s stored in a memory Mi i
to which a given act was applied, and take the b s as the utilities of thei

Ž .corresponding results. See Figure B.1. Moreover, take A as the fuzzy set S ?, si i
Ž Ž ..and B as the fuzzy set T ?, u r . It is then easy to check that the conditionsi i

required above for the a s, b s, A s, and B s, completely agree with those statedi i i i
in Section III A. They allow to retrieve Gilboa and Schmeidler’s34 utility

Ž .expression 12 by applying the fuzzy gradual rules approach to deterministic
case-based problems.
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