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Abstract

We consider a binary supervised learning classification problem where instead of having
data in a finite-dimensional Euclidean space, we observe measures on a compact space X .
Formally, we observe data DN = (µ1, Y1), . . . , (µN , YN ) where µi is a measure on X and
Yi is a label in {0, 1}. Given a set F of base-classifiers on X , we build corresponding clas-
sifiers in the space of measures. We provide upper and lower bounds on the Rademacher
complexity of this new class of classifiers that can be expressed simply in terms of corre-
sponding quantities for the class F . If the measures µi are uniform over a finite set, this
classification task boils down to a multi-instance learning problem. However, our approach
allows more flexibility and diversity in the input data we can deal with. While such a
framework has many possible applications, this work strongly emphasizes on classifying
data via topological descriptors called persistence diagrams. These objects are discrete
measures on R2, where the coordinates of each point correspond to the range of scales at
which a topological feature exists. We will present several classifiers on measures and show
how they can heuristically and theoretically enable a good classification performance in
various settings in the case of persistence diagrams.

Keywords: Statistical learning, Measures, Topological data analysis, Persistence dia-
grams, Classification.

1. Introduction

We consider the problem of classifying measures over some metric space. This problem
appears as a generalization of standard supervised classification where the data are no
longer vectors from a Euclidean space but point clouds or even continuous measures. There
are several lines of work looking at this problem from various perspectives. If the measure
is a finite sum of Dirac masses, this problem boils down to multi-instance learning (MIL),
where the data are bags of points. This terminology originates in the works from Dietterich
et al. (1997) in the context of drug design. A typical strategy in MIL is to consider a
standard classifier over the points from the bag and aggregate the individual labels to
classify the entire bag. We refer to the survey from Amores (2013) for a comprehensive
review of the methods used in multi-instance classification. Closer to our work is the paper
by Sabato and Tishby (2012), which studies the properties of MIL from a statistical learning
perspective. More general are the works on distribution regression, for instance, Muandet
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et al. (2012) for classification and Póczos et al. (2013) for regression. The theory for simple
kernel estimators has been developed in Szabó et al. (2016). Another recent perspective
regarding distribution learning follows the works by Moosmüller and Cloninger (2020) and
Khurana et al. (2023), where the authors consider that each class consists of perturbations
of a ”mother distribution” and tackle this problem using tools from optimal transport. To
conclude our overview of measure-learning methods, we can cite the work from Chazal et al.
(2021), where the authors vectorize the measures to cluster them or perform a supervised
learning task. The setting we consider is very general in the type of measures we handle,
and vectorization-free. We consider simple classifiers based on integrals over the sample
measure, and we look at the theoretical performance of such classifiers by relating complexity
measures such as Rademacher complexity and covering numbers to their counterparts in the
base space. This follows a similar approach as Sabato and Tishby (2012), while we allow for
more general inputs. We can therefore derive standard prediction bounds, see Mohri et al.
(2018) for an introduction to these concepts. We provide classification algorithms which
fit under this framework and that discriminates according to the fraction of the mass each
measure puts in a well-chosen area.

The theory developed here has many cases of applications, namely, whenever input data
are point clouds. We can, for instance, cite lidar reconstruction (De Deuge et al. (2013)),
flow cytometry (Aghaeepour et al. (2013)), time series (possibly with an embedding mapping
them in some Euclidean space), and text classification using a word embedding method such
as word2vec, see Mikolov et al. (2013). Extending the results from MIL, the measures
can be weighted depending on the application. We also encompass the case of continuous
measures, for example, functional or image classification.

The main application that motivates the present work is the classification of persistence
diagrams. We refer to Edelsbrunner and Harer (2022) for an overview of this object’s con-
struction and its principal properties. Persistence diagrams are stable topological descrip-
tors of the filtration of a simplicial complex. Mathematically, they are discrete measures on
R2 where both coordinates of each point indicate times at which topology changes occur in
the filtration. We can use persistence diagrams to perform various data analysis tasks, and
we focus here on supervised classification to discriminate data based on some topological
information. Some methods such as landscapes (Bubenik et al. (2015), persistence images
(Adams et al. (2017)), or ATOL (Chazal et al. (2021)) immediately get rid of the measure
representation and transform the data in a vector. It then becomes possible to plug a
standard classifier into these vector representations, we refer to Obayashi et al. (2018) for
classification using linear classifiers. Some papers use kernel methods, such as Carriere et al.
(2017) or Le and Yamada (2018), while some other works make use of neural networks, such
as Carrière et al. (2020), and more recently Reinauer et al. (2021). We refer to the survey
Hensel et al. (2021) for an overview of topological machine learning methods.

In addition to offering a good trade-off between decent predictive performance (compa-
rable to standard persistence diagrams vectorizations and kernel methods) and simplicity,
the algorithm developed here offers explainability guarantees. Indeed, showing that two
classes differ on some zones of the persistence diagrams can directly be translated in terms
of the range of scales at which relevant topological features exist. The experimental results
back up the ideas developed by Bubenik et al. (2020) by swiping away a typical paradigm
in topological data analysis (TDA), which states that features with a long lifetime are the
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only ones relevant to describing a shape. Indeed, we demonstrate that the ”shape” of the
topological noise contains information related to the sampling. This idea is enforced by the-
oretical guarantees on limiting persistence diagrams as the number of sample points tends
to infinity, where we generalize recent results from Owada (2021).

The present work decomposes as follows: in Section 2 we formalize the problem of
learning on a set of measures, give general theoretical guarantees for this problem and
propose two simple supervised algorithms. In Section 3, we present persistence diagrams
that constitute the primary motivation of the present work. We give guarantees on the
reconstruction of the proposed algorithm in this specific case, showing that features at
every scale can and should be used for classification. Section 4 contains all the experimental
results and the comparison with standard methods, both in TDA and for other applications,
showing the versatility of our approach, which we believe is its principal strength, along
with its simplicity and explainability. We have made the code available here 1. Finally,
Section 5 is devoted to the proofs of all the theoretical results contained throughout the
paper.

2. Statistical learning on measures

2.1 Model

Let X be a compact metric space and denote by M(X ) the set of measures of finite mass
over X . Assume that both X andM(X ) are endowed with σ-algebras. This rather abstract
assumption is such that we can consider random variables on X and M(X ). The model
is the following: we observe a sample DN = (µi, Yi)

N
i=1, where µi ∈ M(X ) and Yi is a

label in Y ⊂ R. Although the algorithmic and experimental study is mainly motivated by
the case of classification Y = {0, 1}, some of the theory developed also encompasses the
case of regression where Y = [0, 1]. We aim at building a decision rule g : M(X ) → R
that predicts the label Y ′ of a new measure µ′. These decision rules are typically built on
classes of functions defined on X itself. There are many practical examples that fall under
this framework of learning on a space of measures: functional regression (Ferraty and Vieu
(2006)) and image classification are standard examples that have given birth to a very wide
variety of problems. Classifying bags of points has been studied under the MIL terminology,
we refer to Amores (2013) for a complete survey, and cover many useful applications, from
which we can cite image classification based on a finite number of descriptors as done in
Wu et al. (2015), flow cytometry (see Section 4), or text classification where each word is
represented by a point in a high-dimensional space. Closer to us is the work by Chazal et al.
(2021) where they represent the measures in a Euclidean space and use these vectorizations
to cluster the data. Even though the applications are very similar, we believe that our work
is quite different in essence since our algorithms are formulated in a supervised setting,
and we do not represent the measures in a Euclidean space, preferring to develop a theory
directly for an input space of measures, as we will see in the following section.

1https://github.com/OlympioH/BBA_measures_classification

3

https://github.com/OlympioH/BBA_measures_classification


2.2 Theoretical complexity bounds

In this section, we adapt standard results in statistical learning theory by relating quantities
such as Rademacher complexity and covering numbers for functional classes over X to their
counterparts in the spaceM(X ). In what follows,RN (·) (resp. GN (·)) denotes the empirical
Rademacher (resp. Gaussian) complexity of a function class on a sample (Z1, . . . , ZN ) which
we recall is defined by

RN (F) =
1

N
E

[
sup
f∈F

∣∣∣∣∣
N∑
i=1

σif(Zi)

∣∣∣∣∣
]
,

where (σ1, . . . , σN ) are independent Rademacher random variables. The Gaussian complex-
ity obeys the same definition where the σi are independent standard normal variables. The
Rademacher complexity is a usual quantity in statistical learning that measures the rich-
ness of a set of functions. Loosely speaking, it quantifies how much the class F correlates
with a vector of noise (σ1, . . . , σN ). This quantity naturally appears when controlling the
performance of a family of classifiers; a large Rademacher complexity being detrimental to
a good generalization. We refer to Chapter 26 from Shalev-Shwartz and Ben-David (2014)
for more details. It is common to upper bound it by computing the covering number of the
function class. We denote by N (F , d, ε) (resp. M(F , d, ε)) the ε-covering (resp. packing)
number of the set F endowed with metric d. Finally, we denote by vc(F) the Vapnik-
Chervonenkis complexity of a set of functions (or its pseudo-dimension in the case of real
hypotheses classes) and by vc(F , γ) its γ-fat shattering dimension. We refer to Chapter 6
of Shalev-Shwartz and Ben-David (2014) for the definition of these concepts that measure
the capacity of a function class, and are also used to upper bound the validation error of a
classification model. We break down our analysis in two cases: the first one assumes that
we have discrete finite measures and that we apply the 0-1 loss while the second assumes
generic measures inputs and requires the loss function to be Lipschitz.

2.2.1 Discrete measures, 0-1 loss

We denote by Mm(X ) the set of measures that write as a finite sum of at most m Dirac
masses on X , i.e. µi =

∑ni
j=1 δxij

with ni ≤ m for all i. We consider a family F of classifiers

from X to {0, 1}. For a given f ∈ F , we have a set of predictions for each individual point:

f(µi) = [f(xi1), f(xi2), . . . , f(xini
)] ∈ {0, 1}ni .

Denoting by {0, 1}? the set of finite sequences of 0’s and 1’s, we finally apply some
function ψ : {0, 1}? → {0, 1} called a bag-function or an aggregation function in order to
output a prediction label for each measure. Described as such, this scenario is formulated
exactly as a Multi-Instance Learning (MIL) problem, and theoretical guarantees in this
case have been established by Sabato and Tishby (2012). In Proposition 1, we extend their
results, in particular their Theorem 6 to the case where ψ is no longer a fixed-function but
is itself learned from a VC-class G. Let the bag-function ψ be permutation invariant, i.e.
ψ(y1, . . . , yn) = ψ(yσ(1), . . . , yσ(n)) for every yi ∈ {0, 1}, n ∈ N, and σ ∈ Sn. There exist
two functions g and ψ̄ such that ψ decomposes as follows:
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{0, 1}? {0, 1}

R2

ψ=ψ̄◦g

g
ψ̄ .

The function g is defined as g(y1, . . . , yn) = (
∑n

i=1 yi/n, n), i.e. it maps a sequence
of 0’s and 1’s to the proportion of 1’s and the total number of elements in the sequence.
We denote by H the set of binary classifiers from Mm(X ) defined as h : µ =

∑n
i=1 δxi 7→

ψ(f(x1), . . . , f(xn)), where ψ ∈ G and f ∈ F .

Proposition 1 Assume all the input measures belong to Mm(X ). Assume ψ is taken from
a class G of permutation invariant functions and that the corresponding ψ̄ is taken from a
class Ḡ of VC-dimension d′. We further assume that the class F has a finite VC-dimension
d. Then, H is a VC-class of dimension d2 verifying:

d2 ≤ max(16, (d+ d′) log2(2em)).

We defer the proof to Section 5.1. This bound on the VC dimension of the composition
of a hypothesis class F with a class of bag-functions can be used to upper-bound the
classification accuracy of predictors over the set of measures. We now propose to extend
these results to the case of general measures with finite mass and therefore extend the MIL
framework.

2.2.2 Generic measures, Lipschitz loss

In this subsection, we build classifiers of the form sgn(g(µ)) for g in some function class G.
Consider a κ-Lipschitz loss function L. By the contraction principle, RN (L◦G) ≤ κRN (G).
This subsection is therefore devoted to the control of the Rademacher complexity of the
class of real-valued predictors. We first extend Lemma 12 from Sabato and Tishby (2012)
to our setting. In what follows, we consider a class of functions F from X to [0, 1], and the
associated class of functions F̃ defined on M(X ) by

f̃ [µ] = EX∼µ[f(X)] =

∫
X
f(x)dµ(x) for f ∈ F .

The following lemma gives a relationship between the covering numbers of F and F̃ . We
denote by LNp the in-sample norm, defined as such for two functions f1 and f2 in F and a
sample of N measures (µ1, . . . , µN ):

‖f̃1 − f̃2‖LN
p

=

(
1

N

N∑
i=1

(f̃1[µi]− f̃2[µi])
p

)1/p

.

Given a sample (µ1, . . . , µN ) ∈ M(X )N , we denote by M̄p =
(

1
N

∑N
i=1M

p
i

)1/p
where

Mi = µi(X ) is the total mass of the measure µi.
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Lemma 2 Let (µ1, . . . , µN ) ∈ M(X )N and let p ∈ [1,+∞[. There exists a probability
measure µ̄ such that

N (F̃ , LNp , ε) ≤ N
(
F , Lp(µ̄),

ε

M̄p

)
.

We defer the proof to Section 5. This can be used to upper-bound the Rademacher
complexity of the function class F̃ as shown in the following theorem.

Theorem 3 There exists an absolute constant K such that

RN (F̃) ≤
KM̄2

√
vc(F)√
N

.

For M > 0, we define the set CNM = {(µ1, . . . , µN ) ∈ (M(X ))N | 1
N

∑N
i=1 µ

2
i (X ) = M2}.

In addition to the previous theorem, we provide a lower bound of the same order for the
Rademacher complexity.

Theorem 4 There exists an absolute constant K ′ such that

K ′M̄2√
N ln(N)

√
vc(F) ≤ sup

(µ1,...,µN )∈CN
M̄2

RN
(
F̃ |µ1, . . . , µN

)
.

The bounds from Theorems 3 and 4 match and are both of order 1/
√
N , up to log-

factors. They also both depend on the VC-dimension of the base-class F and no longer of
F̃ , making it much easier to compute, as we can see in the example below.

Example 1 Assume X is a bounded subspace of Rd endowed with a Euclidean metric and
let F = {1B(x,r)|x ∈ X , r > 0}. It is a standard fact (see Mohri et al. (2018) for instance)
that the V C-dimension of Euclidean balls is d + 1. We therefore have by Theorem 3 that
there exist constants K and K ′ such that:

K ′M̄2

√
d+ 1√

N ln(N)
≤ sup

(µ1,...,µN )∈CN
M̄2

RN
(
F̃ |µ1, . . . , µN

)
≤ KM̄2

√
d+ 1√
N

.

In practice, the class F̃ is used to construct a binary classifier through composition with
an aggregation function ψ, whose sign gives a prediction in {0, 1}. If the function ψ is fixed
as it is the case in Sabato and Tishby (2012) and is further assumed to be L-Lipschitz, the
Rademacher complexity of the final set of classifiers is simply multiplied by L. We want to
generalize this to the case where the function ψ is also learned. Assume ψ : R→ R is taken
from a class of functions G. Denote by H the class of functions h : µ 7→ ψ(

∫
X f(x)dµ(x))

where f ∈ F , ψ ∈ G. The following proposition gives a bound on the Gaussian complexity
of the function class H.
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Proposition 5 Assume that the class G consists of L-Lipschitz functions. Assume the
function x 7→ 0 belongs to F . Then there exist constants C1 and C2 such that for any
sample of measures µ̄ = (µ1, . . . , µN ),

GN (H) ≤
C1M̄2L

√
vc(F)

√
log(N)√

N
+
C2LM̄2R(G)√

N
+

L√
N

sup
ψ∈G
|ψ(0)|,

where

R(G) = sup
x,x′∈R,x 6=x′

Eγ sup
ψ∈H

(ψ(x)− ψ(x′))γ

|x− x′|
,

and where γ ∼ N (0, 1).

We refer to Section 5.5 for the proof. This proposition shows that up to logarithmic
factors, the Gaussian complexity of the family of classifiers decreases at an overall rate
of 1/

√
N . The quantity R(G) appears as a supremum of Gaussian averages. We refer to

Theorem 5 of Maurer (2016) for a few properties of this quantity. Most notably, if the class
G is finite, and consists of L-Lipschitz functions, R(G) ≤ L

√
2 ln |G|. In addition, in some

simple cases, it is possible to provide a better estimate of R(G), even when G is infinite, as
we can see in the following example:

Example 2 In practice, we often choose ψ of the form ψ : x 7→ x− s where s ∈ [−S, S] is
learned, as we will see in Section 2.3. In this case, we directly have that R(G) = E[|γ|] = 1.
Therefore, keeping the same notation as above, there exist universal constants C1 and C2

such that

Gn(H) ≤ 1√
N

[
C1M̄2

√
vc(F)

√
log(N) + S + C2M̄2

]
.

2.3 Algorithms, application to rectangle-based classification

Let us consider a class A of Borel sets of X . For instance, A can be thought of as the set
of balls or axis-aligned hyperrectangles for a given metric. We then consider the class of
corresponding indicator functions F = {1A, A ∈ A}. The data are therefore classified given
some threshold s ∈ R and a sign ε ∈ {−1,+1}, by the decision rule µ 7→ 1{ε

∫
A dµ−s ≥ 0}.

If A is a set of balls, the optimization problem boils down to finding the best center in
X and the best radius in R+. We present two algorithms and associate each of them with
the theory developed in the previous subsection.

Algorithm 1: exhaustive search

The first method consists in performing an exhaustive search in a grid of parameters for a
threshold s ≥ 0, and take the ones that minimize the empirical classification error:

L+ =

N∑
i=1

1

{∫
A

dµi − s > 0

}
1{Yi = 0}+ 1

{∫
A

dµi − s ≤ 0

}
1{Yi = 1}.
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We then minimize the empirical classification error for reversed labels:

L− =

N∑
i=1

1

{∫
A

dµi − s ≤ 0

}
1{Yi = 0}+ 1

{∫
A

dµi − s > 0

}
1{Yi = 1}.

If L+ ≤ L− we set ε = 1 and ε = −1 otherwise, along with the corresponding set of
parameters.

If all the µi’s write as a finite sum of Dirac measures, this method is very similar to
MIL, since each of the Ni points in the bag µi will be assigned a label whether it belongs
to the set A or not. The slight difference is that we consider multiple aggregation functions
of the form

ψs : {0, 1}Ni → {0, 1}

x 7→ 1


Ni∑
j=1

xj ≥ s

 .

Here, we allow the threshold s to be learned, which slightly extends the theory developed
in Chapter 3 of Sabato and Tishby (2012) about binary MIL where the aggregation function
must be fixed. We therefore fit exactly within the framework of Proposition 1 provided that
the set of raw classifiers F = {1A|A ∈ A} is a VC-class, which is for instance the case if A
is a set of Euclidean balls or axis-aligned hyperrectangles. Note that this algorithm allows
for any sample of measures with finite mass as input.

Algorithm 2: smoothed version

Performing an exhaustive search has a computational cost that grows exponentially with
the dimension of the space in which the data lie. We propose to optimize a smoothed version
of the empirical error. In the case of balls, for a center C ∈ X , a radius r > 0, a threshold
s and a scale σ, we consider the predictor given by the sign of fC,r,s,σ, defined as

fC,r,s,σ(µ) =

∫
X

exp

(
−d(B(C, r), x)

σ

)
dµ(x)− s.

We minimize the cross-entropy loss between a smooth version of this predictor and the
target vector, for a sample DN = (µi, Yi)

N
i=1:

LDN
(C, r, s, σ) = −

N∑
k=1

Yk log(S(fC,r,s,σ(µk)) + (1− Yk) log(1− S(fC,r,s,σ(µk)),

where S is the sigmoid function: x 7→ 1
1+e−x . This optimization must be performed for

switched labels as well.
In practice, we perform a stochastic gradient descent of this loss function. Since this

objective typically has many critical points, we perform multiple runs with different initial-
ization parameters.
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The predictor S ◦ fC,r,s,σ is a smooth predictor that has output in Y = [0, 1]. This
algorithm can also be interpreted using the MIL lens if the µi’s are discrete sums of Dirac
measures. Indeed, the class of functions we consider is

F =

{
x 7→ exp

(
−d(B(C, r), x)

σ

)
|C ∈ X , (r, σ) ∈ (R+)2

}
,

so that each point in the bag µi is mapped to a real number which corresponds to the
framework of Section 6.2 of Sabato and Tishby (2012). The class F is a smoothed version
of balls’ indicators and has the same VC dimension: vc(F) = d+ 1. We can therefore write
the corresponding generalization bound, using that the the cross-entropy loss is 1-Lipschitz.
According to Theorem 26.5 of Shalev-Shwartz and Ben-David (2014), we have that with
probability at least 1− δ, for all θ = (C, r, σ, s) ∈ X × R2

+ × [−S, S],

ES [LS(θ)]− LDN
(θ) ≤

√
π

2N

[
C1

√
(d+ 1) log(N)M̄2 + S + C2M̄2 + C3

√
log(4/δ)

]
,

with universal constants C1, C2 and C3.

Aggregation phase

These two methods select a single Borel set to discriminate between the two classes. This
approach suffices when the two classes always differ in the same zone of X . However, this
only corresponds to the simpler applications, and we want to find several disjoint Borel
sets along with corresponding thresholds of activation and aggregate them. We therefore
propose a boosting approach to combine ”weak-classifiers” to build a strong one. We have
implemented the adaboost method developed for the first time by Freund et al. (1996).
It follows an iterative procedure, giving more and more weight to misclassified data. In
addition to greatly improving the predictive performance as opposed to selecting a single
convex set, performing a boosting is of qualitative interest since it shows which zones of the
measures are relevant for classification. This feature is of particular interest in applications
where these areas convey a qualitative information, such as persistence diagrams or flow
cytometry.

3. A leading case study: classifying persistence diagrams

The primary example of measures that motivates the present work are persistence diagrams
and their smoothed and weighted variants.

3.1 An introduction to persistence diagrams

Persistence diagrams are measures on R2 that summarize the topological properties of input
data and constitute one of the main objects in Topological Data Analysis (TDA). We refer to
the textbooks by Edelsbrunner and Harer (2022) and Boissonnat et al. (2018) for complete
and exhaustive treatment, and recall the principal notions. Given a nested sequence (Xt)t∈R
of topological spaces built on top of the data, we keep track of the evolution of the topology
as t grows from −∞ to +∞. More precisely, we look at k-dimensional homological features
(connected components in dimension 0, cycles in dimension 1, voids in dimension 2, and so
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on). If a k-dimensional feature is born at time b and dies at time d, we add the point (b, d)
in the k-dimensional persistence diagram ξk. The latter therefore appears as a multi-set of
points supported in the half-plane H defined by H = {(x, y) ∈ R2| x ≤ y ≤ +∞}. We can
equivalently look at persistence diagrams as discrete measures on H: ξk =

∑
(b,d) δ(b,d). We

usually add the diagonal ∆ = (x, x) ⊂ H to the persistence diagrams in order to compare
diagrams with a different number of points. To do so, we use a transport distance called
the bottleneck distance:

Definition 6 The bottleneck distance dB between two persistence diagrams D1 and D2 is
defined by:

dB(D1, D2) = inf
η:D1→D2

sup
x∈D1

‖x− η(x)‖∞,

where the infimum is taken over all bijections η from D1 to D2.

From now on, we will focus on point cloud data unless specified otherwise, and all the
diagrams are built using the Cech filtration:

Definition 7 For a point cloud X = (Xi)
n
i=1, The Cech complex Č(X, r) at scale r is the

simplicial complex where for every simplex σ = [Xi0 , . . . , Xik ], we have σ ∈ Č(X, r) if
∩iki=i0B(Xi, r) 6= ∅.

We then let r go from 0 to∞ and track the evolution of the homology of the union of balls.
For a given point (b, d) in the persistence diagram, its distance to the diagonal d−b is called
its persistence or lifetime and measures for how long this feature persists in the filtration.

We illustrate this construction in Figure 1 where we sample n points uniformly on a
torus, according to an algorithm provided by Diaconis et al. (2013). When the number of
points is very low (n = 100), the true homology of the manifold (one feature of dimension
2 and two features of dimension 1) does not show in the diagrams and we only observe
topological components due to the sampling. For n = 500, we can read the homology of the
torus in the persistence diagram along with many points close to the diagonal. As n grows,
this ”topological noise” concentrates around the origin and the true homological features
become well separated from the noise. If we sample a point cloud from a manifold, large-
persistence features correspond to proper homological features of the manifold, see Theorem
9. Following this approach, works such as Adams et al. (2017) on persistence images sug-
gest weighting the persistence diagram using an increasing function of the persistence. In
addition, they propose to convolve the discrete measure with a Gaussian function. This falls
under the framework of the previous section, and it becomes relevant to consider diagrams
as generic measures. However, this signal-noise dichotomy is very restrictive, and there is
some evidence that points lying close to the diagonal also carry relevant information such as
curvature as demonstrated in Bubenik et al. (2020) or dimension. We give further evidence
of that in the following section, where we show that asymptotically, we can extract infor-
mation on the sampling density around the origin of the limiting persistence diagram. We
also provide numerical illustrations and quantitative evidence that low-persistence features
are relevant for classification purposes.
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(a) n = 100 (b) n = 200

(c) n = 500 (d) n = 1000

Figure 1: 0, 1 and 2-persistence diagrams for n points uniformly sampled on a torus.

3.2 Structural properties of persistence diagrams

Throughout this section and the following, we consider classifiers constructed by finding the
best axis-aligned rectangle. The easiest information to capture on the persistence diagram
of a Cech complex is the global one corresponding to the homology of the underlying
manifold. If we consider samplings on metric spaces having different persistence diagrams
for a given filtration, the following theorem yields the existence of a rectangle classifier that
discriminates between the two supporting spaces with high probability. Before stating the
theorem, we recall the definition of an (a, b)-standard measure:

Definition 8 Let X be a compact metric space and let a, b > 0. We say that a probability
measure µ on X satisfies the (a, b)-standard assumption if

∀x ∈ X,∀r > 0, µ(B(x, r)) ≥ min(1, arb).

Theorem 9 Let M1 and M2 be two compact metric spaces. Assume that we observe an
i.i.d. sample X̂n = (Xi)

n
i=1 drawn from an (a1, b1)-standard measure on M1 or an (a2, b2)-

11



standard measure on M2. Denote by Ki = min(p,q)∈dgm(Mi) ‖(p, q)‖∞ for i = 1, 2. Assume
that there exists K3 > 0 such that

dB(dgm(Č(M1)), dgm(Č(M2))) ≥ K3.

Denote by K = min(K1,K2,K3), a = min(a1, a2) and b = min(b1, b2). For all δ > 0, if the
number n of sample points verifies

n ≥ 2b

aKb
log

(
4b

aKbδ

)
,

there exists a collection of rectangles for which the classification error is smaller than δ.

We defer the proof to Section 5.6. We refer to Chazal et al. (2014a) for the construction
of simplicial complexes of possibly infinite metric spaces, which ensures that dgm(Č(M1))
and dgm(Č(M2)) are well defined.

In practice, a lot of information is contained in the points lying close to the diagonal and
classifying persistence diagrams enables to deal with a far broader class of problems than
simply classifying between manifolds with different homology groups, as we will see in the
following sections. In order to investigate the impact of the sampling itself on persistence
diagrams, we have derived the Theorem 10, where we study the asymptotic behavior of the
persistent diagram of the Cech complex built on a point cloud sampled from a manifold.
Before stating the theorem, we give a quick review of the existing literature on limiting
theorems for persistent quantities for a random point cloud (Xi)

n
i=1 on Rd. In what follows,

we denote by βk the k-th Betti number of a simplicial complex and Nk the number of critical
simplices of dimension k. In terms of persistence diagrams, βk(Č(X, r)) is the number of
points in the upper left quadrant that intersect the diagonal at (r, r). It is well known that
βk and Nk are closely related by Morse theory: a critical simplex of dimension k can either
increase βk by 1 or decrease βk−1 by 1. We further denote by βk(r, s) the persistent Betti
number between times r and s, i.e. the number of k-dimensional features that are born
before r and die after s. It corresponds to the number of points in the upper-quadrant with
an angle at the point (r, s) in the persistence diagram. Since we consider i.i.d. samples,
we adopt the approach from Bobrowski and Kahle (2018) which gives a detailed survey
on random geometric complexes that we enrich with a few recent results. Assume that we
re-scale the data by a sequence rn such that rn → 0. The speed at which rn tends to 0 as
n → ∞ is paramount and we introduce the scale factor Λ = nrdn. There are three possible
different behaviors according to the limit of Λ. We refer to Bobrowski and Adler (2011) for
the results regarding the number of critical points and to Bobrowski and Mukherjee (2015)
for their adaptation to point clouds sampled on manifolds.

• Λ→∞ is called the supercritical regime. In this case,

1

n
E [Nk ((Xi/rn)ni=1)] →

n→∞

1

(k + 1)!

∫
(Rd)

k
h(0,y)e−ωdR

d(0,y)dy,

where h and R are geometric functions that do not depend on f and ωd is the volume of
the unit ball in Rd. Although a similar result has never been derived for Betti numbers,
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we can very much expect a similar behavior and that the density of the sampling
cannot be extracted from the persistence diagram. Intuitively, the supercritical regime
kills all the information related to the sampling.

• Λ→ λ ∈]0,+∞[ is called the critical or thermodynamic regime. Under these circum-
stances,

1

n
E [Nk ((Xi/rn)ni=1)] →

n→∞

λ

(k + 1)!

∫
(Rd)

k+1
fk+1(x)h̃(0,y)e−λωdR

d(0,y)f(x)dydx,

where h̃ is a geometric functional that does not depend on f . As opposed to the pre-
vious case, the limiting number of critical simplices of dimension k explicitly depends
on the distribution f . Furthermore, Yogeshwaran et al. (2017) have derived a concen-
tration inequality and a central limit theorem (CLT) for βk in this regime. It has been
shown by Kahle (2011) that E[βk] is of order n, but computing the exact limit is still
an open question, especially its dependency on f . Note that the speed of convergence
of βk towards its expectation also depends on f . We can also cite the work of Krebs
and Polonik (2019) that establishes a CLT for persistent Betti numbers, and of Biscio
et al. (2020) who derives a CLT in the vague topology for the 0 and 1-persistence
diagrams of a point process in dimension 2 verifying some mild assumptions.

• Λ → 0 is called the sub-critical or sparse regime and is the most favorable case of
study. To start with, we have that

1

nk+1rdkn
E [Nk ((Xi/rn)ni=1)] →

n→∞

1

(k + 1)!

∫
R
fk+1(x)dx

∫
(Rd)k

h̃(0,y)dy.

The dependency on f is much simpler than in the critical regime. In addition, a
similar rate and dependency over

∫
R f

k+1(x)dx can be derived for the Betti numbers
as shown by Bobrowski and Mukherjee (2015) in the case of manifolds. For this regime,
the analysis has been pushed even further by Owada (2021) for the convergence of
persistence diagrams. We generalize his results in the following theorem where our
contribution is two-fold: the data are now allowed to be sampled from a manifold, and
we provide an alternative proof technique that relies on the Hoeffding’s decomposition
for U-statistics which gives us an upper-bound on the variance of the persistent Betti
numbers and a rate of convergence of the persistence diagram towards its limiting
measure. Before stating the theorem, we define the function hr by

hr (x1, . . . , xk+2) = 1
{
βk
(
Č ({x1, . . . , xk+2} , r)

)
= 1
}
,

and for 0 ≤ s ≤ t ≤ u ≤ v ≤ ∞,

Hs,t,u,v(x) = ht(x)hu(x)− ht(x)hv(x)− hs(x)hu(x) + hs(x)hv(x).

Theorem 10 Let M be a closed C2 manifold with reach τM ≥ τmin, take (Xi)
n
i=1 an i.i.d.

sample drawn from f1MdV old for a L-Lipschitz density f .
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For k ∈ J0, d− 1K, denote by µk the measure on ∆+ = {(x, y) : 0 ≤ x < y ≤ ∞} defined
on the rectangles Rs,t,u,v = [s, t)× [u, v) by

µk(Rs,t,u,v) =

∫
M fk+2dV old

(k + 2)!

∫
(Rd)k+1

Hs,t,u,v(0, y1, . . . , yk+1)dy1 . . . dyk+1,

for 0 < s ≤ t ≤ u ≤ v. For a sequence rn, denote by ξk,n the re-scaled measure defined by

ξk,n(Rs,t,u,v) =
Card(rnRs,t,u,v)

nk+2r
d(k+1)
n

.

Assume that we are in the sparse divergence regime, i.e. the sequence rn verifies:

nrdn → 0 and nk+2rd(k+1)
n →∞.

For k ≤ d− 4, choose rn = n
− k+2

2+d(k+1) . Then for n large enough,

sup
0<s≤t≤u≤v≤t+

E
[
(ξk,n − µk)(Rs,t,u,v)2

]
≤ Cn−

2(k+2)
2+d(k+1) .

For d− 4 ≤ k ≤ d, choose rn = n
− k+4

d(k+3) . Then for n large enough,

sup
0<s≤t≤u≤v≤t+

E
[
(ξk,n − µk)(Rs,t,u,v)2

]
≤ Cn−

2
k+3 ,

where C is a constant that depends only on k, d, t+, ‖f‖∞, τmin and L.

We defer the proof to Section 5.7.
This theorem asserts that asymptotically, the rescaled persistence diagram of the Cech

filtration built on an adequately rescaled point cloud on Rd converges to a measure µk which
depends on the point cloud only through

∫
M fk+2dV old. Moreover, given two distributions

f1 and f2 such that there exists k ∈ J0, d − 1K such that
∫
M fk+2

1 dV old 6=
∫
M fk+2

2 dV old,
any rectangle Rs,t,u,v enables us to distinguish between the two densities f1 and f2 when n
is large enough as we make it more explicit in the following corollary. Since this theorem
is stated for the rescaled persistence diagram with a sequence rn that tends to 0, this
is another evidence that points close to the diagonal (even close to the origin) contain
information relative to the sampling and should be considered for classification purposes.

Corollary 11 Keeping the same notation as above, consider two densities f1 and f2 with
Lipschitz constants L1 and L2 such that there exists k ∈ J0, d−1K such that

∫
M fk+2

1 dV old 6=∫
M fk+2

2 dV old. Let 0 < s ≤ t ≤ u ≤ v. For n large enough, the rectangle Rs,t,u,v identifies

the correct model with probability larger or equal than 1 − C n
− 2(k+2)

d(k+1)

|∫M (fk+2
1 −fk+2

2 )|2
, where C is a

constant that depends only on (s, t, u, v), k, d, ‖f1‖∞, ‖f2‖∞, τmin, L1 and L2.

The proof of Corollary 11 is a straightforward consequence of the Chebyshev’s inequality
and we defer it to Section 5.8. Deriving a finer concentration inequality is still an open
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(a) σ = 0 (b) σ = 1 (c) σ = 4

Figure 2: Data to classify. Yellow: torus, purple: sphere.

question: indeed, we have only used a bound on the variance of the random variable ξk,n
to use Chebyshev’s inequality. While our proof could be adapted to control higher order
moments, it would be worth investigating if we could adapt some techniques from the proof
of the Theorem 4.5 of Yogeshwaran et al. (2017) to our framework in the sparse regime.

The results derived in Proposition 9 and Corollary 11 both state that the number of
sampled points n must be large enough to discriminate between the two sampling models
with large probability, whether we want to distinguish between manifolds with different
homology or different samplings on the same manifold. On the contrary, the results from
the previous sections, especially the dependency over m in Proposition 1 and M̄2 in Theorem
3 and Proposition 5 assert that the number of points in the diagram (directly related to the
number of sampled points) must not be too large in order to obtain a good control of the
Rademacher complexity. The number of sampled points n acts as a trade-off between the
separation of the two classes and a control of the predictive risk.

3.3 Examples

In this section, we allow ourselves to rotate the diagrams by applying the transformation
(x, y) 7→ (x, y − x), so that all the points lie in the upper-right quadrant, and the diagonal
is mapped to the x-axis. In order to illustrate our method, we start by considering n = 500
points lying on a torus (class +1) or a sphere (class 0) and classify it based on the 1-
persistence diagram of its Cech complex. The persistence diagram of the torus is expected
to have two high-persistence features. Some examples of data are shown in Figure 2 and
rectangle classifiers on Figure 3. The sphere has radius 6, and the inner circle of the torus
has size 2 while the outer one has size 4.

In the noise-free setting, it is very easy to distinguish between the two classes, both
on the raw input and on the persistence diagrams. This corresponds to the framework of
Theorem 9. If we add a Gaussian noise, it is no longer possible to distinguish which shape is
a torus and which is a sphere based on their homology, but it is still possible to distinguish
between them because they have different volume measures, by investigating early-born
features.

On another experimental set-up, we still aim at distinguishing between point clouds
sampled from a torus or a sphere, except that the size of the supporting manifold as well as
the number of points are drawn at random. In addition we add a small isotropic noise to
the input sample. The illustration of Figure 4 shows the first four rectangles of the boosting
procedure.
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(a) σ = 0 (b) σ = 1 (c) σ = 4

Figure 3: Best rectangle to classify points from a sphere or a torus.

Figure 4: Boosting for manifold classification.

The first rectangle aims at discriminating based on the presence of a high-persistence
point in the diagram, that would have it classified as a torus (here, there is only one point
because of the added noise that makes one of the two features collapse). In this figure, this
rectangle alone would suffice to tell the two data apart. However, on other realizations, some
of the topological noise from the sphere also belongs to this rectangle. The second rectangle
therefore aims at classifying based on the topological noise. Indeed, for points sampled on
a torus, cycles will typically be born earlier than on the sphere, and this rectangle aims at
detecting late-born cycles, under which circumstances the data will be classified as ”sphere”.
The third rectangle aims at detecting whether there is a significant number of points of high
persistence in the topological noise. The fourth one explores if there are features born early,
which is a signature of tori. The boosting algorithm aggregates these classifiers and improves
the classification performance by up to 10 % as opposed to considering a single rectangle.

A second experiment conducted is based on the experimental set-up from Obayashi
et al. (2018). We sample Poisson (PPP) and Ginibre (GPP) point processes on the disk,
with 30 points on average and compute their one-dimensional persistence diagrams? The
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(a) Samples of point processes (b) Boosting rectangles

Figure 5: Point processes classification problem.

model has been trained on 400 processes and tested on 200. We have reached similar
classification accuracy (around 94% in both cases). They apply a logistic regression to a
persistence image transform of the persistence diagrams. When using a L1 penalty, this
induces sparsity and highlights a zone of the persistence image useful for discrimination.
Our method can be seen as a variation of this where we are free from vectorization and
fixed-pixelization when selecting the discriminating support. It is no surprise we obtain
similar results on this simple data set. We will actually see in Section 4 that our method
has a better accuracy on real data sets for a comparable running time. We display the
results of boosting when 100 points for each process are sampled in Figure 5. A Ginibre
point process causes repulsive interactions and points are more evenly spread out, which
prevents cycles from dying too early and promotes features with medium-persistence, as we
can see on Figure 5. In this set-up, there is no ”homological signal” to recover, and we only
classify based on the topological noise. We only display three rectangles because of overlaps.
The first rectangle investigates very late-born cycles of small persistence, which seems to be
a characteristic of PPP. Another rectangle looks at features of high-persistence born late,
which is once again something promoted by PPP. On this example, this rectangle alone
would bring a misclassification. The last rectangle seeks for features of medium persistence
born early, and classify as a GPP if there are more than four such features (which is the
case here).

4. Quantitative experiments

We wish to compare our method to benchmark datasets in both topological data analysis
and point clouds classification. For all the experiments, we typically perform 10 to 20
boosting iterations where the weak-classifiers are Euclidean balls along with a threshold
and where all the parameters are learned by exhaustive search (Algorithm 1 of Section
2.3). At each boosting step, we search for centers of balls among a sub-sample of the k-
means clusters’ centers. When the number of data is somewhat large, we allow ourselves
to optimize only over some subset of the available data, taking new data at each boosting
step. The 1/

√
N bounds obtained in Section 2.2 warrant for the validity of this sub-
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(a) ρ = 2.5 (b) ρ = 3.5 (c) ρ = 4.0 (d) ρ = 4.1 (e) ρ = 4.3

Figure 6: Examples of point clouds from the Orbit5K dataset.

PSS-K PWG-K SW-K PF-K Perslay Persformer BBA

72.38 ± 2.4 76.63 ± 0.7 83.6 ± 0.9 85.9 ± 0.8 87.7 ± 1.0 91.2 ± 0.8 83.3 ± 0.5

Table 1: Classification score for the Orbit5K dataset.

sampling procedure. In the tables below, our method will be denoted by BBA for ”best
balls aggregator”. We have made the code publicly available here.1

4.1 Persistence diagrams

Orbit5K

The dataset ORBIT5K is often used as a standard benchmark for classification methods
in TDA. This dataset consists of subsets of size 1000 of the unit cube [0, 1]2 generated by
a dynamical system that depends on a parameter ρ > 0. To generate a point cloud, a
random initial point (x0, y0) is chosen uniformly in [0, 1]2 and a sequence of points (xn, yn)
for n = 0, 1, . . . , 999 is generated recursively by:

xn+1 = xn + ρyn (1− yn) mod 1
yn+1 = yn + ρxn+1 (1− xn+1) mod 1.

Given an orbit, we want to predict the value of ρ, that can take values in
{2.5, 3.5, 4.0, 4.1, 4.3}. We display an example for each class in Figure 6; ρ ∈ {4.0, 4.1, 4.3}
accounts for difference in topology, while ρ ∈ {2.5, 3.5} generates samplings with different
densities but no particular homological information.

We generate 700 training and 300 testing data for each class. We perform a one-versus-
one classification. We compare our score with standard classification methods in Table 1,
where the results are averaged over 10 runs. We compare our scores to four kernel methods
on persistence diagrams taken respectively from Reininghaus et al. (2015), Kusano et al.
(2016), Carriere et al. (2017), Le and Yamada (2018), and two methods that use a neural
network architecture to vectorize persistence diagrams: Carrière et al. (2020) and Reinauer
et al. (2021). Our accuracy is comparable with kernel methods on persistence diagrams but
is somehow lower than that of neural networks.

Graph classification

Another benchmark of experiments in TDA is the classification of graph data. In order to
transform graphs into persistence diagrams, we consider the Heat Kernel Signature (HKS) as

1https://github.com/OlympioH/BBA_measures_classification
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Dataset SV RetGK FGSD GCNN GIN Perslay P MP Atol BBA

Mutag 88.3 90.3 92.1 86.7 89 89.8 79.2 86.1 88.3 90.4

DHFR 78.4 81.5 - - - 80.3 70.9 81.7 82.7 80.5

Proteins 72.6 75.8 73.4 76.3 74.8 75.9 65.4 67.5 71.4 74.7

Cox2 78.4 80.1 - - - 80.9 76.0 79.9 79.4 81.2

IMDB-B 72.9 71.9 73.6 73.1 74.3 71.2 54.0 68.7 74.8 69.4

IMDB-M 50.3 47.7 52.4 50.3 52.1 48.8 36.3 46.9 47.8 46.7

COLLAB - 81.0 80.0 79.6 80.1 76.4 - - 88.3 69.6

Table 2: Classification scores for graph data.

done by Carrière et al. (2020), for which we recall the construction: for a graph G = (V,E),
the HKS function with diffusion parameter t is defined for each v ∈ V by

hkst(v) =

|V |∑
k=1

exp(−tλk)ψk(v)2,

where λk is the k-th eigenvalue of the normalized graph Laplacian and ψk the correspond-
ing eigenfunction. We build two persistence diagrams of dimensions 0 and 1 tracking the
evolution of the topology of the sublevel sets of this function, and kept whichever one gave
the best results. For the experiments, we fixed the value of t to 10, a preliminary study
suggested that the diagrams were somehow robust to the choice of this diffusion parameter.
The results on standard datasets are provided in Table 2. The first five columns are kernel
methods or neural networks designed specifically for graph data, P denotes the best method
between Persistence image and Persistence landscapes, and MP the best method between
multiparameter persistence image, landscape, and kernel (scores reported from Carrière and
Blumberg (2020)). All these persistence-based vectorizations are coupled with a XGBoost
classifier to perform the learning task. We can see that our method clearly outperforms
standard vectorizations of persistence diagrams and also multi-persistence descriptors. The
accuracy reached is similar to Perslay, Carrière et al. (2020) which is a neural network that
learns a vector representation of a persistence diagrams and Atol, Royer et al. (2021) which
is another measure learning method. Note that on the biggest dataset collab, our method
is clearly outperformed by the other methods, especially Atol.

4.2 Other datasets

Flow cytometry

Flow cytometry is a lab test used to analyze cells’ characteristics. It is used to perform
a medical diagnosis by measuring various biological markers for each cell in the sample.
Mathematically, the data are point clouds consisting of tens of thousands of cells living in
RD, where D is the number of biological markers considered. We have trained our model
on the Acute Myeloid Leukemia (AML) dataset available here1. AML is a type of blood
cancer that can be detected by performing flow cytometry on the bone marrow cells. The
dataset consists of 359 patients, half of them are used for training and the rest of them for

1https://flowrepository.org/id/FR-FCM-ZZYA
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Dataset dimension classes CMFM LCEM XGBM RFM MLSTM-FCN ED DTW BBA

Heartbeat 61 2 76.8 76.1 69.3 80 71.4 62 71.7 73.7

SCP1 6 2 82 83.9 82.9 82.6 86.7 77.1 77.5 77.5

SCP2 7 2 48.3 55.0 48.3 47.8 52.2 48.3 53.9 56.0

Finger Movements 28 2 50.1 59.0 53.0 56.0 61.0 55.0 53.0 58.0

Epilepsy 3 4 99.9 98.6 97.8 98.6 96.4 66.7 97.8 92.8

StandWalkJump 4 3 36.3 40 33.3 46.7 46.7 20 33.3 46.7

Racket Sports 6 4 80.9 94.1 92.8 92.1 88.2 86.8 84.2 73.7

Table 3: Classification scores for multi-dimensional time series dataset.

validating the model. For each patient, 7 biological markers are measured across 30000 cells.
We report a F1-score of 98.9 %, while most flow cytometry specific data analysis methods
have a score comprised between 95% and 100% according to Table 3 from Aghaeepour et al.
(2013). In addition, our method can lead to qualitative interpretations, since it generates
discriminatory zones, and therefore thresholds of activation for biological markers that make
a patient sick or healthy.

Time series

Another field of applications is the classification of time series. We consider each data as a
collection of points by dropping the temporal aspect of the data. We have tried our method
on a small sample of data from the University of East Anglia (UEA) archive presented in
Bagnall et al. (2018). We compare our method against standard classification methods, and
report the results from Baldán and Beńıtez (2021) in Table 3

Our method competes with the most simple methods for classifying time series, but fails
to be state of the art, especially when a high classification score is expected. When there
is only little information to be captured (for instance for the datasets StandWalkJump,
Finger Movements or SCP2), our method manages to retrieve it. It is to be noted that the
comparison cannot be completely fair with respect to methods targeted to specifically deal
with time series while we have removed the temporal aspect of the data and only focus on
the distribution of the d-dimensional data in certain areas of Rd.

4.3 Discussion

Computational time

In order to compare the running time of our method with standard vectorization methods,
we consider the problem defined in Section 3.3: we observe points on a torus or a sphere and
classify the manifold supporting the point clouds based on their one-dimensional persistence
diagrams. We assume the diagrams have been computed in a preliminary step and compare
the running time of several methods in Table 4 when classifying over a training set of size
500 or 3000. The average number of points in the one-dimensional persistence diagram is
experimentally of the same order as the number of sampled points. For our method, we
report the training time for one weak-classifier. In this experiment only one weak-classifier
is enough to classify. For the exhaustive search, we have looked for a candidate classifier
among a family of balls with 20 different centers, 10 different radii and 5 different thresholds
for a total of 2000 possible classifiers, counting reversed labels. We compare the running
times with a Persistence Image of resolution 40× 40 with fixed parameters and we train a
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Table 4: Computational time (in seconds), torus VS sphere.

Size of the dataset Size of the point cloud BBA (smooth) BBA (exhaustive search) Lasso-PI + logit-L2

500 100 143.0 18.7 7.4

3000 100 139.5 97.6 151.4

500 500 136.8 31.8 12.0

3000 500 139.2 180.1 125.7

500 2000 147.4 66.6 43.1

3000 2000 149.7 343.9 260.1

Table 5: Computational time (in seconds), graph data

Name of the dataset Number of data BBA (smooth) BBA (exhaustive search) Lasso-PI + logit-L2 Atol (vectorization only)

Mutag 170 40.8 3.0 0.27 < 0.1

Collab 4500 195.1 172.5 164.9 110

Collab 1000 175 38.6 36.2 -

logit classifier with a L2 penalty, where the regularization parameter is learned by cross-
validation. When the number of sampled points is large enough, most of the computation
time is devoted to the vectorization part and only a small fraction of it is dedicated to
actually classifying the images. When the number of points is too small, the classification
part of the pipeline can take a rather long time.

The implementation of vectorization methods for persistence diagrams and standard
classification algorithms are taken respectively from the Gudhi (Maria et al. (2014)) and
Scikit-learn (Pedregosa et al. (2011)) libraries. It is likely that our implementation can be
improved, leading to a potential computational gain. Nevertheless, an exhaustive search of
the best ball-classifier has a comparable running time to that of Lasso-PI + logit L2 which
is enough for simple examples. When doing an aggregation procedure of several weak-
classifiers, the running time becomes significantly longer but provides a greater accuracy,
as noted in Table 2. It is also to be noted from Table 4 that our implementation of
the optimization of the smoothed objective does not vary much when dealing with large
point clouds nor with large datasets, which makes it a preferable candidate for large-scale
applications.

This is backed-up by the timing of some of the graph experiments in Table 5 where
we also compare our running times with the Atol method from Chazal et al. (2021) for
the smallest and biggest graph datasets. For the Atol method, the authors only report
the vectorization time without taking into account the training time of a random forest.
Note that the average number of nodes and edges in the Mutag dataset are 17.9 and
19.8 while they are of 74.5 and 2457.2 for the Collab dataset, and our method seems
to be pretty robust in this increase in scale. We can see that the running time of all
methods is comparable. However, in our case, the accuracy of a single weak classifier is
quite poor and the BBA method requires about 10 boosting steps to be fully competitive.
For small datasets, both in terms of number of points and data, an exhaustive search is
highly recommended, also due to the unstable nature of the smooth version which often
requires several initializations before finding a relevant classifier.
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Take-home message

The method developed in this article, while being simple and explainable, allows to tackle
a wide variety of problems. When used on persistence diagrams, we obtain similar results
as kernel methods and manage to come close to some state-of-the-art methods using neural
networks on graph data. Our method has a decent performance in terms of accuracy when
used on small datasets. When the number of data is larger, the 1/

√
N bounds from Section

2.2 justify for training our model on a sub-sample of the dataset and therefore propose a
decent accuracy at a mild computational cost.

In addition, since we locate the areas of the persistence diagram which are the most
relevant for classification, this can give information for truncating the simplicial complexes
for future applications on the same type of data, and therefore greatly improve the compu-
tational time, especially if one is to compute the Rips complex which is known to have a
prohibitive number of simplices if untruncated. Due to its simplicity, the natural competi-
tors of our method appear to be standard vectorizations of persistence diagrams coupled
with a usual learning algorithm such as logit or random forest. For this type of classifier,
we have seen in Table 2 that our method has a greater accuracy, while having a comparable
running time. Beyond persistence diagrams, we have demonstrated that our method offers
decent results in a variety of settings and is well suited to dealing with simple data and
could be adapted to dealing with large-scale applications.

5. Proofs

This section is devoted to the proofs of all theoretical results contained throughout the
paper.

5.1 Proof of Proposition 1

We denote by F̃ the class of functions on measures defined by f̃(µ) = [f(x1), . . . , f(xn)]
for µ =

∑n
i=1 δxi ∈ Mm(X ) and f ∈ F . We denote by k 7→ γF (k) the growth function of

a hypothesis class F defined by γF (k) = sup
x1,...,xk

]{(f(x1), . . . , f(xk)|f ∈ F}. We have that

γF̃ (N) ≤ γF (mN) since all the measures have at most m points. Using the Sauer-Shelah

lemma, we therefore have that γF̃ (N) ≤
(
emN
d

)d
where d is the VC-dimension of F .

Now, consider a set of d2 measures that is shattered by the class H. Using Section 20 of
Shalev-Shwartz and Ben-David (2014), we have that for every integer k, γH(k) ≤ γF̃ (k)γḠ(k)
using the observation above Proposition 1 that H is a composition class. We therefore have,
using Sauer-Shelah lemma again, that:

2d2 ≤ γH(d2) ≤
(
emd2

d

)d(ed2

d′

)d′
.

Taking the logarithm on both sides and using the same computation as in the proof of
Theorem 6 of Sabato and Tishby (2012) yields the wanted result.

5.2 Proof of Lemma 2

Let h and g be two functions of F .
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‖g̃ − h̃‖LN
p

=

(
1

N

N∑
i=1

(g[µi]− h[µi])
p

)1/p

∣∣∣∣∫ (h− g)dµi

∣∣∣∣p = Mp
i

∣∣∣∣∫ (h− g)d(µi/Mi)

∣∣∣∣p
≤Mp

i

∫
(h− g)pd(µi/Mi) by Jensen inequality.

Therefore,

‖h̃− g̃‖p
LN
p
≤ 1

N

N∑
i=1

Mp
i

∫
(h− g)pd(µi/Mi).

Denoting for each i wi =
Mp

i∑N
j=1 M

p
j

, the above inequality writes as :

‖h̃− g̃‖p
LN
p
≤ M̄p

N∑
i=1

wi

∫
(h− g)pd(µi/Mi)

≤ M̄p‖h− g‖pLp(
∑N

i=1 wiµi/Mi)
.

Denoting by µ̄ =
∑N

i=1wiµi/Mi we have the desired result.

5.3 Proof of Theorem 3

By Dudley’s chaining theorem, we have that

RN (F̃) ≤ 12√
N

∫ ∞
0

√
lnN (F̃ , Ln2 , ε)dε.

Remark that

diam(F̃ , Ln2 ) ≤ 1√
N

sup
f∈F

(
N∑
i=1

∫
(fdµi)

2

)1/2

≤ 1√
N

(
N∑
i=1

M2
i

)1/2

≤ M̄2.

Therefore, we only need to integrate up to M̄2, yielding:
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RN (F̃) ≤ 12√
N

∫ M̄2

0

√
lnN (F , L2(µ̄), ε/M̄2)dε by the above lemma,

≤ 12√
N

∫ M̄2

0

√
K0vc(F , cε/M̄2) ln(2M̄2/ε)dε by Theorem 1 of Mendelson and Vershynin (2003),

≤ 12M̄2√
N

∫ 1

0

√
K0vc(F , cε) ln(2/ε)dεby a change of variables,

≤
K1M̄2

√
vc(F)√
N

∫ 1

0

√
ln(2/ε)dε.

Here, K0 and K1 are universal constants. Including the integral in the multiplicative con-
stant term gives the wanted result.

5.4 Proof of Theorem 4

By Sudakov minoration principle, there exists a constant C such that for all ε > 0,

Cε√
N

√
lnN (F̃ , ε, LN2 ) ≤ GN (F̃),

where GN stands for the Gaussian complexity.
Classical equivalence between covering and packing numbers yields

Cε√
N

√
lnM(F̃ , 2ε, LN2 ) ≤ GN (F̃).

If all the µi are of the form Miδxi for (xi)i=1,...,N ∈ XN , we have for two functions g and h
in F that

‖g̃−h̃‖L2(µN1 ) =
1

N

√√√√ N∑
i=1

(g[µi]− h[µi])2 =
1

N

√√√√ N∑
i=1

M2
i (g(xi)− h(xi))2 = M̄2‖g−h‖L2(xN1 ,w),

for the L2-norm with weights wi =
M2

i∑N
j=1M

2
i

.

When looking on the supremum over all measures, we can therefore lower bound the
packing number:

sup
(µ1,...,µN )∈CN

M̄2

GN (F̃) ≥ Cε√
N

ln
√

sup
(µ1,...,µN )∈CN

M̄2

M(F̃ , 2ε, L2(µN1 ))

≥ Cε√
N

ln
√

sup
x1,...,xN

M(F , 2ε/M̄2, L2(xN1 , w)).

In particular, by taking x1, . . . xN that are 2ε/M̄2-shattered by F if N ≤ vc(F , 2ε/M̄2)
along with uniform weights, Proposition 1.4 from Talagrand (2003) states that the logarithm

24



of the packing number dominates the fat-shattering function. If N > vc(F , 2ε/M̄2), the
same result simply follows by considering the uniform measure on vc(F , 2ε/M̄2) of the N
points and setting weight 0 to the others.

This together with the equivalence between Gaussian and Rademacher complexities
yields that for all ε > 0,

K ′
ε√

N ln(N)

√
vc(F , 4ε/M̄2) ≤ sup

(µ1,...,µN )∈CN
M̄2

RN
(
F̃ |µ1, . . . , µN

)
.

In particular, taking ε = M̄2/8 gives the wanted result, by noticing that for the classification
problem, i.e. labels in {0, 1}, we have that vc(F , 1/2) = vc(F).

5.5 Proof of Proposition 5

Let µ̄ = (µ1, . . . , µN ) be a sample of N measures. In Theorem 2 of Maurer (2016), the
authors establish a chain-rule to control the Gaussian complexity for the composition of
function classes. This result implies that there exist two constants C1 and C2 such that for
any f0 ∈ F ,

GN (H) ≤ C1LGN (F̃) +
1

N
C2Diam(F̃(µ̄))R(G) +GN (G(f0)).

where R(G) = sup
x,x′∈R,x 6=x′

Eγ sup
ψ∈H

(ψ(x)− ψ(x′))γ

|x− x′|
,

and where γ ∼ N (0, 1).
We wish to successively bound each of the three terms on the right hand side. The clas-

sical equivalence between Gaussian and Rademacher complexities together with Theorem
3 permits to control the first term:

GN (H) ≤
C1LM̄2

√
vc(F)

√
log(N)√

N
+

1

N
C2Diam(F̃(µ̄))R(G) +GN (G(f0)).

Analogously to the proof of Theorem 3, we can simply bound the diameter by Diam(F̃(µ̄)) ≤√
NM̄2, since all the functions from F are bounded by 1.

As for the third term, taking f0 = 0, we have that

GN (G(f̃0) = Eγ

[
sup
ψ∈H
〈γ, (ψ(0), . . . , ψ(0)〉

]

≤ Eγ

[∣∣∣∣∣
N∑
i=1

γi

∣∣∣∣∣× sup
ψ∈H
|ψ(0)|

]
≤
√
N sup
ψ∈H
|ψ(0)|,

where the last inequality follows from the fact that the γi are standard independent normal
variables.
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5.6 Proof of Theorem 9

Assume that we observe a n-sample from M1. Corollary 3 of Chazal et al. (2014b) states
that for every ε > 0,

P[dB(dgm(Č(M1)), dgm(Č(X̂n))) ≥ ε] ≤ 2b

aεb
exp(−naεb).

Let δ > 0, and take ε = K/2. The above formula yields that for n ≥ 2b

aKb log
(

4b

aKbδ

)
, we

have with probability larger than 1− δ that

dB(dgm(Č(M1)), dgm(Č(X̂n))) ≤ K/2. (1)

By triangle inequality for the distance dB and using the hypothesis that the persistence
diagrams of the two metric spaces are away from at least K for the bottleneck distance, we
necessarily have that

dB(dgm(Č(M2)), dgm(Č(X̂n))) > K/2. (2)

By assumption, for i = 1, 2, dgm(Mi) has no point below K. We can now distinguish
two cases :

• dgm(Č(M1)) and dgm(Č(M2)) have the same number of points m (all these points are
at least away from K to the diagonal). Under these circumstances, dgm(Č(X̂n)) also
has m points above K/2. If it had more, it would mean that one of this point should
be matched with the diagonal, and therefore yields a contradiction with (1). Consider
squares of size K/2 centered on the points of dgm(Č(M1)) and dgm(Č(M2)). If they
all contain the same number of points from dgm(Č(X̂n)), we have a contradiction
with (2). It therefore means that there is a rectangle that can select the right model.

• If they do not have the same number of points, necessarily by (1), dgm(Č(X̂n)) must
have the same number of points as dgm(Č(M1)) above K/2 and do not have the same
number of points as dgm(Č(M2)). Counting the number of points in the (infinite
but truncatable) rectangle {(p, q)|‖(p, q)‖∞ > K/2} is therefore enough to classify
between the two metric spaces.

5.7 Proof of Theorem 10

First note that Card(rnRs,t,u,v) = βk,n(t, u) − βk,n(t, v) − βk,n(s, u) + βk,n(s, v), where
βk,n(s, t) is the persistent Betti number of order k between times s and t, that is the
number of k-cycles that appear in Č(r−1

n Xn) before time s and are still alive at time t. As
in Owada (2021), we denote by

hr(x1, . . . xk+2) = 1⋂k
j0=1{

⋂
j 6=j0

B(xj ,r/2)6=∅} − 1⋂k+2
j=1 B(xj ,r/2) 6=∅,

and by

Gk,n(s, t) =
∑

Y⊂Xn,|Y|=k+2

hrns(Y)hrnt(Y),
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so that, according to (Owada, 2021, Lemma 4.1)

Gk,n(s, t)−
(
k + 3

k + 2

)
Lrnt ≤ βk,n(s, t) ≤ Gk,n(s, t) +

(
k + 3

k + 1

)
Lrnt, (3)

where

Lrnt =
∑

Y⊂Xn,|Y|=k+3

1
Č(Y,rnt) is connected

.

In what follows we prove bounds for βk,n(s, t). The bound on Card(rnRs,t,u,v) easily follows.

Upper-bound of the bias

E(Gk,n(s, t)) =

(
n

k + 2

)∫
M
f(x1)dV old(x1)

∫
Mk+1

gs,t

(
x1

rn
, . . . ,

xk+2

rn

) k+1∏
j=2

f(xj)dV old(xj)

=

(
n

k + 2

)∫
M
f(x1)dV old(x1)Ix1 ,

where gs,t = hsht. Now, for a fixed x1 ∈ M , we note that gs,t is non-zero implies
(x2, . . . xk+1) ∈ B(x1, rn(k + 2)t+)k (recall that t ≤ t+). Denoting by M̃n = hn(M), with
hn : u 7→ u−x1

rn
, and using (Federer, 1959, Theorem 3.1) leads to the change of variable

Ix1 :=

∫
Mk+1

gs,t

(
x1

rn
, . . . ,

xk+2

rn

) k+1∏
j=2

f(xj)dV old(xj)

= rd(k+1)
n

∫
(M̃n)k+1

gs,t (0, y1, . . . , yk+1)1B(0,(k+2)t+)k+1(y1, . . . , yk+1)

k+1∏
j=1

f(x1 + rnyj)dV old(yj).

Note that 0 ∈ M̃n, and that M̃n has a reach τ̃ = τ/rn → +∞. With a slight abuse of
notation, we identify T0M̃n with Rd, and denote by Jv the Jacobian of the exponential map
exp0 : BRd(0, (k+ 2)t+)→ M̃n at point v (note that exp0 is well defined for n large enough
so that τ̃ ≥ 4(k + 2)t+, see, for instance (Aamari and Levrard, 2019, Lemma 1)). Using
(Federer, 1959, Theorem 3.1) again yields for the change of variable yj = exp0(vj) that

Ix1 = rd(k+1)
n

∫
(Rd)k+1

gs,t (0, y1, . . . , yk+1)1y1,...,yk+1∈BM̃n
(0,(k+2)t+)k+1

k+1∏
j=1

Jvjf(x1 + rnyj)dv1 . . . dvk+1.

According to (Aamari and Levrard, 2019, Lemma 1), whenever yj ∈ BM̃n
(0, (k + 2)t+), we

have ‖yj − vj‖ ≤ C((k + 2)t+)2rn/τmin, and ‖dvi exp0−Id‖op ≤ 5
4τ̃n

= 5rn
4τ ≤

5rn
4τmin

, so that

|Jvj − 1| ≤ Cd
rn
τmin

,
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and therefore,
∣∣Jvj − 1

∣∣ ≤ 1 for n large enough. We deduce that∣∣∣∣∣∣
k+1∏
j=1

Jvjf(x1 + rnyj)− f(x1)k+1

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
k+1∏
j=1

Jvjf(x1 + rnyj)−
k+1∏
j=1

Jvjf(x1)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
k+1∏
j=1

Jvjf(x1)− f(x1)k+1

∣∣∣∣∣∣
≤ Ck+1

d (k + 1)L‖f‖k∞rn + (k + 1)‖f‖k+1
∞ Ck+1

d

rn
τmin

≤ Ck+1
d (k + 1)‖f‖k∞

(
L ∨ ‖f‖∞

τmin

)
rn.

Denoting by

I ′x1
= rd(k+1)

n f(x1)k+1

∫
(Rd)k+1

gs,t (0, y1, . . . , yk+1)1y1,...,yk+1∈BM̃n
(0,(k+2)t+)k+1

k+1∏
j=1

dv1 . . . dvk+1,

we deduce that

|I ′x1
− Ix1 | ≤ (2(k + 2)t+)d(k+1)Ck+1

d (k + 1)‖f‖k+1
∞

(
L ∨ 1

τmin

)
rd(k+1)+1
n

≤ Cd,k(t+)d(k+1)‖f‖k∞
(
L ∨ ‖f‖∞

τmin

)
rd(k+1)+1
n .

Next, note that

gs,t (0, y1, . . . , yk+1) 6= gs,t (0, v1, . . . , vk+1)⇒ (v1, . . . , vk+1) ∈ V1,

where

V1 =
{

(v1, . . . , vk+1) ∈ B(0, 2(k + 2)t+)k+1 | ∃i 6= j; |‖vi − vj‖ − s| ≤ C((k + 2)t+)2rn/τmin

or |‖vi − vj‖ − t| ≤ C((k + 2)t+)2rn/τmin

}
.

We deduce that∣∣∣∣∣I ′x1
(A)− rd(k+1)

n f(x1)k+1

∫
(Rd)k+1

gs,t (0, v1, . . . , vk+1)1v1,...vk+1∈BM̃n
(0,2(k+2)t+)k+1dv1 . . . dvk+1

∣∣∣∣∣
≤ rd(k+1)

n ‖f‖k+1
∞

∫
(Rd)k+1

1V1(v1, . . . , vk+1)dv1, . . . ,dvk+1

≤ rd(k+1)
n ‖f‖k+1

∞ 2

(
k + 1

2

)
Cd((2(k + 2)t+)kd((2(k + 2)t+)d+1 rn

τmin

≤ rd(k+1)
n Cd,k‖f‖k∞(t+)(k+1)d ‖f‖∞t+rn

τmin
.
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The triangle inequality gives∣∣∣∣∣E(Gk,n(s, t))(
n
k+2

)
r
d(k+1)
n

−Ak(s, t)

∣∣∣∣∣ ≤ Cd,k,t+,‖f‖∞
(
L ∨ ‖f‖∞

τmin

)
rn,

where Ak(s, t) =
(∫
M fk+1(u)Hd(du)

) ∫
(Rd)k+1 gs,t (0, v1, . . . , vk+1) dv1 . . . dvk+1.

Next, we have to bound the higher order term E(Lrn,t) dealing with the subsets of size
k + 3. To do so, write

E(Lrnt) =

(
n

k + 3

)∫
Mk+3

1
Č(x1,...,xk+3,rnt) is connected

k+3∏
i=1

f(xi)dV old(xi)

=

(
n

k + 3

)∫
M
f(x1)dV old(x1)

∫
Mk+2

1
Č(x1,...,xk+3,rnt) is connected

× 1x2,...xk+3∈B(x1,(k+3)rnt)k+2

k+3∏
i=2

f(xi)dV old(xi)

≤ Cd‖f‖k+2
∞

(
n

k + 3

)∫
M
f(x1)((k + 3)rnt

+)d(k+2)dV old(x1)

≤ Cd,k,t+,‖f‖∞

(
n

k + 3

)
rd(k+2)
n ,

according to (Aamari and Levrard, 2019, Lemma B.7), since (k + 3)rnt
+ ≤ τmin/4 for n

large enough. Thus, (
n

k + 2

)−1

r−d(k+1)
n E(Lrn,t) ≤ Cd,k,t+,‖f‖∞nr

d
n.

Upper-bound of the variance

Let us denote by

Un =
1(
n
m

) ∑
I⊂Xn,|I|=m

gs,t(I),

where m = k + 2, and, for j = 1, . . . ,m− 1,

gj(x1, . . . xj) = E (gs,t(x1, . . . , xj , Xj+1, . . . , Xm) .

We remark that gm = gs,t. Noting that Un is a U-statistics of order m, Hoeffding’s decom-
position (see, e.g., (Lee, 1990, Theorem 3)) yields that

Var(Un) =

(
n

m

)−1 m∑
j=1

(
m

j

)(
n−m
m− j

)
Var(gj). (4)

Proceeding as for the bound on E(Lrnt), we may write

|gj(x1, . . . xj)| ≤ Cd,m,t+,‖f‖∞r
d(m−j)
n 1

Č(x1,...xj)is connected
,
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so that

Var(gj(X1, . . . , Xj)) ≤ E(g2
j (X1, . . . , Xj) ≤ Cd,m,t+,‖f‖∞r

2d(m−j)+(j−1)d
n ,

for j = 1, . . . ,m− 1. As well,

Var(gm(X1, . . . , Xm)) ≤ E(g2
m(X1, . . . , Xm)) ≤ Cd,m,t+,‖f‖∞r

(m−1)d
n .

Plugging these inequalities into (4) leads to

Var(Un) ≤
(
n

m

)−1

Cd,m,t+,‖f‖∞

m∑
j=1

(
m

j

)(
n−m
m− j

)
r2d(m−j)+(j−1)d
n

≤ Cd,m,t+,‖f‖∞r
d(2m−1)
n

m∑
j=1

(
n−m
m−j

)(
n
m

) r−djn

≤ Cd,m,t+,‖f‖∞r
d(2m−1)
n

m∑
j=1

1

(nrdn)j

≤ Cd,m,t+,‖f‖∞n
−mrd(m−1)

n ,

for n large enough so that
(
n−m
m−j

)
/
(
n
m

)
≤ 2jn−j and nrdn ≤ 1. We deduce that

Var

(
Gn(s, t)

r
d(m−1)
n

(
n
m

)) =
1

r
2d(m−1)
n

Var(Un) ≤ Cd,m,t+,‖f‖∞(nmrd(m−1)
n )−1

≤ Cd,k,t+,‖f‖∞(nk+2rd(k+1)
n )−1.

Bounding the variance of Lrnt proceeds from the same calculation, noting that Lrnt is a
U -statistic of order m = k + 3. Namely, proceeding as above leads to

Var

(
Lrnt(
n
m

) ) ≤ Cd,m,t+,‖f‖∞n−mrd(m−1)
n ,

with m = k + 3, so that

Var

(
Lrnt

(rdn)k+1
(
n
k+2

)) ≤ Cd,k,t+,‖f‖∞
(
n
k+3

)2(
n
k+2

)2
r
d(2k+2)
n

n−(k+3)rd(k+2)
n

≤ Cd,k,t+,‖f‖∞
nrdn

nk+2r
d(k+1)
n

≤ Cd,k,t+,‖f‖∞(nk+2rd(k+1)
n )−1,

for n large enough.

End of the proof

Let k ≤ d− 4 and choose rn = n
− k+2

2+d(k+1) . It holds

r2
n = n−(k+2)r−d(k+1)

n = n
− 2(k+2)

2+d(k+1) ,

nrdn = n
2+d(k+1)−d(k+2)

2+d(k+1) = n
2−d

2+d(k+1) ≤ rn.
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The above calculation then leads to, for any 0 < s ≤ t ≤ u ≤ v ≤ t+, and n large enough,

E
[
(ξk,n − µk)(Rs,t,u,v)2

]
≤ E [(ξk,n − µk)(Rs,t,u,v)]2 + Var [(ξk,n − µk)(Rs,t,u,v)]

≤ Cd,k,t+,‖f‖∞n
−(k+2)r−d(k+1)

n + Cd,k,t+,‖f‖∞(L ∨ ‖f‖∞
τmin

)2r2
n

≤ Ck,d,t+,‖f‖∞,τmin,Ln
− 2(k+2)

2+d(k+1) .

Now, for k ≥ d− 4 and rn = n
− k+4

d(k+3) , we get

n2r2d
n = n−(k+2)r−d(k+1)

n = n−
2

k+3 ,

rn = n
− k+4

d(k+3) ≤ n−
1

k+3 = nrdn.

This yields, for n large enough,

E
[
(ξk,n − µk)(Rs,t,u,v)2

]
≤ Ck,d,t+,‖f‖∞,τmin,Ln

− 2
k+3 .

5.8 Proof of Corollary 11

Assume without loss of generality that the points are sampled according to f1. Let 0 ≤ s ≤
t ≤ u ≤ v ≤ ∞. For i = 1, 2, denote by

li =

∫
M fk+2

i dV old

(k + 2)!

∫
(Rd)k+1

Hs,t,u,v(0, y1, . . . , yk+1)dy1 . . . dyk+1.

By Chebyshev’s inequality,

P
(
|ξk,n(Rs,t,u,v)− l1| ≥

|l1 − l2|
2

)
≤

4E
[
(ξk,n(Rs,t,u,v)− l1)2

]
|l1 − l2|2

.

Inverting the above formula and using the variance bound in the proof of Theorem
10 yields that there exists a constant C such that with probability greater or equal than

1− C n
− 2(k+2)

d(k+1)

(
∫
M |f

k+2
1 −fk+2

2 |)2
,

|ξk,n − l1| ≥
|l1 − l2|

2
.

This means that with at least the same probability, the data are correctly labeled as
being sampled according to f1.
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