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Abstract. 
Neurofeedback (NFB) is a brain-computer interface which allows individuals to modulate 
their brain activity. Despite the self-regulatory nature of NFB, the effectiveness of strategies 
used during NFB training has been little investigated. In a single session of NFB training 
(6*3min training blocks) with healthy young participants, we experimentally tested if 
providing a list of mental strategies (list group, N = 46), compared with a group receiving no 
strategies (no list group, N = 39), affected participants’ neuromodulation ability of high alpha 
(10-12 Hz) amplitude. We additionally asked participants to verbally report the mental 
strategies used to enhance high alpha amplitude. The verbatim was then classified in pre-
established categories in order to examine the effect of type of mental strategy on high 
alpha amplitude. First, we found that giving a list to the participants did not promote the 
ability to neuromodulate high alpha activity. However, our analysis of the specific strategies 
reported by learners during training blocks revealed that cognitive effort and recalling 
memories were associated with higher high alpha amplitude. Furthermore, the resting 
amplitude of trained high alpha frequency predicted an amplitude increase during training, a 
factor that may optimize inclusion in NFB protocols. The present results also corroborate the 
interrelation with other frequency bands during NFB training. Although these findings are 
based on a single NFB session, our study represents a further step towards developing 
effective protocols for high alpha neuromodulation by NFB. 
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Highlights. 
 

• Providing a list of mental strategies did not promote the ability to neuromodulate 
high alpha activity 

• Two strategies were associated with higher high alpha in learners compared to non-
learners: cognitive effort and recalling past memories. 

• Cognitive effort and recalling past memories were associated with higher high alpha 
amplitude in learners. 

• High alpha amplitude during resting state predicted high alpha neuromodulation 
during training. 

• Low and high alpha amplitudes increased while delta, beta, and gamma amplitudes 
decreased during training. 

• Only the amplitudes of low and high alpha frequencies were affected by training 
during the resting-state measurement. 

 
 
  



1. Introduction 

From single neurons to large-scale brain activity, neural oscillations have been associated 
to distinct cognitive activities. These brain oscillations can be modulated by 
neuromodulation techniques to produce behavioral improvements. Neurofeedback (NFB) is 
a non-invasive method used to train people to regulate their brain activity. Among the 
frequencies targeted to drive behavioral improvements, the high alpha frequency is 
particularly used to improve cognitive performance (Yeh et al., 2021), probably because of 
its role in working memory involved in different cognitive tasks (Pavlov & Kotchoubey, 
2022). However, the factors predicting the effectiveness of training are still poorly identified 
(Kadosh & Staunton, 2019; Weber et al., 2020). To date, there has been no consensus on the 
role of mental strategies in NFB training: some authors suggest that they may be a factor for 
success in the neuromodulation task (Autenrieth et al., 2020), whereas others consider them 
irrelevant because of the implicit learning that occurs during NFB training (Shibata et al., 
2019). The primary aim of this study was to test if providing mental strategies during 
instruction of a single session of high alpha NFB training would support the neuromodulation 
process.  
 

a. Principles of neurofeedback 

NFB is a particular type of biofeedback that translates a signal from brain activity into 
an external signal, perceptible by the individual (Enriquez-Geppert et al., 2017). This method 
places the individual in a closed-loop feedback to help them learn to self-regulate their brain 
activity (Sitaram et al., 2017). NFB with electroencephalogram (EEG) measures the amplitude 
or coherence of the signal corresponding to the neural oscillations (Buzsáki & Draguhn, 
2004). As these neural oscillations play a role in human cognition (Fries, 2015; Van Diepen et 
al., 2019) and are abnormal in many neuropsychiatric disorders (Uhlhaas et al., 2009), the 
interest of NFB is to enable the modulation of this brain activity in a non-invasive way, to 
enhance cognitive processes (Gruzelier, 2014) or to reduce symptoms, by normalizing a 
deviant neuroelectric signal (Marzbani et al., 2016). NFB with EEG is a brain imaging 
technique that has the advantage of being relatively inexpensive to acquire and maintain, 
easily manipulated and usable (Thibault et al., 2016). With the improvement of brain 
imaging techniques (Watanabe et al., 2017) and the expansion of the field of brain-computer 
interfaces (Chaudhary et al., 2016), NFB has seen a resurgence of interest in recent years.  
 

b. Models of neurofeedback 

Historically, the foundations of NFB are based on operant conditioning theory (Nowlis 
& Kamiya, 1970; Sterman et al., 1969), which posits that the frequency of a response can be 
reinforced or decreased by a contingent reward or punishment (Sherlin et al., 2011). In NFB, 
specific neural activity (e.g., amplitude of a specific frequency) is reinforced by positive 
stimuli when brain activity reaches a reward threshold (e.g., a circle displayed on a screen 
expands or changes color when the amplitude is greater than a predefined value). Through 
trial-and-error and repetition, the participant has to find a mental state that correlates with 
a neural state that activates positive feedback (Hammer et al., 2012; Sakurai & Song 2016). 
Several theoretical models coexist to explain the mechanism of NFB, without being mutually 
exclusive. The neural plasticity model considers that repeated production of the rewarded 
neural state leads to neuroplasticity by strengthening the synaptic connections of the neural 



network (Niv, 2013; Ros et al., 2014), subsequently favoring its reactivation (Shibata et al., 
2019). Hebbian plasticity is considered to be the mechanism underlying this neural 
reinforcement and studies such as those conducted by Ros et al. (2010, 2013) have shown 
that this plasticity can occur after only 30 min of NFB training. The model of skill learning 
(Birbaumer et al., 2013) postulates that individuals develop idiosyncratic response plans 
(e.g., mental imagery) which become progressively pruned of irrelevant response elements 
until a specific response reliably produces the desired effect. Like a procedural skill, these 
learned brain responses are stored and retrieved via cortical-basal ganglia loops (Koralek et 
al., 2012).  

Both models (neural plasticity model and skill learning model) emphasize the 
automated and implicit aspect of learning during NFB. This assumption differs from the 
multi-stage model (Davelaar, 2018), which emphasizes the active participation of the 
individual during the initial phase of exploration of a brain response relevant to feedback. 
The multi-stage model (Davelaar, 2018) proposed to decompose NFB learning into three 
stages. The first stage is mainly the exploration by the individual of different mental states 
that are maintained depending on the feedback signal (reward or punishment). This 
exploration involves the maintenance of goal representations, the implementation of 
different mental strategies and the evaluation of their effectiveness. The second phase 
corresponds to the repeated activation of the mental representation that is most frequently 
associated with a positive feedback signal and to a reinforcement of the cerebral activity 
associated with this representation by neuroplasticity. The model argues that in the third 
stage the desired brain state is consolidated and forms a homeostatic set point that can 
serve as a secondary reinforcer, provided that the state is sufficiently discriminable. The 
exploration phase could be a critical period, during which individuals manage or fail to set up 
a mental state capable of modulating the trained frequency. Our study focuses on this first 
phase in order to distinguish the mental states favoring the increase in the high alpha 
amplitude. 
 

c. High alpha neurofeedback training  

Among the different frequencies targeted by NFB-EEG training to improve cognitive 
processes, the higher alpha frequency is particularly used to improve working memory. Since 
the series of experiments conducted by Kamiya in the 1960s demonstrated the ability of 
humans to discriminate and voluntarily modulate the alpha frequency (Kamiya, 1968), this 
frequency has been widely used in NFB to obtain various cognitive and clinical 
improvements (Vernon et al., 2009). At the neurophysiological level, alpha oscillations 
measured by EEG are known to be more prominent in posterior areas (Klimesch, 1999) and 
are produced by the synchronous activity of postsynaptic potentials of pyramidal neurons, 
thalamocortical and cortico-cortical loops and local interneurons (Bazanova & Vernon, 2014; 
Buzsáki et al., 2012; Cohen, 2017). Posterior alpha amplitude is generally inversely related to 
cognitive activity, but this result is not always observed (Pavlov & Kotchoubey, 2022). 
Initially seen as a form of "cortical idling" (Pfurtscheller et al., 1996), the alpha frequency is 
now considered to play a functional inhibitory role in sensory processing (Klimesch, 2012; 
Van Diepen et al., 2019). A decrease in the amplitude of the oscillation is typically observed 
when attention is focused on an external visual event, while an increase in the amplitude of 
the oscillation can be observed when attention is directed to internal representations (Wang 
et al., 2016).  



The predominant frequency of the alpha band (i.e., frequency at which the alpha 
amplitude is largest) can vary inter- (Haegens et al., 2014; Klimesch, 1999) and intra-
individually (e.g., over time; Benwell et al., 2019; Chiang et al., 2011). From this predominant 
frequency, an individual alpha frequency band (IAF) can be determined. While the use of the 
IAF could allow for the selection of a more biologically valid frequency band, there is no 
standardized method for determining it (Corcoran et al., 2018). The different methods used 
may thus introduce bias or render comparison between studies difficult (Chiang et al., 2008; 
Corcoran et al., 2018; Goljahani et al., 2012). In the field of NFB, studies target both the IAF 
(Alexeeva et al., 2012 ; Bazanova et al., 2013 ; Bobby & Prakash, 2017 ; Escolano et al., 2014 ; 
Grosselin et al., 2021 ; Hanslmayr et al., 2005 ; Nan et al., 2012 ; Wan et al., 2014 ; Zoefel et 
al., 2011) and the standard alpha frequency (Berger & Davelaar, 2018 ; Biswas & Ray, 2019 ; 
Bobby & Prakash, 2017 ; Brickwedde et al., 2019 ; Cho et al., 2008 ; Chow et al., 2017 ; 
Dekker et al., 2014 ; Guez et al., 2015 ; Hsueh et al., 2016 ; Lee et al., 2019 ; Nan et al., 2013 ; 
Nan et al., 2020 ; Naas et al., 2019 ; Nawaz et al., 2022 ; Peeters et al., 2014 ; Peng et al., 
2020 ; Ros et al., 2010 ; Ros et al., 2013 ; Su et al., 2021 ; Takabatake et al., 2021 ; Wei et al., 
2017). The advantage of IAF over standard alpha frequency, however, has still little empirical 
validation. To our knowledge, only one study has demonstrated neural and behavioral gains 
associated with NFB modulation of IAF (Bazanova & Aftanas, 2010). However, the level of 
evidence is quite low, the study being a case study with only one patient trained to increase 
upper alpha and decrease EMG activity (Bazanova & Aftanas, 2010). 

The different modulations of the frequency in response to various cognitive tasks 
have led authors to consider the alpha frequency (8-12 Hz) to be composed of sub-bands, 
interacting distinctly depending on the cognitive task being performed: low (8-10 Hz) and 
high alpha frequencies (10-12 Hz; Klimesch, 1999). Although both sub-bands have been 
studied in the NFB field, it is the latter that has been used the most to drive cognitive 
improvements (Yeh et al., 2021). The high alpha frequency has been trained to improve 
performance on tasks involving short term memory (Bucho et al., 2019; Naas et al., 2019; 
Nan et al., 2012), working memory (Bobby & Prakash 2017; Dehghanpour et al., 2018; 
Domingos et al., 2021; Escolano et al., 2011, 2012, 2014; Esteves et al., 2021; Gorgon et al., 
2020; Navarro Gil et al., 2018), episodic memory (Guez et al., 2015) or mental rotation 
(Hanslmayr et al., 2005; Zoefel et al., 2011). Although the number of sessions varies greatly 
between studies and can be as many as 20 sessions (Nan et al., 2012), some studies have 
demonstrated the possibility of modulating the alpha frequency, and in particular the high 
alpha, in only one session (Belinskaia et al., 2020; Bucho et al., 2019; Escolano et al., 2012, 
2014; Hanslmayr et al., 2005). However, although promising, empirical results were not 
systematically consistent, and some studies showed mixed results regarding the modulation 
of high alpha activity and increased cognitive performance (Bucho et al., 2019; Gorgon et al., 
2019; Naas et al., 2019; Navarro Gil et al., 2018; Gökşin et al., 2019). Debate persists in the 
NFB field about the mechanisms underlying this technique, with the call for consideration of 
non-specific effects on outcomes (Thibault et al., 2016, Thibault et al., 2018) and a better 
understanding of the factors distinguishing individuals who successfully modulate their brain 
activity ("learners") and those who do not ("non-learners", Alkoby et al., 2018). Much 
interest is now focused on the neuro/psychological factors that predict NFB training success 
(Haugg et al., 2020; Kadosh & Staunton, 2019; Weber et al., 2020), including the mental 
strategies used by individuals during NFB training (Sitaram et al., 2017; Ros et al., 2020; 
Autenrieth et al., 2020). 
 



d. The use of strategies during alpha neurofeedback training 

A fundamental aspect of NFB protocols that may explain the success of NFB over and 
above inter-individual differences is the implementation of strategies. Although this term is 
often mentioned in NFB studies, it is rarely explicitly defined. We draw on the definition of 
Utz (1994) who considered a strategy as the mental approaches or techniques used by the 
participant to learn the NFB task (i.e., to self-regulate the measured brain activity). The 
question of strategies has sometimes been neglected because of a dominance of implicit 
processes during NFB learning and inconsistency in verbal reports of the strategies employed 
(Muñoz-Moldes & Cleeremans, 2020). While learning to self-regulate one's brain activity is 
to a large extent an implicit process (Birbaumer et al., 2013), this is not sufficient to exhaust 
the issue of mental strategies, specifically during the beginning of training. Indeed, the main 
models of the NFB mechanism agree that at the beginning of training, individuals explore 
different mental or physiological strategies through trial and error to modulate the feedback 
signal (Birbaumer et al., 2013; Lacroix, 1986; Davelaar, 2018). Thus, it is possible that many 
problems of the so-called "non-learners" can be explained in part by individuals' inability to 
find or implement the correct strategy. Understanding which type of strategy is most 
effective in modulating brain activity would allow us to design NFB protocols that have a 
higher probability of being effective by reducing the number of "non-learners”. Yet, the 
question of whether to recommend specific strategies to individuals to facilitate NFB 
learning has not been resolved in the field of NFB.  

One of the first research studies that looked at the subjective state associated with 
the success of a NFB task was the study by Nowlis and Kamiya (1970), in which 26 
participants had to try to modulate their alpha level (16 with eyes closed and 10 with eyes 
open). At the end of the single experimental session, the authors interviewed the 
participants to ask them about the strategy used to modulate their alpha level. Participants' 
verbatim was recorded and categorized by the experimenters. Although participants found it 
difficult to explain clearly what they did, the authors noted that some strategies were 
reported with higher frequency amplitude such as "Relaxation", "Awareness of inhalations 
and exhalations", "Not focusing (visual)" or "Letting go". More recently, one study trained 
students to modulate their alpha amplitude on Cz for 20 sessions over a 15-day period (Nan 
et al., 2012). After each session, participants were asked to write down the strategy used 
and its effects. Ranking the strategies according to the effects estimated by the participants, 
the authors observed that the best strategies were positive thinking such as "Friends", 
"Love", "Family" while the worst were "Anger" and 'Calculation". In another study, most 
participants reported “Evoking emotions” as the best strategy to increase posterior (P3, PZ, 
P4, O1 and O2) high alpha amplitude during 5 training sessions within 1 week (Zoefel et al., 
2011). 

Although these qualitative measures are interesting for exploring the mental 
strategies used by individuals, they did not report the neurophysiological effects of these 
strategies on brain activity. In a study that investigated this aspect, three elderly participants 
were trained to upregulate alpha frequency during approximately 35 sessions of NFB 
(Angelakis et al., 2007). After each session, they were asked to write down the strategy that 
they felt was most effective. Results showed a great diversity of strategies used, with a 
descriptive association of some strategies with higher alpha amplitude (e.g., "concentrated," 
"relaxed," "pleasant thoughts"). A recent study attempted to apply inferential statistical 
analyses to determine the relative effectiveness of the strategies on the trained frequency 



(Naas et al., 2019). The authors trained 17 individuals to increase the amplitude of their 
individual high alpha band on P7, P8, O1 and O2 during 4 sessions over 4 consecutive days, 
each session consisting of 5 blocks of 3 min. In the first session, participants were asked to 
use 5 different strategies, one for each block, with the aim of determining the most effective 
one (to be used in subsequent sessions). For participants who had difficulty finding 
strategies, they proposed a list based on Nan et al. (2012): "Positive thinking", "Evoking 
emotions", "Visualizing activities", "Love" and "Physiological calm." Two raters 
independently classified the recorded strategies into different categories. The authors then 
evaluated the effectiveness of the strategies via the mean amplitude associated with their 
use. Descriptively, the "Visualizing activities" strategy was the most effective, followed 
successively by "Love", "Physiological calm", "Positive emotion", "Art" and finally "Negative 
emotion". However, the analysis of variance applied to these strategies did not show any 
significant difference, perhaps due to a lack of statistical power (N = 33 participants). 
Despite the several attempts to identify effective strategies during NFB training, the 
methods used have suffered from several problems previously mentioned (e.g., qualitative 
measure without examining the neurophysiological effects). The study of the strategies used 
by individuals during an NFB task deserves to be more systematized, with a larger sample 
size, as it is possible that these investigations will help us to design trainings with a larger 
proportion of learners. In addition to the strategies used during NFB, studies have also 
explored factors (e.g., psychological, cognitive, electrophysiological) that predict the 
effectiveness of a NFB protocol.  
 

e. Predictors of neurofeedback success 

The question of predictors in task success is central to NFB/BCI protocols (Jeunet et 
al., 2018; Weber et al., 2020). Identifying the psychological or neurophysiological variables 
that promote success in this type of task would provide a better understanding of what 
distinguishes learners from non-learners. This type of variable is of crucial importance in the 
clinic, where allocation of the type of therapeutic intervention could depend on variables 
measured during an initial assessment, or to help the therapist decide whether or not to 
continue the training protocol. This would also allow for the optimization of training by 
tailoring it to the individual, or by promoting a certain state in the participants. Variables 
that are empirically shown to be relevant could also contribute to and extend the 
mechanistic models of NFB learning. 

Two systematic reviews have recently examined this issue (Kadosh & Staunton, 2019; 
Weber et al., 2020). Overall, “the most promising predictor seems to be the 
(neurophysiological) baseline activity, derived from the parameter targeted by the training” 
(Weber et al., 2020). Indeed, the amplitude of the signal measured during the resting state 
EEG or the first session seems to be a reliable predictor of an individual's ability to modulate 
this signal, in that the higher the level of baseline activity, the greater the modulation. This 
has been observed for the alpha (Su et al., 2021; Wan et al., 2014), sensorimotor rhythm 
(SMR, Blankertz et al., 2010; Li et al., 2021; Reichert et al., 2015; Weber et al., 2011) and low 
beta bands (12-15 Hz, Nan et al., 2015; Sho'ouri, 2021). Interestingly, although most of the 
cited studies aimed to increase the amplitude of the target signal during the resting state, 
one study (Nan et al., 2018) showed that a lower amplitude of the trained alpha frequency 
also predicted the ability to decrease it during NFB training. Apart from the effect of 
strategies and electrophysiological activity on neuromodulation, a systematic review pointed 



out that working memory, mood, and motivation were variables that should be examined 
during NFB training (Kadosh & Staunton, 2019). However, the majority of studies concern 
other brain frequencies (e.g., slow cortical potentials, SMR), and the factors predicting the 
ability to modulate high alpha frequency have received little attention. 
 

f. The present study  

By focusing on the exploration phase of NFB learning, our primary goal was to study the 
impact of a list of strategies inspired by the literature on the ability to modulate high alpha 
activity. For this purpose, we compared the brain modulation of a group helped by a list of 
strategies to that of a group that did not receive any advice on strategies during NFB task 
instruction. Our hypothesis was that both groups would succeed in modulating their high 
alpha frequency (main effect of NFB training) during this first stage of NFB, and that 
providing a list of strategies would facilitate the modulation of individuals' brain activity (i.e., 
participants receiving the list would increase their high alpha amplitude more than 
participants who did not receive the list, interaction hypothesis). We also analyzed the 
impact of the strategies reported by learners and non-learners on the modulation of the 
high alpha amplitude (interaction hypothesis). Lastly, we investigated the effects of inter-
individual factors in predicting success in high alpha NFB training. These predictors were 
cognitive (working memory performance), psychological (emotional state at the beginning of 
the session) and neurophysiological (brain activity at rest).   



2. Method 

a. Participants 

We used G-Power (Faul et al., 2007) for the a-priori estimation of the sample size. 
The required sample size was calculated with the following parameters: Effect size f = .10, 
power level = .80, number of groups = 2, number of measures = 10, correlation between 
repeated measures = .50. This gave a total sample size estimate of 80 participants. Because 
we expected dropouts in our analysis (e.g., a poor EEG signal), 106 healthy participants 
(mainly students) were recruited at the University of [Blinded for review] through its 
learning platform and flyers. They were all naïve about the NFB technique. They were 
randomly assigned to one of two instruction formats: the group receiving a list of strategies 
(N = 53) or the group without a list (N = 53). Some participant data had to be discarded 
(15%) because of poor quality EEG data (e.g., more than 20% of the signal was removed after 
artifact rejection, N = 16), or incomplete data (e.g., technical problem, N = 5). The remaining 
85 participants were thus divided into the Strategy List Group (N = 46, Mage = 22.33, SD = 
5.62, 78% female) and the No List Group (N = 39, Mage = 23.28, SD = 5.96, 82% female). Each 
participant was tested in a single experimental session lasting approximately 120 minutes 
and received course credits for participation. Because of the SARS-CoV-2 pandemic, all 
experiments were conducted following a health protocol (e.g., use of masks, physical 
distancing except during electrode placement, cleaning and disinfecting of material). The 
study was carried out in accordance with the recommendations of local ethics guidelines and 
approved by the Ethics Committee of [Blinded for review] (N°IRB = 00012019-41). All 
participants gave written informed consent before their enrollment.  
 

b. Procedure 

Throughout the whole experiment the participants were seated comfortably in front 
of a computer screen. At the beginning of the experiment, they were informed of the main 
points of the study and gave their written consent to participate. 

Before and after NFB training participants performed computerized working memory 
tasks (numerical span, N-Back, Corsi block) from the Psychology Experiment Building 
Language (PEBL, Mueller & Piper, 2014) and completed a short version of the 
Neurofeedback Evaluation & Training questionnaire (NExT; Bismuth et al., 2020; Jaumard-
Hakoun et al., 2017; Pillette et al., 2021) which evaluates the participant's subjective state 
during the NFB protocol.  

Because we did not have an active control group to distinguish between specific and 
nonspecific effects of training on changes in behavioral test performance, these analyses are 
not presented here. Only pre-training working memory task scores were used as a predictor 
of changes in high alpha amplitude during training. 

The NFB training (see Figure 1) started by the experimenter measuring the 
dimensions of the participants' heads. Then a gel and a paste were applied to prepare the 
skin and amplify the signal obtained at each electrode. Once the correct impedance was 
obtained at each electrode, a first baseline was performed by recording the resting EEG for 3 
minutes: participants were asked to stare at a black screen in front of them, to relax while 
keeping their eyes open and to avoid blinking, moving their body or contracting their jaw. 
Once the baseline was recorded and the high alpha amplitude was extracted, the threshold 
for receiving positive feedback was implemented for each individual. Participants were then 



given the task instructions according to their assigned experimental group. They were all 
informed that the gauge displayed on the left side of the screen represented the amplitude 
of a specific brain frequency in real time. When the gauge exceeded the threshold (indicated 
by an orange bar), the animation on the screen (roller-coaster) was played, accompanied by 
pleasant music. Their goal was to maintain the level of this gauge as long and as often as 
possible. To achieve this, they could use the audio-visual information provided by the 
feedback to find a mental state that would allow them to move the car forward (both No list 
group and List group). In addition to these instructions, the List group was given a sheet of 
paper with 8 strategies from the literature that could help them to increase their high alpha 
amplitude (see 2.3.2 List of strategies during instruction). In the first few blocks, they were 
asked to try different strategies until they found one that worked for them. If a strategy 
seemed to work, they were advised to keep it and use it again in the following sessions. They 
were also allowed to try a different type of strategy than the ones listed on the sheet. It was 
recommended that they limit themselves to one type of strategy per session. Participants in 
both groups were informed that the training would consist of 10 blocks of 3 minutes, spaced 
by short breaks. At the end of each block, they were asked to verbally report the strategies 
they used to move the car forward and the experimenter recorded the verbatim. After the 
10 blocks, the resting EEG was recorded again in front of a black screen. The electrodes were 
then removed, the participants' head was cleaned, and the participants completed the NExT 
questionnaire and the working memory tasks again.  
 
Figure 1 
NFB training flow chart 

 
 

c. Materials 

i. EEG recording and processing 

The NFB system consisted of a ProComp T740M encoder connected to a laptop via a 
fiber optic cable and USB interface. The BioGraph Infiniti software (version 6.1, Thought 
Technology Ltd., Montreal, QC, Canada) was used to analyze and convert the signal into the 
audio-visual feedback. Because alpha is most stable in the parieto-occipital region (Alexeeva 
et al., 2012), a scalp electrode was placed at Pz in accordance with the International 10–20 
system with the reference and ground electrode on the right and left earlobe, respectively. 
The signal was sampled at 256 Hz, band-pass filtered (from 0.1 to 60 Hz) and notch filtered 
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(50 Hz) to eliminate electrical interference. High alpha (10-12 Hz) amplitude was extracted 
online by the software and converted into audio-visual feedback. Other main frequency 
bands were recorded for offline analysis: delta (1-3 Hz), theta (4–7 Hz), low alpha (8–10 Hz), 
beta (13–35 Hz), and gamma (36-64 Hz) using Fast Fourier Transform (FFT). A gel (Nuprep 
Skin Prep Gel, Weaver and Company, Aurora, USA) was used to clean the skin before fixing 
the electrodes via a conductive paste (Ten20 Conductive Paste, Weaver and Company, 
Aurora, USA). Impedance was checked with an EEG-Z sensor and maintained below 10 kΩ. 
An automatic artefact rejection threshold was set to 100 μV before visual inspection of raw 
data and manual rejection of artifacts. Additional pre-processing or artefact correcting (e.g., 
ICA) were not made possible by the software. Feedback was provided audio-visually in the 
form of an animated car in a roller coaster, accompanied by a pleasant sound (Wang & 
Hsieh, 2013). The participant received positive visual (i.e., screen animation) and auditory 
(i.e., pleasant music) feedback when the amplitude of the high alpha exceeded a threshold 
that corresponded to 80% of the mean high alpha amplitude recorded during the first 
resting EEG (baseline 1).  
 

ii. List of strategies during instruction 

During the instructions given to participants at the beginning of NFB training, a list of 
strategies based on studies that previously trained SMR and alpha was proposed to one 
group of participants (Autenrieth et al., 2020; Esteves et al., 2021; Nan et al., 2012). As the 
systematic study of strategies used during an NFB task remains rare, we drew on strategies 
used in previous studies to test their effectiveness in the context of high alpha NFB training. 
The strategies proposed (N = 8) were the following: “Focus on the animation on the screen”, 
“Invent stories in your mind”, “Recall past experiences”, “Imagine yourself performing 
physical activities”, “Relax with breathing exercises”, “Think of natural environments”, 
“Think of entertainment (music, singing, movies)”, “Think about loved ones (friends, 
family)”. 
 

iii. Strategy verbal report categorization 

At the end of each training block, participants were asked to verbally report the 
strategy(ies) implemented to modulate their brain activity. These reported strategies were 
then categorized by two raters who worked blindly and independently of each other. All 
categories were pre-specified except for the category "Future thinking" which was added 
post hoc to consider the different types of mental time travel and distinguish between 
memories, imagination and future thinking (Schacter et al., 2012). The categories (N = 10) 
were as follows: Feedback (related to visual and auditory feedback), Imagination (imagines 
unreal events, scenes, situations), Memories (remembers past events), Future thinking 
(imagines future events), Cognitive (performs a task requiring cognitive effort such as mental 
calculation, course recall), Motor (imagines performing motor actions such as running, 
swimming), Relaxation (seeks to relax body and mind), Other (any type of strategy that does 
not fit into the above categories), Multiple (several strategies were used during the block), 
and No strategy (reports not using a specific strategy). 
 

iv. Working memory tasks 



All working memory tasks were implemented in the PEBL software (v.2.1; Mueller & Piper, 
2014). PEBL is an open-source tool widely used to design and run behavioral tests. Three 
working memory tasks were presented in the following order: backward digit span 
(Wechsler, 1955), N-back with 1, 2 and 3-back condition (Owen et al., 2005) and backward 
Corsi block tapping task (Corsi, 1972). See Supplementary material for further information. 
 

v. Psychological state 

Participants completed a short version of the NExT questionnaire (Bismuth et al., 2020; 
Jaumard-Hakoun et al., 2017; Pillette et al., 2021) which evaluates a participant's subjective 
state during the biofeedback protocol with 5-point Likert scale items on five dimensions: 
mood (“calm", "energetic", "happy", "relaxed", "satisfied”), mindfulness ("receptive", 
"focused”), cognitive load, motivation, and agency (“feeling of control of feedback signal” 
and “predictability of feedback signal”). See Supplementary material for further information. 
 

d. Statistical analyses 

All statistical analyses were performed using R studio (v.4.0.2; R Core Team, 2020), 
with the lme4 (v.1.1-27.1; Bates et al., 2015) and lmer package (v. 3.1-3; Kuznetsova et al., 
2017) for classic and mixed linear regression, the multcomp (v. 1.4-17; Hothorn et al., 2016) 
and modelbased (v. 0.8.0; Makowski et al., 2020a) package for post hoc contrasts, and 
report (v. 0.5.1; Makowski et al., 2020b) and ggplot2 (v. 3.3.6; Wickham, 2016) for 
formatting and visualizing results. A linear mixed-effect model was estimated using the 
Restricted Maximum Likelihood (RML) method and a classic linear regression model was 
estimated with the Ordinary Least Squares (OLS) method. We reported p values for the F 
test of type III ANOVA with degrees of freedom based on the Kenward-Roger approximation 
(Kenward & Roger, 1997; Luke, 2016) and partial eta-square (ηp

2) as effect size. When 
appropriate, Tukey contrasts for multiple comparisons with the Holm correction were 
applied (Bender & Lange, 2001) as post hoc comparisons. The significance level for all 
analyses was α = .05. Analysis of the R script and raw data can be found online 
(https://osf.io/ebyqc/?view_only=de1a1837004749859eda4f86ff9313c7). 
 

i. Training effect on high alpha amplitude  

To evaluate the impact of the training on high alpha amplitude (in μV), we applied a 
linear mixed-effects regression on the interaction between two fixed effects: Instruction 
(between-subject fixed effect with two levels: List vs. No list) and NFB training (within-
subject fixed effect with ten levels: Blocks 1 to 10). As we expected variance from intra-
individual variations in brain frequency amplitude between blocks (which can neither be 
predicted nor controlled), we fitted a random intercept (1| participant) in the model.  
 

ii. Training effect on high alpha amplitude at rest  

To evaluate the impact of the training on high alpha amplitude at rest, we applied a 
linear mixed-effects regression on the interaction between two fixed effects: Instruction 
(between-subject fixed effect with two levels: List vs. No list) and Resting state (within-
subject fixed effect with two levels: Pre- and Post-training). As we expected variance from 

https://osf.io/ebyqc/?view_only=de1a1837004749859eda4f86ff9313c7


intra-individual variations in brain frequency amplitude between resting state recordings, we 
fitted a random intercept (1| participant).  
 

iii. Effect of experimental manipulation on reported strategies  

In order to evaluate the effect of our experimental manipulation on the strategies 
implemented by the participants, we applied a linear model on the interaction between two 
fixed effects: Instruction and Strategy (10 levels: Feedback, Imagination, Memories, Future 
thinking, Cognitive, Motor, Relaxation, Other, Multiple, No strategy). 
 

iv. Effect of strategies used by learners on high alpha amplitude 

To explore the effectiveness of the strategies employed during high alpha NFB 
training, we distinguished learners from non-learners. This distinction is used in the field of 
NFB to explore inter-individual differences in NFB training success (i.e., effective 
neuromodulation) during an NFB protocol. A common method used to discriminate learners 
from non-learners is to categorize them according to the slope of their evolution of the 
amplitude of the high alpha amplitude during the 10 blocks of training (e.g., Autenrieth et 
al., 2020; Domingos et al., 2021; Kober et al., 2017; Zoefel et al., 2011). A participant with a 
slope greater than 0 was categorized as a "learner”, while a slope equal to or less than 0 was 
considered "non-learner". To test the effect of the strategies used during training on high 
alpha amplitude, we first applied classic linear regression to predict the frequency use of 
Strategy (10 levels: Feedback, Imagination, Memories, Future thinking, Cognitive, Motor, 
Relaxation, Other, Multiple, No strategy) by Learner (between-subject factor with two levels: 
Learner vs. Non-learner). We then applied classic linear regression to predict high alpha 
amplitude with Strategy and Learner as predictors. 
 

v. Predictors of neurofeedback success 

Individual performance in the NFB task was determined by computing the high alpha 
slope for each participant. To identify the predictors of NFB success we fitted a multiple 
linear regression with high alpha slope as the predicted variable and pre-training Working 
memory performance, pre-training Subjective state, High alpha amplitude during the first 
Resting-State and Instruction as predictor variables. 
 

vi. Specificity of the training 

To evaluate the specificity of the NFB training on the high alpha amplitude, we fitted 
multiple linear mixed-effects regression with delta, theta, low alpha, beta, and gamma 
amplitude during training blocks and resting state as outcome variables with two fixed 
effects (Instruction and NFB training blocks or Resting state) and participant as random 
effect (1| participant).  
 

G*Power was used to calculate the power achieved by our study (post hoc analysis) 
given α, sample size and effect size. Using the software parameter estimate we converted 
the effect size obtained at our within-between interaction (ηp

2 = 0.02) to Cohen's f (f = 0.14). 
With an α = .05, groups = 2, sample size = 85, number of measurements = 10, correlation 
between repeated measurements = .50, we obtained a power (1 - β) of 0.99. 



3. Results 
 

a. Neurofeedback performance 

i. Effect of NFB training block on high alpha amplitude (Figure 2) 

We fitted a linear mixed model to predict high alpha amplitude with Instruction and 
NFB training block as fixed effects and Participant as random effect. The ANOVA showed 
that the main effect of NFB training block was statistically significant and small 
(F(9,747) = 3.36, p < .001; ηp

2 = 0.04, 95% CI [0.01, 1.00]). The main effect of Instruction and 
the interaction between Instruction and NFB training block were statistically not significant 
(p = .74 and p = .24, respectively). Providing a list of strategies could accelerate learning to 
modulate high alpha activity. To test this hypothesis, an additional analysis was conducted to 
compare the evolution of high alpha over the first 5 blocks of training. No significant effects 
were observed (see Supplementary material, Section 2, page 4 for results of the analysis). 
 
Figure 2 
High alpha amplitude evolution during NFB training 

 
Note. Line plot of mean high alpha amplitude (μV) by group List and No list during the 10 
NFB training blocks. The shaded areas indicate standard error of the mean (SEM) of the 
mean. 
 

ii. Effect of NF training on high alpha amplitude at rest (Figure 3) 

We fitted a linear mixed model to predict high alpha amplitude measured during 
post-training resting state EEG with Instruction and Resting state as fixed effects and 
Participant as random effect. The ANOVA indicated that the main effect of Resting state was 



statistically significant and medium (F(1, 83) = 10.88, p = .001; ηp
2 = 0.12, 95% CI [0.03 - 

1.00]), with a higher amplitude after training (M = 5.88 ± 2.00) compared to before (M = 5.63 
± 1.84). The main effect of Instruction and the interaction between Instruction and Resting 
state were statistically not significant (p = .45 and p = .25, respectively).  
 
Figure 3 
High alpha amplitude during resting-state EEG before and after NFB training 

 
Note. Violin plot with integrated boxplot of high alpha amplitude (μV) by group List and No 
list during the pre- and post- NFB training resting state. Significant differences between the 
two resting states are depicted with *p < .05. 
 

b. Strategies used during neurofeedback training  

i. Effect of experimental manipulation on reported strategies (Figure 4) 
 We fitted a linear model to predict the frequency use of strategies with Instruction 
and Strategy as fixed effect. The ANOVA indicated that the main effect of Strategy was 
statistically significant and large (F(9, 153) = 27.83, p < .001; ηp

2 = 0.62, 95% CI [0.54, 1.00]), 
and the interaction between Strategy and Instruction was statistically significant and large 
(F(9, 153) = 28.98, p < .001; ηp

2 = 0.63, 95% CI [0.55, 1.00]). Post-hoc tests with the Holm 
correction applied on the interaction effect indicated that Imagination and Memories 
strategies type were more frequently used by participants of the List group (β = 0.17, 
SEM = 0.02, p < .001 and β = 0.11, SEM = 0.02, p < .001, respectively) whereas Feedback and 
No strategy were more used by participants from the No list group (β = -0.24, SEM = 0.02, 
p < .001 and β = -0.12, SEM = 0.02, p < .001). The main effect of Instruction was not 
significant (p = .58). 
 
  

 



Figure 4 
Frequency use of categories of strategies by participants of the experimental groups 

 
 

ii. Effect of strategies used by learners on high alpha amplitude 
We classified the individuals as learners or non-learners according to their high alpha 

slope. The proportion of learners was not significantly different according to the 
experimental group (group List: 63% [N = 29/46]; group No list: 71% [N = 28/39], χ² [1, 
N = 85] = 0.73, p = .392). We fitted a linear model to predict the frequency use of strategies 
with Learner as fixed effect (Figure 5.A). The ANOVA suggested that the main effect of 
Strategy was statistically significant and large (F(9, 158) = 27.08, p < .001; ηp

2 = 0.61, 95% CI 
[0.52, 1.00]), and the interaction between Strategy and Learner was statistically significant 
and medium (F(9, 158) = 2.05, p = .038; ηp

2 = 0.10, 95% CI [0.003, 1.00]). Post-hoc tests with 
the Holm correction applied on the interaction effect indicated that there was no strategy 
used proportionally more in the Learner group than in the Non-learner group ("Multiple" 
strategy: p = .054). The main effect of Learner was statistically not significant (p = .30). 
We then fitted a linear model to predict high alpha amplitude with Strategy and Learner as 
fixed effects (Figure 5.B). The ANOVA suggested that the main effect of Strategy was 
statistically significant and small (F(9, 830) = 4.54, p < .001; ηp

2 = 0.05, 95% CI [0.02, 1.00]), 
the main effect of Learner was statistically significant and small (F(1, 830) = 50.04, p < .001; 
ηp

2 = 0.06, 95% CI [0.03, 1.00]), and the interaction between Strategy and Learner was 
statistically significant and small (F(9, 830) = 3.38, p < .001; ηp

2 = 0.04, 95% CI [9.77e-
03, 1.00]). Post-hoc tests with the Holm correction applied on the interaction effect 
indicated that the high alpha amplitudes associated with the strategies “Cognitive” and 
“Memories” were statistically higher in the Learner group than in the Non-learner group 
(“Cognitive” [β = 1.63, SEM = 0.37, p = .002] and “Memories” [β = 1.29, SEM = 0.27, 
p < .001]). 
 
  



Figure 5 
Strategies used by learners and non-learners 

 
Note. A. Frequency use of categories of strategies by learners and non-learners. B. Box plot 
of high alpha amplitude (μV) associated with categories of strategies used by learners and 
non-learners during NFB training blocks. Significant differences between the two groups are 
depicted with **p < .01 and ***p < .001. 
 

c. Predictors of neurofeedback success  

We fitted a multiple linear model to predict high alpha slope with Working memory 
tasks performance, Subjective state, High alpha amplitude during pre-training resting state 
EEG and Instruction. Result of the multiple linear regression indicated that the model 
explained a statistically significant proportion of variance (R2 = 0.30, F(14, 70) = 3.208, 
p = .023, adjusted R2 = 0.16). Only high alpha amplitude during the first resting-state was a 
significant predictor of high alpha slope during training (β = 0.02, SEM = 0.01, t = 4.10, 
p < .001 CI [0.01, 0.03], see Figure 6). Results for non-statistically significant predictors are 
presented in the Supplementary material (Section 2, table A1). 
 



Figure 6 
High alpha amplitude during the first resting-state predicts high alpha slope during NFB 
training 

 
Note. High alpha slope corresponds to the slope of the evolution of the frequency amplitude 
across the 10 training blocks. 
 

d. Effect of training on the amplitude of other frequencies.  

i. Effect of  training on the amplitude of other frequencies during 
training 

We fitted multiple linear mixed models to predict delta, theta, low alpha, beta and 
gamma amplitude during training with Instruction and NFB training as fixed effects and 
Participant as random effect. The ANOVAs suggested that the main effect of NFB training 
was statistically significant for multiple frequencies: delta (F(9, 747) = 2.15, p = .024; 
ηp

2 = 0.03, 95% CI [1.69e-03, 1.00]); low alpha (F(9, 747) = 2.74, p = .004; ηp
2 = 0.03, 95% CI 

[5.93e-03, 1.00]); beta (F(9, 747) = 2.60, p = .006; ηp
2 = 0.03, 95% CI [4.86e-03, 1.00]) and 

gamma (F(9, 747) = 10.37, p < .001; ηp
2 = 0.11, 95% CI [0.07, 1.00]). Except for the low alpha 

frequency, NFB training resulted in a reduction in the mean amplitude of these frequencies 
during the training blocks. Other main effects and interactions were statistically not 
significant (see Supplementary material for exact p-values).  
  

ii. Effect of training on the amplitude of other frequencies during resting 
EEG 

We fitted a linear mixed model to predict delta, theta, low alpha, beta and gamma 
amplitude during resting EEG with Instruction and Resting state as fixed effects and 
Participant as random effect. The ANOVAs indicated that the main effect of NFB training was 
statistically significant and small on the low alpha frequency (F(1) = 5.04, p = .027; ηp

2 = 0.06, 
95% CI [3.47e-03, 1.00]), with a higher amplitude after training (M = 6.74 ± 3.14) compared 
to before (M = 6.47 ± 2.84). Other main effects and interactions were statistically not 
significant (see Supplementary material for exact p-values).  
 
  



4. Discussion 

The main objective of this study was to better understand the factors that promote 
success in NFB training. As the high alpha amplitude is one of the most widely trained 
frequencies to improve cognitive processes in healthy individuals, we were interested in the 
factors predicting a high alpha neuromodulation ability. In this study, we investigated 
whether giving individuals strategies would help them to modulate their high alpha 
amplitude during a single NFB training session (i.e., during the exploration phase of NFB 
training). Some studies have investigated the types of strategies used by participants during 
NFB training, but none have experimentally tested the effect of strategies given during 
instruction on neuromodulation ability. To evaluate the effect of this training, we analyzed 
the evolution of the amplitude of the whole frequency spectrum during training and during 
resting state before and after training. We also analyzed the effect of the strategies reported 
by learners and non-learners on their brain activity and tried to identify factors 
(psychological, cognitive, or electrophysiological) able to predict the success of the NFB task 
(i.e., the increase in the amplitude of the frequency targeted by the training). We observed 
that globally giving a list of different strategies did not improve the capacity to 
neuromodulate high alpha activity. However, according to our examination of the specific 
strategies reported by learners throughout training blocks, cognitive effort and recalling 
memories were associated with higher high alpha amplitude, suggesting that these two 
strategies may be the most effective. Our results also replicated the statistical relationship 
between electrophysiological activity during the resting state and changes in high alpha 
amplitude during training. Finally, an analysis of the entire EEG spectrum indicated that the 
training resulted in an increase in low and high alpha amplitude and a decrease in the 
amplitude of delta, beta and gamma frequencies. These different results will be discussed 
below.  
 

a. Effects of strategies on neuromodulation 

We analyzed the effect of the strategies in two parts. First, we compared the 
neuromodulation of the high alpha amplitude according to the experimental group (i.e., 
according to whether the individual received a list of strategies during the instructions or 
not). Second, we examined the differences in strategy use between learners and non-
learners and compared the mean amplitude of the high alpha amplitude associated with the 
type of strategy reported by the learners and non-learners during training.   
The first question in this research was to evaluate the interest of giving a list of strategies in 
high alpha NFB training. It was hypothesized that participants with a list of strategies would 
be helped to modulate their high alpha amplitude compared to a group without such a list. 
Contrary to expectations, the list provided to the participants did not promote the ability to 
neuromodulate high alpha activity. This lack of difference could be due to the strategies 
suggested on the list, which were perhaps too numerous or not relevant. As numerous 
strategies were proposed, participants were inclined to try several of them. The use of 
multiple strategies during training may have reduced the implementation of an efficient 
strategy in favor of less relevant strategies. For example, focusing on the display of visual 
feedback may have desynchronized the high alpha amplitude. Ros et al. (2013) found that in 
order to decrease their alpha frequency amplitude, the majority of individuals reported 
focusing their visual attention. Among the strategies proposed on the list, focusing on the 
feedback display may have been counterproductive. As participants in the "No-List" group 



received a single instruction, their high alpha amplitude may have been reduced by the fact 
that they were in a more stable and focused mental state than participants in the "List" 
group. Indeed, participants in the No-List group reported a narrower range of strategies than 
those in the List group. However, additional analysis focusing on the first five blocks (1-5) did 
not indicate a significant difference between the two groups (included in Supplementary 
Material, Section 2, page 4). 

On the other hand, we observed a distinct effect of the strategies on high alpha 
amplitude, indicating that strategies may play a role in neuromodulation and that this 
process is not totally implicit (Muñoz-Moldes & Cleeremans, 2020). Specifically, although our 
analyses found that learners and non-learners did not differ in frequency of strategy use, the 
high alpha amplitude associated with the different categories of strategies indicated that 
some strategies had a different impact on electrophysiological activity. Our analyses 
revealed a difference between learners and non-learners in the mean high alpha amplitude 
associated with the "Cognitive" and "Memories" strategies. A possible explanation could be 
that learners mobilize different cognitive processes from those mobilized by non-learners 
during these two strategies. What cognitive processes distinguish them, however, remains 
difficult to determine because of the multiple associations between alpha frequency and 
cognition. Alpha frequency is involved in perceptual decision making (Samaha et al., 2020), 
in working memory (de Vries et al., 2020; Riddle et al., 2020; van Ede, 2018; Wianda & Ross, 
2019), in spatial (Foster & Awh, 2019) and visual attention (Clayton et al., 2018; Peylo et al., 
2021) and in mind-wadering (Compton et al., 2019). These multiple implications represent a 
"many-to-many" relation, where one neurophysiological phenomenon is associated with 
several distinct cognitive processes (Cacioppo & Tassinary, 1990). In this situation, the 
psychophysiological inference (i.e., the association between a mental state and a neural 
state) can be very complex (Cacioppo et al., 2007; Fairclough, 2009). High alpha frequency 
has shown divergent associations with cognitive processes, with decreases (Chikhi et al., 
2022) or increases (Pavlov & Kotchoubey, 2022) in amplitude associated with cognitive load. 
It is generally observed that alpha amplitude decreases when attention is turned outward, 
especially via visual attention, whereas amplitude increases when attention is turned inward 
(Cooper et al., 2003; Magosso et al., 2019; Wang et al., 2016). Recent work has suggested 
that memory recall corresponds to the latter case (Logan et al., 2021). Posterior high alpha 
may provide protection of memory representations against interference via cortical 
inhibition of the region involved in processing external stimuli (Wianda & Ross, 2019). What 
distinguished learners from non-learners in the present study could be the implementation 
of a more vivid reinstatement of information during memory recall, with a more inward 
attention. A potential confound in our results is that in the “Cognitive” strategy 
classification, we included tasks that require cognitive resources. This may include the 
strategy of recalling academic courses. This task, which may be cognitively demanding, can 
also be assimilated to the category “Memories”, or at least involve similar processes of 
inhibition of external stimuli. Our results suggest that there is not a quantitative difference in 
the frequency of the strategy used but a qualitative difference in its implementation. 
However, classifying strategies into 10 categories may lack the sensitivity to understand the 
different cognitive processes involved in NFB training. 

To better understand the relevance of the strategies in high alpha training, several 
methods could help to better understand the mental state of learners in the application of 
their strategies. At the methodological level, we could refine the analysis of the strategies by 
creating sub-categories. For example, we distinguished between different types of mental 



time travel using 3 distinct categories during classification (i.e., “Memory, Imagination and 
Future thinking” categories), but we did not evaluate the valence and emotional intensity 
associated with these mental representations. The study by Nan et al. (2012) observed that 
participants found strategies involving positive emotions to be more effective than those 
involving negative emotions such as anger. Thus, it may be important to study the content of 
this type of strategy, by examining the valence and emotional intensity of activated 
memories (Kensinger & Ford, 2020).  

Another difficulty in studying the strategies used during NFB is that this procedure 
relies on the introspective ability of participants. The latter are faced with what the field of 
reinforcement learning calls the credit assignment problem: they must determine the 
degree to which a particular mental state contributes to the magnitude of the feedback 
signal (Minski, 1961). This ability to discriminate one's internal states during the NFB task 
may rely on meta-cognitive processes that we did not evaluate here (Craig et al., 2020). 
Further research to better understand the involvement of meta-cognitive processes in the 
learning process of NFB could be valuable. This could be done, for example, by applying an 
alpha level discrimination task at the beginning of training (Frederick, 2012) to study 
whether good discrimination performance predicts neuromodulation ability. 

Although it seems impossible to have real-time information about the particular 
mental state of individuals, a phenomenological analysis would allow for a more in-depth 
study of the content of participants’ mental states during NFB training (Varela, 2006). 
Inspired by the explicitation interview (Vermersch, 2009), micro-phenomenology aims to 
enable the identification and description of the microdynamics of participants' singular 
subjective experience (Petitmengin et al., 2019). In this kind of interview, non-suggestive 
questions are asked to draw the participant's attention to the different moments of his 
experience and the “mental actions” he took during the training (Petitmengin et al., 2019). 
The aim of this interview, which is much more in-depth than our qualitative analysis, could 
provide a better understanding of the course of the mental phenomena that took place 
during the NFB training. Although it has not yet been widely used in the field of NFB 
(Bagdasaryan & Quyen, 2013), this methodological tool could be relevant for a better 
understanding of the role of strategies in NFB training. 

An arguable weakness of our study is the arbitrariness in our classification of mental 
strategies. Although we based the classification on existing studies (Autenrieth et al., 2020; 
Naas et al., 2019), the choice of these categories and the way those reported mental 
activities were categorized may have been influenced by cultural biases, limiting the 
relevance of our study to a WEIRD context (Western, Educated, Industrialized, Rich, and 
Democratic cultures, Henrich et al., 2010. 
 

b. Predictor variables of neuromodulation  

Beyond strategies, we also analyzed the ability of pre-training measures to predict 
task success. For this purpose, we attempted to predict the capacity of neuromodulation 
(i.e., slope of high alpha amplitude evolution) by different variables measured before 
training: cognitive (working memory performance), psychological (mental state measured by 
questionnaire) and electrophysiological (resting state EEG). Of all the predictors examined, 
high alpha amplitude at rest seems to be particularly important in accounting for 
neuromodulation capacity. Specifically, we found that individuals with higher high alpha 
amplitude during the pre-training resting state increased their amplitude the most. This 



finding supports the work of other alpha NFB training studies linking resting state EEG with 
neuromodulation success and extends it to the high alpha frequency (Su et al., 2021; Nan et 
al., 2018; Wan et al., 2014). As discussed by previous authors (Su et al., 2021; Wan et al., 
2014), this association could be explained by the cortical inhibitory role of the alpha 
frequency (Klimesch et al., 2007). A high level of alpha amplitude may lead to better 
inhibition of task-irrelevant information, thereby facilitating neuromodulation. However, a 
note of caution is due here since this explanation is unable to explain how lower alpha 
amplitude at rest could predict the neuromodulation success of alpha down-regulation 
training (Nan et al., 2018). Nor does this neurocognitive explanation apply to other 
frequencies where a similar relationship between resting state amplitude and 
neuromodulation success has been observed (e.g., SMR, Reichert et al., 2015; beta, Sho'ouri, 
2021). Further work is required to establish the validity of resting state EEG as a decisive 
criterion for the inclusion of individuals in NFB training. In future investigations, it may be 
possible to better understand the relationship between resting state EEG and 
neuromodulation capacity by using a neurostimulation technique such as transcranial 
alternating current stimulation (tACS) on the trained frequency just before NFB training 
(Orendáčová & Kvašňák, 2021). The application of tACS allows the increase of endogenous 
neurophysiological activity by rhythmic stimulation (Liu et al., 2018; Zaghi et al., 2010). For 
instance, an increase in alpha amplitude was observed following the application of tACS 
compared to pre-stimulation (Herrmann et al., 2013), and this immediately (Zaehle et al., 
2010; Neuling et al., 2012), 30 minutes (Neuling et al., 2013) or 70 minutes (Kasten et al., 
2016) after tACS application. By modulating the alpha activity at rest, one could evaluate the 
causal role of the resting amplitude in the ability to neuromodulate this frequency by NFB. 
 

c. Effect of the training on the amplitude of EEG frequencies.  

Finally, in accordance with previous studies (Escolano et al., 2012, 2014; Hanslmayr 
et al., 2005), our results confirmed the trainability of high alpha amplitude in the parietal 
area during only one training session. However, analysis of other frequencies showed that 
training also increased the amplitude of the low alpha frequency while decreasing the 
amplitudes of delta, beta, and gamma frequencies. An interesting point of this non-
specificity is that the only amplitude that increases is the alpha frequency. This increase in 
amplitude during training could have impacted the amplitude of other frequencies due to 
the "cross-frequency coupling" mechanism (Canolty & Knight, 2010; Klimesch, 2018). This 
mechanism of inter-relation between brain frequencies has been well documented for alpha 
and gamma frequencies, with a decrease in alpha amplitude leading to an increase in 
gamma amplitude (Osipova et al., 2008; Hinault et al., 2020). According to the “gating by 
inhibition” hypothesis (Jensen & Mazaheri, 2010), functional activation of a brain region 
could occur in part through a top-down mechanism of cortical disinhibition caused by a 
decrease in alpha frequency leading to an increase in gamma frequency. The increase in the 
amplitude of the alpha frequency during training could thus explain the decrease in 
amplitude of the other main frequencies (i.e., delta, beta and gamma). However, our data do 
not enable us to evaluate this explanation, which remains speculative and must be 
thoroughly tested in future research. 

Surprisingly, although the amplitude of other frequencies decreased during training 
(delta, beta and gamma), only the amplitude of alpha frequencies (low and high) changed 
significantly during the post-training resting state. These results corroborate the findings of 



previous studies that have demonstrated that alpha NFB training has an impact on resting 
state EEG (Alexeeva et al., 2012; Dekker et al., 2014; Dempster & Vernon, 2009; Escolano et 
al., 2011) and confirm the effect of NFB on brain activity after only one session (Ros et al., 
2010; Ros et al., 2013). However, because the low alpha frequency was also significantly 
increased, we cannot state that our training had a completely specific effect on resting EEG 
activity. Although the use of individualized frequencies (i.e., an adapted alpha frequency 
range using alpha peak frequency, Bazanova & Vernon, 2014) is not necessary to observe 
alpha modulation by NFB (Belinskaia et al., 2020), it is possible that the lack of specificity 
between low and high alpha is due to the use of the standard frequency range (i.e., 10-12 
Hz) in our training. However, the lack of specificity between lower and higher alpha 
frequency was also observed after individualized high alpha frequency training (Escolano et 
al., 2011). This lack of specificity was present in the passive baseline, but disappeared in the 
active baseline (i.e., counting the color change of a displayed square). Thus, it is possible that 
this specificity can only be observed during a cognitive task. 

Our results highlight the importance of considering other frequencies when analyzing the 
effects of NFB training on brain activity and cognitive performance. For example, among the 
studies that evaluated modulation during a session, some did not report any analysis of 
changes in other frequency bands (Hanslmayr et al., 2005), so the specificity of the training is 
uncertain. The cognitive improvement observed after training should therefore be 
interpreted with caution as it may be partly attributed to modulation of other frequency 
bands (Hanslmayr et al., 2005). Some studies evaluating high alpha NFB training effects on 
other frequencies did observe a specificity of the training with an increase in high alpha 
amplitude without significant modulation of the low alpha and beta1 frequencies (Escolano 
et al., 2012; Escolano et al., 2014; Zoefel et al., 2011). However, those studies only looked at 
adjacent frequencies (i.e., low alpha and beta1). Our results suggest that non-adjacent 
frequencies can be modulated too (e.g., delta, gamma) and confirm that it is therefore 
important to consider the entire EEG spectrum in analyses of the electrophysiological and 
behavioral effects of NFB training (Ros et al., 2020). As proposed by Pimenta and colleagues 
(2018), training might become specific only after several training sessions. According to the 
multistage model (Davelaard, 2018), it may be necessary to wait until the exploration phase 
transitions to the consolidation process to specifically modulate the target frequency. This 
could explain the specificity observed by Zoefel et al., 2011, who compared the amplitude of 
low alpha, high alpha, and beta1 frequencies between the first baseline and the last training 
block of the fifth and final session. Longer term protocols studying the whole frequency 
spectrum should make it possible to study more precisely if this specification phenomenon 
occurs progressively. 
 

5. Conclusion 

This study contributes to recent investigations concerning the factors favoring success in 
a NFB task. The aim of the present research was to determine whether providing a list of 
strategies during instruction would facilitate neuromodulation during NF training. The study 
has shown that high alpha amplitude can be enhanced during a single session of NFB 
training, but that the proposed list of strategies did not improve neuromodulation ability. 
“Cognitive” and “Memory” strategies seem to distinguish learners and non-learners in the 
implementation of these strategies. This difference could arise from how learners 
implemented these strategies. For example, the amplitude of alpha appeared to be 



modulated by whether attention was external or internal, which decreased or increased its 
amplitude, respectively (Magosso et al., 2019). Thus, non-learners would have maintained 
external attention while implementing the "Cognitive" or "Recall of Memory" strategies, 
whereas learners would have implemented these strategies with greater internal attention 
and inhibition of irrelevant external information (Klimesch, 2007). Thus, a successful strategy 
for modulating alpha frequency might be to learn to inhibit information from the external 
world. However, further investigation of the content of these mental strategies is needed to 
understand where this difference in effect comes from. More research will be needed to 
study the effect of this type of strategy over several sessions and whether these strategies 
allow greater brain plasticity. Also, experimental studies manipulating the resting state EEG 
amplitude prior to NFB training could provide insight into the relationship between resting 
activity and neuromodulation ability. Finally, these findings illustrated the need for analyzing 
the whole EEG spectrum when evaluating NFB training.  
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