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Abstract

This work considers the convergence of GMRES for non-singular problems. GMRES
is interpreted as the GCR method which allows for simple proofs of the convergence
estimates. Preconditioning and weighted norms within GMRES are considered. The
objective is to provide a way of choosing the preconditioner and GMRES norm that
ensure fast convergence. The main focus of the article is on Hermitian preconditioning
(even for non-Hermitian problems). It is proposed to choose a Hermitian preconditioner
H and to apply GMRES in the inner product induced by H. If moreover, the problem
matrix A is positive definite, then a new convergence bound is proved that depends only
on how well H preconditions the Hermitian part of A, and on how non-Hermitian A is.
In particular, if a scalable preconditioner is known for the Hermitian part of A, then the
proposed method is also scalable. This result is illustrated numerically.

Contents

1 Introduction 2

2 Problem posed, notation and main results 3

3 Convergence of WP-GMRES viewed as WP-GCR 5
3.1 WP-GCR with right preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Restarted and Truncated versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 A parenthesis about left preconditioning . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Hermitian positive definite preconditioning for positive definite A 10
4.1 Hermitian positive definite preconditioning . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Positive definite A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Illustration: Convection-Diffusion-Reaction 14

6 Conclusion 18

A Implementation of WHP-GCR 19

∗CNRS, CMAP, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
(nicole.spillane@cmap.polytechnique.fr)

1



Hermitian preconditioning for non-Hermitian systems 2

1 Introduction

GMRES, or the Generalized Minimal Residual Method, is a method of choice for solving
general linear systems. First introduced by [34], the convergence of GMRES has since
been extensively studied [13, 14, 27, 2, 29, 30]. In this manuscript, linear systems

Ax = b, (1)

are considered. Initially, the only assumption is that A is a general non-singular matrix
over the field K with K = R or C. The focus then shifts to Hermitian preconditioning and
matrices whose Hermitian part is positive definite. In each of these cases, convergence is
examined for the weighted GMRES algorithm, a version of GMRES where the Euclidean
inner product has been replaced by (x,y) 7→ ⟨Wx,y⟩ with W Hermitian positive definite.
The objective of the present work is to prove a convergence bound that can then be used
to choose the preconditioner H and the weight matrix W in a smart way.

Convergence of GMRES in the Euclidean inner product when A is positive definite is
studied in [13]. Interestingly, [13] precedes the introduction of GMRES in [34] because
the results are for the Generalized Conjugate Residual algorithm, or GCR (that produces
the same iterates as GMRES).

In his PhD thesis [7], Cai proposes to select for GMRES applied to a matrix P, an
inner product that ‘is chosen to take advantage of some special properties of P’. In
collaboration with Widlund [9], they propose domain decomposition preconditioners for
non-symmetric and indefinite second order PDEs. GMRES is considered in the norm
induced by the highest order term in the variational form: the energy norm. More will
be said about these results below. Another choice that has been proposed in [42] is
to apply GMRES in the inner product induced by the inverse of a symmetric positive
definite (spd) preconditioner. Later, a different set of authors justify this choice in [11]
by the argument that, if H is spd and A is nearly symmetric then HA is nearly H−1-
self adjoint. In [26], preconditioning of saddle point problems is tackled and the bounds
from [42] are applied in an inner product that is derived from a non-symmetric triangular
preconditioner. The authors of [32] address the problem of finding inner products that
make a general preconditioned system nearly normal or nearly non-symmetric. A detailed
presentation of what is now called weighted GMRES, with results both on convergence
and implementation strategy, can be found in [35]. In [15], the author reinvents the
idea of changing the norm within GMRES in a general framework and coins the term
weighted GMRES. The inner products considered by [15] are diagonal matrices of weights
that changes at each restart of the method. Larger weights are associated to the larger
components of the residual at the end of the previous cycle leading to a faster convergence.
This idea is compared to other accelerators for GMRES in [18].

The method that is proposed in Section 4.2 assumes that an efficient preconditioner H
for the Hermitian part of A (i.e., 1/2(A+A∗)) is known. The same H is applied within
GMRES to solve the non-Hermitian problem (for A). As an illustration, the convection-
diffusion-reaction discretized by finite elements is solved at the end of this article. The
preconditioner H is chosen to be a two-level domain decomposition preconditioner [43]
with the GenEO coarse space introduced by [38, 39] (see also [40, 19, 25, 10, 31, 37] for a
non exhaustive list of extensions and related work). It has been shown, e.g., in [24], that
GenEO is a very powerful and scalable solver for spd problems.

The idea of separating the Hermitian and skew-Hermitian part of a matrix in order
to approximate the solution of a linear system has been exploited in the Hermitian and
skew-Hermitian splitting methods introduced in [1]. The field of domain decomposition
for non-spd problems was paved by [7, 9] (see also [43][Chapter 11]). The authors solve
convection-diffusion-reaction with a two-level additive Schwarz preconditioner where the
coarse space is based on a coarse grid. The one level component in the preconditioner
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takes two forms: either the local solvers come from the original (non-symmetric and/or
indefinite) matrix, or the local solvers come from an spd part of the problem matrix.
GMRES is applied in the norm induced by that spd part. In both cases the coarse
projector is for the original operator. If the coarse mesh is fine enough, the rate of
convergence is shown to be independent of the number of degrees of freedom and the
number of local problems (scalability). A simplified explanation for the presence of a
condition on the size of the subdomains is that, for the theory to go through, the second
order term must dominate the other terms. It is known that the first non-zero eigenvalue
of −∆ on regular subdomains of diameter H is of the order of 1/H. The algorithm is
generalized in [47] to any matrix that can be viewed as a perturbation of an spd matrix.
Their proposed preconditioner is the combination of a very good preconditioner for the
spd part and a coarse solve. A parameter δ0 qualifies how efficient the coarse space is at
filling the gap between the original problem and the spd one. It enters into the convergence
estimate. The algorithm is later called CSPD for Coarse Grid Plus SPD Preconditioning
in a numerical comparison with other algorithms [8].

More recently, domain decomposition for Helmholtz has been studied [16, 17]. This
case is symmetric indefinite and applying GMRES in the energy norm is a crucial part
of the proof. Weighted GMRES was also applied to study the spd GenEO eigenproblem
applied to indefinite and non-self-adjoint problems in [5, 6]. It is proved and observed
numerically that GenEO performs well also on a family of non-spd second-order problems.
Finally, the authors of [3] prove an abstract framework for one-level additive Schwarz
for non-Hermitian or indefinite problems. They illustrate their results by solving the
convection-diffusion-reaction equation. The present work takes a more algebraic route
and proves results that are not restricted to domain decomposition.

The outline for the rest of the article is as follows. In Section 2, some notation is
introduced and Theorem 1 gives an overview of some of the convergence results and their
connection to existing results. In Section 3, the GMRES algorithm is studied through
the study of an equivalent form that is the GCR algorithm. A convergence bound is
proved in Theorem 3 that is connected to field of value, or Elman, estimate [13, 14,
2]. In Section 4.1, Theorem 5, a special case is considered where the preconditioner
H is Hermitian and GMRES/GCR is applied in the H inner product (or H−1 for left
preconditioned GMRES). For positive-definite A, a final convergence estimate is proved
in Theorem 6 that makes explicit the rate at which the non-Hermitianness of A slows
down convergence. As an illustration of this result, in Section 5, a solver is proposed for
the convection-diffusion-reaction equation. The preconditioner is a domain decomposition
preconditioner with a GenEO spectral coarse space. This way, the Hermitian part of the
problem is very well preconditioned. It is shown theoretically that the overall convergence
does not depend on the number of subdomains (scalability), or on the discretization step.
Numerical experiments show that Hermitian preconditioning can be very efficient and
scalable for mildly non-Hermitian problems.

2 Problem posed, notation and main results

Let K = R or C be the field over which the linear system is considered. Let A ∈ Kn×n

be a non-singular matrix. Given any b ∈ Kn, the problem at hand is to find x ∈ Kn such
that:

Ax = b.

The chosen methodology is to apply weighted and preconditioned (WP-) GMRES. Let
H ∈ Kn×n denote the preconditioner and W ∈ Kn×n denote the weight matrix. It is
assumed that H is non-singular and that W is Hermitian positive definite (hpd). The
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inner product and norm induced by W are denoted by ⟨·, ·⟩W and ∥ · ∥W, respectively:

⟨x,y⟩W = ⟨Wx,y⟩ = ⟨x,Wy⟩ = y∗Wx and ∥x∥w = ⟨x,x⟩W1/2
, ∀x, y ∈ Kn.

Any matrix B ∈ Kn×n can be split into the sum of its Hermitian part and its skew-
Hermitian part. The notation used is

M(B) =
B+B∗

2
(Hermitian part) and N(B) =

B−B∗

2
(skew-Hermitian part). (2)

An overview of some results in the article is given in the following theorem.

Theorem 1 (Summary of main results). Assume that the operator A ∈ Kn×n and pre-
conditioner H ∈ Kn×n are non-singular, and that the weight matrix W ∈ Kn×n is hpd.
The i-th iterate of weighted and preconditioned GMRES (WP-GMRES) with right precon-
ditioning satisfies

∥ri∥W
∥r0∥W

≤
[
1− inf

y ̸=0

|⟨AHy,y⟩W|2

∥AHy∥2W∥y∥2W

]i/2
≤
[
1− inf

y ̸=0

|⟨M(A−1)y,y⟩|
⟨Hy,y⟩

× inf
y ̸=0

|⟨M(A)y,y⟩|
⟨H−1y,y⟩

]i/2
if H = W is hpd

≤
[
1− 1/κ(HM(A))

1 + ρ(M(A)−1N(A))2

]i/2
if H = W is hpd and A positive definite,

where κ(HM(A)) is the condition number of HM(A) and ρ(·) denotes the spectral radius
of a matrix. For the last two estimates, it has been assumed that the preconditioner H is
hpd and that W = H. In this case, the algorithm will be referred to as WHP-GMRES for
Weighted with a Hermitian Preconditioner.

Proof. The proof proceeds as follows. First, in Theorem 2, the equivalence between
weighted and preconditioned GCR, or WP-GCR, (Algorithm 1) and WP-GMRES is es-
tablished as long as the origin is not in the field of values of the preconditioned operator.
In the opposite case, the bounds above simplify to ∥ri∥W ≤ ∥r0∥W, a trivial result. The
first estimate in the theorem is proved for WP-GCR in Theorem 3. The second estimate
in the theorem is proved for WHP-GCR (where again HP stands for Hermitian precondi-
tioning) in Theorem 5. It is a direct consequence of the first when H is spd and W = H.
The last estimate in the theorem is proved in Corollary 2 .

Connection to previous results Field of value estimates have previously been
considered. The first result in the theorem generalizes [41][Theorem 6.1] (and even more
precisely the second last line in the proof). It was also noticed there, in [41][Theorem 6.2],
that the case W = H spd is of particular interest and simplifies to the second estimate in
the theorem (see also the earlier work [42][Theorem 3.2]). These pioneering contributions
consider problems arising from discretizations of elliptic and bounded variational prob-
lems. The present manuscript considers the problem directly in its algebraic form. The
first two estimates can be informative even if the matrix does not arise from an elliptic
PDE or even if it is not positive definite. There is also a connection between WHP-
GMRES and the algorithm in Section 10.4 of [14] where split preconditioning by S⊤ on
the left and S on the right is applied. The scope of split preconditioning is very restrictive
but it could be proved that it is equivalent to WHP-GMRES with H = SS⊤. This would
allow to extend the bound in Section 10.4 of [14] to WHP-GMRES. Even then, the result
would still be less sharp than the third bound in Theorem 1 because the condition number
is squared. Finally, the present work generalizes the bounds to the complex case, where
it no longer holds that ⟨Ay,y⟩ = ⟨M(A)y,y⟩.
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3 Convergence of WP-GMRES viewed as WP-GCR

GCR [13], also known as Orthomin [45] is equivalent to GMRES in the sense that it
generates the same approximate solutions at each iteration. GMRES is usually preferred
as it is slightly less computationally expensive and more stable. However, GCR has the
advantage of a simpler presentation and the proofs in this article all come from the GCR
formulation of GMRES.

3.1 WP-GCR with right preconditioning

Weighted and preconditioned GCR (WP-GCR) with right preconditioning is presented in
Algorithm 1. The initial guess x0 is assumed to be any vector in Kn.

Algorithm 1 WP-GCR with right preconditioning

Require: x0 ∈ Rn

r0 = b−Ax0

z0 = Hr0
p0 = z0
q0 = Ap0

for i = 0, 1, . . . , convergence do
δi = ⟨qi,qi⟩W; γi = ⟨qi, ri⟩W; αi = γi/δi
xi+1 = xi + αipi

ri+1 = ri − αiqi

zi+1 = Hri+1

for j = 0, 1, . . . , i do
Φi,j = ⟨qj ,Azi+1⟩W; βi,j = Φi,j/δj

end for

pi+1 = zi+1 −
i∑

j=0
βi,jpj

qi+1 = Azi+1 −
i∑

j=0
βi,jqj

end for
return Return xi+1

In the following theorem, it is proved that WP-GCR is indeed equivalent to WP-
GMRES unless WP-GCR has an unlucky breakdown. This can only happen if 0 is in the
W-field of values of AH, a set defined by

WW(AH) =

{
⟨AHu,u⟩W
⟨u,u⟩W

;u ∈ Cn \ {0}
}
. (3)

Although the proof is not new it has been included. Indeed, some intermediary results in
the proof are used in subsequent proofs.

Theorem 2. Assume that the operator A ∈ Kn×n and preconditioner H ∈ Kn×n are non-
singular, and that the weight matrix W ∈ Kn×n is hpd. The i-th residual of Algorithm 1
satisfies

∥ri∥W = min {∥b−Ax∥W; x ∈ x0 + span{p0, . . . ,pi−1}} . (4)

Moreover, if 0 ̸∈WW(AH), then span{p0, . . . ,pi−1} = Ki where

Ki := {Hr0,HAHr0, . . . , (HA)i−1Hr0}
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is the Krylov subspace, i.e., WP-GCR returns the same approximate solutions as WP-
GMRES.

Proof. The vectors qi = Api are pairwise orthogonal, i.e.,

⟨qj ,qi⟩W = 0 if i ̸= j. (5)

Indeed, by symmetry, it suffices to prove by recursion over i ≥ 0 that: ⟨Api,Apj⟩W = 0
for every j < i. This is easy by recalling the definitions of pi and βi,j .

Next, the minimization property (4) is proved. By an immediate recursion, it holds

that ri = r0−
i−1∑
j=0

γj/δjApj . We notice that γi = ⟨qi, ri⟩W = ⟨qi, r0⟩W−
i−1∑
j=0

γj/δj⟨qi,Apj⟩ =

⟨qi, r0⟩W by (5). The i-th residual can now be rewritten as

r0 − ri =

i−1∑
j=0

⟨Apj , r0⟩W
⟨Apj ,Apj⟩W

Apj .

This means that r0 − ri is the W-orthogonal projection of r0 onto span{qj ; j < i}. Two
other equivalent characterizations of the orthogonal projection are

ri ∈ r0 + span{qj ; j < i} with ri = (r0 − ri)− r0 ⊥W span{qj ; j < i}, (6)

and ∥ri∥W = min {∥r∥W; r ∈ r0 + span{qj ; j < i}}. Then (4) follows by the change of
variables r = b−Ax and r0 = b−Ax0.

It remains to justify that span{pj ; j < i} = Ki. It is obvious that span{pj ; j <
i} ⊂ Ki. The reverse inclusion is true unless Azi−1 ∈ span{qj ; j < i − 1}. Then,
by (6), ri−1 ⊥W Azi−1, i.e., ⟨ri−1,AHri−1⟩W = 0 = γi−1. If 0 ̸∈ WW(AH), this
implies ri−1 = 0 which is a lucky breakdown of both GCR and GMRES. The proof ends
by recalling the characterization of the i-th iterate of preconditioned GMRES in e.g.,
[33][Section 9]. Following the idea in [7, 15], the Euclidean product can be changed to the
W-inner product in order to get the result for WP-GMRES.

The following observations can be made:

• Preconditioning modifies the Krylov subspace.

• Weighting modifies which norm of the residual is minimized.

• Weighting does not modify the Krylov subspace.

The speed of convergence of the algorithm is addressed next by comparing two subse-
quent residuals.

Theorem 3 (Convergence of WP-GCR). Assume that the operator A ∈ Kn×n and pre-
conditioner H ∈ Kn×n are non-singular, and that the weight matrix W ∈ Kn×n is hpd.
The i-th iterate of Algorithm 1 satisfies

∥ri∥W
∥r0∥W

≤
(
1− inf

y ̸=0

|⟨AHy,y⟩W|2

∥AHy∥2W∥y∥2W

)i/2

. (7)

Proof. From the residual update formula we get ri = ri+1 + αiqi. By the choice of αi,
ri+1 ⊥W qi so

∥ri∥2W = ∥ri+1∥2W + |αi|2∥qi∥2W = ∥ri+1∥2W +
|⟨qi, ri⟩2W|
∥qi∥4W

∥qi∥2W.
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The relative decrease in residual between two subsequent iterations is

∥ri+1∥2W
∥ri∥2W

= 1− |⟨qi, ri⟩W|2

∥qi∥2W∥ri∥2W
. (8)

Taking the W-inner product of qi = Azi −
i−1∑
j=0

qjβi,j by ri leads to

⟨qi, ri⟩W = ⟨Azi, ri⟩W −
i−1∑
j=0

βi,j⟨qj , ri⟩W = ⟨Azi, ri⟩W,

and
∥ri+1∥2W
∥ri∥2W

= 1− |⟨Azi, ri⟩|2W
∥qi∥2W∥ri∥2W

= 1− |⟨AHri, ri⟩W|2

∥qi∥2W∥ri∥2W
. (9)

Next, from the orthogonalisation formula and (5), it is deduced that

∥Azi∥2W = ∥qi +

i−1∑
j=0

βi,jqj∥2W = ∥qi∥2W +

i−1∑
j=0

|βi,j |2∥qj∥2W ≥ ∥qi∥2W. (10)

Finally, the decrease in residual between two subsequent iterations of Algorithm 1 is
bounded by

∥ri+1∥W
∥ri∥W

≤
[
1− |⟨Azi, ri⟩|2W
∥Azi∥2W∥ri∥2W

]1/2
=

[
1− |⟨AHri, ri⟩W|2

∥AHri∥2W∥ri∥2W

]1/2
, (11)

where the Cauchy-Schwarz inequality ensures that the square root is well defined.

Next, this is reformulated to match an often cited result (out of many) in [13].

Corollary 1 (Field of Value, or Elman, estimate). Under the assumptions of Theorem 3,
the i-th iterate of Algorithm 1 satisfies

∥ri+1∥W
∥r0∥W

≤
[
1− d(0,WW(AH))2

∥AH∥2W

]i/2
,

where

• d(0,WW(AH)) = inf
{

|⟨AHu,u⟩W|
⟨u,u⟩W ;u ∈ Cn \ {0}

}
is the distance to zero of the W-

field of values of AH defined in (3),

• ∥AH∥W denotes the matrix norm of AH induced by the vector norm W.

Proof. The terms in (7) can be grouped as[
⟨AHy,y⟩W
∥y∥2W

× ∥y∥W
∥AHy∥W

]2
≥
[
d(0,WW(AH))

∥AH∥W

]2
, (12)

where the numerator minimizes the first term in the product and the denominator maxi-
mizes the inverse of the second.

The result of Theorem 3 is stronger than the field of value estimate in Corollary 1 as
discussed in [28] and [12]. Indeed, a bound for C in Theorem 3 can be found without
necessarily bounding d(0,WW(AH)) and ∥AH∥W independently. Another way of saying
this is that the terms in C can be grouped differently than in the field of value bound.
This is done in the next section and was initially proposed by [42].
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Remark 1 (Breakdown and equivalence with WP-GMRES). If 0 is in the W-field of
values of HA, the right hand side of the Elman estimate is 1 rendering it useless. In fact,
the proof in [13] makes the assumption that the A is positive-definite so the case where
0 is in the field of values is not considered. Still, the formula is not incorrect because it
states that ri+1 ≤ ri.

If 0 is in the W-field of values of HA, it can occur that γi = ⟨qi, ri⟩W = ⟨AHri −
i−1∑
j=0

Φij/δjqj⟩W = ⟨AHri, ri⟩W = 0. Then the residual does not get updated (ri+1 = ri)

and the next search direction is AHri orthogonalized against all previous ones, including
itself. In other words pi+1 = qi+1 = 0. The algorithm has broken down before zero-
ing the residual. This is a particularity of the way the search directions are computed in
WP-GCR. These unlucky breakdowns do not occur in WP-GMRES if A is non-singular
(a sufficient but not necessary condition). If an unlucky breakdown occurs in GCR, the
algorithm can be restarted by computing the next few search directions as in the weighted
and preconditioned Orthodir algorithm.

A very simple way of understanding that WP-GCR can breakdown is to consider taking
r0 such that ⟨r0,AHr0⟩W = 0.

Remark 2. Minimizing |⟨HAx,x⟩W|/⟨HAx,HAx⟩W is equivalent to minimizing
|⟨y, (HA)−1y⟩W|/⟨y,y⟩W by the change of variables y = HAx. This is a way of recov-
ering that the WP-GMRES residual is bounded with respect to the product of the distances
to zero of the W-fields of value of AH and of (AH)−1 as in [42].

3.2 Restarted and Truncated versions

Within WP-GCR as well as WP-GMRES, the new search directions are orthogonalized
against all previous ones. The cost of this procedure in terms of computation and stor-
age can become prohibitive if the algorithm takes many iterations to converge. Well
established variants of the algorithms have been proposed as early as in [13, 45] where
either the orthogonalization is truncated (weighted and preconditioned Orthomin(k), or
WP-Orthomin(k)) or the algorithm is restarted every k iterations (WP-GMRES(k), WP-
GCR(k)). If k = 0, no orthogonalization is performed at all and the algorithm is called
the weighted and preconditioned Minimal Residual iteration (WP-MR). A fact that is
not so frequently known is that the convergence result given in Theorem 3 holds for all
restarted and truncated versions of the algorithms. This was already fully understood by
[13].

Theorem 4 (Convergence of truncated and restarted versions). The result in Theorem 3
holds for WP-GCR, WP-GMRES as well as all their truncated and restarted versions
including WP-MR.

Proof. The numbering convention from [13] is followed.
Restarted algorithms: WP-GCR(k) or WP-GMRES(k) During the first cycle (i.e., up
to the computation of rk+1 included), Theorem 3 applies. The second cycle consists in
k + 1 iterations of GMRES with initial guess xk+1. For k + 2 ≤ i ≤ 2k + 2, the result in
Theorem 3 holds since

∥rk+1∥W
∥r0∥W

× ∥ri∥W
∥rk+1∥W

≤
(
1− inf

y ̸=0

|⟨AHy,y⟩W|2

∥AHy∥2W∥y∥2W

) k+1
2 +

i−(k+1)
2

.

and this argument generalizes to any number of restarts.
WP-MR and WP-Orthomin(k) These algorithms are defined by replacing the formulae
for the search directions in Algorithm 1 by pi+1 = zi+1 for WP-MR and pi+1 = zi+1 −
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i∑
max(0,i−k+1)

βi,jpj for WP-Orthomin(k). The formulae for qi are also modified so that

qi = Api. Equation (8) in the proof of Theorem 3 still holds because the update formula
is unchanged. The rest of the proof is direct for WP-MR (by setting qi = AHri) or easily
adapted for Orthomin(k) (by truncating the sums).

Equations (9) and (10) explain how orthogonalization helps: decreasing ∥qi∥W leads
to a decrease in the residual and orthogonalization does just that. Full orthogonalization
provides the best choice of qi inAKi. A very important realization is that the field of value
convergence bound, as well as all the convergence bounds in this article do not account
for the advantages provided by orthogonalization. For this reason they are expected to
be over-pessimistic when applied to WP-GMRES and WP-GCR.

Two conclusions can be drawn from this. Either the decrease in residual predicted by
the convergence bound is satisfactory, then WP-MR, or another truncated or restarted
algorithm can be applied. Or, the decrease guaranteed by the theory is not satisfactory,
then full WP-GCR/WP-GMRES can be applied with the hope that the bound is over-
pessimistic. In practice this is very likely to be the case as WP-GCR/WP-GMRES often
exhibits a superlinear convergence behaviour. The convergence bounds of the form pre-
sented in this article allow to check that the algorithm cannot stagnate (or near-stagnate),
and the superlinear convergence behaviour should kick in.

All subsequent convergence proofs follow from manipulating the minimized quantity in
Theorems 3 and 4 so they hold also for truncated and restarted versions of the algorithms.

3.3 A parenthesis about left preconditioning

Left preconditioning, i.e. solving HAx = Hb can be performed instead of right precondi-
tioning. For completeness, the left preconditioned WP-GCR is presented in Algorithm 2.
The i-th residual of Algorithm 2 satisfies

Algorithm 2 WP-GCR with left preconditioning

Require: x0 ∈ Rn

r0 = b−Ax0

z0 = Hr0
p0 = z0
y0 = HAp0

for i = 0, 1, . . . , convergence do
δi = ⟨yi,yi⟩W; γi = ⟨yi, zi⟩W; αi = γi/δi
xi+1 = xi + αipi

zi+1 = zi − αiyi

for j = 0, . . . , i do
Φi,j = ⟨yj ,HAzi+1⟩W; βi,j = Φi,j/δj

end for

pi+1 = zi+1 −
i∑

j=0
βi,jpj

yi+1 = HAzi+1 −
i∑

j=0
βi,jyj

end for
return xi+1
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∥zi∥W = ∥Hri∥W = min {∥H(b−Ax)∥W; x ∈ x0 + span{p0, . . . ,pi−1}} .

Moreover, if 0 ̸∈WW(HA), then span{p0, . . . ,pi−1} = Ki (the Krylov subspace) so again
WP-GCR returns the same approximate solutions as WP-GMRES. Following the same
steps as in Section 3.1, it can be proved that

∥zi+1∥2W
∥zi∥2W

= 1− ⟨yi, zi⟩2W
⟨yi,yi⟩W⟨zi, zi⟩W

≤ 1− ⟨HAzi, zi⟩2W
⟨HAzi,HAzi⟩W⟨zi, zi⟩W

.

The following observations follow:

• Left preconditioning produces the same Krylov subspace as right preconditioning.

• Left preconditioning modifies the residual that is considered in the minimization
property as well as the Krylov subspace.

• Left preconditioning in the H−1-inner product and right-preconditioning in the H-
inner product are equivalent (as suggested in [33][Problem 9.13]).

4 Hermitian positive definite preconditioning for pos-
itive definite A

The convergence study now focuses on some not completely general cases.

4.1 Hermitian positive definite preconditioning

Two strong assumptions are made:

1. the preconditioner H is hpd,

2. the inner product is induced by the preconditioner: W = H.

WP-GCR with right hpd preconditioning and W = H takes the form of Algorithm 3.
The name WHP-GCR is adopted where HP stands for Hermitian Preconditioning. The
operations have been reorganized so that no additional application of H is required com-
pared to unweighted GCR (except in the initialization). The extra cost is the storage of
the vectors yj = Hqj . Two alternate versions are presented in Algorithms 4 and 5 (of the
appendix) that do not require more storage than unweighted GCR. Although no details
are given here, the same cost saving measures can be taken in a GMRES algorithm. Note
also that if the preconditioner H is very cheap to apply, applying it twice per iteration
may be entirely feasible. In this case, it suffices to run a right preconditioned GCR or
GMRES code with the inner product changed to ⟨·, ·⟩H.

In application of Theorem 2, WHP-GCR (Algorithm 3) is characterized as a Krylov
subspace method by the following properties. First, the vectors qi = Api are pairwise or-
thogonal in the H-inner product. Second, the residuals satisfy the minimization property:
∥ri∥H = min {∥b−Ax∥H; x ∈ x0 +Ki} if 0 ̸∈WH(AH).

WP-GCR with right preconditioning by H and weighting by W = H is equivalent to
WP-GCR with left preconditioning by H and weighting by W = H−1. For this reason
the distinction between left and right preconditioning is no longer made. In [35], a similar
equivalence is observed for an inner product that arises from a symmetric part of the
problem matrix A.

Theorem 5 (Convergence of WHP-GCR). Assume that the operator A ∈ Kn×n is non-
singular. Assume also that the preconditioner H ∈ Kn×n is hpd and that right precondi-
tioned GCR is applied in the inner product induced by H. The i-th iterate of Algorithm 3
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Algorithm 3 WHP-GCR (i.e, WP-GCR with hpd H and W = H)

Require: x0 ∈ Rn

r0 = b−Ax0

z0 = Hr0
p0 = z0
q0 = Ap0

y0 = Hq0

for i = 0, 1, . . . , convergence do
δi = ⟨yi,qi⟩; γi = ⟨qi, zi⟩; αi = γi/δi
xi+1 = xi + αipi

ri+1 = ri − αiqi

zi+1 = zi − αiyi

pi+1 = zi+1

qi+1 = Azi+1

for j = 0, . . . , i do
Φi,j = ⟨yj ,qi+1⟩; βi,j = Φi,j/δ

−1
j

pi+1− =
i∑

j=0
βi,jpj

qi+1− =
i∑

j=0
βi,jqj

end for
yi+1 = Hqi+1

end for
return xi+1
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satisfies

∥ri+1∥H
∥r0∥H

≤
[
1− inf

y ̸=0

|⟨M(A−1)y,y⟩|
⟨Hy,y⟩

× inf
y ̸=0

|⟨M(A)y,y⟩|
⟨H−1y,y⟩

]i/2
. (13)

The same result holds for all truncated and restarted versions of WHP-GCR and WHP-
GMRES, including WHP-MR (i.e., WP-MR with W = H hpd).

Proof. Applying Theorem 3 to WHP-GCR, the quantity that must be bounded can be
rewritten as

inf
y ̸=0

|⟨AHy,y⟩H|2

∥AHy∥2H∥y∥2H
= inf

y ̸=0

|⟨HAHy,y⟩|2

⟨HAHy,AHy⟩⟨Hy,y⟩

= inf
y ̸=0

|⟨Ay,y⟩|2

⟨HAy,Ay⟩⟨H−1y,y⟩
(by y← Hy)

≥ inf
y ̸=0

|⟨Ay,y⟩|
⟨HAy,Ay⟩

× inf
y ̸=0

|⟨Ay,y⟩|
⟨H−1y,y⟩

= inf
y ̸=0

|⟨A−1y,y⟩|
⟨Hy,y⟩

× inf
y ̸=0

|⟨Ay,y⟩|
⟨H−1y,y⟩

(by y← Ay)

≥ inf
y ̸=0

|⟨M(A−1)y,y⟩|
⟨Hy,y⟩

× inf
y ̸=0

|⟨M(A)y,y⟩|
⟨H−1y,y⟩

where, M(A) and M(A−1) are the Hermitian parts of A and A−1 (as introduced in (2))
and |⟨By,y⟩| ≥ |Re(⟨By,y⟩)| = |⟨M(B)y,y⟩| for any matrix B ∈ Kn×n.

4.2 Positive definite A

Assuming that the problem matrix A is positive definite, i.e., that M(A) is hpd, the
calculations from the previous paragraph are resumed:

inf
y ̸=0

⟨AHy,y⟩2W
∥AHy∥2W∥y∥2W

≥ inf
y ̸=0

|⟨M(A−1)y,y⟩|
|⟨M(A)−1y,y⟩|

× inf
y ̸=0

|⟨M(A)−1y,y⟩|
⟨Hy,y⟩

× inf
y ̸=0

|⟨M(A)y,y⟩|
⟨H−1y,y⟩

≥ inf
y ̸=0

⟨M(A−1)y,y⟩
⟨M(A)−1y,y⟩

× inf
y ̸=0

⟨M(A)−1y,y⟩
⟨Hy,y⟩

× inf
y ̸=0

⟨M(A)y,y⟩
⟨H−1y,y⟩

,

where division by ⟨M(A)−1y,y⟩ is not by zero and removing the absolute values does
not change the result. Indeed, by [21][Property (1.6) on page 10], M(A) being positive
definite implies that A−1 is well defined and that M(A−1) is also positive definite.

Let λmin(HM(A)) and λmax(HM(A)) denote the smallest and largest eigenvalues of
HM(A). The eigenvalues ofHM(A), are also the eigenvalues of the generalized eigenvalue
problems M(A)HM(A)y = λM(A)y and HM(A)Hy = λHy. By the Rayleigh-Ritz
characterization of eigenvalues, an interpretation of the last two terms in the product
follows:

inf
y ̸=0

⟨M(A)y,y⟩
⟨H−1y,y⟩

= inf
y ̸=0

⟨HM(A)Hy,y⟩
⟨Hy,y⟩

= λmin(HM(A)).

and

inf
y ̸=0

⟨M(A)−1y,y⟩
⟨Hy,y⟩

=

(
sup
y ̸=0

⟨M(A)HM(A)y,y⟩
⟨M(A)y,y⟩

)−1

=
1

λmax(HM(A))
,
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For the remaining term, recalling from (2) that N(A) denotes the skew Hermitian part
of A, a very useful result is the following.

Lemma 1 (Corollary 3 in [23], see also [22, 21]). Let A ∈ Cn be positive definite and
c ∈ R. The matrix cM(A−1) − M(A)−1 is positive definite if and only if c > 1 +
ρ(M(A)−1N(A))2, with

ρ(M(A)−1N(A)) = max{|tj |; ±itj are the eigenvalues of M(A)−1N(A)}.

An equivalent reformulation of the lemma is that

inf
y ̸=0

⟨M(A−1)y,y⟩
⟨M(A)−1y,y⟩

= [1 + ρ(M(A)−1N(A))2]−1. (14)

By definition, ρ(M(A)−1N(A)) is the spectral radius of M(A)−1N(A), i.e., the norm of
the eigenvalue of maximal norm. In this particular case, the eigenvalues of (M(A)−1N(A))
are conjugate pairs of purely imaginary numbers ±i|tj |, as well as 0 if the order of A is
odd.

Putting everything together, we get:

Theorem 6 (Convergence of WHP-GCR for positive definite A). Assume that the oper-
ator A ∈ Kn×n is positive definite. Assume also that the preconditioner H ∈ Kn×n is hpd
and that right preconditioned GCR is applied in the inner product induced by H. The i-th
iterate of Algorithm 3 satisfies

∥ri∥H
∥r0∥H

≤
[
1− λmin(HM(A))

λmax(HM(A))
× 1

1 + ρ(M(A)−1N(A))2

]i/2
. (15)

The same result holds for all truncated and restarted versions of WHP-GCR and WHP-
GMRES, including WHP-MR.

The estimate in the theorem has split the residual bound into two components:

• the condition number of the Hermitian part of A preconditioned by H,

• a measure of the strength of non-Hermitianness of A that is independent of H.

Corollary 2. Under the assumptions of Theorem 6, if H is a preconditioner for M(A)
such that the condition number of the preconditioned operator is κ(HM(A)) then

∥ri∥H
∥r0∥H

≤
[
1− κ(HM(A))−1

1 + ρ(M(A)−1N(A))2

]i/2
. (16)

The same result holds for all truncated and restarted versions of WHP-GCR and WHP-
GMRES, including WHP-MR.

In particular, if H is a domain decomposition preconditioner such that κ(HM(A))
can be bounded independently of the number of subdomains, then the convergence bound
above does not depend on the number of subdomains either. In other words, if a scalable
domain decomposition method is known for the Hermitian part of A, the proposed algo-
rithm for the non-Hermitian problem is also scalable. For many problems arising from the
discretization of PDEs, M(A) is derived from a differential operator of lower order than
that producing N(A) so ρ(M(A)−1N(A)) is bounded independently of the discretization
step (an observation already made in a different context in [46] and [14][Section 10]).
If H can also be chosen so that the preconditioned Hermitian part is well conditioned
independently of h then the residual bound is h-independent.

Next, it is illustrated that WHP-GCR is efficient for mildly non-Hermitian problems.
If the preconditioner is well chosen, the algorithm is scalable and optimal (in the sense
that convergence does not depend on the discretization step).
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Figure 1: Left: Solution for c0 = ν = 0.1. Right: Partition into N = 16 subdomains computed
by Metis.

5 Illustration: Convection-Diffusion-Reaction

In this section, the problem considered is the convection-diffusion-reaction problem posed
in Ω = [0, 1]2. It is a real-valued problem (K = R), so Hermitian means symmetric. The
presentation, notation and test case are inspired by [3, 4]. The strong formulation of the
problem is:

c0u+ div(au)− div(ν∇u) = f in Ω,

u = 0 on ∂Ω.

The variational formulation is: Find u ∈ H1
0 (Ω) such that∫

Ω

((
c0 +

1

2
div a

)
uv + ν∇u · ∇v

)
︸ ︷︷ ︸

symmetric part

+

∫
Ω

(
1

2
a · ∇uv − 1

2
a · ∇vu

)
=

∫
Ω

fv,

for all v ∈ H1
0 (Ω).

The right hand side and the convection field are chosen as

f(x, y) = exp(−10((x− 0.5)2 + (y − 0.1)2)) and a(x, y) = 2π[−(y − 0.1), x− 0.5].

The reaction coefficient c0 > 0 and viscosity ν > 0 are chosen to be constant over Ω. To-
gether with div a = 0, positivity of c0 and ν ensures that A is positive-definite. Varying
c0 and ν inside Ω would not cause any additional difficulty since the proposed precondi-
tioner handles heterogeneous c0 and ν (in the Hermitian part). The problem is discretized
by Lagrange P1 finite elements on a regular triangular mesh of characteristic length h.
The WHP-GCR algorithm is implemented in FreeFem++ [20] with the ffddm library [44].
Except in one case (where it is specified otherwise), all iteration counts for WHP-GCR
correspond to the number of iterations needed to reach ∥ri∥H < 10−6∥b∥H starting from
a zero initial guess. The Dirichlet boundary condition has been enforced by penalization.
The solution computed by a direct solve on a 501× 501 degree of freedom (dof) mesh has
been plotted in Figure 1 (left) for different values of c0 = ν = 0.1.

Let M(A) be the matrix corresponding to the discretization of the symmetric part
of the problem. M(A) is preconditioned by the Additive Schwarz domain decomposition
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method with the GenEO coarse space [38, 39]. The partition of Ω into N subdomains Ωs

is computed automatically by Metis. One layer of overlap is added to each Ωs. Letting
Rs⊤ (s = 1, . . . , N) denote the prolongation by zero of local finite element functions (in
Ωs) to the whole of Ω, the preconditioner can be written as:

H = Π

N∑
s=1

Rs⊤ (RsM(A)Rs⊤)−1︸ ︷︷ ︸
local solves

RsΠ⊤ +R0⊤ (R0M(A)R0⊤)−1︸ ︷︷ ︸
coarse solve

R0,

where Π = I − R0⊤(R0M(A)R0⊤)−1R0M(A) is the coarse projector (also known as
a deflation operator) and the vectors in R⊤

0 span the coarse space (or deflation space).
The particularity of GenEO is that the coarse vectors are constructed by solving the low
frequency eigenmodes for a generalized eigenvalue problem in each subdomain. The user
provides a threshold τ > 0, e.g., τ = 0.15. The corresponding ffddm options are

-ffddm_schwarz_method asm

-ffddm_geneo_threshold 0.15

-ffddm_schwarz_coarse_correction BNN.
The condition number of the resulting preconditioned operator is bounded by

κ(HM(A)) ≤ k0

(
1 +

k0
τ

)
,

where k0 denotes the maximal number of subdomains that each mesh element belongs to
[36][Theorem 4.40]. This constant does not depend on the total number N of subdomains.
In all examples τ has been set to 0.15. As an illustration, the partition into N = 16
subdomains provided by Metis is shown in Figure 1 (right). For this case, it holds that
k0 = 3. Consequently, the condition number of the preconditioned symmetric part of the
problem is bounded from above by κ(HM(A)) ≤ 3(1 + 3/0.15) = 63. Injecting this into
the bound from Theorem 6, it is obtained that the residuals produced by WHP-GCR or
WHP-GMRES satisfy

∥ri∥H
∥r0∥H

≤
[
1− 0.016

1 + ρ(M(A)−1N(A))2

]i/2
.

If, for example ρ(M(A)−1N(A)) ≤ 1, the bound gives

∥ri∥H
∥r0∥H

≤

√[
1− 1

126

]
i = 0.996i;

∥r500∥H
∥r0∥H

≤ 0.14 and
∥r3468∥H
∥r0∥H

< 1.0 · 10−6.

The residual is guaranteed to decrease only by 0.4% at each iteration. As was previously
explained, the bound is pessimistic for fully orthogonalized WP-GCR and WP-GMRES
and we expect in practice to observe much faster decrease in residual.

Value of ρ(M(A)−1N(A)) It remains to consider the value of ρ(M(A)−1N(A)).
In the proof of [3][Lemma 4.5], by Cauchy Schwarz and some arithmetic identities, it is
proved that

⟨y,N(A)x⟩ ≤ α∥x∥M(A)∥y∥M(A), ∀x,y ∈ Rn.

with α = 1
2

∥a∥L∞(Ω)√
inf(ν) inf(c0+

1
2 div(a))

. Consequently, for x ̸= 0, it holds that

∥M(A)−1N(A)x∥2M(A) ≤ α⟨x,M(A)x⟩1/2⟨N(A)x,M(A)−1N(A)x⟩1/2

= α∥x∥M(A)∥M(A)−1N(A)x∥M(A).
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Discretization step h 1/500 1/200 1/30 1/10

ρ(M(A)−1N(A)) 0.3391 0.3389 0.3380 0.3136

Table 1: Computation of ρ(M(A)−1N(A)) when the discretization step h varies. Case ν =
c0 = 1.

Number of subdomains 4 8 16 32

Iteration count for h = 1/200 19 20 20 20

Iteration count for h = 1/500 18 18 19 20

Table 2: Scalability. In each line, the same problem is solved for an increasing number of
subdomains. The iteration count remains constant. Case ν = c0 = 1.

The spectral radius of a matrix is bounded from above by any of its natural norms, and
in particular by the norm induced by M(A), from which it immediately follows that

ρ(M(A)−1N(A)) ≤ ∥M(A)−1N(A)∥M(A) ≤
1

2

∥a∥L∞(Ω)√
inf(ν) inf(c0 +

1
2 div(a))

. (17)

Bound (17) for ρ(M(A)−1N(A)) does not depend on the discretization step h so neither
does the overall convergence bound.

In Table 1, the actual value of ρ(M(A)−1N(A)) computed by Octave’s eigs is given in
the case where c0 = ν = 1. The discretization step varies between h = 1/10 and h = 1/200
and ρ(M(A)−1N(A)) varies only between 0.31 and 0.34. In comparison, bound (17) gives
ρ(M(A)−1N(A)) ≤ 3.23. The bound is approximately 10 times larger than the computed
value of the spectral radius.

Scalability (Table 2) Since Additive Schwarz with the GenEO coarse space is scal-
able, it has been proved that the overall algorithm is scalable. This is checked by solving
the same problem for different partitions into subdomains (all computed by Metis). Two
discretizations are considered: h = 1/200 and h = 1/500. For this test ν = c0 = 1. It
is observed that the method is indeed scalable: the iteration counts reported in Table 2
do not depend on the number of subdomains. A dependency on h is observed and this is
studied next.

Dependency on h (Table 3) The influence of the discretization step h on the
iteration count is studied in Table 3. The partition is set to N = 8 subdomains. For,
three different values of c0 = ν, the mesh size h varies between 1/100 and 1/2000. It
is observed that, as predicted by the theory, the number of iterations remains almost
constant when h varies.

1/h 2000 1000 500 200 100

# dofs (n) 4 004 001 1 002 001 251 001 40 401 10 201

c0 = ν = 10 it. count 16 16 17 17 20
c0 = ν = 1 it. count 17 18 19 20 21
c0 = ν = 0.1 it. count 39 40 42 43 41

Table 3: Dependency on mesh size h. Each line corresponds to a value of (ν, c0).
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c0 = ν 0.001 0.01 0.1 1 10 only symmetric part

Iteration count > 500 ( 1.1 · 10−4) 161 42 19 17 17

Table 4: Influence of the relative importance of the symmetric term and the skew-symmetric
term. Case N = 8 subdomains and h = 1/500. The value in parenthesis corresponds to the
relative residual ∥r500∥H/∥b∥H when the algorithm stopped after 500 iterations.

Case ν = c0 = 1
Number of Subdomains 4 8 16 32

GMRES 24 25 26 26

WHP-GCR (Euclidean stopping criterion) 25 26 26 27

Case ν = c0 = 0.1
Number of Subdomains 4 8 16 32

GMRES 52 52 53 52

WHP-GCR (Euclidean stopping criterion) 53 53 55 53

Table 5: Influence of the inner product: GMRES in Euclidean norm compared to WHP-
GCR. The stopping criterion is in Euclidean norm for both algorithms. Case h = 1/500. The
number of subdomains N varies and two cases are considered : ν = c0 = 1 and ν = c0 = 0.1.

Dependency on strength of non-symmetry (Table 4) For this test, h =
1/500 and N = 8. The value of ν and c0 are varied and the corresponding iteration
counts are reported in Table 4. The problem converges very fast when the symmetric part
dominates and not so fast otherwise. This is expected by design of the algorithm.

GMRES in the Euclidean inner product (Table 5) It has already been
observed that changing the inner product in GMRES does not influence its convergence
very much [35, 6]. A scalability test is run for h = 1/500 in two settings ν = c0 = 1 and
ν = c0 = 10. The number of subdomains varies between 4 and 32. Two algorithms are
applied with the same preconditioner as previously: right preconditioned GMRES and
WHP-GCR. The difference is that GMRES works in the Euclidean inner product while
WHP-GCR (which produces the same iterates as WHP-GMRES) works in the H-inner
product. For both, the stopping criterion has been set to ∥ri∥ < 10−6∥b∥ where the norm
is the Euclidean norm. It is remarkable that the iteration counts reported in Table 5
are almost identical. This means that, in practice, using the hpd preconditioner and the
Euclidean norm will most likely give results that are in agreement with the developed
theory. The advantage is to save the effort of implementing WHP-GCR if GMRES is
already available. The extra cost of running WHP-GCR is small compared to GCR (or
GMRES) since it is only the cost of storing one (or two) extra vectors per iteration.

Comparison with a non-symmetric preconditioner We finally compare sym-
metric and non-symmetric preconditioning. Since WHP-GCR cannot be applied with a
non-symmetric preconditioner, the GMRES solver is used for this comparison. The stop-
ping criterion is again set to ∥ri∥ < 10−6∥b∥. As a non-symmetric preconditioner the
one-level additive Schwarz method has been selected. To make the comparison fair, we
also precondition by the symmetric one-level additive Schwarz preconditioner correspond-
ing to M(A). Finally, we include the two-level symmetric preconditioner which has been
applied in all previous tests. The results are presented in Table 6. As soon as the problem
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c0 = ν 0.01 0.1 1 10 only symmetric part

Non-sym one-level 35 68 81 81 ×
Sym one-level > 200 105 87 84 81
Sym two-level 191 52 25 23 24

Table 6: GMRES Iteration counts. One-level non-symmetric preconditioner is compared to
one-level symmetric preconditioner and two-level symmetric preconditioner. Case N = 8
subdomains and h = 1/500.

Non-symmetric preconditioning

8 subdomains 16 subdomains

h = 1/500 h = 1/1000 h = 1/500 h = 1/1000

c0 = ν = 0.01 35 58 47 67
c0 = ν = 0.1 68 96 82 113

Table 7: GMRES Iteration counts with the non-symmetric one-level Additive Schwarz pre-
conditioner. Convergence deteriorates when number of subdomains increases or mesh size h
decreases.

becomes significantly non-symmetric (c0 = ν ≥ 0.1) there is a clear advantage for the
non-symmetric preconditioner compared to the one-level symmetric preconditioner. For
c0 = ν = 0.01, the one-level non-symmetric preconditioner converges much faster even
than even the two-level symmetric preconditioner. This is not very surprising since the
symmetric preconditioner does not account at all for the convective term. It is to be
noted however that this non-symmetric preconditioner will deteriorate when N increases
and when h decreases (as briefly illustrated in Figure 7).

6 Conclusion

In this article, the convergence of GMRES, GCR and their truncated and restarted ver-
sions has been studied. The influence of the preconditioner and the inner product have
been made explicit. It has been proposed, even for non-Hermitian problems to apply a hpd
preconditioner H. Then, GMRES or GCR can be applied in the H inner product. This
is referred to as WHP-GMRES. A new convergence result is proved for cases where A is
positive definite. The two terms in the convergence bound are the condition number of the
Hermitian part of A once preconditioned by H and the spectral radius of M(A)−1N(A).
This last term can be seen as a measure of the strength of non-Hermitianness. It does
not depend on the choice of the preconditioner. A particular application is the case where
H is a domain decomposition preconditioner. If the preconditioner applied to the Her-
mitian part of A leads to a scalable method, then WHP-GCR will be scalable too. For
the Convection-Diffusion-Reaction problem, it has also been proved that convergence will
not depend on the mesh size h as long as the condition number of the preconditioned
symmetric part does not depend on h. Numerical results have confirmed these findings.
It remains to improve the algorithm in cases where the problem is strongly non-Hermitian
or indefinite.
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A Implementation of WHP-GCR

Algorithms 4 and 5 propose two alternate implementations of WHP-GCR (Algorithm 3)
that require no more storage that the usual GCR algorithm.

The notation ·̃ has been used to emphasize that vectors with a tilde do not get or-
thogonalized and saved. In exact arithmetic all three versions produce the same iterates.
The Euclidean residual ri is not updated in Algorithm 4 which may be a drawback. In
finite precision, computing αi from vectors that have not been explicitly orthogonalized
could lead to inaccuracy. This is why Algorithm 3 is emphasized and implemented in the
numerical result section.

Algorithm 4 Alternate WHP-GCR

Require: x0 ∈ Rn

z0 = H(b−Ax0)
p0 = z0
q̃0 = Ap0

y0 = Hq̃0

for i = 0, 1, . . . , convergence do
δi = ⟨yi, q̃i⟩; γi = ⟨q̃i, zi⟩
αi = γi/δi
xi+1 = xi + αipi

zi+1 = zi − αiyi

pi+1 = zi+1

q̃i+1 = Azi+1

yi+1 = Hq̃i+1

for j = 0, . . . , i do
Φi,j = ⟨yj , q̃i+1⟩
βi,j = Φi,j/δ

−1
j

end for

pi+1− =
i∑

j=0
βi,jpj

yi+1− =
i∑

j=0
βi,jyj

end for
return xi+1

Algorithm 5 Alternate WHP-GCR

Require: x0 ∈ Rn

z0 = H(b−Ax0)
p0 = z0
q0 = Ap0

ỹ0 = Hq0

for i = 0, 1, . . . , convergence do
δi = ⟨ỹi,qi⟩; γi = ⟨qi, zi⟩
αi = γi/δi
xi+1 = xi + αipi

ri+1 = ri − αiqi

zi+1 = zi − αiyi

pi+1 = zi+1

qi+1 = Azi+1

ỹi+1 = Hqi+1

for j = 0, . . . , i do
Φi,j = ⟨ỹj ,qi+1⟩
βi,j = Φi,j/δ

−1
j

end for

pi+1− =
i∑

j=0
βi,jpj

qi+1− =
i∑

j=0
βi,jqj

end for
return xi+1
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