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Abstract

This work considers the convergence of GMRES for non-singular problems. GMRES
is interpreted as the GCR method which allows for simple proofs of the convergence
estimates. Preconditioning and weighted norms within GMRES are considered. The
objective is to provide a way of choosing the preconditioner and GMRES norm that
ensure fast convergence. The main focus of the article is on Hermitian preconditioning
(even for non-Hermitian problems). It is proposed to choose a Hermitian preconditioner
H and to apply GMRES in the inner product induced by H. If moreover, the problem
matrix A is positive definite, then a new convergence bound is proved that depends only
on how well H preconditions the Hermitian part of A, and on how non-Hermitian A is.
In particular, if a scalable preconditioner is known for the Hermitian part of A, then the
proposed method is also scalable. This result is illustrated numerically.
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1 Introduction

GMRES, or the Generalized Minimal Residual Method, is a method of choice for solving
general linear systems. First introduced by [29], the convergence of GMRES has since
been extensively studied [11, 12, 23, 2, 25, 26]. In this manuscript, linear systems

Ax∗ = b, (1)

are considered. Initially, the only assumption is that A is a general non-singular matrix
over the field K with K = R or C. The focus then shifts to Hermitian preconditioning and
matrices whose Hermitian part is positive definite. In each of these cases, convergence is
examined for the weighted GMRES algorithm, a version of GMRES where the Euclidean
inner product has been replaced by (x,y) 7→ ⟨Wx,y⟩ with W Hermitian positive definite.
The objective of the present work is to prove a convergence bound that can then be used
to choose the preconditioner H and the weight matrix W in a smart way.

Convergence of GMRES in the Euclidean inner product when A is positive definite is
studied in [11]. Interestingly, [11] precedes the introduction of GMRES in [29] because
the results are for the GCR algorithm (that produces the same iterates as GMRES).

In his PhD thesis [7], Cai proposes to select for GMRES applied to a matrix P, an
inner product that ‘is chosen to take advantage of some special properties of P’. In
collaboration with Widlund [9], they propose domain decomposition preconditioners for
non-symmetric and indefinite second order PDEs. GMRES is considered in the norm
induced by the highest order term in the variational form: the energy norm. More will
be said about these results below. A detailed presentation of what is now called weighted
GMRES, with results both on convergence and implementation strategy, can be found
in [30]. In [13], the author reinvents the idea of changing the norm within GMRES in a
general framework and coins the term weighted GMRES. The inner products considered
by [13] are diagonal matrices of weights that changes at each restart of the method. Larger
weights are associated to the larger components of the residual at the end of the previous
cycle leading to a faster convergence.

The method that is proposed in Section 4.2 assumes that an efficient preconditioner H
for the Hermitian part of A (i.e., 1/2(A+A∗)) is known. The same H is applied within
GMRES to solve the non-Hermitian problem (for A). As an illustration, the advection-
diffusion-reaction discretized by finite elements is solved at the end of this article. The
preconditioner H is chosen to be a two-level domain decomposition preconditioner [35]
with the GenEO coarse space introduced by [32, 33] (see also [34, 16, 22, 10, 27, 31] for a
non exhaustive list of extensions and related work). It has been shown that GenEO is a
very powerful and scalable solver [21] for symmetric positive definite problems.

The idea of separating the Hermitian and skew-Hermitian part of a matrix in order
to approximate the solution of a linear system has been exploited in the Hermitian and
skew-Hermitian splitting methods introduced in [1]. The field of domain decomposition
for non-spd problems was paved by [7, 9] (see also [35][Chapter 11]). The authors solve
convection-diffusion-reaction with a two-level additive Schwarz preconditioner where the
coarse space is based a on coarse grid. The one level component in the preconditioner
takes two forms: either the local solvers come from the original (non-symmetric and/or
indefinite) matrix, or the local solvers come from an spd part of the problem matrix.
GMRES is applied in the norm induced by that spd part. In both cases the coarse
projector is for the original operator. If the coarse mesh is fine enough, the rate of
convergence is shown to be independent of the number of degrees of freedom and the
number of local problems (scalability). A simplified explanation for the presence of a
condition on the size of the subdomains is that, for the theory to go through, the second
order term must dominate the other terms. It is known that the first non-zero eigenvalue
of −∆ on regular subdomains of diameter H is of the order of 1/H. The algorithm is
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generalized in [39] to any matrix that can be viewed as a perturbation of an spd matrix.
Their proposed preconditioner is the combination of a very good preconditioner for the
spd part and a coarse solve. A parameter δ0 qualifies how efficient the coarse space is at
filling the gap between the original problem and the spd one. It enters into the convergence
estimate. The algorithm is later called CSPD for Coarse Grid Plus SPD Preconditioning
in a numerical comparison with other algorithms [8].

More recently, domain decomposition for Helmholtz has been studied [14, 15]. This
case is symmetric indefinite and applying GMRES in the energy norm is a crucial part
of the proof. Weighted GMRES was also applied to study the spd GenEO eigenproblem
applied to indefinite and non-self-adjoint problems in [5, 6]. It is proved and observed
numerically that GenEO performs well also on a family of non-spd second-order problems.
Finally, the authors of [3] prove an abstract framework for one-level additive Schwarz
for non-Hermitian or indefinite problems. They illustrate their results by solving the
convection-diffusion-reaction equation. The present work takes a more algebraic route
and proves results that are not restricted to domain decomposition.

The outline for the rest of the article is as follows. In Section 2, some notation is
introduced and Theorem 1 gives an overview of some of the convergence results. In
Section 3, the GMRES algorithm is studied through the study of an equivalent form that
is the GCR algorithm. A convergence bound is proved in Theorem 3 that is connected to
field of value, or Elman, estimate [11, 12, 2]. In Section 4.1, Theorem 5, a special case is
considered where the preconditioner H is Hermitian and GMRES/GCR is applied in the
H inner product (or H−1 for left preconditioned GMRES). For positive-definite A, a final
convergence estimate is proved in Theorem 6 that makes explicit the rate at which the non-
Hermitianness of A slows down convergence. As an illustration of this result, in Section 5,
a solver is proposed for the convection-diffusion-reaction equation. The preconditioner is a
domain decomposition preconditioner with a GenEO spectral coarse space. This way, the
Hermitian part of the problem is very well preconditioned. It is shown theoretically that
the overall convergence does not depend on the number of subdomains (scalability), or on
the discretization step. Numerical experiments show that Hermitian preconditioning can
be very efficient and scalable for mildly non-Hermitian problems.

2 Problem posed, notation and main results

Let K = R or C be the field over which the linear system is considered. Let A ∈ Kn×n be
a non-singular matrix. Given any b ∈ Kn, the problem at hand is to find x∗ ∈ Kn such
that:

Ax∗ = b.

The chosen methodology is to apply weighted and preconditioned (WP) GMRES. Let
H ∈ Kn×n denote the preconditioner and W ∈ Kn×n denote the weight matrix. It is
assumed that H is non-singular and that W is Hermitian positive definite (hpd). The
inner product and norm induced by W are denoted by ⟨·, ·⟩W and ∥ · ∥W, respectively:

⟨x,y⟩W = ⟨Wx,y⟩ = ⟨x,Wy⟩ = y∗Wx and ∥x∥w = ⟨x,y⟩W1/2
, ∀x, y ∈ Kn.

Any matrix B ∈ Kn×n can be split into the sum of its Hermitian part and its skew-
Hermitian part. The notation used is

M(B) =
B+B∗

2
(Hermitian part) and N(B) =

B−B∗

2
(skew-Hermitian part). (2)

An overview of some results in the article is given in the following theorem.
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Theorem 1 (Summary of main results). Assume that the operator A ∈ Kn×n and pre-
conditioner H ∈ Kn×n are non-singular, and that the weight matrix W ∈ Kn×n is hpd.
The i-th iterate of right preconditioned WP-GMRES satisfies

∥ri∥W
∥r0∥W

≤
[
1− inf

y ̸=0

|⟨AHy,y⟩W|2

∥AHy∥2W∥y∥2W

]i/2
≤
[
1− inf

y ̸=0

|⟨M(A−1)y,y⟩|
⟨Hy,y⟩

× inf
y ̸=0

|⟨M(A)y,y⟩|
⟨H−1y,y⟩

]i/2
if H = W is hpd

≤
[
1− 1/κ(HM(A))

1 + ρ(M(A)−1N(A))2

]i/2
if H = W is hpd and A positive definite,

where κ(HM(A)) is the condition number of HM(A) and ρ(·) denotes the spectral radius
of a matrix. For the last two estimates, it has been assumed that the preconditioner H is
hpd and that W = H. In this case, the algorithm will be referred to as WHP-GMRES for
Weighted with a Hermitian Preconditioner.

Proof. The proof proceeds as follows. First, in Theorem 2, the equivalence between WP-
GCR (Algorithm 1) and WP-GMRES is established as long as the origin is not in the
field of values of the preconditioned operator. In the opposite case, the bounds above all
simplify to ∥ri∥W ≤ ∥r0∥W, a trivial result. The first estimate in the theorem is proved
for WP-GCR in Theorem 3 (and is already known [24, 2]). The second estimate in the
theorem is proved for WHP-GCR (where again HP stands for Hermitian preconditioning)
in Theorem 5 and the last estimate in the theorem is proved in Corollary 2 .

3 Convergence of WP-GMRES viewed as WP-GCR

The Generalized Conjugate Residual (GCR) method [11], also known as Orthomin [37] is
equivalent to GMRES in the sense that it generates the same approximate solutions at each
iteration. GMRES is usually preferred as it is slightly less computationally expensive and
more stable. However, GCR has the advantage of a simpler presentation and the proofs
in this article all come from the GCR formulation of GMRES.

3.1 WP-GCR with right preconditioning

Weighted and preconditioned GCR (WP-GCR) with right preconditioning is presented in
Algorithm 1. The initial guess x0 is assumed to be any vector in Kn.

In the following theorem, it is proved that WP-GCR is indeed equivalent to WP-
GMRES unless WP-GCR has an unlucky breakdown. This can only happen if 0 is in the
W-field of values of AH, a set defined by

WW(AH) =

{
⟨AHu,u⟩W
⟨u,u⟩W

;u ∈ Cn \ {0}
}
. (3)

Although the proof is not new it has been included. Indeed, some intermediary results in
the proof are used in subsequent proofs and to discuss the generalization of all results to
truncated and restarted methods.

Theorem 2. Assume that the operator A ∈ Kn×n and preconditioner H ∈ Kn×n are non-
singular, and that the weight matrix W ∈ Kn×n is hpd. The i-th residual of Algorithm 1
satisfies

∥ri∥W = min {∥b−Ax∥W; x ∈ x0 + span{p0, . . . ,pi−1}} . (4)
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Algorithm 1 WP-GCR with right preconditioning

Require: x0 ∈ Rn

r0 = b−Ax0

z0 = Hr0
p0 = z0
q0 = Ap0

for i = 0, 1, . . . , convergence do
δi = ⟨qi,qi⟩W; γi = ⟨qi, ri⟩W; αi = γi/δi
xi+1 = xi + αipi

ri+1 = ri − αiqi

zi+1 = Hri+1

for j = 0, 1, . . . , i do
Φi,j = ⟨qj ,Azi+1⟩W; βi,j = Φi,j/δj

end for

pi+1 = zi+1 −
i∑

j=0
βi,jpj

qi+1 = Azi+1 −
i∑

j=0
βi,jqj

end for
return Return xi+1

Moreover, if 0 ̸∈WW(AH), then span{p0, . . . ,pi−1} = Ki where

Ki := {Hr0,HAHr0, . . . , (HA)i−1Hr0}

is the Krylov subspace, i.e., WP-GCR returns the same approximate solutions as WP-
GMRES.

Proof. The vectors qi = Api are pairwise orthogonal, i.e.,

⟨qj ,qi⟩W = 0 if i ̸= j. (5)

Indeed, by symmetry, it suffices to prove by recursion over i ≥ 0 that: ⟨Api,Apj⟩W = 0
for every j < i. This is easy by recalling the definitions of pi and βi,j .

Next, the minimization property (4) is proved. By an immediate recursion, it holds

that ri = r0−
i−1∑
j=0

γj/δjApj . We notice that γi = ⟨qi, ri⟩W = ⟨qi, r0⟩W−
i−1∑
j=0

γj/δj⟨qi,Apj⟩ =

⟨qi, r0⟩W by (5). The i-th residual can now be rewritten as

r0 − ri =

i−1∑
j=0

⟨Apj , r0⟩W
⟨Apj ,Apj⟩W

Apj .

This means that r0 − ri is the W-orthogonal projection of r0 onto span{qj ; j < i}. Two
other equivalent characterizations of the orthogonal projection are

ri ∈ r0 + span{qj ; j < i} with ri = (r0 − ri)− r0 ⊥W span{qj ; j < i}, (6)

and ∥ri∥W = min {∥r∥W; r ∈ r0 + span{qj ; j < i}}. Then (4) follows by the change of
variables r = b−Ax and r0 = b−Ax0.
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It remains to justify that span{pj ; j < i} = Ki. It is obvious that span{pj ; j <
i} ⊂ Ki. The reverse inclusion is true unless Azi−1 ∈ span{qj ; j < i − 1}. Then,
by (6), ri−1 ⊥W Azi−1, i.e., ⟨ri−1,AHri−1⟩W = 0 = γi−1. If 0 ̸∈ WW(AH), this
implies ri−1 = 0 which is a lucky breakdown of both GCR and GMRES. The proof ends
by recalling the characterization of the i-th iterate of preconditioned GMRES in e.g.,
[28][Section 9]. Following the idea in [7, 13], the Euclidean product can be changed to the
W-inner product in order to get the result for WP-GMRES.

The following observations can be made:

• Preconditioning modifies the Krylov subspace.

• Weighting modifies which norm of the residual is minimized.

• Weighting does not modify the Krylov subspace.

The speed of convergence of the algorithm is addressed next by comparing two subse-
quent residuals.

Theorem 3 (Convergence of WP-GCR). Assume that the operator A ∈ Kn×n and pre-
conditioner H ∈ Kn×n are non-singular, and that the weight matrix W ∈ Kn×n is hpd.
The i-th iterate of Algorithm 1 satisfies

∥ri∥W
∥r0∥W

≤
(
1− inf

y ̸=0

|⟨AHy,y⟩W|2

∥AHy∥2W∥y∥2W

)i/2

. (7)

Proof. From the residual update formula we get ri = ri+1 + αiqi. By (6), ri+1 ⊥W qi so

∥ri∥2W = ∥ri+1∥2W + |αi|2∥qi∥2W = ∥ri+1∥2W +
|⟨qi, ri⟩2W|
∥qi∥4W

∥qi∥2W.

The relative decrease in residual between two subsequent iterations is

∥ri+1∥2W
∥ri∥2W

= 1− |⟨qi, ri⟩W|2

∥qi∥2W∥ri∥2W
. (8)

Taking the W-inner product of qi = Azi −
i−1∑
j=0

qjβi,j by ri leads to

⟨qi, ri⟩W = ⟨Azi, ri⟩W −
i−1∑
j=0

βi,j⟨qj , ri⟩W = ⟨Azi, ri⟩W,

and
∥ri+1∥2W
∥ri∥2W

= 1− |⟨Azi, ri⟩|2W
∥qi∥2W∥ri∥2W

= 1− |⟨AHri, ri⟩W|2

∥qi∥2W∥ri∥2W
. (9)

Next, from the orthogonalisation formula and (5), it is deduced that

∥Azi∥2W = ∥qi +

i−1∑
j=0

βi,jqj∥2W = ∥qi∥2W +

i−1∑
j=0

|βi,j |2∥qj∥2W ≥ ∥qi∥2W. (10)

Finally, the decrease in residual between two subsequent iterations of Algorithm 1 is
bounded by

∥ri+1∥W
∥ri∥W

≤
[
1− |⟨Azi, ri⟩|2W
∥Azi∥2W∥ri∥2W

]1/2
=

[
1− |⟨AHri, ri⟩W|2

∥AHri∥2W∥ri∥2W

]1/2
, (11)

where the Cauchy-Schwarz inequality ensures that the square root is well defined.
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Next, this is reformulated to match an often cited result (out of many) in [11].

Corollary 1 (Field of Value, or Elman, estimate). Under the assumptions of Theorem 3,
the i-th iterate of Algorithm 1 satisfies

∥ri+1∥W
∥r0∥W

≤
[
1− d(0,WW(AH))2

∥AH∥2W

]i/2
,

where

• d(0,WW(AH)) = inf
{

|⟨AHu,u⟩W|
⟨u,u⟩W ;u ∈ Cn \ {0}

}
is the distance to zero of the W-

field of values of AH defined in (3),

• ∥AH∥W denotes the matrix norm of AH induced by the vector norm W.

Proof. The terms in (7) can be grouped as[
⟨AHy,y⟩W
∥y∥2W

× ∥y∥W
∥AHy∥W

]2
≥
[
d(0,WW(AH))

∥AH∥W

]2
, (12)

where the numerator minimizes the first term in the product and the denominator maxi-
mizes the inverse of the second.

The result of Theorem 3 is stronger than the field of value estimate in Corollary 1. In-
deed, a bound for C in Theorem 3 can be found without necessarily bounding d(0,WW(AH))
and ∥AH∥W independently. Another way of saying this is that the terms in C can be
grouped differently than in the field of value bound. This is done in the next section
and also discussed in [24] and [2]. The proof given here is different from the ones in the
references.

Remark 1 (Breakdown and equivalence with WP-GMRES). If 0 is in the W-field of
values of HA, the right hand side of the Elman estimate is 1 rendering it useless. In fact,
the proof in [11] makes the assumption that the A is positive-definite so the case where
0 is in the field of values is not considered. Still, the formula is not incorrect because it
states that ri+1 ≤ ri.

If 0 is in the W-field of values of HA, it can occur that γi = ⟨qi, ri⟩W = ⟨AHri −
i−1∑
j=0

Φij/δjqj⟩W = ⟨AHri, ri⟩W = 0. Then the residual does not get updated (ri+1 = ri)

and the next search direction is AHri orthogonalized against all previous ones, including
itself. In other words pi+1 = qi+1 = 0. The algorithm has broken down before zero-
ing the residual. This is a particularity of the way the search directions are computed in
WP-GCR. These unlucky breakdowns do not occur in WP-GMRES if A is non-singular
(a sufficient but not necessary condition). If an unlucky breakdown occurs in GCR, the
algorithm can be restarted by computing the next few search directions as in the weighted
and preconditioned Orthodir algorithm.

A very simple way of understanding that WP-GCR can breakdown is to consider taking
r0 such that ⟨r0,AHr0⟩W = 0.

Remark 2. Minimizing |⟨HAx,x⟩W|/⟨HAx,HAx⟩W is equivalent to minimizing
|⟨y, (HA)−1y⟩W|/⟨y,y⟩W by the change of variables y = HAx. This is a way of

recovering that the WP-GMRES residual is bounded with respect to the product of the
distances to zero of the W-fields of value of AH and of (AH)−1 [2].
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3.2 Restarted and Truncated versions

Within WP-GCR as well as WP-GMRES, the new search directions are orthogonalized
against all previous ones. The cost of this procedure in terms of computation and storage
can become prohibitive if the algorithm takes many iterations to converge. Well estab-
lished variants of the algorithms have been proposed as early as in [11, 37] where either
the orthogonalization is truncated (Orthomin(k)) or the algorithm is restarted every k
iterations (WP-GMRES(k), WP-GCR(k)). If k = 0, no orthogonalization is performed at
all and the algorithm is called the Minimal Residual iteration (MR). A fact that is not so
frequently known is that the convergence result given in Theorem 3 holds for all restarted
and truncated versions of the algorithms. This was already fully understood by [11].

Theorem 4 (Convergence of truncated and restarted versions). The result in Theorem 3
holds for WP-GCR, WP-GMRES as well as all their truncated and restarted versions
including WP-MR.

Proof. Looking at the proof of Theorem 3, the only property of the algorithm that is used
to establish (8) is that ri+1 ⊥W qi. This remains true even with truncation and restart
because of the choice of αi. If no orthogonalization is performed at all then qi = Azi =
AHri and the result has been proved. If partial orthogonalization is performed then the
proof is the same except that sums for j ranging between 0 and i − 1 are replaced by
partial sums.

Equations (9) and (10) explain how orthogonalization helps: decreasing ∥qi∥W leads
to a decrease in the residual and orthogonalization does just that. Full orthogonalization
provides the best choice of qi inAKi. A very important realization is that the field of value
convergence bound, as well as all the convergence bounds in this article do not account
for the advantages provided by orthogonalization. For this reason they are expected to
be over-pessimistic when applied to WP-GMRES and WP-GCR.

Two conclusions can be drawn from this. Either the decrease in residual predicted by
the convergence bound is satisfactory, then WP-MR, or another truncated or restarted
algorithm can be applied. Or, the decrease guaranteed by the theory is not satisfactory,
then full WP-GCR/WP-GMRES can be applied with the hope that the bound is over-
pessimistic. In practice this is very likely to be the case as WP-GCR/WP-GMRES often
exhibits a superlinear convergence behaviour. The convergence bounds of the form pre-
sented in this article allow to check that the algorithm cannot stagnate (or near-stagnate),
and the superlinear convergence behaviour should kick in.

All subsequent convergence proofs follow from manipulating the minimized quantity in
Theorems 3 and 4 so they hold also for truncated and restarted versions of the algorithms.

3.3 A parenthesis about left preconditioning

Left preconditioning, i.e. solvingHAx∗ = Hb can be performed instead of right precondi-
tioning. For completeness, the left preconditioned WP-GCR is presented in Algorithm 2.
The i-th residual of Algorithm 2 satisfies

∥zi∥W = ∥Hri∥W = min {∥H(b−Ax)∥W; x ∈ x0 + span{p0, . . . ,pi−1}} .

Moreover, if 0 ̸∈WW(HA), then span{p0, . . . ,pi−1} = Ki (the Krylov subspace) so again
WP-GCR returns the same approximate solutions as WP-GMRES. Following the same
steps as in Section 3.1, it can be proved that

∥zi+1∥2W
∥zi∥2W

= 1− ⟨yi, zi⟩2W
⟨yi,yi⟩W⟨zi, zi⟩W

≤ 1− ⟨HAzi, zi⟩2W
⟨HAzi,HAzi⟩W⟨zi, zi⟩W

.

The following observations follow:
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Algorithm 2 WP-GCR with left preconditioning

Require: x0 ∈ Rn

r0 = b−Ax0

z0 = Hr0
p0 = z0
y0 = HAp0

for i = 0, 1, . . . , convergence do
δi = ⟨yi,yi⟩W; γi = ⟨yi, zi⟩W; αi = γi/δi
xi+1 = xi + αipi

zi+1 = zi − αiyi

for j = 0, . . . , i do
Φi,j = ⟨yj ,HAzi+1⟩W; βi,j = Φi,j/δj

end for

pi+1 = zi+1 −
i∑

j=0
βi,jpj

yi+1 = HAzi+1 −
i∑

j=0
βi,jyj

end for
return xi+1

• Left preconditioning produces the same Krylov subspace as right preconditioning.

• Left preconditioning modifies the residual that is considered in the minimization
property as well as the Krylov subspace.

• Left preconditioning in the H−1-inner product and right-preconditioning in the H-
inner product are equivalent (as suggested in [28][Problem 9.13]).

4 Hermitian positive definite preconditioning for pos-
itive definite A

The convergence study now focuses on some not completely general cases.

4.1 Hermitian positive definite preconditioning

Two strong assumptions are made:

1. the preconditioner H is hpd,

2. the inner product is induced by the preconditioner: W = H.

WP-GCR with right hpd preconditioning and W = H takes the form of Algorithm 3.
The name WHP-GCR is adopted where HP stands for Hermitian Preconditioning. The
operations have been reorganized so that no additional application of H is required com-
pared to unweighted GCR (except in the initialization). The extra cost is the storage of
the vectors yj = Hqj . Two alternate versions are presented in Algorithms 4 and 5 (of the
appendix) that do not require more storage than unweighted GCR. Although no details
are given here, the same cost saving measures can be taken in a GMRES algorithm. Note
also that if the preconditioner H is very cheap to apply, applying it twice per iteration
may be entirely feasible. In this case, it suffices to run a right preconditioned GCR or
GMRES code with the inner product changed to ⟨·, ·⟩H.
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In application of Theorem 2, WHP-GCR (Algorithm 3) is characterized as a Krylov
subspace method by the following properties. First, The vectors qi = Api are pairwise or-
thogonal in the H-inner product. Second, the residuals satisfy the minimization property:
∥ri∥H = min {∥b−Ax∥H; x ∈ x0 +Ki} as long as 0 ̸∈WH(AH).

WP-GCR with right preconditioning by H and weighting by W = H is equivalent to
WP-GCR with left preconditioning by H and weighting by W = H−1. For this reason
the distinction between left and right preconditioning is no longer made. In [30], a similar
equivalence is observed for an inner product that arises from a symmetric part of the
problem matrix A.

Algorithm 3 WHP-GCR (i.e, WP-GCR with hpd H and W = H)

Require: x0 ∈ Rn

r0 = b−Ax0

z0 = Hr0
p0 = z0
q0 = Ap0

y0 = Hq0

for i = 0, 1, . . . , convergence do
δi = ⟨yi,qi⟩; γi = ⟨qi, zi⟩; αi = γi/δi
xi+1 = xi + αipi

ri+1 = ri − αiqi

zi+1 = zi − αiyi

pi+1 = zi+1

qi+1 = Azi+1

for j = 0, . . . , i do
Φi,j = ⟨yj ,qi+1⟩; βi,j = Φi,j/δ

−1
j

pi+1− =
i∑

j=0
βi,jpj

qi+1− =
i∑

j=0
βi,jqj

end for
yi+1 = Hqi+1

end for
return xi+1

Theorem 5 (Convergence of WHP-GCR). Assume that the operator A ∈ Kn×n is non-
singular. Assume also that the preconditioner H ∈ Kn×n is hpd and that right precondi-
tioned GCR is applied in the inner product induced by H. The i-th iterate of Algorithm 3
satisfies

∥ri+1∥H
∥r0∥H

≤
[
1− inf

y ̸=0

|⟨M(A−1)y,y⟩|
⟨Hy,y⟩

× inf
y ̸=0

|⟨M(A)y,y⟩|
⟨H−1y,y⟩

]i/2
. (13)

The same result holds for all truncated and restarted versions of WHP-GCR and WHP-
GMRES, including WHP-MR.

Proof. Applying Theorem 3 to WHP-GCR, the quantity that must be bounded can be
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rewritten as

inf
y ̸=0

|⟨AHy,y⟩H|2

∥AHy∥2H∥y∥2H
= inf

y ̸=0

|⟨HAHy,y⟩|2

⟨HAHy,AHy⟩⟨Hy,y⟩

= inf
y ̸=0

⟨Ay,y⟩2

⟨HAy,Ay⟩⟨H−1y,y⟩
(by y← Hy)

≥ inf
y ̸=0

|⟨Ay,y⟩|
⟨HAy,Ay⟩

× inf
y ̸=0

|⟨Ay,y⟩|
⟨H−1y,y⟩

= inf
y ̸=0

|⟨A−1y,y⟩|
⟨Hy,y⟩

× inf
y ̸=0

|⟨Ay,y⟩|
⟨H−1y,y⟩

(by y← Ay)

= inf
y ̸=0

|⟨M(A−1)y,y⟩|
⟨Hy,y⟩

× inf
y ̸=0

|⟨M(A)y,y⟩|
⟨H−1y,y⟩

where, according to the notation (2), M(A) and M(A−1) are the Hermitian parts of A
and A−1.

4.2 Positive definite A

Assuming that the problem matrix A is positive definite, i.e., that M(A) is hpd, the
calculations from the previous paragraph are resumed:

inf
y ̸=0

⟨AHy,y⟩2W
∥AHy∥2W∥y∥2W

≥ inf
y ̸=0

|⟨M(A−1)y,y⟩|
|⟨M(A)−1y,y⟩|

× inf
y ̸=0

|⟨M(A)−1y,y⟩|
⟨Hy,y⟩

× inf
y ̸=1

|⟨M(A)y,y⟩|
⟨H−1y,y⟩

≥ inf
y ̸=0

⟨M(A−1)y,y⟩
⟨M(A)−1y,y⟩

× inf
y ̸=0

⟨M(A)−1y,y⟩
⟨Hy,y⟩

× inf
y ̸=0

⟨M(A)y,y⟩
⟨H−1y,y⟩

,

where division by ⟨M(A)−1y,y⟩ is licit and removing the absolute values does not change
the result. Indeed, by [18][Property (1.6) on page 10], M(A) being positive definite implies
that A−1 is well defined and that M(A−1) is also positive definite.

Let λmin(HM(A)) and λmax(HM(A)) denote the smallest and largest eigenvalues of
HM(A). The eigenvalues ofHM(A), are also the eigenvalues of the generalized eigenvalue
problems M(A)HM(A)y = λM(A)y and HM(A)Hy = λHy. By the Rayleigh-Ritz
characterization of eigenvalues, an interpretation of the last two terms in the product
follows:

inf
y ̸=0

⟨M(A)y,y⟩
⟨H−1y,y⟩

= inf
y ̸=0

⟨HM(A)Hy,y⟩
⟨Hy,y⟩

= λmin(HM(A)).

and

inf
y ̸=0

⟨M(A)−1y,y⟩
⟨Hy,y⟩

=

(
sup
y ̸=0

⟨M(A)HM(A)y,y⟩
⟨M(A)y,y⟩

)−1

=
1

λmax(HM(A))
,

For the remaining term, recalling from (2) that N(A) denotes the skew Hermitian part
of A, a very useful result is the following.

Lemma 1 (Corollary 3 in [20], see also [19, 18]). Let A ∈ Cn be positive definite and
c ∈ R. The matrix cM(A−1) − M(A)−1 is positive definite if and only if c > 1 +
ρ(M(A)−1N(A))2, with

ρ(M(A)−1N(A)) = max{|tj |; ±itj are the eigenvalues of M(A)−1N(A)}.
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An equivalent reformulation of the lemma is that

inf
y ̸=0

⟨M(A−1)y,y⟩
⟨M(A)−1y,y⟩

= [1 + ρ(M(A)−1N(A))2]−1. (14)

By definition, ρ(M(A)−1N(A)) is the spectral radius of M(A)−1N(A), i.e., the norm of
the eigenvalue of maximal norm. In this particular case, the eigenvalues of (M(A)−1N(A))
are conjugate pairs of pure imaginary numbers ±i|tj |, as well as 0 if the order of A is odd.

Putting everything together, we get:

Theorem 6 (Convergence of WHP-GCR for positive definite A). Assume that the oper-
ator A ∈ Kn×n is positive definite. Assume also that the preconditioner H ∈ Kn×n is hpd
and that right preconditioned GCR is applied in the inner product induced by H. The i-th
iterate of Algorithm 3 satisfies

∥ri∥H
∥r0∥H

≤
[
1− λmin(HM(A))

λmax(HM(A))
× 1

1 + ρ(M(A)−1N(A))2

]i/2
. (15)

The same result holds for all truncated and restarted versions of WHP-GCR and WHP-
GMRES, including WHP-MR.

The estimate in the theorem has split the residual bound into two components:

• the condition number of the Hermitian part of A preconditioned by H,

• a measure of the strength of non-Hermitianness of A that is independent of H.

Corollary 2. Under the assumptions of Theorem 6, if H is a preconditioner for M(A)
such that the condition number of the preconditioned operator is κ(HM(A)) then

∥ri∥H
∥r0∥H

≤
[
1− κ(HM(A))−1

1 + ρ(M(A)−1N(A))2

]i/2
. (16)

The same result holds for all truncated and restarted versions of WHP-GCR and WHP-
GMRES, including WHP-MR.

In particular, if H is a domain decomposition preconditioner such that κ(HM(A))
can be bounded independently of the number of subdomains, then the convergence bound
above does not depend on the number of subdomains either. In other words, if a scalable
domain decomposition method is known for the Hermitian part of A, the proposed algo-
rithm for the non-Hermitian problem is also scalable. For many problems arising from the
discretization of PDEs, M(A) is derived from a differential operator of lower order than
that producing N(A) so ρ(M(A)−1N(A)) is bounded independently of the discretization
step (an observation already made in a different context in [38] and [12][Section 10]).
If H can also be chosen so that the preconditioned Hermitian part is well conditioned
independently of h then the residual bound is h-independent.

In cases where a factorization of the preconditioner into H = SS∗ is available, split
preconditioning by S∗ on the left and S on the right can be applied. It can be shown
that this is equivalent to WHP-GMRES. With this remark, there is a connection between
WHP-GMRES and the algorithm in Section 10.4 of [12]. However, the bound in [12] is
less sharp (the condition number is squared) and split preconditioning is very restrictive.

Next, it is illustrated that WHP-GCR is efficient for mildly non-Hermitian problems.
If the preconditioner is well chosen, the algorithm is scalable and optimal (in the sense
that convergence does not depend on the discretization step).
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5 Illustration: Convection-Diffusion-Reaction

In this section, the problem considered is the convection-diffusion-reaction problem posed
in Ω = [0, 1]2. It is a real problem (K = R), so Hermitian means symmetric. The
presentation, notation and test case are inspired by [3, 4]. The strong formulation of the
problem is:

c0u+ div(au)− div(ν∇u) = f in Ω,

u = 0 on ∂Ω.

The variational formulation is: Find u ∈ H1
0 (Ω) such that∫

Ω

((
c0 +

1

2
div a

)
uv + ν∇u · ∇v

)
︸ ︷︷ ︸

symmetric part

+

∫
Ω

(
1

2
a · ∇uv − 1

2
a · ∇vu

)
=

∫
Ω

fv,

for all v ∈ H1
0 (Ω).

The right hand side is chosen as

f(x, y) = exp(−10((x− 0.5)2 + (y − 0.1)2))

and the convection field as

a(x, y) = 2π[−(y − 0.1), x− 0.5].

The reaction coefficient c0 > 0 and viscosity ν > 0 are chosen to be constant over Ω. Vary-
ing c0 and ν would not cause any additional difficulty since the proposed preconditioner
handles heterogeneous c0 and ν (in the Hermitian part). The problem is discretized by
Lagrange P1 finite elements. The WHP-GCR algorithm is implemented in Freefem++ [17]
with the ffddm library [36]. Except in the last case (where it is specified otherwise), all it-
eration counts correspond to the number of iterations needed to reach ∥ri∥H < 10−6∥b∥H
starting from a zero initial guess.

Let M(A) be the matrix corresponding to the discretization of the symmetric part
of the problem. M(A) is preconditioned by the Additive Schwarz domain decomposition
method with the GenEO coarse space [32, 33]. The partition of Ω into N subdomains Ωs

is computed automatically by Metis. One layer of overlap is added to each Ωs. Letting
Rs⊤ (s = 1, . . . , N) denote the prolongation by zero of local finite element functions (in
Ωs) to the whole of Ω, the preconditioner can be written as:

H = Π

N∑
s=1

Rs⊤ (RsM(A)Rs⊤)−1︸ ︷︷ ︸
local solves

RsΠ⊤ +R0⊤ (R0M(A)R0⊤)−1︸ ︷︷ ︸
coarse solve

R0,

where Π = I − R0⊤(R0M(A)R0⊤)−1R0M(A) is the coarse projector (also known as
a deflation operator) and the vectors in R⊤

0 span the coarse space (or deflation space).
The particularity of GenEO is that the coarse vectors are constructed by solving the low
frequency eigenmodes for a generalized eigenvalue problem in each subdomain. The user
provides a threshold τ > 0, e.g., τ = 0.15. The corresponding ffddm options are

-ffddm_schwarz_method asm

-ffddm_geneo_threshold 0.15

-ffddm_schwarz_coarse_correction BNN.
The condition number of the resulting preconditioned operator is bounded by

κ(HM(A)) ≤ (k0 + 1)(1 + k1τ),
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Figure 1: Partition into N = 16 subdomains computed by Metis

where k0 denotes the maximal number of neighbours of a subdomain, and k1 denotes the
maximal number of subdomains that a mesh element belongs to. These constants do not
depend on the total number N of subdomains. In all examples τ has been set to 0.15.
As an illustration, the partition into N = 16 subdomains provided by Metis is shown in
Figure 1. For this case, it holds that k0 = 6 and k1 = 3. Consequently, the condition
number of the preconditioned symmetric part of the problem is bounded from above by

κ(HM(A)) ≤ (6 + 1)(1 + 3× 0.15) = 10.15.

Injecting this into the bound from Theorem 6, it is obtained that the residuals produced
by WHP-GCR or WHP-GMRES will be bounded by

∥ri∥H
∥r0∥H

≤
[
1− 0.0985

1 + ρ(M(A)−1N(A)2)

]i/2
.

If, for example ρ(M(A)−1N(A)2 ≤ 1, the bound gives

∥ri∥H
∥r0∥H

≤

√[
1− 0.0985

1 + 1

]
i = 0.975i;

∥r100∥H
∥r0∥H

≤ 0.080 and
∥r500∥H
∥r0∥H

≤ 3.3 · 10−6.

The residual is guaranteed to decrease only by 2.5% at each iteration. As was previously
explained, the bound is pessimistic for fully orthogonalized WP-GCR and WP-GMRES
and we expect in practice to observe much faster decrease in residual.

Value of ρ(M(A)−1N(A)) It remains to consider the value of ρ(M(A)−1N(A)).
In the proof of [3][Lemma 4.5], by Cauchy Schwarz and some arithmetic identities, it is
proved that

⟨y,N(A)x⟩ ≤ α∥x∥M(A)∥y∥M(A), ∀x,y ∈ Rn.
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Discretization step h 1/200 1/200 1/30 1/10

ρ(M(A)−1N(A)) 0.3391 0.3389 0.3380 0.3136

Table 1: Computation of ρ(M(A)−1N(A)) when the discretization step h varies. Case ν =
c0 = 1.

201 x 201 dofs
Number of subdomains 4 8 16 32

Iteration count 59 59 58 58

501 x 501 dofs
Number of subdomains 4 8 16 32

Iteration count 111 113 114 114

Table 2: Scalability. In each table the same problem (with 2012 or 5012 dofs) is solved for an
increasing number of subdomains. The iteration count remains constant. Case ν = c0 = 1.

with α = 1
2

∥a∥L∞(Ω)√
inf(ν) inf(c0+

1
2 div(a))

. Consequently, for x ̸= 0, it holds that

∥M(A)−1N(A)x∥2M(A) ≤ α⟨x,M(A)x⟩1/2⟨N(A)x,M(A)−1N(A)x⟩1/2

= α∥x∥M(A)∥M(A)−1N(A)x∥M(A).

The spectral radius of a matrix is bounded from above by any of its natural norms, and
in particular by the norm induced by M(A), from which it immediately follows that

ρ(M(A)−1N(A)) ≤ ∥M(A)−1N(A)∥M(A) ≤
1

2

∥a∥L∞(Ω)√
inf(ν) inf(c0 +

1
2 div(a))

. (17)

Bound (17) for ρ(M(A)−1N(A)) does not depend on the discretization step h so neither
does the overall convergence bound.

In Table 1, the actual value of ρ(M(A)−1N(A)) computed by Octave’s eigs is given in
the case where c0 = ν = 1. The discretization step varies between h = 1/10 and h = 1/200
and ρ(M(A)−1N(A)) varies only between 0.31 and 0.34. In comparison, bound (17) gives
ρ(M(A)−1N(A)) ≤ 2.29. The bound is approximately 10 times larger than the computed
value of the spectral radius.

Scalability (Table 2) Since Additive Schwarz with the GenEO coarse space is scal-
able, it has been proved that the overall algorithm is scalable. This is checked by solving
the same problem for different partitions into subdomains (all computed by Metis). Two
discretizations are considered: h = 1/200 and h = 1/500. For this test ν = c0 = 1. It
is observed that the method is indeed scalable: the iteration counts reported in Table 2
do not depend on the number of subdomains. A dependency on h is observed and this is
studied next.

Dependency on h (Table 3) The influence of h on the iteration count is studied
in Table 3. The partition is set to N = 8 subdomains. First the problem is solved with
c0 = ν = 1. It has been shown that ρ(M(A)−1N(A) ≤ 2.29 so the symmetric part
and skew-symmetric part of the problem matrix are of comparable magnitude. When the
discretization step decreases, the iteration count increases almost linearly. This is not
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1/h 2000 1000 500 200 100

# dofs (n) 4 004 001 1 002 001 251 001 40 401 10 201

c0 = ν = 1 it. count 403 217 113 59 37

c0 = ν = 10 it. count 61 36 23 16 13

For the test below (and only for this test) a = [100, 0] and c0 = ν = 1

a = [100, 0] it. count 9 10 10 11 12

Table 3: Dependency on h. Each line corresponds to a value of (ν, c0). Case N = 8 subdo-
mains. In the last line, and only for this test, the convection field is a = [100, 0] and c0 = ν = 1

c0 = ν 0.1 1 5 10 only symmetric part

Iteration count > 200 (0.020) 113 36 23 10

Table 4: Influence of the relative importance of the symmetric term and the skew-symmetric
term. Case N = 8 subdomains and h = 1/500. The value in parenthesis corresponds to the
relative residual when the algorithm stopped after 200 iterations.

what was expected from the theory. However, as h→ 0, spurious modes also pollute the
solution (independently of any preconditioner). Stabilization would fix this issue, e.g., by
the SUPG method as in [3][Section 11.8]. When c0 = ν = 10, ρ(M(A)−1N(A) ≤ 0.72 so
the symmetric part of the problem dominates slightly. The iteration count does not vary
as much with h (it gets multiplied by 5 when h gets divided by 20). In the last line of
Table 3, the case where the convection field a is the constant vector [100, 0] is considered.
The iteration count does not vary with h as predicted by the theory.

Dependency on strength of non-symmetry (Table 4) For this test, h =
1/500 and N = 8. The value of ν and c0 are varied and the corresponding iteration
counts are reported in Table 4. As expected, the problem converges very fast when the
symmetric part dominates and not so fast otherwise. This is expected by design of the
algorithm.

GMRES in the Euclidean inner product (Table 5) It has already been
observed that changing the inner product in GMRES does not influence its convergence
very much [30, 6]. As a final test, we run a scalability test for h = 1/500 in two settings
ν = c0 = 1 and ν = c0 = 10. The number of subdomains varies between 4 and 32. Two
algorithms are applied with the same preconditioner as previously: right preconditioned
GMRES and WHP-GCR. The difference is that GMRES works in the Euclidean inner
product while WHP-GCR (which produces the same iterates as WHP-GMRES) works in
the H-inner product. For both, the stopping criterion has been set to ∥ri∥ < 10−6∥b∥
where the norm is the Euclidean norm. It is absolutely remarkable (and not a typo)
that the iteration counts reported in Table 5 are almost identical. This means that in
practice using the hpd preconditioner and the Euclidean norm will most likely give results
that are in agreement with the developed theory. The advantage is to save the effort
of implementing WHP-GCR if GMRES is already available. The extra cost of running
WHP-GCR is small compared to GCR (or GMRES) since it is only the cost of storing
one (or two) extra vectors per iteration.
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Case ν = c0 = 1
Number of Subdomains 4 8 16 32

GMRES 118 122 124 124

WHP-GCR (Euclidean stopping criterion) 118 121 124 124

Case ν = c0 = 10
Number of Subdomains 4 8 16 32

GMRES 31 32 33 33

WHP-GCR (Euclidean stopping criterion) 31 32 33 33

Table 5: Influence of the inner product: GMRES in Euclidean norm compared to WHP-
GCR. The stopping criterion is in Euclidean norm for both algorithms. Case h = 1/500. The
number of subdomains N varies and two cases are considered : ν = c0 = 1 and ν = c0 = 10.

6 Conclusion

In this article, the convergence of GMRES, GCR and their truncated and restarted ver-
sions has been studied. The influence of the preconditioner and the inner product have
been made explicit. It has been proposed, even for non-Hermitian problems to apply a hpd
preconditioner H. Then, GMRES or GCR can be applied in the H inner product. This
is referred to as WHP-GMRES. A new convergence result is proved for cases where A is
positive definite. The two terms in the convergence bound are the condition number of the
Hermitian part of A once preconditioned by H and the spectral radius of M(A)−1N(A).
This last term can be seen as a measure of the strength of non-Hermitianness. It does not
depend on the choice of the preconditioner. A particular application is the case where H
is a domain decomposition preconditioner. If the preconditioner applied to the Hermitian
part of A leads to a scalable method, then WHP-GCR will be scalable too. Numerical
results have confirmed these findings. It remains to improve the algorithm in cases where
the problem is strongly non-Hermitian or indefinite.

A Appendix

Algorithms 4 and 5 propose two alternate implementations of WHP-GCR (Algorithm 3)
that require no more storage that the usual GCR algorithm.

The notation ·̃ has been used to emphasize that vectors with a tilde do not get or-
thogonalized and saved. In exact arithmetic all three versions produce the same iterates.
The Euclidean residual ri is not updated in Algorithm 4 which may be a drawback. In
finite precision, computing αi from vectors that have not been explicitly orthogonalized
could lead to inaccuracy. This is why Algorithm 3 is emphasized and implemented in the
numerical result section.
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Algorithm 4 Alternate WHP-GCR

Require: x0 ∈ Rn

z0 = H(b−Ax0)
p0 = z0
q̃0 = Ap0

y0 = Hq̃0

for i = 0, 1, . . . , convergence do
δi = ⟨yi, q̃i⟩; γi = ⟨q̃i, zi⟩
αi = γi/δi
xi+1 = xi + αipi

zi+1 = zi − αiyi

pi+1 = zi+1

q̃i+1 = Azi+1

yi+1 = Hq̃i+1

for j = 0, . . . , i do
Φi,j = ⟨yj , q̃i+1⟩
βi,j = Φi,j/δ

−1
j

end for

pi+1− =
i∑

j=0
βi,jpj

yi+1− =
i∑

j=0
βi,jyj

end for
return xi+1

Algorithm 5 Alternate WHP-GCR

Require: x0 ∈ Rn

z0 = H(b−Ax0)
p0 = z0
q0 = Ap0

ỹ0 = Hq0

for i = 0, 1, . . . , convergence do
δi = ⟨ỹi,qi⟩; γi = ⟨qi, zi⟩
αi = γi/δi
xi+1 = xi + αipi

ri+1 = ri − αiqi

zi+1 = zi − αiyi

pi+1 = zi+1

qi+1 = Azi+1

ỹi+1 = Hqi+1

for j = 0, . . . , i do
Φi,j = ⟨ỹj ,qi+1⟩
βi,j = Φi,j/δ

−1
j

end for

pi+1− =
i∑

j=0
βi,jpj

qi+1− =
i∑

j=0
βi,jqj

end for
return xi+1
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[23] J. Liesen and Z. Strakoš, Krylov subspace methods. Principles and analysis, Nu-
mer. Math. Sci. Comput., Oxford: Oxford University Press, reprint of the 2013 hard-
back edition ed., 2015, https://doi.org/10.1093/acprof:oso/9780199655410.

001.0001.
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