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Abstract 

One of the great motivations of studying and developing Generation IV (Gen 
IV) reactors of VHTR (Very High Temperature Reactor) design is their capacity 
to efficiently produce both electricity and H2 (hydrogen). This study aims at 
developing an optimization methodology for cogeneration systems of hydrogen 
and electricity, with respect to energy constraints, economics and conjuncture in 
terms of demand. It lies within the scope of a collaboration between the 
Laboratoire de Génie Chimique (LGC Toulouse, France) and the French 
Atomic Energy Commission (CEA, Cadarache, France) in order to compare 
various cogeneration systems from both energy and economics viewpoints.This 
paper describes the different steps of the technico-economic methodology for 
H2 and electricity cogeneration systems.  

Keywords: Hydrogen, Electricity, cogeneration, Gen IV nuclear systems, 
multiobjective optimization 

 



1. Introduction 

Hydrogen is currently viewed as one of the energetic vectors that will replace 
traditional fossil fuels in the XXIth century. Although the transition is assumed 
to be progressive, innovative technologies for a massive production of H2 have 
to be investigated. 
The VHTR (Very High Temperature Reactor) concept, considered as the 
nearest-term reactor design, can indeed be coupled on the one hand, with 
innovative electricity-generating cycles and, on the other hand, with massive H2 

production processes. Thus, due to a high exit core temperature (at least 950°C) 
reached by helium used for cooling, VHTR is dedicated to the cogeneration of 
electricity and hydrogen by Sulphur-Iodine (S-I) thermochemical cycle or by 
High Temperature Electrolysis of steam water. Globally, these processes require 
the simultaneous supply of electricity and heat at high temperature. The optimal 
design of these process configurations constitutes an important challenge. 
In this perspective, simulation tools for thermal systems were previously 
developed by the CEA (French Atomic Energy Commission, Cadarache, 
France), i.e., CYCLOP for thermodynamic cycle modelling. This code allows to 
model innovative energy production systems for given operating conditions 
while taking into account the influence of classical variables: exchanger 
efficiency, pressure ratio and isentropic efficiency (compressor, turbines …), 
pressure loss… 
This paper first describes the three steps of the technico-economic optimization 
methodology implemented for the selection of cogeneration systems. The first 
one is based on a bicriteria optimization with total life cost and exergy losses 
minimization. The second one implies exergetic production cost evaluation of 
any energy form. The last step provides decisional data, as hydrogen production 
cost for different scenarios for electric market corresponding to a given plant, to 
make possible the choice between different systems. Finally, the methodology 
is applied successfully to two different systems dedicated to electricity and 
hydrogen production, taking into account various scenarios of the electricity 
market. 

2. Technico-economic optimization methodology for H2 and electricity 
cogeneration 

The choice of the best strategy for electricity and H2 massive production 
systems is a technico-economic concern. The cogeneration system considered 
here (Fig. 1) consists in coupling a VHTR nuclear reactor with an electrical 
generator (that is a Brayton cycle) in direct cycle, on the one hand, and, with a 
hydrogen production plant (Iodine-Sulphur cycle) for which the thermal and 
electrical demand is known. 
It involves a site of 4 autonomous sections, each one including a VHTR reactor, 
an electrical generator and n H2 production plants operating in parallel. 
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Fig. 1. Configuration of electricity and H2 cogeneration site (example) 

2.1. Bicriteria optimization by exergetic losses and lifespan cost minimization of 
the production plant 

The first step of the methodology implies a bicriteria optimization, by 
simultaneous minimization of the total exergetic losses and of the total costs of 
the production sites over their lifespan.  
The choice of a criterion based on the minimization of the exergetic losses was 
justified in [1]: it represents the lost “available work” during the energy 
conversion. The thermodynamic model of the cogeneration system is 
implemented in the CYCLOP simulator [2]. The economic criterion takes into 
account both construction costs of the site (nuclear reactors, electricity 
generators, H2 plants) and operating costs (nuclear fuel, maintenance of VHTR 
and H2 plants) for 60 years life (Eqn. 1): 
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Where: 
TCSite: Total Cost (M€), CaNucl. Fuel: nuclear fuel annual cost, CaO&M: operating & 
maintenance costs, CaInvest.: investment annual cost (including end of life costs), 
i: discount rate (%), D: Cogeneration Site Life (years) 
The economic model, based on the so-called SEMER code [3], was extended 
for H2/electricity cogeneration case and cost models for innovative components 
were also developed specifically. The multiobjective optimization procedure 
was performed via genetic algorithms, that have proven to be particularly well-
fitted for such problems and have the advantage to lead directly to the so-called 
Pareto front. The bicriteria optimization step was carried out with MULTIGEN 
library [4], as a master procedure, connected to CYCLOP and SEMER codes 
(Fig. 2). 
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Fig. 2. Integration of the different models in the methodology 

Typical results are presented in Fig. 3 and exhibit different sets of compromise 
solutions, called Pareto fronts corresponding to various H2 production levels 
represented by one or several H2 production plants. The objective of the 
following step of the methodology is to reduce this set to assist the decision 
maker in selecting the preferred or best compromise solution from among the 
whole set of solutions. 
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Fig. 3. Bicriteria optimization results: Pareto fronts for cogeneration systems. 

2.2. Global production cost evaluation 

The production cost evaluation is classical for electricity production (Eqn. 2), 
and has been performed for the solutions identified at the first step of the 
methodology (Fig. 3). 
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Where: 
CProd: production cost (€/kWh), Pa: annual production of energy (MWh/year). 
For cogeneration systems, the annual production of energy involves the 
contribution of both electricity and exergetic power of H2: 

  22 HPmWHPa ExHelec    (Eqn. 3.) 

Where: 
H: production period (hours/year), Welec: electric production (MW),  

2H
Let us mention that the electrical and hydrogen production cost is identical in 
value (€/kWh) from an exergetic point of view. According to Fig. 4, solutions 
with minimum exergetic production costs can be highlighted: they correspond 
to minimal production costs of electricity. But, at this level, H2 and electricity 
are undifferentiated from the production cost point of view. 

m : H2 production (mol/s), PEx: Exergetic Power of H2 (235.3 MJ/mol). 
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Fig. 4. Production cost evaluation for bicriteria optimization results 

2.3. Fixing the cost of electricity 

As abovementioned, the use of the exergy concept implies that the production 
costs of both forms of energy are undifferentiated, i.e. the overcost related to the 
production of H2 is reflected on the cost of electricity. The production cost of 
electricity (€/kWh) is then fixed to deduce the production cost of hydrogen 
(€/kg). For a given H2/electricity production ratio, an optimum of H2 production 
costs exists for a given electricity cost, as displayed in Fig. 5. These results 
constitute a decisional map for the selection of cogeneration systems. Each 



optimal solution is related to a simultaneous electricity/hydrogen production: 
optimal production costs can be deduced from Fig 5. 
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Fig.5. Final optimal cogeneration solutions for decision makers 

3. Conclusions 

The proposed methodology, based on classical evaluation criteria, makes it 
possible to visualize clearly and quickly the economic interest of cogeneration 
systems (electricity & H2). From the application of exergetic theory, the overall 
production cost can be deduced. When fixing the cost of electricity, different 
scenarios can be proposed to the decision maker to assist him for cogeneration 
system selection. This methodology is intended to be applied to any system, 
implying different modes of production for electricity and hydrogen. 
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