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360◦ Image Saliency Prediction by Embedding
Self-Supervised Proxy Task

Zizhuang Zou, Mao Ye∗, Member, IEEE, Shuai Li, Member, IEEE, Xue Li, Member, IEEE, and
Frederic Dufaux, Fellow, IEEE

Abstract—The development of Metaverse industry produces
many 360◦ images and videos. Transmitting these images or
videos efficiently is the key to success of Metaverse. Since the
subject’s field of view is limited in Metaverse, from the perception
perspective, bit rates can be saved by focusing video encoding
on salient regions. On different ways of handling 360◦ image
projections, the existing works either consider combining local
and global projections or just use only global projection for
saliency prediction, which results in slow detection speed or low
accuracy. In this work, we address this problem by Embedding
a self-supervised Proxy task in the Saliency prediction Network,
dubbed as EPSNet. The main architecture follows an autoencoder
with an encoder for feature extraction and a decoder for saliency
prediction. The proxy task is combined with the encoder to
enforce it to learn local and global information. It is designed
to find the location of a certain local projection in the global
projection via self-supervised learning. A cross-attention fusion
mechanism is used to fuse the global and local features for
location prediction. Then, the decoder is trained based on the sole
global projection. In this way, the time-consuming local-global
feature fusion is placed in the training stage only. Experiments
on public dataset show that our method has achieved satisfactory
results in terms of inference speed and accuracy. The dataset and
code are available at https://github.com/zzz0326/EPSNet.

Index Terms—360◦ image, saliency prediction, proxy task.

I. INTRODUCTION

OMNI-DIRECTIONAL (360◦) image saliency detection
are very useful for 360◦ image or video perception

oriented transmission which will save bit rates in perception
perspective [1], [2], [3], [4]. An accurate and quick saliency
detection also means that a deeper understanding of the 360◦

image data which leads to advances in object detection [5], [6],
semantic segmentation [7], [8], viewport prediction [9], [10],
[11], etc. 360◦ saliency detection is an extremely challenging
task because the subjects can only observe the area within a
limited field of view when using the head-mounted displays
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Fig. 1. Comparison between the previous method and our method EPSNet.
(a) Multiple projection fusion first do multiple local or global projections, and
then fuse the saliency detection results. (b) Self-supervised learning approach
adapts contrast learning to train the encoder. (c) Our approach embeds a proxy
task to train feature encoder.

due to the panoramic information it contains. As a result, when
predicting the 360◦ image saliency, head and eye movement
prediction is required [12].

There are generally three ways to predict 360◦ image
saliency: direct prediction, multiple projection fusion and self-
supervised learning based method. Direct prediction simply
uses the 2D image saliency detection models [13], [14] to the
global projected 2D image from the 360◦ image. Although the
saliency detection methods for 2D image have been studied for
a long time [15], these models cannot be directly applied to
360◦ image because of the discontinuity and distortion char-
acteristics of the projected 2D image mentioned in [16]. Also
the panoramic information requires additional head motion
prediction, resulting in only limited performance.

The second row of methods uses multiple projection fusion
of 360◦ image to combine local and global information to
address the discontinuities and distortions [17], [18], [19],
which is shown in Fig.1(a). Usually, 360◦ image is projected
to a few local and global view 2D images, and then 2D image
saliency detection method is applied to obtain the salient areas
which are lately fused to get the final saliency regions. This
type of method combines the experience of previous works on
2D saliency detection and the characteristics of 360◦ image
which provides a decent performance. However, this category
of methods need to first construct the 2D stored 360◦ image
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into a sphere, project it into a few plane image and then fuse
predictions, resulting in a slow speed.

The last kind of methods utilizes the data characteristics of
360◦ images to design a self-supervised learning method [16].
With the limited saliency labeled omni-directional images with
saliency, some data augmentation or 2D datasets have to be
used to train the model, which does not make good use of
the vast unlabeled 360◦ images. The last category of methods
takes advantages of these unlabeled 360◦ images by using an
autoencoder-style architecture consisting of an encoder and
a decoder as shown in Fig.1(b). The encoder is trained with
easily collected unlabeled 360◦ images by contrastive learning,
i.e., the features of global projections of the same 360◦ image
at different angles are close to each other and the projection
features of different 360◦ images are far away. Then it is
processed by a decoder with 2D image saliency model to
promote inference speed. However, the existing work only
enhances feature representations in the global field of view,
ignoring the local information similar to the user’s view,
resulting in rather poor performance.

From the above analysis, it is natural to consider combin-
ing the approaches of self-supervised learning and multiple
projection fusion. However, this combination is not trivial,
because the simple ensemble of multiple projection approach
further increases the inference time. As shown in Fig.1(a), the
information of local projection is also contained in the global
projection. To solve the above mentioned paradox, we propose
to extract both global and local features from global projection.
In this way, the prediction accuracy can be improved and
redundant computation caused by multiple projection fusion
can also be avoided.

Based on the above motivation and idea, we develop a
new approach which Embeds a self-supervised Proxy task
in the Saliency prediction Network, named as EPSNet as
shown in Fig.1(c). Our EPSNet consists of an encoder and
a decoder as the backbone. A 360◦ image is first projected by
Equi-Rectangular Projection (ERP) and Cube Map Projection
(CMP) [20] to obtain the global projection (ERP images)
and local projection (CMP images), respectively. The encoder
extracts the global features of ERP, with a proxy task, named
as FindCMP. It aims to find the location of one face of CMP
(local) in ERP (global) which is known in projections. Then a
cross attention module fuses the local and global information
to interact and learn from each other. The proxy task FindCMP
enforces the encoder to learn both local and global features
from an ERP image. In the end, a decoder is used to obtain
the final saliency prediction. It is worth noting that the CMP
projection is only used in the training process to supervise the
feature learning from ERP, and not used in the inference, thus
reducing the inference complexity.

Our contributions are in three-folds: (1) A new framework
for 360◦ image saliency detection is proposed. It is the first
one to use a proxy task to assist the 360◦ image saliency
detection network learning local and global features, which
only exists at training phase. Our technical design of the proxy
task improves the prediction accuracy without reducing the
inference speed. (2) We proposed a new cross attention feature
fusion scheme for the proxy task. By predicting the category

of six faces of a CMP image, it can obtain implicit global
features to interact with the encoder to learn better features.
(3) Despite its simple design, extensive experiments on public
dataset prove that our EPSNet outperforms a wide variety of
the state-of-the-art methods in terms of inference speed and
accuracy.

II. RELATED WORK

A. 360◦ Image Saliency Detection

As we mentioned before, there are three routes for 360◦ im-
age saliency detection. The first approach extends 2D saliency
model to the 2D global projection from 360◦ image directly.
For example, SaltiNet [21] uses a 2D U-shaped structure to
obtain 360◦ saliency results. As denoted by [18], 2D saliency
model has strong center bias located in the center area of
projected image, but 360◦ image does not obey this property.
In addition, the discontinuity and distortion of projection also
reduce the accuracy of 2D model.

The second approach multiple projection fusion usually uses
the traditional 2D saliency model to the small field images
obtained after projection, and then performs late fusion to
get the final results. For example, SalGAN360 [17] uses fine-
tunned 2D SalGan [13] to obtain the CMP and ERP saliency
maps and then fuse them. ATSAL [19] divides the CMP
surface into two categories: equator and pole, and then fuses
saliency based on attentions. It is noteworthy that other state-
of-the-art attention models can also be used in this kind
of fusion. For example, HAN [22] constructs the attention
with interdependencies between different layers, channels,
and locations; SRGAT [23] divides the image into small
pieces and uses the graph attention to relevance them. MV-
SalGAN360 [18] introduces local fields of view with various
sizes, and determine the learned weights for the corresponding
positions according to the pixel density. In [24] expands the
original CMP face is extended with the surrounding informa-
tion so that the field of view of a single CMP face is greater
than 90 degrees, which eventually makes the segmented face
intersects at the boundary to construct a more complete sphere.
All in all, the projection operation and multi-view prediction
fusion slow down inference speed.

The lack of labeled 360◦ saliency samples promotes the last
approach based on self-supervised learning method. Rethink+
[16] uses spherical rotation to get global projections from
different angles to construct positive and negative sample pairs,
and train the feature encoder through NCE loss [25]. Then,
the features by self-supervised learning are used to train a
decoder for saliency detection. This route brings fast single-
view inference. But it does not use local features in the training
process, so the accuracy is limited.

B. Proxy Task Learning

Proxy task learning means building another task whose
training sample and labels are based on the original training
data. Training the proxy task model can learn some features
that are helpful to the main task. For example, RotNet [19]
rotates the original image to get 0, 90, 180, 270 degree rotated
images, by the proxy task of classifying these 4 categories,



IEEE TRANSACTIONS ON BROADCASTING 3

Fig. 2. Overview of our method. The training process of our model consists of two stages. (a) Encoder training based on proxy task. The encoder is trained
using a proxy task that combines local and global features (blue). (b) Decoder training based on the trained encoder. KLD loss is used for training while the
encoder parameters are frozen (black).

the additional enhanced features can be applied to image
classification and object detection. In semantic segmentation
area, [26] designs a proxy task of restoring grayscale images
to color images, allowing the model to learn features to help
image segmentation. [27] designs a series of tasks based on
relationships between 2D images obtained by 360◦ images,
and applied the learned features to all of the above 2D tasks.

These tasks are all designed for 2D related tasks and cannot
be directly applied to 360◦ images because the objects in its
projection format ERP have inequable geometric representa-
tions at different latitudes. Therefore, we propose a new proxy
task that combines ERP with CMP images that are similar to
the subject’s field of view to help the model understand the
geometric distortion in ERP format image.

III. THE PROPOSED METHOD

Problem statement. Suppose that there exits a labeled
dataset Ds = {(Ei

s, Ŷ
i
s )}

Ns
i=1 where Ns represents the total

number of labeled 360◦ images, Ei
s is the i-th 360◦ image

stored in ERP format and the corresponding label Ŷ i
s denotes

its ground-truth saliency area. There also exists an unlabeled
dataset Du =

{
Ej

u

}Nu

j=1
where Nu is the total number of

unlabeled 360◦ images stored in ERP format. Our goal is to
design a model which can efficiently and accurately predict the
saliency areas of a 360◦ image based on the labeled dataset
Ds and unlabeled dataset Du.

Overview. The proposed EPSNet is a two-stage method. As
shown in Fig.2, the encoder fθE and decoder gθ are trained
sequentially. First, a proxy task is employed to train the feature
encoder based on the dataset Du(Fig.2(a)), then the decoder
is trained by freezing the encoder parameters based on the
dataset Ds (Fig.2(b)). At the inference phase, the proxy task
is no longer needed; the saliency is predicted based on the
ERP format input of a 360◦ image.

Projection

Random Shuffled 

Matching

Fig. 3. Framework of the proposed FindCMP.

A. Training Encoder with Proxy Task

Fig.3 demonstrates the process of the proposed proxy task.
The unlabeled training dataset Du for proxy task is used for
constructing the relationship between one face of CMP format
image and its location in the corresponding ERP format image.
It makes that fθE can learn local feature similar to the user’s
field of view and the geometric characteristics contained in
ERP. First, one ERP image is selected from dataset Du and
converted to CMP format. The ERP format image is denoted
as E ∈ R3×we×he , where we and he represent image width
and height respectively. Each CMP has 6 faces denoted as
ci ∈ R3×wc×hc where i ∈ {1, · · · , 6}, wc and hc represent
the width and height of one face of CMP image respectively.
We divide the process of transforming ERP into CMP into
two steps. The first step is placing ERP into a cube with the
same side length as the sphere’s diameter. Then the perspective
projection is performed as T (E) =

∑6
i=1 Ci where T is the

projection, and C represents a CMP group obtained by E.
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（a）Encoder

（b）Decoder

Fig. 4. The architecture of feature encoder and decoder for saliency prediction.
The stride of all convolution layers is set to 1, and all but the last layer are
activated by ReLU function.

Without rotating the sphere, the position of each CMP face
on the ERP is fixed, and we can use this property to label
the locations, i.e. assign each face ci with the label P̂ of
1, 2, · · · , 6. Then, in order to avoid the trivial solution and
prevent the model from generating shortcuts to stop learning,
we randomly shuffle the order in a CMP group, and update P̂
with the corresponding CMP face number. Finally, the shuffled
CMP image will be matched with the ERP image to find
the position of local information in the global information.
In addition, the proposed agent task FindCMP also requires
feature extraction network and feature fusion module in the
matching phase. Subsequently, we will introduce these two
parts and how to use the proxy task to train the encoder fθE
respectively.

The feature extraction networks. Two separate feature ex-
traction networks fθE and fθC are constructed corresponding
to the ERP and one face of CMP format images respectively.
The network fθE : E 7→ FE takes an ERP image E as input
and extracts the global feature FE . In the same way, the local
feature is extracted by fθC : c 7→ Fc, where c is a face in
CMP. As shown in Fig.4(a), the above two feature extraction
networks use VGG16 architecture [28] with the tail 5-layer
structure removed.

With the local feature extraction network, fθC accepts all the
faces in a CMP, so it implicitly learns panorama information
contained in the sphere as fθE , as well as local information
contained in one face of a CMP. By interacting these two
feature extraction networks, fθE can also learn the local
features. This argument is validated in the global structural
integrity experiment in Section 4.

Cross attention fusion. The features FE and Fc from
these two encoders are further processed by a fully connected
layer respectively to obtain features rE and rc in the same
dimension. Then they are fused based on a cross attention

module shown in Fig.2, which is denoted as the following,

QE = rEWQ, (1)
Vci = rciWV , (2)
KT

ci = (rciWK)T , (3)

CAi = ReLU ◦ (QEK
T
ci)Vci (4)

for i = 1, · · · , 6, where QE , Vci , and KT
ci are the query,

value, and key used in cross attention. ◦ stands for the function
nesting operator. The final CAi ∈ R512 is obtained through
ReLU activation function and used to predict the location of
a face of CMP in ERP.

In the cross attention fusion process, query and key are
interacted by dot product, which means that only data with
the same position will be enhanced. By this mechanism, the
global feature FE takes part in the location prediction. When
the error is propagated back, the feature extraction network
fθc guides the feature extraction network fθE to pay more
attention to the local features.

Remark. After the cross attention fusion, ReLU is chosen
as activation function instead of traditional Softmax in the
Transformer [29]. Using softmax means that the query needs
to be multiplied by the key of every face. This will cause the
model to pay more attention to the information constructed
by fθC . It is inconsistent with our objective of training fθE .
On the contrary, ReLU can activate the corresponding input
information independently, excluding the interference of other
faces.

Training loss. Finally, the location prediction based on the
vector CAi is as follows,

P̃ (ci) = FC ◦ CAi (5)

where P̃ (ci) is the location prediction. Then fθE can be trained
by the following objective function,

Lproxy =

6∑
i=1

(
P̃ (ci)− P̂ (ci)

)2
. (6)

Remark. In order to avoid fθE paying too much attention to
local information and causing the loss of global information,
we adopt all the six faces in a CMP group for prediction at a
time. The necessity of using all CMP faces will be discussed
in the experiment section.

B. Decoder Training

As shown in Fig.2(b), after completing the training of fθE .
A decoder gθ : FE 7→ Ỹ is constructed to map the feature
FE to a saliency map Ỹ . In the following, the decoder is
explained from three perspectives: the definition of saliency
image, model building and training.

Saliency map preparation. The user’s head and eye move-
ments are recorded at fixed time intervals to obtain a series
of points. Then the fixation map is obtained by the following
equation:

Sij =

{
1 if (i, j) is recorded,
0 otherwise (7)

where Sij is a matrix with the same resolution as the image.
However, it is difficult for us to learn and predict a sparse
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Fig. 5. Saliency map generation based on ERP and CMP. The red box represents the magnified area.

matrix with time series information. Accordingly, a Gaussian
kernel is used to convolve the fixation map to obtain continu-
ous regions, which is the saliency map in training. According
to [30], we set the expansion angle of the Gaussian kernel to
5 degrees, and perform the following step:

Ŷ = G(SE) (8)

where G is a Gaussian Kernel. We can see that in the above
generation process, all fixations are treated equally. However,
in ERP, the pixel density is different at different latitudes, i.e.,
the further away from the equator, the lower the density. This
leads to a large number of fixations near the pole of the ERP,
which actually only occupies a small part of the real field of
view. It is inconsistent with our setting. To solve this problem,
We took the method as follows,

Ŷ = Tback(G(T (SE)) (9)

where T converts ERP to CMP format to obtain a less
distorted image to fit the generation process. Tback projects
the resulting CMP saliency maps back into ERP format.

From Fig.5(a), we can see that there are some fixations near
the pole area, and the CMP-based method tends to ignore those
points (Fig.5(b)), while these fixations generate salient regions
(Fig.5(c)) in ERP-based approach. The ERP format has lower
pixel density in regions farther from the equator, which means
that the pixel distances at the pole area are much closer than
what is shown on the ERP. Therefore, the viewpoints in the
red box may only occupy a small area or even a single point in
the real field of view. It is obviously wrong for the ERP-based
method to treat all pixels equally, so we adopt the CMP-based
method that is closer to the real field of view to generate the
saliency map.

Decoder model. The decoder model gθ is shown in Fig.4(b)
based on the 2D saliency prediction model SalGan [13]. Using
the U-shaped structure to decode the large receptive field
feature after multiple max pooling can make good use of the
context to determine whether it belongs to the saliency region.
With a simple decoder, we can prove that experimentally the

Algorithm 1 Asynchronous training algorithm
Require: Global encoder fθE , local encoder fθC , decoder gθ,
unlabeled data set Du, labeled data set Ds, projection opera-
tion T , random shuffled R.

1: function FindCMP(fθE , fθC , Du, T , R)
2: Data preparation:
3: for all Ej

u ∈ Du do
4: T (Ej

u) = Ci, P = (1, 2, 3, 4, 5, 6)
5: R(C,P ) = c, P̂
6: Encoder training:
7: Update θE , θC by optimizing Lproxy(P̃ , P̂ )
8: End for
9: return fθE

10: end function
11: function Decoder training(fθE , gθ, Ds)
12: for all (Ei

s, Ŷ i
s ) ∈ Ds do

13: gθ(fθE (E
i
s)) = Ỹ

14: Update gθ by optimizing LKLD(Ỹ , Ŷ )
15: End for
16: return gθ
17: end function

obtained feature FE can predict a high-quality saliency image
without the need of additional fusion at the decoding end under
the premise of ensuring the inference speed.

Training loss. The Kullback-Leibler Divergence (KLD) loss
is used to measure the distance between the predicted value
and the real value as follows,

LKLD(Ỹ , Ŷ ) =

we×we∑
i=1

Ŷi log

(
ε+

Ŷi

ε+ Ỹi

)
, (10)

where the predicted distribution is Ỹ ∈ [0, 1]we×we , and the
real value is Ŷ ∈ [0, 1]we×we . The constant ε (ε=1e-50)
prevents the value blows up when the predicted value is close
to 0.

As most of areas in saliency map are 0, KLD loss is more
dependent on the area with large values Ŷi. It will make the
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TABLE I
PERFORMANCE COMPARISON ON SALIENT360! DATASET. THE BEST SCORES ARE MARKED IN BOLD AND SECOND BEST IN RED.

Model Venue AUC-J ↑ NSS ↑ CC ↑ SIM ↑ KLD ↓

Direct
prediction

UNISAL[14] ECCV20 0.7563± .022 0.9114±.096 0.6782±.029 0.6499±.024 1.4305±.29
SalGan[13] arXiv17 0.7609±.022 0.8942±.081 0.658±.026 0.6301±.019 0.5282±.055
SaltiNet[21] ICCVW17 0.7460±.027 0.6781±.073 0.6301±.024 0.7895±.011 0.1447±.013

Multiple pro-
jection fusion

MV-SalGAN360[18] TMM20 0.8028±.018 1.1680±.088 0.8106±.023 0.7342±.028 0.6635±.249
ATSAL[19] ICPRW21 0.7255±.024 0.8207±.108 0.5107±.037 0.5928±.014 1.2795±.257

Self-supervised
approach

Rethink[16] ICCV21 0.7565±.029 0.7927±.094 0.6720±.031 0.8021±.011 0.1239±.013
Rethink+ ICCV21 0.7570±.028 0.7882±.092 0.6637±.03 0.7999±.011 0.1262±.011
EPSNet Ours 0.7607±.029 0.8642±.106 0.7141±.031 0.8096±.01 0.1125±.012

model focus on the viewpoint position, which is close to the
requirement of using saliency image for viewpoint prediction
in 360◦ data to reduce the bitrate and be more in line with the
actual needs.

C. Overall function

The overall saliency model will be trained by the following
formula:

LT = Lproxy + LKLD, (11)

asynchronous training of the model consists of training the
encoder using the proxy task FindCMP with Lproxy and
supervised learning of the decoder with LKLD. Due to the
lack of labeled saliency images, we process the unlabeled
images and get the corresponding input and labels, and train
the encoder. The model can learn the geometric information
of the input format ERP from the designed proxy task, so as
to better predict the saliency images. This process is described
in Algorithm 1.

IV. EXPERIMENT

In this section, we will verify the effectiveness of the
saliency encoder trained on FindCMP. First, we compare the
frozen encoder-trained model with other saliency detection
models. Then we illustrate the gap in inference speed between
different methods. Finally, we perform ablation experiments to
demonstrate the effectiveness of cross attention, the necessity
of implicit panoramic views when training the encoder, and
the anti-interference ability of the proposed proxy task against
center bias.

A. Experiment Setup

Datasets. Three public datasets, unlabeled ERP images
provided by [16], VR-EyeTracking [31], and Salient360! [32]
are used for encoder training, decoder training, and evaluation,
respectively. To train the encoder, we selected 8000 gravity
alignment ERP images [33] from the unlabeled dataset as
the training set to ensure consistency with ERP images in
the decoder dataset. After completing the training of the
encoder, the limited labeled image saliency dataset is used
for the next training step. We intercept 4081 images in the
VR-EyeTracking [31] video dataset in units of 1 second to
obtain images with similar information but different fixation
locations, which simulates the situation where the saliency

collection time of images is much longer than that of videos,
and used the provided fixation files of eye and head movements
to generate fixation maps. The resulting fixation maps generate
the saliency maps with the Gaussian Kernel. After completing
the training of the entire model, the Salient360! dataset (85
training/26 testing) is used to evaluate the model, and since
the labels of its test set are not public, we choose to test on
the training set (not trained on this dataset).

Evaluation metrics. To be consistent with the measurement
methods of the previous saliency model, all the experiments
are compared under the following five metrics: Normal-
ized Scanpath Saliency (NSS), Kullback-Leibler Divergence
(KLD), Similarity (SIM), Linear Correlation (CC), and AUC-
Judd (AUC-J). The detail metric explanation can be found in
[31]. All the evaluations are compared at 320×160 resolution.

Implementation details. The models in this paper are built
based on Pytorch and RTX3090. All feature encoders are
trained with the following parameters: the batch size is 80
as Rethink [16], the learning rate is set as 1e-4, adam [34]
optimizer is used, and 100 epochs are trained in the self-
supervised training set. In decoder training, we only train the
decoder for 20 epochs instead of the 100 epochs in Rethink
to prevent over-learning of video saliency. Except the batch
is set to 16, all the other settings are the same with encoder
training. It is worth noting that for the fair comparison with
the Rethink model, we freeze the weights of the encoders and
train the decoder on the VR-EyeTracking [31] using the same
parameters.

B. Comparison with state-of-the-art methods

Compared methods. We compare the proposed model
with six models, including three direct prediction models,
UNISAL [14], SalGan [13], and SaltiNet [21]; and two mod-
els designed based on multiple projection fusion, i.e., MV-
SalGAN360 [18], ATSAL [35]. In addition, we also compare
with the self-supervised learning based approach Rethink [16].
To compare our proxy task with contrastive learning in Re-
think, we build a variant Rethink+ that uses an encoder trained
by contrastive learning and combined with EPSNet decoder.
All the decoders of these self-supervised based models are
trained on the processed VR-EyeTracking [31] image dataset
with the same parameters and frozen encoder weights.

Quantitative comparison. Table I shows the experimental
results on 25 images randomly selected from the training set on
salient360!. We can get the following observations. First, our
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Fig. 6. Visualizations of saliency predictions on Salinet360! dataset using different models.
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Fig. 7. Comprehensive comparison of runtime and integral performance of
all indicators.

method EPSNet achieves the best performance on two indica-
tors KLD and SMI, compared with all SOTA approaches. The
multiple projection fusion approach MV-SalGAN360 achieves
the best performance on other three indicators, i.e., CC, ACU-
J and NSS. However, by combining Table III with Table I, it
can be found that this method consumes much more inference
time than other methods (over 3000 times of our method).
By taking whether the inference time is greater than 1 second
as the threshold, existing methods can be divided into two
categories: long time group and short time group for further
comparison. It can be found in short time group that our
EPSNet also reaches the best on CC indicator, and the gap
between the best value on ACU-J is small. For the indicator
NSS, our EPSNet ranks third. The reason is that NSS cares
more about whether the salient region is covered or not, but

ignores the overflowing non-salient region. And the 2D direct
prediction methods have a larger prediction area, resulting in
better performance on this indicator. Second, compared with
the self-supervised learning based approach, EPSNet obtains
better results because it can extract more better local features.
However, by comparing Rethink with Rethink+, we can find
that the effect of Rethink+ has decreased, which is caused by
the mismatch between the simple feature representation and
the complex decoder structure. The model ATSAL does not
work well because it is designed for video prediction. It treats
the input image as the first frame of the video, and many
salient regions are not predicted. All of the above mentioned
facts prove that our proxy task strategy works.

In order to further verify the effectiveness of our method in
terms of comprehensive performance. We apply the Coefficient
of Variation (CV) method to get the weight of each indicator
[36], and carry out the weighting operation to get the integral
score. First of all, the CVs of five indicators are calculated
through the following formula,

CV =
S

M
(12)

where S and M stand for standard deviation and the mean of
each indicator. The KLD indicator is given a negative number
to keep consistent with the other four indicators, that is, the
greater the better. The weight to each indicator is obtained
by normalizing these five CVs. The final score is obtained
by multiplying the weight with the corresponding indicator.
As shown in Fig.7, EPSNet achieves the best score under the
condition of acceptable inference speed.

To show that the proposed model EPSNet can have stable
performance, we conduct a confidence interval study for
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TABLE II
ABLATION STUDY ON FUSION ARCHITECTURE AND THE INPUT FACE NUMBER. THE NUMBER STANDS FOR HOW MANY FACES OF A CMP IS INPUT AND

THE FULLY CONNECT MEANS FUSING THE FEATURES BASED ON A FULLY CONNECTED LAYER.

Fully Connect Cross Attention
Number AUC-J ↑ NSS ↑ CC ↑ SIM ↑ KLD ↓ AUC-J ↑ NSS ↑ CC ↑ SIM ↑ KLD ↓

1 0.758 0.857 0.700 0.808 0.116 0.755 0.793 0.658 0.799 0.130
2 0.753 0.787 0.658 0.800 0.128 0.756 0.811 0.665 0.801 0.127
3 0.756 0.816 0.675 0.802 0.125 0.756 0.815 0.689 0.805 0.120
4 0.756 0.848 0.707 0.808 0.115 0.758 0.816 0.682 0.804 0.121
5 0.754 0.790 0.669 0.801 0.125 0.758 0.830 0.688 0.806 0.118
6 0.760 0.801 0.668 0.801 0.127 0.761 0.864 0.714 0.810 0.113

TABLE III
COMPARISON OF INFERENCE TIME ON SALIENT360!.

Model Runtime(s)
MV-SalGAN360[18] 1189.530

ATSAL[19] 25.058
SaltiNet[21] 0.419
Rethink[16] 0.206
UNISAL[14] 0.153
Our Model 0.341

TABLE IV
ABLATION STUDY ON DIFFERENT CONFIGURATIONS OF THE EPSNET. THE

RESULTS FROM TOP TO BOTTOM REPRESENT THAT THE DECODER
TRAINING SET IS DIRECTLY USED FOR TRAINING WITHOUT FREEZING THE

ENCODER WEIGHT, SOFTMAX IS USED IN CROSS ATTENTION, ROTATED
ERP IMAGES BEFORE THE PROCESS OF PROXY TASK DATA PROCESSING,

GENERATED SALIENCY MAP IN ERP-BASED APPROACH, AND THE
PROPOSED METHOD.

AUC-J ↑ NSS ↑ CC ↑ SIM ↑ KLD ↓
Direct train 0.755 0.810 0.680 0.801 0.124

Softmax 0.757 0.831 0.699 0.804 0.119
Rotation 0.753 0.793 0.663 0.798 0.131

ERP-based 0.758 0.825 0.697 0.806 0.117
Proposed 0.761 0.864 0.714 0.810 0.113

performance comparisons on different indicators. For the 95%
confidence level, they are shown in Table I. We can see
that in the last three rows of Table I, EPSNet has a similar
or smaller confidence interval with the rethink model while
improving performance, which proves that our model has
reliable improvement in the test set.

Qualitative results. Fig. 6 visualizes the saliency results
of three kinds of approaches and ours on four images (ERP)
in the Salient360! dataset. Compared with the labeled saliency
maps (GT), EPSNet is better than Rethink. It can observed that
EPSNet predictions are more complete near the equator, and it
is significantly more sensitive in non-equatorial regions. The
2D direct prediction model UNISAL has obvious spillover. It
is contrary to the purpose of saving bitrate by transmitting
the saliency region. Although MV-SalGAN360 can predict
most of the saliency regions, due to the multi-view saliency
prediction, the fusion of the saliency prediction results in local-
view images makes many non-salient regions marked as bright
spots.

Inference time. The inference time comparisons between
different models are shown in Table III. For fair comparison,

we choose i5-9400 CPU for inference in the Windows environ-
ment. UNISAL achieves the best result because of its simply
architecture, while our model has slightly lower inference
speed than the Rethink model due to its more complex de-
coder. Since MV-SalGAN360 performs multi-view late fusion,
it needs a longer prediction time. From the comprehensive
evaluation of efficiency and accuracy, our method achieves
the best performance.

C. Further Analysis

In this part, we will conduct exhaustive analysis from five
perspectives: the analysis of ablation; the integrity of CMP;
the choice of different loss functions; model fine tuning; and
significance test.

Ablation Experiment. We verify the rationality of the
proposed method by restoring or destroying each design in
this paper. In the first and second rows of Table IV, removing
the proxy task or using the original softmax to activate the
query and key operation results in cross attention will result
in poor performance. The former proves the effectiveness of
FindCMP, while the latter reflects the rationality of ReLU. In
the third row, we destroy the attribute of gravity alignment
by randomly rotating the original ERP image in the encoder
training set, and use these irregular images as a new training
set. The third row in Table IV shows that the performance is
degraded, proving the importance of screening gravity aligned
ERP images in the encoder training set. When the saliency
map is generated in the ERP way, the obtained saliency map is
taken as the label and the result is shown Table IV (the fourth
line noted as ERP-based). Due to the distortion in such ERP-
based approach, it can be seen that the performance decreases
compared with the CMP-based approach.

In order to verify the effectiveness of cross attention and
input of all faces of a CMP, we conduct an ablation experiment
shown in Table II. When feature fusion is based on a fully
connected layer, the performance is not directly related to the
number of input faces; while for cross attention fusion, the
more faces are input, the better the performance is. Deep learn-
ing expects the performance of the model can be improved
with more data, but the performance of full connected layer
fluctuation indicates that it is not suitable for our proxy task.
Our cross attention explicitly compute correlations between
the local features and global features and organically combined
them. Finally, the encoder can better learn the local features
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TABLE V
IMPLICIT GLOBAL STRUCTURAL INTEGRITY.

Rate AUC-J ↑ NSS ↑ CC ↑ SIM ↑ KLD ↓
100% 0.759 0.825 0.700 0.806 0.118
75% 0.755 0.813 0.685 0.804 0.122
50% 0.757 0.792 0.673 0.801 0.124
25% 0.757 0.815 0.681 0.804 0.122
0% 0.761 0.864 0.714 0.810 0.113

TABLE VI
ABLATION STUDY ON OBJECTIVE FUNCTION VARIANTS. K, C, N, AND B

REPRESENT KLD, CC, NSS, AND BCE LOSSES RESPECTIVELY. THE LOSS
FUNCTION IN THE THIRD ROW MEANS THE COMBINATION OF THE LOSSES

KLD, CC AND NSS WHERE THE NUMBER IS THE RATIO. THE SECOND
ROW IS SIMILAR.

Loss AUC-J ↑ NSS ↑ CC ↑ SIM ↑ KLD ↓
K 0.761 0.864 0.714 0.810 0.113

K-C-N 0.761 0.788 0.726 0.801 0.120
10K-2C-N 0.757 0.810 0.696 0.806 0.117

B 0.761 0.849 0.704 0.810 0.113

of 6 faces, and the global features are organically integrated.
Therefore, the more faces, the better the performance.

Implicit global structural integrity. At the proxy task, we
assume that the panorama information can be implicitly ex-
tracted for the CMP face feature extraction network, so it can
be well integrated with the ERP feature extraction network.
When a sphere is projected into the CMP format, six separate
faces are obtained. The first to fourth faces are at the equator
and the fifth to sixth planes are at the polar. When the six
faces are input into the CMP feature extractor at the same
time, it can obtain the information of the whole sphere. We
do an experiment to show the performance when some polar
faces are replaced by its equator faces. In the training set, the
replacement is done with a probability, i.e., the implicit global
structural integrity is corrupted. We show the performances
with conversion probability from 100% to 0% in Table V.
It can be seen that the performance is the best without any
conversion, verifying the importance of the implicit global
structural integrity. The case of all conversion (100%) is also
relatively good, because the samples are stored in a head up
manner, and the saliency is mainly concentrated at the equator.
The performance degrades the most when the conversion rate
is between 25% and 75%, because they have neither global
information nor focus on the equator.

Objective function variants. In previous studies, various
loss functions and combinations have been applied to saliency
detection. In order to find the optimal one, we use the four loss
functions mentioned in [18] during the training process of the
decoder, and their results are presented in Table VI. Among
these functions, CC aims to calculate the correlation between
saliency maps, with the same penalty for false positives and
false negatives, which is inconsistent with our need to find
salient regions as much as possible. NSS expects the model
generate a result with a high value at the viewpoint to make
the value of its value larger. Binary Cross Entropy (BCE) is
similar to KLD, and also expects a similar distribution between
the values and labels. In the comparison of first three rows,

TABLE VII
STUDY ON BATCH NORMALIZATION. C, F AND B STAND FOR CROSS

ATTENTION FUSION, FULLY CONNECTED LAYER BASED FUSION, AND
BATCH NORMALIZATION, RESPECTIVELY.

C F B AUC-J↑ NSS↑ CC↑ SIM↑ KLD↓
! % ! 0.756 0.846 0.703 0.809 0.115
! % % 0.761 0.864 0.714 0.810 0.113
% ! ! 0.760 0.801 0.668 0.801 0.127
% ! % 0.758 0.806 0.677 0.804 0.121

as the ratio of KLD increases, the performance of the model
improves to a certain extent, which shows the adaptation of
KLD for saliency detection. It is worth noting that the loss
function in the second row is the same as the loss function
used by MV-SalGAN360, and our method still maintains great
advantages in KLD. The performance of BCE is close to KLD,
because it also targets the strong saliency regions. However,
when the label value is far from 0.5, the size of the loss
function can well reflect the degree of similarity with Ŷ , and
the model can be trained according to the size of the difference.
However, we use saliency images instead of viewpoint maps
for training, and inevitably will encounter values close to 0.5.
At this time, if Ỹ is close to 1, training will fail with the
gradient exploding. Finally, we choose the KLD as our loss
function because it best meets the saliency requirement and
performs best.

The study of batch normalization. In many works, Batch
Normalization (BN) is used to help model training. To verify
its effectiveness in our model, we use this operation in
two types of fusion models. After the cross attention model
completes the fusion of features to obtain CA, only one fully
connected layer is used to predict the result, so we perform
a BN operation before this fully connected layer. For the
case using fully connected layer to feature fusion, a total of
three fully connected layers are used, and the BN operation
is applied on the outputs of the first and second layers. It is
worth noting that all training is done with total 6 CMP faces
as input. In the first two columns of Table VII respect to cross-
attention and fully-connected layer fusion respectively, we can
see that after adding the BN operation, the performance of
the model has declined, indicating that this operation is not
suitable for our method. This is because BN operation will
produce similar image features which reduces the pertinence
of the proxy tasks, resulting in performance degradation.

Fine tuning. After completing EPSNet training, we no
longer freeze the encoded weights, and fine-tune the model
using VR-EyeTracking [31] dataset to see if the performance
can be further improved. All the experimental results are
shown in Table VIII. It can be observed from the rows
(2-5) with 20 epochs, all indicators are decreased, and the
performance of the model has steadily been improved as the
learning rate decreases. This shows that the previously trained
EPSNet has learned satisfactory features, further training will
lead the model to loss of ability to capture local information.

In the rest of this table, we can see that without freezing the
encoder weights, more training epochs actually lead to worse
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TABLE VIII
FINE TUNING RESULTS WITH NO FREEZING ENCODER WEIGHT. THE FIRST
ROW CONTAINS THE ORIGINAL RESULTS BEFORE FINETUNE. THE RESULTS

IN ROWS (2-5) ARE TRAINED IN THE FIRST 20 EPOCHS USING THE
LEARNING RATE 1E-4, THEN IN THE FURTHER 20 EPOCHS USING THE

CORRESPONDING LEARNING RATES IN THE TABLE. THE LOWER HALF OF
THE TABLE CONTAINS THE RESULTS AFTER DIFFERENT FINETUNE

TRAINING EPOCHS USING THE LEARNING RATE 1E-4.

Learning rate AUC-J↑ NSS↑ CC↑ SIM↑ KLD↓
Fix 0.761 0.864 0.714 0.810 0.113
5e-5 0.754 0.782 0.654 0.797 0.130
1e-5 0.758 0.798 0.657 0.798 0.129
5e-6 0.758 0.809 0.667 0.800 0.126
1e-6 0.760 0.832 0.686 0.804 0.121

Epoch AUC-J↑ NSS↑ CC↑ SIM↑ KLD↓
20 0.758 0.820 0.688 0.805 0.120
15 0.759 0.847 0.704 0.809 0.117
10 0.756 0.832 0.696 0.806 0.118

5 epochs 10 epochs 15 epochs

Fig. 8. Saliency maps at different training epochs.

results. To explain this phenomenon, we show the saliency
maps with different epochs in Fig. 8. It can be observed that
when training for only five epochs, the model predicts large
saliency regions with a grey background. When the number of
training increases, the saliency area gradually becomes smaller
and the background becomes black. This is related to the loss
function KLD, since KLD drives the model to learn those
regions with the largest distance from the label image. It
causes the model to ignore the background areas with small
gaps when the number of training is small, resulting in a gray
background. After the training of 20 epochs, the performance
of the model is declined. This phenomena shows that the
features learned by our proposed proxy task is injured by direct
training.

Significance test. In order to verify the reliability of the im-
provements on the indicators in the comparative experiments,
we compare EPSNet with the rest of the models in the main
text using Wilcoxon signed-rank test. The experimental results
are shown in Table IX. It can be observed that all values
are less than 5% except for 2D image and video models on
some indicators, proving that our changes on these models are
robust. For the cases of larger values greater than 5%, this is
due to the reason that the 360◦ saliecny map is predicted by
directly using a 2D or video model. Due to the large difference

TABLE IX
WILCOXON SIGNED-RANK RESULTS COMPARED WITH EPSNET.

Model AUC-J NSS CC SIM KLD
UNISAL[14] 0.128 0.563 0.042 0.000 0.000
SalGan[13] 0.600 0.510 0.003 0.000 0.000
SaltiNet[21] 0.000 0.000 0.000 0.000 0.000

MV-SalGAN360[18] 0.011 0.000 0.000 0.000 0.000
ATSAL[19] 0.001 0.150 0.000 0.000 0.000
Rethink[16] 0.015 0.001 0.005 0.012 0.006

Rethink+ 0.011 0.002 0.001 0.001 0.001

between the 2D and 3D images, there is a large gap between
the prediction results, resulting in high indicator values.

V. CONCLUSION

We proposed a novel 360◦ saliency detection framework
EPSNet embedded with a proxy task. The proxy task Find-
CMP can use large unlabeled 360◦ images to self-supervise
train a feature encoder which can extract local and global
features from an ERP format image. Then these features are
input to a decoder to predict saliency map. Compared with
the previous complex multiple projection and fusion process,
EPSNet is fast and also accurate. In contrast to the self-
supervised approach and 2D extension models based on only
ERP images, EPSNet can extract much better local features,
so the saliency prediction accuracy is better. Experiments
demonstrate the effectiveness and efficiency of our method.
Moreover, not only with saliency detection, theoretically, the
framework can also be applied to other 360◦-related tasks,
such as object detection and semantic segmentation.
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