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Abstract
Several strategies have been recently proposed in order to improve Monte Carlo sampling
efficiency using machine learning tools. Here, we challenge these methods by considering a class of
problems that are known to be exponentially hard to sample using conventional local Monte Carlo
at low enough temperatures. In particular, we study the antiferromagnetic Potts model on a
random graph, which reduces to the coloring of random graphs at zero temperature. We test
several machine-learning-assisted Monte Carlo approaches, and we find that they all fail. Our work
thus provides good benchmarks for future proposals for smart sampling algorithms.

1. Introduction

1.1. Motivations
Sampling from a given target probability distribution Pt(σ1, . . . ,σN) over N degrees of freedom can become
extremely hard when N is large. A universal (i.e. system-independent) strategy for sampling consists in
starting from a random configuration of σ = {σi}i=1,...,N, and generating a local Monte Carlo Markov
Chain (MCMC), by sequentially proposing an update of one of the σi, and accepting or rejecting it with a
proper probability (e.g. Metropolis–Hastings), until convergence [1]. However, for large N, the convergence
time of the MCMC can grow exponentially in N, because of non-trivial long-range correlations that make
local decorrelation extremely hard [2].

A solution to this problem consists in identifying the proper set of correlated variables, and proposing
global updates of such variables together, in such a way to speed up convergence [3]. However, this process is
not universal, because it relies on the proper identification of system-dependent correlations, which is not
always possible. For instance, in disordered systems such as spin glasses, the nature of correlated domains is
extremely elusive and proper global moves are not easy to identify [4, 5]. Another approach, which has been
particularly successful in atomistic models of glasses, consists in unconstraining some degrees of freedom,
evolve them and constrain them back [6–10], but again it is model-specific. Alternative proposals based on a
renormalization group approach [11, 12] also rely on the identification of system-dependent collective
variables.

A recently developed line of research, see e.g. [13–20], proposed to solve the problem in an elegant and
universal way, by machine learning proper MCMCmoves. In a nutshell, the idea is to learn an auxiliary
probability distribution Pa(σ), which (i) can be sampled efficiently (e.g. linearly in N) and (ii) provides a
good approximation of the target probability. Then, the hope is to use the auxiliary distribution to propose
smart MCMCmoves. Using this strategy with autoregressive (AR) architectures that ensure efficient
sampling, some authors found convergence speedup [13, 14, 16], but others found less promising
results [20].
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In order to make these studies more systematic, and really assess the performance of the method, it is
important to have good benchmarks, i.e. problems that are guaranteed to be really hard to sample by local
MCMC. In the early 90s, the very same problem had to be faced to assess the performance of local search
algorithms that looked for solution of optimization or satisfiability problems [21]. In that case, the problem
of generating good benchmarks was solved by introducing an ensemble of random instances of the problem
under study [21–24]. It was later shown, both numerically and analytically, that these random
optimization/satisfiability problems require a time scaling exponentially in N for proper sampling at low
enough temperatures in certain regions of parameter space [2]. Hence, they provide very good benchmarks
for sampling algorithms. Yet, the recent attempts to apply machine learning methods to speed-up sampling
have not considered these benchmarks.

In this paper, we consider a prototypical hard-to-sample random problem, namely the coloring of
random graphs, and we show that all the proposed methods fail to solve it. Our results confirm that this class
of problems are a real challenge for sampling methods, even assisted by smart machine-learned moves. The
model investigated in [20] possibly belong to this class. In addition, we discuss some practical issues such as
mode-collapse in learning the auxiliary model, which happens when the target probability distribution has
multiple peaks and the auxiliary model only learns one (or a subset) of them.

1.2. State of the art
Before proceeding, we provide a short review of the papers that motivated our study. Because the field is
evolving rapidly, this does not aim at being an exhaustive review, and despite our best efforts, it is possible
that we missed some relevant references.

Merchan and Nemenman [25] considered the general problem of whether a target probability
distribution Pt can be approximated by a simpler one Pa, in particular by considering the Kullback–Leibler
(KL) divergence:

DKL(Pt||Pa) =
⟨
log

Pt(σ)

Pa(σ)

⟩
Pt

. (1)

If this quantity is proportional to N for N→∞, then Pt(σ)/Pa(σ) is typically exponential in N, and as a
result samples proposed from Pa are very unlikely to be accepted in Pt . A small DKL(Pt||Pa)/N (ideally
vanishing for N→∞) seems therefore to be a necessary condition for a good auxiliary probability, which
provides a quantitative measure of condition (ii) above. Merchan and Nemenma [25] suggested, by using
small disordered systems (N∼ 20), that there might be a phase transition, for N→∞, separating a phase
where DKL(Pt||Pa)/N vanishes identically and a phase where it is positive.

Wu et al [13] proposed, more specifically, to use AR models as tractable architectures for Pa. In these
architectures, Pa is represented using Bayes’ rule,

Pa(σ) = P1a(σ1)P
2
a(σ2|σ1) . . .PN

a (σN|σN−1, . . . ,σ1). (2)

Each term Pia is then approximated by a neural network, which takes as input {σ1, . . . ,σi−1} and gives as
output Pia, i.e. the probability of σi conditioned to the input. Such a representation of Pa, also called Masked
Autoencoder for Distribution Estimator (MADE) [26], allows for very efficient sampling, because one can
first sample σ1, then σ2 given σ1, and so on, in a time scaling as the sum of the computational complexity of
evaluating each of the Pia, which is typically polynomial in N for reasonable architectures. Hence, this scheme
satisfies condition (i) above. The simplest choice for such a neural network is a linear layer followed by a
softmax activation function. Wu et al [13] showed that using such an architecture, several statistical models
could be well approximated, and the Boltzmann distribution of a Sherrington–Kirkpatrick (SK) spin glass
model (with N = 20) could be efficiently sampled. Note that the model in [13] was trained by a variational
procedure, which minimizes DKL(Pa||Pt) instead of DKL(Pt||Pa). This method is computationally very
efficient as it only requires an average over Pa, which can be sampled easily, instead of Pt , but it is prone to
mode-collapse (see section 2 for details). Moreover, this work was limited to quite small N.

Following up on [13], McNaughton et al [14] considered as target probability the Boltzmann distribution
of a two-dimensional (2d) Edwards-Anderson (EA) spin glass model at various temperatures T, and used a
Neural AR Distribution Estimator (NADE) [27], which is a variation of the MADE meant to reduce the
number of parameters. Furthermore, the model was trained using a different scheme fromWu et al [13],
called sequential tempering, which tries to minimize DKL(Pt||Pa), thus preventing mode-collapse. To this
aim, at first, a sample from Pt is generated at high temperature, which is easy, and used to learn Pa. Then,
temperature is slightly reduced and smart MCMC sampling is performed using the Pa learned at the
previous step, to generate a new sample from Pt , which is then used in the next step. If Pa remains a good
approximation to Pt and MCMC sampling is efficient, this strategy ensures a correct minimization of
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DKL(Pt||Pa). This was shown to be the case in [14], down to low temperatures for a 2d EA model of up to
N = 225 spins.

Gabrié et al [15] introduced a different scheme for learning Pa. This adaptive scheme combines local
MCMCmoves with smart Pa-assisted MCMCmoves, together with an online training of Pa. It was
successfully tested using a different architecture for Pa (called normalizing flows), on problems with two
stable states separated by a high free energy barrier. Note that normalized flows can be equivalently
interpreted as AR models [28–30]. Wu et al [16] also proved the effectiveness of smart assisted MCMCmoves
in a 2d Ising model and an Ising-like frustrated plaquette model.

Several other groups [17–20] investigated a problem related to sampling, namely that of simulated
annealing [31] for finding ground states of optimization problems. This is an a priori slightly easier problem,
because simulated annealing does not need to equilibrate at all temperatures to find a solution [32, 33]. In
these works, simulated annealing moves were once again assisted by machine learning. Hibat-Allah et al [17]
tested their procedure on the 2d EA and SK models, and Fan et al [18] considered a 2d, 3d, and 4d EA model.
However, while finding the exact ground state of the SK and EA (for d ⩾ 3) models is hard, in practice for
not too large random instances the problem can be solved by a proper implementation of standard simulated
annealing [34], and the scaling of these methods with system size remains poorly investigated. Schuetz
et al [19] considered the graph coloring problem, which is the zero-temperature version of the benchmark
problem we propose to use in this work, and found that a graph neural network (GNN) can propose moves
that allow one to efficiently find a proper coloring with comparable performances to (but not
outperforming) state-of-the-art local search algorithm. Additionally, GNN have shown to be successful at
solving discrete combinatorial problems [35], but they do not provide much advantage over classical greedy
algorithms, and sometimes they can even show worse performance [36, 37]. Finally, Inack et al [20] showed
that the machine-learning-assisted simulated annealing scheme does not work on a glassy problem with a
rough energy landscape.

These works provided a series of inspiring ideas to improve sampling in disordered systems via machine
learning smart MCMCmoves. Yet, the question of whether machine learning can really speed up sampling in
problems that are exponentially hard to sample via local MCMC remains open. This wide class of systems
include many problems of interest, such as optimization problems (e.g. random satisfaction or random
graph coloring) [38] and mean-field glass-forming materials [39–42].

1.3. Summary
In this work, we test machine-learning-assisted MCMC in what is considered to be a prototypical
hard-to-sample model, namely the coloring of random graphs [21, 43, 44]. Before doing that, we also tested
and reproduced previous results in simpler cases.

The models we consider are:

(1) The mean-field ferromagnetic problem, usually called the Curie-Weiss (CW) model, to gain some
analytical insight into the different ways of training the auxiliary model.

(2) A 2d EA spin glass model. We consider this as an ‘easy’ problem (because, for instance, its ground state
can be found in polynomial time), and we use it to reproduce previous results, compare different
architectures, and gain insight on the role of some hyperparameters.

(3) The coloring (COL) of a random graph, which at finite temperature becomes an antiferromagnetic
Potts model. In the proper range of parameters, this problem is proven to be exponentially hard to
sample via local MCMC [2, 44], and we use it as a benchmark to understand whether smart MCMC can
improve the sampling efficiency.

Any machine learning model that satisfies the AR property can be trained and used as an auxiliary
distribution to propose smart moves. However, on the one hand, for complex problems, shallow or simple
models might not be expressive enough to accurately learn the target distribution. On the other hand, if a
problem can be easily solved by a simpler model, there is no need to employ complex deep architectures. In
this paper we used several standard architectures illustrated in figure 1 and detailed in the SI:

• The MADE [13], which is an AR deep neural network; when its depth is equal to zero, this corresponds to
a ‘shallow’ or single-layer AR model.
• The NADE [14, 27], which corresponds to a MADE with additional constraints on the parameters, with
different depths and number of hidden units. This architecture has proven to be effective in image detec-
tion [45], filtering [46] and quantum systems [47].
• For the coloring, because neither the MADE nor the NADE perform well, we also tested an AR GNN that
we called Graph ARDistribution Estimator (GADE), and a non-symmetric MADE (called ColoredMADE).
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Figure 1. Sketches of the AR architectures used in this work.

Finally, we tried several strategies to learn the auxiliary model:

(I) Maximum likelihood: we generate a sample from the target distribution, and we use it to train the
auxiliary model by maximum likelihood. While this is not a technique to generate samples from Pt ,
because one needs the samples to begin with, it is the best way to test if a given architecture for Pa is
expressive enough.

(II) Variational: we minimize the KL divergence DKL(Pa||Pt), which also corresponds to the variational free
energy of the auxiliary model when considered as an approximation of the true one [13].

(III) Sequential tempering: we train the auxiliary model at higher temperature T, then use it to generate
samples at lower T, and use the new samples to re-train the auxiliary model, and so on [14, 15].

The core of our work is the application of methods (II) and (III) to attempt a sampling at low
temperatures, for which local MCMC does not decorrelate fast enough. For the 2d EA model, we find that
basically all the techniques and architectures perform well down to very low temperatures, although (II) is
more prone to mode-collapse. We confirm that machine learning MCMCmoves can provide a speedup in
this case [14]. For the COL problem, we find that none of these methods work well, even at moderately high
temperatures located within the paramagnetic phase of the model.

2. Methods

We consider a specific application of the general scheme discussed in section 1, in which we want to
approximate the Boltzmann distribution associated to the ‘true’ Hamiltonian H(σ) at a fixed inverse
temperature β = 1/T (the target),

Pt(σ) = PB(σ) =
e−βH(σ)

Z
, (3)

with an AR network, i.e. Pa(σ) = PAR(σ). In most cases, sampling is easy at small β and becomes harder and
harder as β is increased. We now discuss different possible strategies to learn a proper PAR(σ).

2.1. Maximum likelihood
If a sufficiently large sample of configurations {σm}m=1,...,M is available, independently and identically
sampled from PB(σ), it is possible to train the model by maximizing the probability of the sample according
to the AR model itself, i.e. to use the maximum likelihood method.

Assuming that the AR model is specified by a set of parameters θ, we maximize the likelihood of the
observed data, defined as:

L(θ) =
M∏

m=1

PAR(σ
m|θ). (4)

Equivalently, if Pemp(σ) =
1
M

∑M
m=1 δσ,σm is the empirical distribution of the sample, we minimize:

D(θ) = DKL(Pemp||PAR)

=− logM− 1

M

M∑
m=1

logPAR(σ
m|θ).

(5)

The optimal parameters θ̂ are given by:

θ̂ = argmaxθL(θ) = argminθD(θ). (6)

4
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The gradient ofD(θ) can be computed analytically in terms of the σm, because logPAR(σ|θ) is given explicitly
(or by back-propagation) as a function of θ at fixed σ, and the training can thus be performed efficiently.

Note that if PB(σ) has multiple peaks, for sufficiently largeM all these peaks are represented in the
empirical distribution with the correct weights. Hence, when performing maximum likelihood to learn
PAR(σ), the learned model should be able to represent all the peaks of PB(σ), provided the AR model has
enough free parameters, i.e. is expressive enough. Then, mode-collapse will not occur.

Obviously, the maximum-likelihood approach relies on the quality of the initial sample, which has to be
representative of the true distribution. Such a sample is by definition difficult to obtain for the really hard
sampling problems that we want to solve. Moreover, if we were able to obtain such a sample by conventional
means, there would be no need for any smart MCMC scheme. Nevertheless, the maximum-likelihood
approach constitutes a reliable and effective way to test if a specific AR architecture is capable of learning the
complexity of a specific problem. We will thus use this scheme, in cases where standard sampling from PB(σ)
is possible, to test the expressive quality of our AR architectures.

2.2. Variational approach
Wu et al [13] proposes to bypass the need for sampling from PB(σ) by using a variational approach. Instead
of minimizing DKL(PB||PAR) or its approximation DKL(Pemp||PAR), as in section 2.1, we want here to

minimize DKL(PAR||PB) =
∑

σ PAR(σ) log
PAR(σ)
PB(σ)

, or equivalently [13] the variational free energy:

βF[PAR] =
∑
σ

PAR(σ)(βH(σ)+ logPAR(σ))

= βF[PB] +DKL(PAR||PB).
(7)

As it is well known in statistical mechanics, because the KL divergence is positive, F[PAR] is minimized when
PAR = PB and DKL(PAR||PB) = 0, and otherwise it provides an upper bound to the true free energy.

The gradient with respect to the parameters θ that define the AR model can be written as an expectation
value over the AR model itself [13],

β∇θF[PAR] = ⟨Q(σ)∇θ logPAR(σ)⟩PAR ,
Q(σ) = βH(σ)+ logPAR(σ).

(8)

The learning can then be done by gradient descent on F[PAR], sampling from the AR model to estimate the
gradient via equation (8). We used, as a condition to stop the gradient descent, that the variance of Q(σ)
over batches of generated data is smaller than a given threshold. Indeed, if the AR distribution is exactly
the Boltzmann one, then Q(σ) is a constant. Reciprocally, if the variance of Q(σ) is zero, then the AR
distribution is proportional to the Boltzmann distribution whenever PAR(σ)> 0, but not necessarily over all
possible σ, due to mode-collapse. More specifically, if we have mode-collapse, then PAR(σ) = PB(σ)/Z in
some regions of the space of σ (typically around some of the peaks of PB) and PAR(σ) = 0 elsewhere, where
the proportionality constant Z < 1 represents the total probability covered by PAR(σ) in PB(σ). We then
obtain DKL(PAR||PB) =− logZ > 0, because the regions where PAR(σ) = 0 do not contribute to the sum.
While this solution has larger KL divergence with respect to the optimal one (PAR = PB, DKL(PAR||PB) = 0),
it can be a local minimum of DKL(PAR||PB) in which the variationally-trained AR model can be trapped, thus
learning only a part of the landscape.

2.3. Local versus global MCMC
Standard local MCMC usually consists in selecting a variable at random and then proposing a random (or
semi-random) change. If the MC moves respect microscopic detailed balance, the MCMC is guaranteed to
converge to the correct Boltzmann distribution. This can be achieved, e.g. by accepting/rejecting the
proposed MC moves following the Metropolis rule, where the acceptance probability of a move from
configuration σold to σnew is defined as:

Acc [σold −→ σnew] =min

[
1,
PB(σnew)

PB(σold)

]
. (9)

We call this scheme local MCMC because each move consists in a change of a single degree of freedom.
In contrast, we can sample from our AR model PAR(σ) to generate a new proposed configuration σnew. It

is still useful to respect microscopic detailed balance in order to ensure convergence to equilibrium, and for
this reason the replacement σold→ σnew is accepted with probability:

Acc [σold −→ σnew] =min

[
1,
PB(σnew)× PAR(σold)

PB(σold)× PAR(σnew)

]
. (10)

5



Mach. Learn.: Sci. Technol. 4 (2023) 010501 S Ciarella et al

Note that, because σnew is generated from scratch by the AR model, it is in most cases completely different
from σold, hence the resulting move is non-local and this is why this scheme is called global MCMC.

We also note that this global MCMC scheme is very similar to importance sampling, in whichM i.i.d.
samples σm are generated from PAR(σ), and then reweighted byW(σm) = PB(σm)/PAR(σm) to compute
averages. However, the formulation in terms of a MCMC is convenient to compare with local MCMC, to
monitor efficiency via the acceptance rate (which is morally equivalent to a participation ratio in importance
sampling), and to perform smart protocols (e.g. sequential tempering) during the MCMC dynamics [14, 15].
This is why we stick to this formulation in this paper.

The reweighting factorW(σ) = PB(σ)/PAR(σ) that appears both in importance sampling and in
equation (10) is the crucial quantity for the efficiency of the global MCMC scheme. IfW(σ) is typically
exponential in N, then its fluctuations are too wild and moves are almost never accepted. The KL divergence
is precisely the average of logW(σ), either on the Boltzmann or on the AR distribution, and if it is too large
(in particular, growing linearly in N) the method is doomed to failure.

2.4. Sequential tempering
Sequential tempering is a technique used in [14] to learn the AR probability at a larger β using data from
lower β, which can be convenient because collecting data becomes harder upon increasing β. The first step
consists in collecting a sample via local MCMC at low β, where sampling is easy, and then training an AR
model to reproduce this sample by maximum likelihood (section 2.1). Next, in order to create a new sample
at β+ δβ, we use global MCMC by proposing moves with the previous AR model, at the new temperature.
The acceptance rule then becomes:

Acc [σold −→ σnew] =min

[
1,

e−(β+δβ)H(σnew)PAR(σold)

e−(β+δβ)H(σold)PAR(σnew)

]
. (11)

We then learn a new AR model from the new sample by maximum likelihood, and iterate until either we
reach the temperature of interest, or the convergence time of the global MCMC exceeds some fixed
threshold, indicating a failure of the training procedure. A related adaptive global MCMC scheme has been
introduced in [15] and is detailed in the SI.

2.5. Evaluation of the ARmodel
Once the learning is completed, one can use several observables to evaluate the quality of the AR model. By
completion of the learning we mean convergence of the gradient ascent in maximum likelihood (section 2.1),
convergence of the gradient descent in the variational free energy (section 2.2), or reaching the target
temperature with high enough acceptance rate in the sequential tempering (section 2.4).

As a first check, we can use the AR model to estimate thermodynamic observables (energy, entropy,
correlations) of the true Hamiltonian. If the AR model has a lower entropy than the true one, the AR model
is probably suffering mode-collapse. Another interesting observable is the KL divergence, either
DKL(PAR||PB) or DKL(PB||PAR), which measures how well the AR model approximates the target one, and
more quantitatively provides the average of the reweighting factor, as discussed in section 2.3. A more easily
accessible quality measure consists in generating samples with the AR model, then evolving them with local
MCMC and checking if the energy remains constant and the correlation functions remain
time-translationally invariant [6, 41], as expected if the initial configuration is a good equilibrium one.

A very important measure of the quality of the AR model is the acceptance rate of the global MCMC, as a
high acceptance rate indicates that the AR model describes well the true model, at least in the region explored
by the global MCMC. Yet, the AR model could be mode-collapsed and still keep a high acceptance rate,
because the global MCMC would then only explore the region on which the AR model has collapsed [15]. In
particular, this could happen if:

• The true model has a few (or a polynomial number of) probability peaks. In that case, the AR model could
have learned the correct energy and correct free energy, and still the entropy could be lower than the true one,
but by a sub-extensive (hence difficult to detect) amount. This is the standard scenario of mode-collapse,
e.g. in a ferromagnetic model with two states, when the AR model is only learning one of them.
• The true model has a number of peaks growing exponentially inN, hence associated to an extensive contri-
bution to the entropy (usually called configurational entropy or complexity in the glass literature [38]). In
this case, if the AR model has learned the true energy (or a higher one), and its entropy is much lower than
the true one, then its free energy should be appreciably higher than the true one. If instead the AR model
with mode-collapse learns a good approximation to the true free energy, this happens by lowering both the
entropy and the energy. In this case, mode-collapse is easily detected by a drift of the energy, that increases
with the number of iterations when MCMC is started from AR-generated samples.

6
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In practice, if (i) the global MCMC has good acceptance rate, (ii) the global MCMC dynamics initialized
in a configuration generated by the AR model is close to stationary (i.e. one-time quantities such as the
energy are constant in time, and two-time quantities such as correlations only depend on the time
difference), and (iii) the time-dependent correlation of global MCMC vanish for large time differences, then
the model should be of high enough quality. Yet, ultimately, it is hard to assess the quality of the AR model in
a general way. We will give more concrete examples in the rest of the paper.

3. CWmodel

As a first exercise, we discuss here a mean-field ferromagnetic model, namely the CWmodel, which provides
some insight on the expressive properties of AR models.

3.1. The model and its Boltzmann distribution
The model is defined on a set of binary Ising spins, for convenience σi ∈ {−1,1}, by the Hamiltonian:

H(σ) =−N

2
m2, m=

1

N

∑
i

σi. (12)

In the thermodynamic limit, the value ofm that dominates the Boltzmann probability distribution is the
solution ofm= tanh(βm) (see the SI for details), which givesm= 0, i.e. a paramagnetic phase, for T> 1,
andm=±m̂, i.e. a ferromagnetic phase, for T< 1. Note that the two solutions with positive or negativem
have the same free energy, hence the probability distribution of the model has two distinct peaks
corresponding to these two ferromagnetic states. The model has a spin-flip symmetry σi→−σi, which is
spontaneously broken for T< 1.

For N→∞ and T> 1, the Boltzmann probability distribution is well approximated by a product
distribution,

PB(σ) =
e−βH(σ)

Z
∼
∏
i

p(σi), p(σi) =
1

2
, (13)

in the sense that the KL divergence (per spin) between the two sides of equation (13) vanishes for N→∞.
When T< 1, this holds separately for each of the two ferromagnetic states, resulting in a mixture of two
product distributions:

PB(σ)∼
1

2

∏
i

p+(σi)+
1

2

∏
i

p−(σi),

p±(σi) =
1± m̂σi

2
,

(14)

each peak being approximated by the product form withm= m̂ andm=−m̂.

3.2. Expressivity of the ARmodel
The CWmodel is well approximated by a mixture of two product distributions for large N. We now want to
ask whether this structure can also be well approximated by a single AR model. Because training an AR
model on a sample generated by the CWmodel is only possible numerically, we consider instead a sample
generated by the mixture model, which coincides with the CW one for N→∞. For this model, we can
provide an analytic solution.

We then assume that an infinite sample of spin configurations is generated from the mixture model in
equation (14), i.e. with probability 1/2 we choosem=±m̂ and we then choose each spin independently
with probability p±(σi). We use this infinite sample to train the AR model via maximum likelihood
(section 2.1). We consider here a shallow AR model (see the SI for details). Because of the spin-flip
symmetry, which is realized in an infinite sample from the true model, the local fields hi = 0 have to vanish.
Furthermore, because the Hamiltonian is invariant under any relabeling of the {σi}, in each conditional
probability PiAR(σi|σi−1, . . . ,σ1) the spins σi−1, . . . ,σ1 are seen as equivalent by spin σi, hence the couplings
J ij should be independent of the index j< i, leading to:

PiAR(σi|σ<i) =
exp(

∑
j(<i) Jiσiσj)

2cosh(
∑

j(<i) Jiσj)
=

exp(Jiσim<i)

2cosh(Jim<i)
, (15)

wherem<i =
∑

j(<i)σj is the magnetization of the first (i− 1) spins. Hence, each term PiAR is parametrized
by a single coupling J i.
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Figure 2. CWmodel - (a) Analytical solution of equation (16) for the first nine couplings J2, J3, . . . , J10 (from top to bottom,
rescaled by inverse temperature β) of the AR model as a function of β, in the thermodynamic limit N→∞. (b) Comparison of
the exact free energy per spin, obtained from the exact solution for N→∞ (full blue line) or for N= 100 (full orange line), with
its estimate obtained from two AR models at N= 100, either a shallow MADE trained via maximum likelihood on equilibrium
samples generated via local MCMC on the true Boltzmann distribution of the CWmodel (green circles), or the shallow MADE
obtained from the solution of equation (16) (orange circles). (c) KL divergences between the shallow MADE obtained from
equation (16) and the target model, computed for N= 100 as a function of β. (d) Scaling of the KL divergence with N.

Minimization with respect to J i of the KL divergence between the mixture model in equation (14) and
the AR model in equation (15) leads to a set of coupled equations:

p(k) =

(
i− 1

k

)(
1+ m̂

2

)k(1− m̂

2

)i−1−k

,

m̂2 =
i−1∑
k=0

p(k)
2k− i+ 1

i− 1
tanh[Ji(2k− i+ 1)].

(16)

Once m̂ is computed by solvingm= tanh(βm), the J is can be computed by solving equation (16)
numerically. We can also compute the resulting minimum KL divergence (SI).

Because m̂= 0 for T> 1, all the Ji = 0 and the AR model trivially reduces to the product distribution in
equation (13). Results for T< 1 are shown in figure 2(a) for the first few couplings. While we find a
non-trivial relation between J i and β in the vicinity of the critical temperature β= 1 where all the J i vanish,
figure 2(a) suggests that J i roughly scales as β/(i− 1) at large β. A comparison of the free energy per spin,
obtained from the exact solution and from the AR model, is given in figure 2(b). The KL divergences between
PAR and PB (in both directions) are given in figure 2(c); note that these are not divided by N, hence their
value per spin is very small, and shows a mild peak in the vicinity of the phase transition. Finally, figure 2(d)
shows that DKL(PB||PAR)/N vanishes at all temperatures when N→∞, which confirms that the AR model
can perfectly approximate the target one in the thermodynamic limit, even in the ferromagnetic phase.

This calculation gives some useful insight on the expressivity and training of AR models:

• If training is done via maximum likelihood with a perfect sample of the target model, no mode-collapse is
observed, as expected.
• A single shallow AR model is capable of expressing a two-peaked distribution, at the price of having finite
couplings that are much stronger than the CW ones (which where of order β/N, taking into account the
factor of β in the Boltzmann measure). This happens as follows. The first spin σ1 is chosen at random,
P1AR(σ1) = 1/2. The second spin has a strong coupling with the first, J2 ∼ β. The third spin also has a strong
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coupling with the first two, J3 ∼ β/2, and so on. More generally, this suggests that for q-state variables, a
single AR model can express a distribution with q peaks, each peak being selected by the choice of the first
spin. Whether an AR model can express a distribution with more than q peaks remains open at this stage,
but we will see in section 5 that this is not possible when there are too many peaks.
• The maximum-likelihood training converges to a solution at all temperatures, and does not suffer from any
slowdown in the vicinity of the critical point.

We thus conclude that AR models can represent well models with second-order phase transitions,
without suffering from slowing down, at least when training is done via maximum likelihood.

3.3. Mode-collapse
We also consider a shallow AR model trained in a variational way (section 2.2) to represent the CWmodel.
In this case, we do not impose any restriction on the couplings J ij and the fields hi (see the SI), and the
variational free energy cannot be written explicitly. For T< 1, we found numerically that the AR model can
end up in three different fixed points. The first one corresponds to the ‘correct’ form in equation (15),
i.e. with hi = 0 and Jij = Ji. The other two correspond to mode-collapse in a solution with Jij = 0 and
hi = h=±T atanh(m̂): in each of these two solutions, the AR model learns only one of the two peaks of the
Boltzmann distribution, resulting in a loss of entropy per spin of (log2)/N, which is however too small to be
detected for large N. Moreover, the basin of attraction of the correct solution seems to be vanishingly small
for large N, and the two mode-collapsed solutions dominate the training. In fact, to obtain the solution with
hi = 0, we have to force the fields to vanish, thus imposing the spin-flip symmetry. We conclude that, as
expected, one has to be careful about mode-collapse when training the AR model variationally.

4. EAmodel

We now consider a two-dimensional (2d) EA spin glass model, chosen because it is not exponentially hard to
sample (finding its ground state requires polynomial time in N [48–50]), there is no phase transition at finite
temperature (hence no a priori risk of mode-collapse), and yet the relaxation time of local MCMC grows
quite fast upon lowering temperature. Moreover, previous work [14] has explored this model, finding an
important speedup using a NADE architecture.

4.1. Model and architectures
We consider a 2d EA model defined on a 10× 10 square lattice with periodic boundary conditions, i.e. with
N = 100 Ising spins, σi ∈ {−1,1}, as:

H(σ) =−
∑
⟨ij⟩

Jijσiσj. (17)

Here, the sum runs over neighboring pairs of sites in the square lattice, and the couplings J ij are i.i.d. from a
Gaussian distribution with zero mean and unit variance as in [14].

For the AR decomposition in equation (2), we order the variables moving along e.g. horizontal lines from
the top left to the bottom right of the lattice. We consider two different AR architectures: a shallow MADE
without fields (hi = 0) and with N(N− 1)/2 independent coupling parameters J ij, and a NADE model with
Nh hidden nodes (see the SI). In the NADE, in order to impose the inversion symmetry σi→−σi, we set all
the biases to zero, and we use sigmoid functions in the hidden layers. The NADE then has 2×Nh×N
parameters.

In order to train the two AR models, we use sequential tempering (section 2.4) as in [14]. The initial
sample used to learn the model by maximum likelihood is generated at β= 1, where local MCMC still
decorrelates fast enough. It containsM= 105 configurations, and is obtained by a single local MCMC,
adding a new configuration every 10 sweeps, resulting in a total of 106 sweeps. The models are learned with
gradient descent using mini-batches of 256 configurations, during 50 training epochs and with a learning
rate of 10−3. During the sequential tempering, each sequence of the sample is evolved for 10 global MCMC
steps, at a new inverse temperature β← β+ 0.1. The acceptance rate is also computed during this global
MCMC. The model is then trained again, with the same hyperparameters, using the new sample. The times
needed on a standard laptop to perform local (one local MC sweep corresponds to N single spin-flip
attempts) and global MCMC, and to train the model, are given in table 1.

4.2. Results
We begin by reproducing the results of McNaughton et al [14] with the NADE, choosingNh = 64 which is the
minimal number needed to obtain accurate results according to McNaughton et al [14]. Having reproduced
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Table 1. Computational time needed to perform local MCMC, global MCMC, and model learning, on a standard laptop.

Local MCMC time for one sweep 10−5 s
Global MCMC time for one move 3 · 10−4 s
Total learning time at given β 5mn

Figure 3. 2d EA model with N= 100 spins (10× 10 periodic square lattice) and a training sample ofM= 105 configurations.
(a) Total energy and (b) total entropy as a function of β, as estimated by the Nh = 64 NADE and by the shallow MADE, compared
with the exact result obtained by local MCMC. The entropy is obtained by thermodynamic integration, and the exact ground
state energy has been obtained via the McGroundstate server [50]. (c) KL divergences between the AR models and the Boltzmann
distribution as a function of β. (d) Inverse of the acceptance rate of global MCMC as a function of inverse temperature β, for the
Nh = 64 NADE and the shallow MADE, both trained via sequential tempering. For comparison, we also show the decorrelation
time of local MCMC. (e) Average Hamming distance (i.e. number of flipped spins) between the ground state and equilibrium
configurations generated by global MCMC with the shallow MADE, as a function of β. (f) Average Hamming distance dAB
between two independent global MCMC runs with the shallow MADE (dashed horizontal lines), compared with the average
Hamming distance ds(τ) between a single global MC chain at two distinct times separated by τ global MC steps (red dots and
lines). From top to bottom, β = 1,2,3, . . . ,9.

the NADE results of McNaughton et al [14], we also considered a shallow MADE, which has a slightly smaller
number of parameters, i.e. N(N− 1)/2= 4950 versus 2NNh = 12800 for N = 100 and Nh = 64. The shallow
MADE performs identically to the NADE (figure 3), and we find the shallow MADE preferable because it has
less parameters and it is more interpretable [51]. It might be interesting, in future work, to check whether or
not the shallow MADE has a better scaling upon increasing N with respect to the NADE.

Figure 3(d) shows the number of local MCMC sweeps τ needed to reach a time-averaged spin-spin
correlation:

C(τ) =
1

T

T∑
t=1

1

N

N∑
i=1

σi(t)σi(t+ τ) = 0.5. (18)

Note that already for β= 1.5, the time to decorrelate is of the order of magnitude of 104 sweeps, and it grows
quickly upon decreasing temperature. We stop investigating the local MCMC at β= 1.5 because below this
temperature measuring its relaxation time becomes too computationally costly.

Next, we train the AR models using the sequential tempering procedure withM= 105 training
configurations, as detailed in section 4.1. We observe in figure 3(d) that the acceptance rate of global MCMC
moves remains very close to one at all temperatures, and it actually increases upon decreasing temperature,
reaching one for β→∞. For this paramagnetic model, new configurations proposed by the global MCMC
are completely uncorrelated from previous ones, and the decorrelation time for the global MCMC is of the
order of magnitude of the inverse acceptance rate, hence between one and two global MCMCmoves. We
checked explicitly in figure 3(f), where we show that the average Hamming distance (i.e. number of distinct
spins) between two configurations obtained by independent global MCMC, and between a single MCMC
and itself a few global MCMC later, coincide.

Using the numbers reported in table 1, we find that at β= 1.5, decorrelation on a standard laptop takes
about 0.12 s using local MCMC (i.e. about 10−5 s per MC sweep times 12000 time sweeps to decorrelate),
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and about 10−3 s for global MCMC (that requires a few moves to decorrelate, see figure 3(f), each taking
about 3 · 10−4 s), hence with a speedup of two orders of magnitude. Furthermore, the decorrelation time of
global MCMC slightly decreases upon lowering temperature, while that of local MCMC strongly increases,
leading to an even stronger speedup, divergent for β→∞. Note that the learning time is negligible at large
enough β.

To monitor the quality of the AR models upon decreasing temperature, we compare the exact energy
(figure 3(a)) and entropy (figure 3(b)) computed with local MCMC with those estimated by sampling the
AR models, finding extremely good agreement. For the local MCMC computation, we perform an annealing
from high temperature measuring the energy and the specific heat, and we obtain the entropy by integrating
the latter in temperature. For the AR models, we estimate the energy and the entropy by sampling from the
model at each T, and computing the average of H(σ) and of− logPAR(σ) over this sample, respectively. We
note, in particular, that the AR entropy coincides with that of the true model, which shows that the AR
model is not mode-collapsed. In figure 3(c), we also show the KL divergences D(PAR||PB) and D(PB||PAR) as
a function of temperature. Both are extremely small, which implies that logW(σ) = log[PB(σ)/PAR(σ)] is
extremely small for configurations σ that are typical both of the true equilibrium and of the AR model,
consistently with the high acceptance rate shown in figure 3(d) (see the discussion in section 2.3).

For future reference, we also checked the dependence of the acceptance rate of global MCMC on the
training set sizeM. We found that a minimal training set size of aboutM= 104 is needed to obtain good
performance, while below this size the AR model cannot be trained properly and global MCMC fails
(see the SI).

To summarize, we found that:

• A 2d EA model with N = 100 spins can be approximated very accurately by an AR model, as shown by the
very small KL divergence.
• Correspondingly, global MCMC is very efficient and leads to an important speedup with respect to local
MCMC, as shown in [14]. We have shown that the speedup diverges for β→∞.
• A simple shallowMADE performs as well as the NADE used in [14], even with a slightly smaller number of
parameters.
• A sufficiently large training set (M≳ 104) must be used to achieve a good efficiency of the global MCMC.

We thus conclude that, at least for N = 100 (a 10× 10 periodic lattice), the 2d EA model is easy to
approximate with an AR model, leading to efficient global MCMC. Yet, the fact that the AR model
concentrates at low temperatures on the two ground states (related by the inversion symmetry), which can be
found in short time by algorithms such as McGroundstate [50], leads us to believe that the instance we
studied is too small to be really hard to sample.

Furthermore, we repeated the study on a 3d EA model on a 5× 5× 5 cubic periodic lattice (N = 125
spins). Also in this case, because of the small size, the ground state is found easily by McGroundstate [50],
despite the fact that the problem is in principle NP-hard [48]. We found that the AR model approximates
well the 3d EA model, leading to efficient global MCMC at all temperatures, despite the presence of a phase
transition at finite temperature [52], and converging to the ground state in the zero-temperature limit
(see the SI).

We believe that a more complete study should investigate systematically the dependence on system size
for much larger N, as well as the dependence on the space dimension, because the EA model is known to
become harder and harder to sample upon increasing spatial dimensions. Because this is not the main focus
of the present work, we leave this for future investigation. The main goal of the present section was to show
that our implementation of the global MCMC is able to reproduce and extend previous positive results [14],
and it can thus be considered reliable and efficient.

5. Coloring

We now consider our main benchmark, namely the hard-to-sample coloring problem. We will show that all
the global MCMC implementations discussed above fail for this model, and we could not find an
implementation that achieves a better efficiency. In particular, we will show that both the
maximum-likelihood and the variational training fail, but for quite different reasons.

5.1. Model
The model is formulated in terms of N variables σi ∈ {0, . . . ,q− 1}, each taking q possible colors. The
variables are the nodes of an Erdös-Rényi random graph G, i.e. a graph in which each link ⟨i, j⟩ is present at
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Figure 4. Coloring—Phase diagram of the coloring of Erdös-Rényi random graphs with q= 10 colors, as a function of the average
node connectivity c and of temperature T [53]. The upper line is the dynamical glass transition Td(c), below which the
decorrelation time increases exponentially with N; the lower line is the condensation transition TK(c) below which quiet planting
is not possible. Inset: decorrelation time of the equilibrium local MCMC for c= 40, for two different system sizes, as a function of
T−Td(c= 40).

random with the same probability, chosen such that the average connectivity of a node is c. The model
Hamiltonian can then be written as:

H(σ) =
∑

⟨i,j⟩∈G

δσi,σj , (19)

i.e. a q-state Potts model where antiferromagnetic couplings (whose value is fixed to one without loss of
generality) are only present on the edges of G. The Hamiltonian counts the monochromatic edges by
assigning a zero energy to all links that connect sites with distinct colors, and energy one to links that connect
sites with the same color. Hence, H(σ)⩾ 0 and H(σ) = 0 if and only if σ is a proper coloring of G. At zero
temperature, the problem of finding the ground state of H(σ) is therefore related to the random graph
coloring problem [43, 44].

At finite temperature and for large enough q, the model belongs to the random first order transition
(RFOT) universality class [54], together with many other optimization problems [38] and with mean-field
structural glasses [39–42]. These models are characterized by a finite-temperature dynamical glass transition,
below which the time needed for a proper sampling of the Boltzmann probability diverges exponentially with
N [2], due to the presence of an exponential number of peaks (i.e. metastable states) [24, 38, 41, 42].

The coloring problem is specified by the number of sites N, the choice of the random graph G which is
specified by its average connectivity c, the number of colors q, and temperature T. For the model to be a good
representative of the RFOT class, we need q to be large enough, otherwise the transition is too close to a
second order one, especially at finite N [54]. We thus chose q= 10, for which a finite RFOT dynamical
transition Td(c) is present for all c> 39.02, and the corresponding phase diagram is reported in figure 4 (data
were privately communicated by the authors of Cavaliere et al [53]).

Systems in the RFOT class also display a second phase transition, called condensation or Kauzmann
transition TK(c). Below this transition, the number of metastable glassy states become sub-extensive [38].
For our purposes, this phase transition is relevant because for T> TK(c) one can use the quiet planting
technique [55], which consists in exchanging the sampling of σ and the generation of G. While one should
first generate a graph G and then sample σ from the Boltzmann distribution for that G (which is
exponentially hard in N at low T), in quiet planting one first takes a random configuration σ, and then
constructs at a given T a random graph G such that σ is an equilibrium configuration for the model defined
on that graph, at temperature T (which can be done in polynomial time). It can be shown [55] that for
T> TK(c) in models such as the coloring, this exchange of order does not affect the statistical properties of
G. This allows one to run local MCMC from the configuration σ, which is guaranteed to be an equilibrium
one, thus bypassing the need for equilibration, which takes an exponentially large time for T< Td(c). Our
choice of q= 10 ensures the existence of a large enough region TK < T< Td where model-generated samples
may be compared to the planted configurations.

For our study, we thus chose c= 40, for which Td = 0.1768 and TK = 0 (figure 4). In this way, we can
perform quiet planting at any temperature to study the equilibrium local MCMC dynamics, and we also have
a wide range of temperature T< Td where this dynamics is exponentially slow in N. Notice that such graphs
are full of short loops, so some finite size effects are measurable, like an energy drift in the planted solution.
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Figure 5. Coloring with q= 10, c= 40, T= 1 and N= 250. The four panels of the figure report the value of energy (a), entropy
(b) and KL divergences (c), (d) for different AR architectures, trained with the techniques of section 2. The name of the models
(i.e. its training technique, AR network type, etc) is reported on the x-axis and corresponds to a specific color. Overall, the models
are ranked, from left to right, by free energy, which at T= 1 is the difference of energy minus entropy. The horizontal lines
correspond to the equilibrium values, measured using local MCMC for N= 250 (orange, the entropy is obtained via
thermodynamic integration) or calculated from the cavity method for N→∞ (blue).

We have confirmed that the scenario we describe in the next sections is equally reproduced for lower
connectivity, {q= 5, c= 13} and {q= 10, c= 30}, so that it is mainly determined by the complexity of the
problem. In figure 4 we show the decorrelation time of the overlap correlation function,

C(t, τ) =
1

N

N∑
i=1

δσi(t),σi(t+τ), (20)

here measured using local MCMC and averaging over time t. Note that with this definition, complete
decorrelation corresponds to C(t, τ)∼ 1/q. The decorrelation time is defined by ⟨C(t, τ)⟩t = 0.5. When
plotted as a function of T−Td, it displays the characteristic power-law divergence predicted by RFOT theory.
In the vicinity and below Td, the dynamics becomes so slow that we are unable to observe decorrelation of
local MCMC in reasonable time. We consider a fixed size N = 250, which is a good compromise between
avoiding too large finite size effects, and having a small enough size to allow for an extensive testing of AR
model architectures.

It is also important to mention that the thermodynamics of the model can be solved, for T> TK(c) and
for N→∞, by a simple cavity computation [53–55]. In particular, the energy and entropy per spin are given
by:

e(T) =
c

2

e−β

q− 1+ e−β
,

s(T) = logq+
c

2
log

[
q− 1+ e−β

q

]
+βe(T).

(21)

Although for N = 250 we observe significant deviations from the thermodynamic values (figure 5), these
expressions are still useful as a reference.

5.2. Model selection
Our goal is to use AR models to generate good trial configurations and speed up the dynamics of the
hard-to-sample coloring problem. Before exploring the hard region below Td, we test how different AR
architectures perform in the paramagnetic phase at T= 1, where the local MCMC dynamics is fast and we
can easily generate an equilibrium sample from the Boltzmann distribution. Our intermediate goal is to
select the best architectures and training methods (see the SI for details).

For the AR decomposition in equation (2), variables are ordered naively, which means that we first fix an
arbitrary ordering σ1, . . . ,σN, and then construct a graph G as described in section 5.1. We also considered
ordering the variables from higher to lower connectivity, and found no qualitative difference. Results are
reported here for this second choice of ordering. The models are trained either via maximum-likelihood on a
sample ofM equilibrium configurations generated via local MCMC, or via the variational method usingM
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model-generated samples to compute the gradient, see section 2.2. The training is done using the Adam
optimizer [56] and mini-batches of 1024 configurations. In order to enforce color symmetry, each
configuration in the sample is subjected to a random permutation of colors before being used, in each epoch
of training. We start from a learning rate of 0.01 that we reduce by a factor 2 after every 250 epochs of no
improvement [57]. We set an early stop criterion that triggers if the likelihood of a validation set made of
independent equilibrium samples starts decreasing.

At the end of the training, we compute the model energy (figure 5(a)) and entropy (figure 5(b)) by
sampling from the AR model and computing the average of H(σ) and− logPAR(σ), respectively. We
compare these results with the exact ones obtained via local MCMC. We observe that the AR energy and
entropy are generally quite close to the equilibrium values. In particular, the samples generated by the models
often have an energy that is closer to the average equilibrium energy than that of the planted configuration,
hence the difference falls within the typical equilibrium fluctuations. As a general trend, we observe that
increasing the model expressivity does not improve the energy, probably because of overfitting, as shown by
the decrease in entropy. On the other hand, adding a regularization (either dropout or ridge) degrades the
performance significantly, by increasing both the energy and the entropy. We thus conclude that the best
model is once again a shallow MADE (ColoredMADE, see the SI), which can achieve a very low energy and a
very high entropy, close to the target values, both with variational and maximum-likelihood training.

In figures 5(c) and (d) we report the KL divergences between the Boltzmann distribution and that of the
AR models, which confirms that the two shallow ColoredMADE have the smallest KL divergence. Having
selected two good architectures at T= 1, we now focus on these two models and check how they perform
upon lowering the temperature. We consider, for each T, a ColoredMADE trained by maximum likelihood
on an independent equilibrium sample generated from the Boltzmann distribution by long enough local
MCMC at that T, and another ColoredMADE trained variationally at fixed T (which, we recall, does not
require to generate equilibrium samples).

We will show next that both models fail at lower T. Of course, there might be other architectures that we
did not consider here, which might provide better results. However, because both adding regularization or
increasing the expressivity of the model (also by using GNNs) did not seem to improve the efficiency, we do
not see a clear path for improvement.

5.3. Failure of sequential tempering
We first consider the ColoredMADE trained by maximum likelihood, and compare the average energy of the
equilibrium configurations with those generated by the AR model (figure 6(d)). We observe that the model
generates configurations with higher energy as soon as temperature goes below T∼ 1, while its entropy
(figure 6(e)) remains close to the equilibrium value. Yet, once the entropy is plotted parametrically as a
function of energy (figure 6(f)), the difference from the equilibrium result becomes apparent.

We also compare the correlation functions of local MCMC dynamics starting from the equilibrium
samples and the AR-generated samples. (To avoid confusion, we stress that here we are not yet considering
AR-assisted global MCMC.) In figure 6(a) we report the overlap correlation function defined by
equation (20), here for fixed t= 0 as a function of τ measured in MC sweeps. The dashed lines are obtained
starting at t= 0 from equilibrium samples, while the full lines are obtained starting from samples generated
by the AR model. We observe that AR-generated samples have the correct equilibrium local MCMC
dynamics only at very high temperatures. In figure 6(c) we compare the relaxation times, defined by
C(0, τrel) = 1/e, and show that AR-samples have systematically faster dynamics upon lowering T. Overall,
these results suggest that the maximum-likelihood training is effective at high temperatures only, because
upon lowering temperature the model is unable to propose configurations of low enough energy. This study
is restricted to T⩾ 0.3 because below that temperature we are unable to generate the equilibrium samples
needed to train the model by local MCMC.

Next, we consider the global MCMC dynamics, and we measure its acceptance rate at T= 1. As in
section 4.2, global MCMC can be initialized (i) on AR-generated configurations, (ii) on the training set and
(iii) on an independent test set made by additional equilibrium configurations. In figure 7(a), we consider a
ColoredMADE trained onM= 103 configurations, and we report the average acceptance rate together with
the geometric average of the Boltzmann ratio PB(σnew)/PB(σold) and the model ratio PAR(σold)/PAR(σnew).
Similarly to the 2d EA model (see the SI), we observe that for such a smallM, the acceptance rate on the test
set is vanishingly small, while using the other initializations, it decreases with time. The situation improves
strongly upon increasing the size of the training set toM= 105 (figure 7(b)), leading to a good acceptance
rate. Global MCMC can then decorrelate reasonably fast in this case.

We explore more systematically the dependence on T andM in figure 7(c), where we report the
acceptance as a function of β for different architectures and differentM. We observe that for a given
architecture andM, the acceptance drops exponentially fast with β, in some cases becoming so small that we
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Figure 6. Coloring with q= 10, c= 40 andN= 250. (a), (b) Overlap correlation function for local MCMC dynamics starting from
samples generated either in equilibrium (dashed lines, via long enough local MCMC) or by a ColoredMADE AR model trained
both by maximum likelihood (a, continuous lines) and variationally (b, continuous lines). The temperature decreases from T= 1
(red) to T= 0.3 (blue) following the color gradient. (c) Relaxation time τrel defined from C(0, τrel) = 1/e for the samples
generated by the AR model trained using maximum likelihood (orange) or variationally (purple) compared to equilibrium
(green). Relaxation is measured averaging over 100 local MCMC runs. In the inset we report the ratio of the equilibrium time to
that of AR models. The difference becomes larger upon decreasing the temperature, but the variational model (purple) remains
accurate down to T∼ 0.35. (d) Average energy and (e) entropy of samples generated by the two AR models and in equilibrium,
with the same color code as in (c). In panel (e), the green data correspond to the exact entropy in the thermodynamic limit,
equation (21). Using the same data of (d), (e), we plot in (f) the entropy of the generated samples as a function of their energy.

Figure 7. Coloring with q= 10, c= 40 and N= 250. (a) Acceptance rate of global MCMC for the ColoredMADE trained via
maximum likelihood at T= 1 using a sample ofM= 103 equilibrium configurations. Here, K= 100 independent global MCMC
are initialized in configurations generated by the AR model itself (model sample), taken from the training sample, or from
additional independent equilibrium configurations (test sample). We report the average acceptance rate, and the geometric
average of the Boltzmann and model ratio, over the K chains. (b) Same withM= 105. (c) Acceptance rate (on the test set) of
global MCMC for several AR models trained with the maximum likelihood technique on equilibrium configurations generated
via local MCMC at several temperatures. Missing data indicate that the acceptance rate is so small that it is impossible to
measure it.

cannot measure it (no move is accepted during the longest global MCMC we can run). We conclude that the
maximum likelihood approach fails because, upon lowering temperature, the AR models are not expressive
enough to properly fit the target energy, and as a consequence they propose moves that cannot be accepted
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Figure 8. Coloring with q= 10, c= 40 and N= 250. Overlap correlation function of the global MCMC using the variational
ColoredMADE as a function of the number of MC steps.

by the global MCMC. IncreasingM does not help at low temperature (figure 7(c)), and we have already seen
that increasing the model expressivity only leads to overfitting (figure 5).

It is possible that by improving model expressivity and at the same time considering largerM, the
acceptance rate could improve. However, the AR architectures we considered are already quite hard to train,
andM∼ 105 corresponds to a quite large dataset, and still the method fails at T= 0.5, which is a quite high
temperature in the paramagnetic phase. These results thus highlight the lack of computational efficiency of
this approach.

Note that the global MCMC fails even when the AR model is trained using maximum likelihood on a
perfect equilibrium sample, i.e. under the best possible conditions. Hence, sequential tempering cannot
work, because upon decreasing temperature the global MCMC remains stuck and does not lead to a proper
new sample on which the AR model can be trained. In fact, performing sequential tempering runs (not
shown) we observe that the global MCMC does not equilibrate, hence the AR model has even worse energy
and leads to an even slower global MCMC.

5.4. Failure of the variational training
We now consider the variationally-trained ColoredMADE, and note that its energy remains accurate down to
T= 0.3 (figure 6(d)), while its entropy decreases quickly upon lowering T (figure 6(e)), suggesting mode
collapse, i.e. the model only learns a limited portion of the support of the Boltzmann distribution.
Surprisingly, the parametric curve of entropy versus energy (figure 6(f)) is very similar to that obtained using
maximum-likelihood training. Consistently, when we run global MCMC using the variational model, we
observe that the acceptance rate remains good, but the proposed moves do not lead to any decorrelation
(figure 8), and as a result the sampling of the Boltzmann distribution is not efficient. Global MCMC indeed
remain confined in the limited portion of the phase space that has been learned by the variational model.
This is consistent with the discussion of section 3.3 for the CWmodel.

In figure 6(b), we report the correlation functions of the local MCMC dynamics initialized both in
equilibrium and in configurations generated by the variational AR model, and note that they are essentially
indistinguishable down to T∼ 0.35. Because this method does not require the generation of equilibrium
samples for training, one might wonder whether, despite being mode-collapsed and thus useless for global
MCMC, the variational model could still generate configurations that are close enough to some of the
equilibrium ones, such that the localMCMC dynamics coincides with the equilibrium one. If true, this
would be interesting, because one could use the variational model to generate some typical equilibrium
states, although only a small subset of them. However, we show in figure 9 that this is not the case. Below
T∼ 0.3, upon approaching the glass transition, the energy of the variational model remains higher than the
equilibrium one, and the generated configurations display an initially faster local MCMC dynamics, whose
relaxation time increases during the evolution (the so-called aging behavior typical of glasses). Hence, the
variational model also fails in providing good equilibrium configurations.

5.5. Role of the color symmetry
One might wonder whether the failure of the AR models is somehow related to the presence of the color
symmetry (see the SI for details), which might lead to a proliferation of states, thus requiring a lot of training
samples to be taken into account correctly. Or, maybe, breaking the color symmetry would allow for a better
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Figure 9. Coloring with q= 10, c= 40 and N= 250. Correlation C(tw, τ) of local MCMC initialized at t= 0 in AR-generated
samples at low temperatures T= 0.2 (a) and T= 0.1 (b). We used the following model architectures: shallow MADE (blue),
shallow ColoredMADE (red) and deep MADE (D= 3, purple). The models have been trained via the variational approach with
batches ofM= 102 (triangles) orM= 104 (circles) configurations. The full line is the correlation measured from tw = 0, while
the dashed line is measured after waiting tw = 104 sweeps. In black we report, for comparison, the exact equilibrium dynamics,
obtained initializing the local MCMC in the planted configuration.

learning of the AR model, that could use local fields to obtain more information on the Boltzmann
distribution, thus reducing the role of couplings.

To address this question, we tried to break the color symmetry by adding small random local fields on
each spin, thus lifting the degeneracy of the q! equivalent configurations. Recall that q= 10, hence q! is very
large, although the contribution to the entropy per spin, log(q!)/N, is negligible. Yet, we repeated the same
analysis and we obtained very similar results. We thus conclude that the addition of small external fields is
not enough to make the approach work, because its failure is due to the intrinsic difficulty of representing the
multiplicity of states typical of a glassy system.

6. Conclusions

In this paper, we addressed the general problem of whether machine learning can assist Monte Carlo
methods to provide a computational speed up in hard-to-sample glassy problems.

We confirmed previous findings [13–19] that identified a class of problems, such as simple ferromagnetic
models and the 2d EA spin glass model, which can be well approximated by simple AR models. These models
can then be used to sample the Boltzmann distribution by machine-learning-assisted global MCMC,
providing a computational speedup of several orders of magnitude. For these type of problems, several
different architectures and training schemes have been proposed, but we found that all these methods are
roughly equivalent. In particular, we tend to prefer a shallow AR architecture, which provides a simple and
interpretable model. We also highlighted the need for a large enough training sample for the efficiency of the
approach.

We found that the situation is totally different when one considers really hard-to-sample problems
belonging to the RFOT universality class, such as the coloring of random graphs and, possibly, the model
considered in [20]. For these type of problems, the landscape is very rough and complex, displaying a
multitude of locally stable glass states that are known to trap standard local MCMC [2]. We showed that
machine-learning-assisted global MCMC fails, either because of the mode-collapse of the variationally
learned model into a restricted portion of the phase space (that is not even representative of equilibrium in
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the vicinity of the glass transition), or because the sequential tempering scheme fails to achieve a high
enough acceptance rate of global MCMCmoves.

We tried several architectures in order to overcome the problem, but we did not find any promising sign
of improvement. In particular, we found that adding regularization leads to underfitting (high entropy),
while increasing the expressivity of the model leads to overfitting (low entropy), and both are detrimental to
the global MCMC efficiency.

We are thus led to believe that there is an intrinsic difficulty of these problems that prevents machine
learning methods to solve them efficiently. Of course, we might have missed something and future work
could find a solution using smarter architectures. Yet, we believe that our work is useful because it establishes
a benchmark against which, in our opinion, such machine learning methods should be tested to assess their
performance as universal methods for sampling speedup.
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