
HAL Id: hal-04028431
https://hal.science/hal-04028431v1

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Striatum expresses region-specific plasticity consistent
with distinct memory abilities

Jonathan Touboul, L. Venance, Sylvie Perez, Yihui Cui, Gaëtan Vignoud,
Elodie Perrin, Alexandre Mendes, Zhiwei Zheng

To cite this version:
Jonathan Touboul, L. Venance, Sylvie Perez, Yihui Cui, Gaëtan Vignoud, et al.. Striatum ex-
presses region-specific plasticity consistent with distinct memory abilities. Cell Reports, 2022, 38
(11), pp.110521. �10.1016/j.celrep.2022.110521�. �hal-04028431�

https://hal.science/hal-04028431v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


 1 

Striatum expresses region-specific plasticity consistent with distinct memory 1 

abilities 2 

Sylvie PEREZ1†, Yihui CUI1,2†, Gaëtan VIGNOUD1,3†, Elodie PERRIN1, Alexandre MENDES1, 3 

Zhiwei ZHENG2, Jonathan TOUBOUL4* and Laurent VENANCE3,5* 4 

1Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, 5 

Université PSL, Paris, France. 6 

2 Department of Neurobiology, and Department of Neurology of Sir Run Run Shaw Hospital, 7 

Zhejiang University School of Medicine, 310058, Hangzhou, China. 8 

3MAMBA-Modelling and Analysis for Medical and Biological Applications, Inria Paris, LJLL 9 

(UMR-7598) -Laboratory Jacques-Louis Lions, Paris, France. 10 

4Department of Mathematics and Volen National Center for Complex Systems, Brandeis University, 11 

Waltham, MA, USA.  12 

5Lead contact: Laurent VENANCE laurent.venance@college-de-france.fr 13 

†: These authors contributed equally; *: co-senior authors  14 

© 2022 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S2211124722002571
Manuscript_a0c8270951e13aec4e3dc345ba7437c1

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S2211124722002571
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S2211124722002571


 2 

SUMMARY 15 

The striatum mediates two learning modalities: goal-directed behavior in dorsomedial (DMS) and 16 

habits in dorsolateral (DLS) striatum. The synaptic bases of these learnings are still elusive. Indeed, 17 

while ample research has described DLS plasticity, little remains known about DMS plasticity and its 18 

involvement in procedural learning. Here, we find symmetric and asymmetric anti-Hebbian spike-19 

timing-dependent plasticity (STDP) in DMS and DLS, respectively, with opposite plasticity 20 

dominance upon increasing corticostriatal activity. During motor skill learning, plasticity is engaged 21 

in DMS and striatonigral DLS neurons only during early learning stages, whereas striatopallidal DLS 22 

neurons are mobilized only during late phases. With a mathematical modelling approach, we find that 23 

symmetric anti-Hebbian STDP favored memory flexibility, while asymmetric anti-Hebbian STDP 24 

favored memory maintenance, consistent with memory processes at play in procedural learning. 25 
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INTRODUCTION 26 

The dorsal striatum is critical for action selection and initiation (Yin and Knowlton, 2006; Graybiel 27 

and Grafton, 2015; Jin and Costa, 2015) and represents a major site for memory formation encoding 28 

for procedural learning (Perrin and Venance, 2019). The dorsal striatum is composed of two main 29 

anatomico-functional regions, the dorsolateral striatum (DLS) and dorsomedial striatum (DMS) 30 

based on topographic cortical glutamatergic afferents. Cortical inputs from the sensorimotor and 31 

premotor cortices project somatotopically to DLS, whereas associative and prefrontal cortices 32 

project, with a decreasing topography, to DMS (Hunnicutt et al., 2016; Hintiryan et al., 2016; Hooks 33 

et al., 2018) with fewer inputs from somatosensory cortical areas (Reig and Silberberg, 2014). 34 

Moreover, DLS and DMS appear to engage at different learning phases: the classical view posits that 35 

during reward-guided instrumental learning DMS supports goal-directed behavior, while DLS is 36 

gradually involved in later learning phases associated with habit formation and performance (Costa et 37 

al., 2004; Yin and Knowlton, 2006; Balleine and O’Doherty, 2010; Corbit and Janak, 2010; Thorn et 38 

al., 2010; Gremel and Costa, 2013; Burton et al., 2015; Vandaele et al., 2019). Similarly, during 39 

motor skill learning DMS appears to play a crucial role during initial phases of fast improvements, 40 

while DLS is determinant for slower learning phases as experience accumulates (Graybiel and 41 

Grafton, 2015; Jin and Costa, 2015; Costa et al., 2004; Yin et al., 2009; Xiong et al., 2015). 42 

Nevertheless, there is evidence that DLS does not only activate at late learning phases, but is 43 

engaged, together with DMS, from early training phases (Thorn et al., 2010; Gremel and Costa, 44 

2013; Kimchi et al., 2009; Stalnaker et al., 2010; Kupferschmidt et al., 2017; Bergstrom et al., 2018). 45 

Acquisition and maintenance of motor skills and habits involve corticostriatal long-term synaptic 46 

efficacy changes (Perrin and Venance, 2019). Indeed, in vivo proxies for plasticity, such as changes 47 

in firing activity (Costa et al., 2004; Yin et al., 2009; Thorn and Graybiel, 2014; Barnes et al., 2011; 48 

Koralek et al., 2012; O’Hare et al., 2016; Athalye et al., 2018; Peters et al., 2021) or in evoked-LFP 49 
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(Xiong et al., 2015), were detected in the corticostriatal pathway throughout procedural learning. 50 

Conversely, triggering corticostriatal synaptic plasticity was shown to modify habitual behavior 51 

(Xiong et al., 2015; Ma et al., 2018). Although these findings clearly highlight a correlative and/or 52 

causal link between corticostriatal plasticity and procedural learning, the nature and contribution of 53 

DLS and DMS long-term plasticity remain to be fully determined. 54 

To investigate plasticity implication in memory storage and retrieval in DMS and DLS, we 55 

characterized the spike-timing-dependent plasticity (STDP) and observed anti-Hebbian STDP in both 56 

DMS and DLS, with specific profiles: a symmetric long-term depression (LTD) arises in DMS, 57 

contrasting with an asymmetric anti-Hebbian STDP in DLS. When corticostriatal activity scaled up, 58 

we found opposite polarity plasticity in DMS and DLS, since LTD prevailed in DMS, while long-59 

term potentiation (LTP) prevailed in DLS. Furthermore, striatal medium-sized spiny neurons (MSNs) 60 

from the DMS exhibited opposite plasticity, in a specific activity regime, depending on whether they 61 

belonged to the striatonigral (direct) or striatopallidal (indirect) pathway. During motor skill learning, 62 

we found that during early learning phases, plasticity was engaged for all DMS-MSNs, and 63 

striatonigral MSNs in DLS. In contrast, during late learning phases, we found that only striatopallidal 64 

MSNs in DLS were mobilized. We developed a mathematical model to quantify the capacity of these 65 

plasticity rules for memory formation and storage, and relearning, a capacity distinct from recall in 66 

that it is driven by rewards. Our model predicted that asymmetric anti-Hebbian STDP facilitated the 67 

maintenance of memory, whereas symmetric LTD allowed a swift turnover of memories, potentially 68 

enhancing memory flexibility. These findings reveal how distinct plasticity maps in DLS and DMS 69 

could endow striatum with complementary capacities for procedural learning allowing flexibility in 70 

memory acquisition and stabilization of memories potentially for habit formation.  71 
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RESULTS 72 

Distinct anti-Hebbian STDP profiles in sensorimotor and associative striatum 73 

We used two brain slice preparations that preserved connections between the sensorimotor cortex 74 

(S2) and DLS, or associative cortex (CG2) and DMS, and allowed to stimulate within cortical layer 5 75 

while recording MSNs (Fig. 1) (Fino et al., 2018). At both synapses, we first applied the same STDP 76 

protocol consisting of 100 pairings at 1Hz with prescribed timing ΔtSTDP~-15 or +15ms (Fig. 1a). 77 

We investigated DLS-STDP (Fig. 1b and Table S1) and observed asymmetric (i.e. distinct plasticity 78 

polarity on both sides of ΔtSTDP=0) anti-Hebbian STDP: LTP for post-pre pairings (Fig. 1b2) and 79 

LTD for pre-post pairings (Fig. 1b3). Anti-Hebbian qualifies STDP with pre-post LTD. Post-pre 80 

pairings induced LTP (p<0.0001, n=16; Fig. 1b2 and Fig. S1a), whereas pre-post pairings induced 81 

LTD (p<0.0001, n=14; Fig. 1b3 and Fig. S1b). This is in line with DLS-STDP displaying anti-82 

Hebbian polarity in native conditions (Fino et al., 2005; Fino et al., 2010; Mendes et al., 2020). DLS-83 

STDP with a Hebbian polarity has also been reported (Pawlak and Kerr, 2008; Shen et al., 2008), but 84 

caused by the use of GABAA receptor antagonists. Indeed, we previously showed that GABA acts as 85 

an Hebbian/anti-Hebbian switch (Paillé et al., 2013; Valtcheva et al., 2017), so polarity of the 86 

corticostriatal STDP depends on whether GABAA receptor antagonists are used (in vitro Hebbian 87 

STDP (Pawlak and Kerr, 2008; Shen et al., 2008)) or not (in vitro anti-Hebbian STDP (Fino et al., 88 

2005; Fino et al., 2010; Mendes et al., 2020)). We thus recorded STDP in the absence of GABAAR 89 

antagonist to preserve the local striatal microcircuits and the anti-Hebbian polarity also observed in 90 

vivo (Schulz et al., 2010; Morera-Herreras et al., 2019). 91 

In DMS (Fig. 1c and Table S1), post-pre and pre-post pairings induced a symmetric (i.e. similar 92 

plasticity polarity, here LTD, on both sides of ΔtSTDP=0) anti-Hebbian STDP (Fig. 1c2 and 1c3). 93 
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Indeed, LTD was observed following post-pre pairings (p<0.0001, n=11; Fig. 1c2 and Fig. S1c) as 94 

well as following pre-post pairings (p<0.0001, n=16; Fig. 1c3 and Fig. S1d). 95 

Corticostriatal STDP in DMS and DLS displayed both anti-Hebbian plasticity, with symmetric and 96 

asymmetric profiles, respectively. 97 

 98 

Post-pre DLS-LTP and DMS-LTD are NMDAR-mediated, whereas pre-post DLS- and DMS-99 

LTD are CB1R-mediated. 100 

Regarding DLS-STDP, LTP induced by post-pre pairings was NMDAR-mediated since prevented by 101 

D-AP5 (50μM) (p=0.3775, n=9), whereas LTD induced by pre-post pairings was CB1R-mediated 102 

since precluded by AM251 (3μM) (p=0.5688, n=5) (Fig. 2a-b and Table S1), as previously reported 103 

(Shen et al., 2008; Fino et al., 2010). 104 

We next investigated the signaling pathways associated with DMS-STDP (Fig. 2c-d and Table S1). 105 

We first tested whether post-pre and pre-post LTD were CB1R-mediated, since CB1R-mediated LTD 106 

is a dominant LTD form (Shen et al., 2008; Fino et al., 2010; Cui et al., 2016; Mathur et al., 2012) in 107 

DLS. We found that AM251 left unaffected LTD induced by post-pre pairings (p<0.0001, n=8) (Fig. 108 

2c), while prevented LTD with pre-post pairings (p=0.4614, n=5) (Fig. 2d). We next investigated the 109 

involvement of NMDARs, and observed that D-AP5 prevented post-pre DMS-LTD from arising 110 

(p=0.1059, n=7) (Fig. 2c). We examined the involvement of L- and T-type voltage-sensitive calcium 111 

channels (VSCCs), which are activated by the back-propagating action potential (Feldman, 2012). 112 

Mibefradil (20μM), an antagonist of T-type VSCCs, prevented post-pre LTD (p=0.0751, n=8) (Fig. 113 

2c). Therefore, DMS-LTD is NMDAR- and T-type VSCCs-mediated for post-pre pairings, and 114 

endocannabinoid-mediated for pre-post pairings. 115 

Post-pre DLS-LTP and DMS-LTD are NMDAR-mediated, and pre-post DLS- and DMS-LTD are 116 

both CB1R-mediated. 117 
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 118 

Dominance of opposite polarity of plasticity in DMS and DLS with increasing corticostriatal 119 

activity. 120 

Expression map of STDP is not only shaped by spike timing (ΔtSTDP) but also by the frequency at 121 

which pairings are presented (Fpairings) (Feldman, 2012). We further characterized the induction rules 122 

of corticostriatal STDP in DLS (ntotal=130 DLS-MSNs) and DMS (ntotal=125 DMS-MSNs) by 123 

varying together ΔtSTDP (-100≤ΔtSTDP≤+100ms) and Fpairings (1≤Fpairings≤5Hz). We varied Fpairings up to 124 

5Hz, (i) to stay in the STDP (and not rate-coding plasticity) domain since for Fpairings>5Hz ΔtSTDP 125 

becomes shorter (i.e. 50ms) than the domain of STDP expression, and (ii) this frequency range is in 126 

line with in vivo corticostriatal cell assembly activities (Oberto et al., 2022). 127 

We explored the domain in which STDP has been widely reported, i.e. -30<ΔtSTDP<+30ms (Feldman, 128 

2012), and then expanded investigation up to ±100ms. We observed two main facts: (i) the STDP 129 

expression domain (ΔtSTDP) is narrower in DLS than in DMS for low Fpairings and is widening with 130 

increasing firing activity, and (ii) the existence of an opposite dominance of LTP and LTD in DLS 131 

and DMS, respectively (Fig. 3 and Table S2). 132 

LTP dominates in DLS when pairing frequency scales up. In DLS, we observed a dominance of 133 

LTP together with an enlargement of STDP expression domain with increasing Fpairings (Fig. 3a-d). 134 

For Fpairings=1Hz (n=42 MSNs), plasticity was induced within a narrow ΔtSTDP with LTP (p<0.0001, 135 

n=21) and LTD (p=0.0004, n=13) restricted to -30<ΔtSTDP<0ms and 0<ΔtSTDP<30ms, respectively 136 

(Fig. 3a). Pairings for ΔtSTDP≈-35 or +35ms did not induce plasticity (p=0.6205, n=4 and p=0.4670, 137 

n=4). We have previously shown that no plasticity was induced for ΔtSTDP beyond ±30ms even for 138 

wide ΔtSTDP, i.e. ±250 and ±500ms (Valtcheva and Venance, 2016). For Fpairings=2.5Hz (n=36), 139 

plasticity domain broadened considerably up to -100<ΔtSTDP<+100ms, with LTP being induced for-140 
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100<ΔtSTDP<+30ms and LTD for +20<ΔtSTDP<+100ms (Fig. 3b). Indeed, most MSNs subjected to 141 

post-pre pairings (-100<ΔtSTDP<0ms) displayed LTP (p=0.0003, n=22). LTP domain was extended 142 

also on the pre-post side (0<ΔtSTDP<+30ms: p=0.0082, n=6) with 67% of LTP for only 33% of LTD 143 

(Fig. 3b); this should be compared to the 8% of LTP and 85% of LTD expressed for Fpairings=1 Hz 144 

and 0<ΔtSTDP<+30ms. Interestingly, the expression domain of LTD was also enlarged and shifted to 145 

+30<ΔtSTDP<+100ms where LTD was the exclusive form of plasticity (p=0.0006, n=8) (Fig. 3b). For 146 

Fpairings=5Hz (n=52), both post-pre and pre-post pairings spanning from -100 to +100ms induced LTP 147 

(-100<ΔtSTDP<0ms: p<0.0001, n=33; 0<ΔtSTDP<+100ms: p=0.0002, n=19) (Fig. 3c). Therefore, in 148 

DLS, increasing frequency in a time-coding paradigm, such as STDP, shapes plasticity map by 149 

favoring LTP (Fig. 3d). This feature was robust and conserved with a rate-coding paradigm at a high 150 

frequency. Indeed, a single round of high-frequency stimulation (HFS) induced LTP exclusively 151 

(p<0.0001, n=6) (Fig. 3e). 152 

In DLS, the asymmetric anti-Hebbian STDP at 1Hz turned into a symmetric Hebbian STDP at 5Hz. 153 

Furthermore, the temporal window of STDP induction was enlarged with increasing frequency (from 154 

60ms at 1Hz to 200ms at 5Hz) and LTP became the prominent form of plasticity (Fig. 3d and 3i). 155 

LTD dominance in DMS when pairing frequency scales up. In DMS, for Fpairings from 1 to 5 Hz, we 156 

observed a dominance of LTD, i.e a symmetric anti-Hebbian STDP, except at 2.5Hz for which 157 

asymmetric STDP appeared (Fig. 3f-i). For Fpairings=1Hz (n=39 MSNs), plasticity domain in DMS 158 

was wider than in DLS since comprised between -100 and +100ms (Fig. 3f). Indeed, LTD was 159 

induced for post-pre pairings with -100<ΔtSTDP<0ms (p=0.0033, n=15) as well as for pre-post 160 

pairings with 0<ΔtSTDP<+100ms (p<0.0001, n=24). For Fpairings=2.5Hz (n=59), a complex plasticity 161 

map was obtained since post-pre pairings with -30<ΔtSTDP<0ms induced not only LTD (52% of the 162 

MSNs) but also LTP (41% of the MSNs) (Fig. 3g). Indeed, among 27 neurons subjected to post-pre 163 
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pairings (-30<ΔtSTDP<0ms), 14 and 11 cells displayed LTD (72±3%, p<0.0001) and LTP (134±6%, 164 

p=0.0002), respectively; the 2 remaining ones did not show plasticity. There was no correlation 165 

(Pearson's correlation) between the ΔtSTDP (p=0.7888), input resistance (Ri, p=0.5135), resting 166 

membrane potential (RMP, p=0.9740) or excitatory post-synaptic potential (PSP) amplitude 167 

(p=0.4476) of the recorded MSNs and STDP polarity for -30<ΔtSTDP<0ms (Fig. S2). For pairings 168 

beyond -30 ms (-100<ΔtSTDP<-30ms), LTD was observed (p=0.0085, n=10). For pre-post pairings 169 

(0<ΔtSTDP<100ms), LTD was the main form of plasticity to be induced (p<0.0001, n=22), i.e. a 170 

similar picture than those obtained for pre-post pairings at 1Hz. For Fpairings=5Hz (n=27), both post-171 

pre and pre-post pairings induced LTD (-100<ΔtSTDP<0ms: p<0.0001, n=16; 0<ΔtSTDP<+100ms: 172 

p=0.0200, n=11) (Fig. 3h). Notably, at Fpairings=5Hz, none of the recorded MSNs (n=11) at -173 

30<ΔtSTDP<0 ms exhibited anymore LTP, as it was the case for almost half of the MSNs for 174 

Fpairings=2.5Hz. 175 

In DMS, LTD dominates regardless ΔtSTDP and Fpairings (Fig. 3i), with the noticeable exception of 176 

paired activity at Fpairings=2.5Hz with -30<ΔtSTDP<0ms for which LTD as well as LTP were observed. 177 

Thus, in DMS with increasing Fpairings, the symmetric anti-Hebbian STDP observed at 1Hz was 178 

transitorily flipped at 2.5Hz to a mixture of symmetric and asymmetric anti-Hebbian STDP, and then 179 

at 5Hz only symmetric anti-Hebbian STDP was observed. We then tested the effect of HFS and only 180 

LTD was induced (p<0.0001, n=7) (Fig. 3j). 181 

In conclusion, LTP dominates in DLS with increasing Fpairings (and HFS) making the plasticity map 182 

evolving from asymmetric anti-Hebbian to symmetric Hebbian STDP, whereas in DMS LTD is the 183 

prominent form of plasticity showing mainly symmetric anti-Hebbian STDP (at the exception of 184 

Fpairings=2.5Hz). 185 

 186 
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Striatonigral and striatopallidal DMS-MSNs exhibit frequency-specific plasticity 187 

We investigated whether the observed dichotomy regarding LTP/LTD expression in DMS-MSNs for 188 

Fpairings=2.5Hz overlapped that of striatonigral and striatopallidal MSNs. The two MSN subtypes 189 

express different dopaminergic receptors, D1R- and D2R-like for the striatonigral and striatopallidal 190 

pathways, respectively (Calabresi et al., 2014; Bonnavion et al., 2019). At this stage we used Drd1a-191 

eGFP mice to investigate STDP in D1
+ and D1

- DMS-MSNs (Fig. 4 and Table S3). We performed 192 

double patch-clamp recordings of neighboring MSNs pairs (<50µm away, n=8 pairs) composed of 193 

one D1
+ and one D1

- MSNs. Both DMS-MSNs were subjected to the same STDP protocol: 100 post-194 

pre pairings at Fpairings=2.5Hz and ΔtSTDP=-15ms (Fig. 4a). Figure 4b shows an example of a D1
+/D1

- 195 

DMS-MSN pair which exhibits opposite plasticity, LTD (p<0.0001) and LTP (p<0.0001), 196 

respectively. In all 8 D1
+/D1

- MSN pairs, we found that D1
+ MSNs displayed LTD (p<0.0001), 197 

whereas D1
- MSNs displayed exclusively LTP (p<0.0001, n=8) (Fig. 4c). 198 

We next investigated the signaling pathways associated with LTD and LTP expressed in D1
+ and D1

- 199 

MSNs. Both LTD in D1
+ MSNs and LTP in D1

- MSNs, induced by post-pre pairings at 2.5Hz, were 200 

NMDAR-mediated. Indeed, D-AP5 prevented plasticity in D1
+ (p=0.1255, n=7) and D1

- MSNs 201 

(p=0.5884, n=6) (Fig. 4d). 202 

We observed in rats that at Fpairings=1Hz the majority (73%) of the DMS-MSNs randomly chosen 203 

exhibited LTD (Fig. 3f), suggesting that this LTD could be induced indistinguishably in D1+ and D1- 204 

DMS-MSNs. Using Drd1a-eGFP mice, we confirmed this observation made in rats, since LTD was 205 

induced in both D1+ and D1- DMS-MSNs when subjected to post-pre pairings at 1Hz with ΔtSTDP=-206 

15ms (D1
+ MSNs: p=0.0005, n=5; D1

- MSNs: p<0.0001, n=6) (Fig. 4e). 207 
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In DMS the LTP/LTD dichotomy observed for Fpairings=2.5Hz relies on the belonging of MSNs to the 208 

striatonigral or striatopallidal pathway, whereas for other Fpairings (or HFS), similar plasticity (LTD) is 209 

induced in most of DMS-MSNs. 210 

 211 

Region-specific involvement of STDP during procedural learning. 212 

We next investigated the engagement of evoked-LTP and -LTD in DLS and DMS during a motor 213 

skill learning (Fig. 5 and Table S4). For this purpose, we performed ex vivo occlusion experiments 214 

and tested STDP expression (post-pre pairings for Fpairings=2.5Hz) 24 hours after habituation (control 215 

group, n=9 mice), the first day (early-trained group, n=8) or the seventh day (late-trained group, 216 

n=10) of Rotarod training (Fig. 5a and Methods). We chose Fpairings=2.5Hz since it allows to capture 217 

most of the DMS- and DLS-STDP features, and more particularly the DMS-plasticity dichotomy 218 

between striatonigral and striatopallidal DMS-MSNs. Here, we used Drd2-EGFP mice to investigate 219 

STDP in D2
+ (striatopallidal) and D2

- (striatonigral) DMS- and DLS-MSNs; it allows also to ensure 220 

that the observation with Drd1a-eGFP mice (Fig. 4) still stand in another mouse line. Most of mice 221 

reached a plateau in term of motor learning performance by the second or third day of training (Fig. 222 

5a). We exploited the fact that the Rotarod is a non-lateralized motor task to test DLS- and DMS-223 

STDP induction in the same animals: for each mouse, one brain hemisphere was used to assess DLS-224 

STDP and the other for DMS-STDP. 225 

In DMS, habituated mice displayed LTD in D2
- MSNs (p=0.0002, n=7) (Fig. 5b1) and LTP in D2

+ 226 

MSNs (p<0.0001, n=6) (Fig. 5b2), in line with results obtained using Drd1a-eGFP mice (Fig. 4a-c). 227 

Plasticity magnitudes observed in habituated (Fig. 5b1 and 5b2) and in naïve mice (Fig. 4c) were not 228 

significantly different (LTD: p=0.9174; LTP: p=0.4770). After one day of training on the 229 

accelerating Rotarod, the early-trained group showed an occlusion of plasticity in both D2
- 230 
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(p=0.1566, n=6) and D2
+ (p=0.5850, n=7) DMS-MSNs (Fig. 5c1 and c2). After seven days of 231 

training, the late-trained group showed again expression of LTD in D2
- DMS-MSNs (p<0.0001, 232 

n=10) (Fig. 5d1) as well as LTP in D2
+ DMS-MSNs (p<0.0001, n=8) (Fig. 5d2). These later 233 

plasticity magnitudes were similar to those in habituated mice (LTD: p=0.9365; LTP: p=0.9523). 234 

There was a significant interaction between synaptic plasticity and stages of motor skill learning 235 

(habituated, early- and late-stages) as well as the belonging of DMS-MSNs to the striatonigral or 236 

striatopallidal pathways (two-way ANOVA, F(2,38)=5.721, p=0.007). These results indicate that 237 

DMS-STDP (LTP and LTD) are engaged during early phases of training and disengaged at later 238 

stages of motor skill learning. 239 

In DLS, habituated mice displayed LTP in both D2
- (p<0.0001, n=7) and D2

+ (p<0.0001, n=7) MSNs 240 

(Fig. 5e1 and e2), in line with evoked-STDP in Drd1a-eGFP mice (Fig. 4a-c). The early-trained 241 

group exhibited distinct synaptic efficacy changes depending on D2
- and D2

+ DLS-MSNs. Indeed, D2
- 242 

MSNs showed an occlusion of plasticity (p=0.2795, n=9) (Fig. 5f1), while LTP was induced in D2
+ 243 

MSNs (p<0.0001, n=7) (Fig. 5f2). This later LTP was of similar magnitude to the evoked-LTP in 244 

habituated mice (p=0.4933). Conversely, the late-trained group showed a reverse plasticity picture to 245 

the one observed for the early-trained group: LTP was successfully evoked in D2
- DLS-MSNs 246 

(p<0.0001, n=10) (Fig. 5g1), whereas plasticity was occluded this time in D2
+ DLS-MSNs 247 

(p=0.4223, n=7) (Fig. 5g2). Evoked-LTP in D2
- DLS-MSNs displayed similar amplitude in late-248 

trained and habituated groups (p=0.4923). There was an interaction between synaptic plasticity and 249 

habituated/early-/late-stages as well as striatonigral and striatopallidal DLS-MSNs phenotype (two-250 

way ANOVA, F(2,41)=9.531, p<0.001). 251 

Striatonigral and striatopallidal DLS-MSNs are selectively engaged, in terms of STDP, depending on 252 

the stages of motor skill learning: only striatonigral DLS-MSNs are involved at early stages, and 253 
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during the late stages only striatopallidal DLS-MSNs are engaged. DMS-MSN plasticity is mobilized 254 

in both MSN populations during early stages and then showed a disengagement during late stages. 255 

Interestingly, striatonigral DLS-MSNs show the same plasticity profiles, and occlusion, as 256 

striatopallidal DMS-MSNs. 257 

 258 

Reduced mathematical model of the striatal network 259 

To investigate whether the distinct forms of STDP in DMS and DLS (Fig. 1) subtend different 260 

learning properties, we considered a simplified model of the corticostriatal system, composed of a 261 

fixed number � of cortical neurons projecting to one MSN. We quantified the capacity of this system 262 

to retain memory as a function of the form of corticostriatal STDP, all parameters equal otherwise. 263 

The MSN, modeled as an integrate-and-fire neuron, received inputs from � cortical neurons, as well 264 

as activity from other cells represented by a Poisson process (Fig. 6). The synaptic weight �� 265 

between cortical neuron � ∈ {1,··· , �} and MSN is subject to plasticity, through an all-to-all pair-266 

based learning rule with instantaneous updates given by 267 

Δ�� =
��
���������� exp �− Δ� !"#$%                  �& �ℎ( )*+ ,-�.(, /� ��0( ����� ,

��������� exp � Δ� !"#$%    �& 123��1/4 5(6325 � ,-�.(, /� ��0( ����,� , 268 

with ∆� = ����� − ����,�. 269 

By convention, we fixed ��������� = −1, and varied the parameter ���������; ��������� < 0 270 

corresponds to symmetric anti-Hebbian STDP, while ��������� > 0 corresponds to asymmetric anti-271 

Hebbian learning rules (Fig. 6). 272 

The MSN was presented with various patterns of cortical activity, that included two types of input: (i) 273 

Cortical patterns: coincident spikes from a prescribed sub-group of +���; cortical input neurons, 274 
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with a Gaussian jitter of standard deviation <� and (ii) Random cortical firing: Poisson spikes from 275 

all cortical neurons with rate =�/�. Examples of such patterns are presented in Figure 6: pattern �, 276 

with cortical neurons 1, 3 and 4 fired and pattern ? cortical neurons 2, 3 and 4 (spikes in green), with 277 

superimposed random spikes (grey). +� patterns were built according to these principles and split 278 

randomly with 50% chance into rewarded and non-rewarded patterns (� is a non-rewarded pattern 279 

(−) and ? is a rewarded pattern (+)). 280 

Rewarded patterns are associated to abstract reward signals representing neuromodulation (e.g. 281 

dopaminergic signaling) (Foncelle et al., 2018; Gerstner et al., 2018; Brzosko et al., 2019), and 282 

resulting in a potentiation of the synapses associated with cortical neurons that fired in a window 283 

around the presentation of rewarded patterns (including both the neurons that were associated with 284 

the pattern and those associated with noise; red bands in Figure 6). Because of the prominent role of 285 

depression in anti-Hebbian learning, particularly in the symmetric case, this potentiation mechanism 286 

(referred to as reward-LTP) is essential to maintain some spiking activity (Thorn and Graybiel, 287 

2014). 288 

To quantify the occurrence of the presentation of patterns, we opted for simplicity to split time into 289 

windows of 100 ms, and, in each of this time bins, to present a randomly chosen pattern with a 290 

probability C (and no pattern presented, with probability 1 − C, bins labeled ∅ in Figure 6). A 291 

rewarded cortical pattern is learnt when the MSN spiked in response to the synchronous cortical 292 

activity. Conversely, a non-rewarded pattern is learnt if the MSN did not fire during pattern 293 

presentation. The accuracy of striatal learning was estimated during test protocols conducted 294 

throughout the task on a network devoid of any plasticity and noise, with a metric combining the 295 

fraction of rewarded patterns correctly eliciting spikes from the MSN and of non-rewarded ones that 296 

did not trigger any spike. 297 
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To avoid transient effects associated with the initialization of synaptic variables, we simulated an 298 

initial phase of spontaneous activity of the cortical network, defined by the presentation of patterns 299 

with probability C = C; in the absence of reward-LTP. During the learning phase, patterns are 300 

presented at each iteration and rewards were provided for rewarded patterns. This phase emulates a 301 

learning stage, with the MSN eventually gaining an ability to discriminate patterns by spiking in 302 

response to rewarded patterns and not spiking in response to non-rewarded patterns. The capacity of 303 

the network to keep patterns in memory was then estimated during a maintenance phase, with 304 

stimulus presented with probability C = C; in the absence of reward-LTP. Finally, the capacity to 305 

relearn previously learned patterns was tested in a protocol identical to the learning phase (Table S5 306 

and S6). 307 

Random input activity was fixed at =� = =E!F = 5HI during (re-)learning phases to mimic in vivo 308 

MSN firing rate (Mahon et al., 2006). It was set to =� = 4=E!F = 20HI in the initial and 309 

maintenance phases to amplify forgetting within comparable timescales as learning (Methods; 310 

choosing =� =5Hz in these phases yields similar relative results, with higher final accuracies for 311 

similar maintenance phase durations). 312 

 313 

Asymmetric anti-Hebbian STDP favors memory maintenance, whereas symmetric LTD allows 314 

accrued flexibility 315 

Numerical experiments showed significant differences between the learning capability with 316 

symmetric or asymmetric anti-Hebbian STDP, particularly during the maintenance and relearning 317 

phases. Figure 7a reports changes in learning accuracy as a function of time throughout the four 318 

different phases and for various non-zero values of ���������  (solid lines) or controls with 319 

��������� = 0 (dotted lines). The final accuracies at the end of each phase were reported in Figure 7b 320 
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as a function of ���������. Accuracy essentially remains at chance levels during the initial phase, as 321 

expected in the absence of reward. In the learning phase, rewards drove a rapid increase and 322 

stabilization of accuracy in all conditions. When rewards were no more provided in the maintenance 323 

phase, the accuracy gradually plummeted, with different dynamics that depended on ���������. 324 

Finally, during the relearning phase, the system learns again previously memorized patterns when 325 

reward-LTP is applied anew, with again distinct kinetics depending on ���������. 326 

Learning phase. The rapid rise of accuracy in the learning phase highlights the ability of all tested 327 

networks to store patterns in the presence of pattern-specific reward-LTP (Fig. 7a). Heuristically, the 328 

cumulated increase in the synaptic weights induces on neurons associated with rewarded patterns 329 

increases the probability of the MSN to spike in response to the rewarded patterns compared to non-330 

rewarded signals. This effect is counterbalanced by the presence of pre-post LTD, which leads to 331 

depression of the synaptic weights, and therefore favors an equilibrium where the synaptic weights 332 

are high enough to trigger the spike, but still remain bounded, and prevents firing after non-rewarded 333 

patterns. Indeed, if the MSN happened to spike after presentation of a non-rewarded pattern, the pre-334 

post LTD induced a decrease in synaptic weights for neurons associated with the pattern, that will 335 

contribute to a decay of MSN firing probability. To highlight the crucial importance of the anti-336 

Hebbian pre-post LTD in learning of patterns, we computed learning accuracies in the absence 337 

thereof (��������� = 0; Fig. 7a). In this case, the absence of the pre-post LTD counterbalancing 338 

reward-LTP led to a continual growth of the synaptic weights, which resulted in the MSN spiking for 339 

non-rewarded patterns and therefore reducing learning accuracy. 340 

Final accuracy at the end of the learning phase depended on ��������� (Fig. 7b). Indeed, the system 341 

did not reach a fixed equilibrium during the learning phase, but stabilized at a stationary regime 342 

alternating multiple correct spiking responses interspersed by erroneous silences. This phenomenon 343 
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is due to the fact that the synaptic weights W associated with the pattern decreased progressively for 344 

each accurate answer according to the superposition of reward-LTP and pre-post LTD. This decrease 345 

persisted until the MSN stops firing, leading to a jump in W (since in the absence of a spike, only 346 

reward-LTP is applied), after what the process starts afresh. As a consequence of this mechanism, we 347 

expect that larger reward-LTP will allow for a larger fraction of experiments with spiking in response 348 

to a rewarded signal, in turn increasing accuracy. However, when reward-LTP exceeds pre-post LTD, 349 

an instability arises with a divergence of synaptic weights that would reduce accuracy, since it will 350 

lead to non-specific spiking in response to non-reward signals. Accordingly, there exists a value of 351 

���������  where the accuracy is maximal (��������� ≈ 0.5; Fig. 7b). 352 

A combination of pre-post LTD and reward-LTP enabled discrimination of rewarded and non-353 

rewarded patterns, for all values of ���������, with significant differences compared to the initial 354 

phase. 355 

Maintenance phase. The drop in accuracy during the maintenance phase was found to be faster for 356 

symmetric anti-Hebbian learning than for asymmetric anti-Hebbian learning, with a significant 357 

impact of the value of ��������� on the accuracy at the end of the maintenance (Fig. 7b), as visible in 358 

the distinct characteristic decay time  ;M�N��NMNO�  of accuracy (Fig. 7c1). Asymmetric STDP 359 

allowed maintenance of higher accuracies for longer durations in the absence of rewards (Fig. 7c2). 360 

Phenomenologically, symmetric LTD tends to induce a global depression in response to random 361 

stimuli, which therefore can lead the MSN to stop firing to any patterns. The presence of LTP in 362 

asymmetric anti-Hebbian STDP limits this phenomenon, since only pre-post pairings will lead to 363 

LTD, which can be compensated by post-pre pairings. This more balanced response allows for a 364 

more durable conservation of the relative � magnitudes in the absence of rewards. To show the 365 

correlations with � dynamics, we computed the deviation from � values at the end of the learning 366 

phase in terms of amplitude and change in orientation (Fig. 7c3). We observed that asymmetric 367 
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STDP (���������>0) led to a smaller deviation of the synaptic weights than for what was observed 368 

for symmetric STDP. 369 

Relearning phase. After the maintenance phase, relearning started with resuming the delivery of a 370 

reward-LTP during presentation of rewarded patterns. While the system reaches similar accuracies as 371 

those obtained at the end of the learning phase, the kinetics of relearning appeared distinct for the 372 

different types of plasticity studied. Compared to symmetric anti-Hebbian STDP, relearning is faster 373 

for asymmetric anti-Hebbian STDP, as long as ��������� is small enough to avoid runaway 374 

potentiation and instability (Fig. 7c4: quantification for the characteristic time of relearning 375 

 ��P�M�N�NQ). 376 

Influence of the pattern presentation rate. The maintenance phase can be seen as an unlearning of 377 

rewarded patterns: an MSN that will have maintained memory will fire in response to a rewarded 378 

pattern, and associated weights will decrease, leading the MSN to stop firing after enough 379 

presentations. This will lead to a drop in accuracy (Fig. 7d1), faster when patterns are presented more 380 

frequently (i.e. larger C;), and found to be more rapid for symmetric anti-Hebbian STDP (Fig. 7d2). 381 

The pattern presentation rate C; chosen in the maintenance phase also played a significant role in the 382 

relearning phase, with higher rates of presentations leading to a slower relearning, potentially 383 

indicating a more dramatic deviation of � from their after-learning values (Fig. 7d3). However, the 384 

difference between symmetric and asymmetric STDP persisted for varying presentation rates C;: 385 

even if the network loses its capacity to recall correctly the patterns, � may have conserved a 386 

signature of learnt patterns. 387 

Influence of noise. While the network is able to learn in the presence of noise (Fig. S3), we expect the 388 

uncertainty and variability it creates on patterns to impact final accuracies and learning efficiency. In 389 

absence of noise (=E!F = 0), the system reached high accuracies in the learning phase, and the 390 

maximal value reached was identical for both symmetric and asymmetric STDP, that were conserved 391 
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throughout the maintenance phase in the absence of noise (Fig. S3). While the network was still 392 

learning in the presence of noise, increasing noise levels progressively impaired learning ability, and 393 

for Poisson noise with frequency =E!F > 10HI, the network showed poor learning and maintenance 394 

abilities. Realistic noise levels on the same order as typical MSN firing rate is between these two 395 

regimes and allow both learning and maintenance, with different capacities for symmetric and 396 

asymmetric anti-Hebbian STDP as discussed above. 397 

Robustness to R�, +�, +���;S parameters of the model. Beyond noise levels, all observations reported 398 

were robust to variations in the number of cortical neurons, patterns presented and number of 399 

stimulations with R�, +�, +���;S equals to (10, 10, 3), (10, 15, 5) and (20, 30, 3) (Fig. S4). 400 

Interpretation of the model on the impact of different STDP in DMS and DLS. For low stimulus 401 

frequency, the asymmetric anti-Hebbian STDP observed in DLS at 1Hz could support maintenance 402 

of stimulus associations for longer durations and relearning almost immediately previously learned 403 

associations. In contrast, the symmetric DMS-LTD leads to a faster erasure of associations, making 404 

the system available to learn new patterns. STDP elicited at striatopallidal DMS-MSN at 2.5Hz 405 

switched from symmetric LTD to asymmetric anti-Hebbian STDP. We postulate that with more 406 

frequent stimulations, striatopallidal MSNs adapt their behavior so as to store patterns for longer 407 

times than striatonigral MSNs. 408 

Overall, when presenting patterns at a slow rate, DMS with symmetric LTD, is able to forget quickly, 409 

whereas asymmetric anti-Hebbian STDP maintains memory in DLS. This observation on a simplified 410 

model suggests a possible cellular basis for the various observations on the differential involvement 411 

of DMS and DLS in motor skill learning (Yin and Knowlton, 2006; Jin and Costa, 2015): both learn 412 

the task during the first trials, and then DMS disengages when habit learning mediated by the DLS 413 

takes over initial phases of motor training or goal-directed learning.  414 
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DISCUSSION 415 

To explore how the striatum is able to achieve distinct learning modalities, from goal-directed 416 

behavior to maintaining habits, we explored long-term plasticity in DMS and DLS. We found distinct 417 

anti-Hebbian STDP: symmetric in DMS and asymmetric in DLS. Hebbian and anti-Hebbian STDP 418 

have been reported in the dorsal striatum depending whether GABAergic transmission inhibitors 419 

(Paillé et al., 2013; Valtcheva et al., 2017) were applied (Hebbian STDP (Pawlak and Kerr, 2008; 420 

Shen et al., 2008)) or not (anti-Hebbian STDP (Fino et al., 2005; Fino et al., 2010; Mendes et al., 421 

2020)). These studies targeted DLS-MSNs, except Shen et al. (2008) where MSNs were recorded 422 

indifferently in DLS and DMS. In vivo recordings confirmed the anti-Hebbian polarity of striatal 423 

STDP (Schulz et al., 2010; Moera-Herreras et al., 2019; but see Fisher et al., 2017). With increasing 424 

cortical activity, plasticity followed opposite polarity in DMS and DLS, with LTD and LTP 425 

dominance, respectively. Another difference between DMS- and DLS-STDP upon increasing Fpairings, 426 

is that plasticity expression domain remained wide in DMS, whereas it was broadened in DLS. Thus, 427 

DLS appears highly sensitive to increasing Fpairings with a profound remodeling, namely a double 428 

invasion of the plasticity domain by LTP: (i) LTP which was restricted to narrow ΔtSTDP (-429 

30<ΔtSTDP<0ms) progressively invades the pre-post side, but also (ii) gains ground for larger ΔtSTDP 430 

values (-100<ΔtSTDP<+100ms). Regarding DMS, a similar plasticity map is observed for Fpairings of 1-431 

5Hz, with LTD expressed in the whole ΔtSTDP range (-100<ΔtSTDP<100ms), with the notable 432 

exception of striatopallidal MSNs exhibiting an opposite transient polarity, LTP, for a specific Fpairings 433 

(2.5Hz). Although there is less overall sensitivity to Fpairings in DMS than in DLS, there is a specific 434 

activity regime that allows for LTP expression in striatopallidal DMS-MSNs. The dominance of LTD 435 

vs LTP in DMS and DLS, respectively, is not restricted to time-coding paradigm but is also observed 436 

under rate coding activity (HFS), and therefore characterize each striatal sub-compartment. This is in 437 

line with studies, using other cell conditioning paradigms, reported distinct plasticity in DMS and 438 
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DLS (Partridge et al., 2000; Shan et al., 2014; Hawes et al., 2015; Munoz et al., 2020). In DMS, anti-439 

Hebbian LTD occurred in a larger temporal window than in DLS, suggesting that noisy signals in 440 

terms of jitter and correlation can induce LTD in DMS, while no plasticity would be triggered in 441 

DLS. This feature could participate to behavioral flexibility of DMS (Ragozzino et al., 2002a; 442 

Ragozzino et al., 2007) and its involvement at early stages of learning where correlated inputs can be 443 

more jittered than subsequently upon repetitions. 444 

Various experimental conditions including the angle of brain slicing, location of the stimulation 445 

electrode (cortex, corpus callosum or striatum), pharmacological agents, and/or protocols (HFS, LFS, 446 

theta-burst, STDP) can account for the great variety of observed plasticity (Lovinger, 2010; Cerovic 447 

et al., 2013) and subsequent controversies. A key element governing the polarity of STDP can also be 448 

the recruited neuromodulator(s) (Foncelle et al., 2018; Brzosko et al., 2019). Indeed, stimulation 449 

within the cortex, corpus callosum or striatum is not recruiting similarly neuromodulators. Specific 450 

recruitment at Fpairings=2.5Hz of dopaminergic fibers or cholinergic neurons could account for distinct 451 

plasticity at striatonigral and striatopallidal DMS-MSNs. Supporting this hypothesis, it was shown 452 

that dopamine and adenosine orientate in vivo STDP polarity in the DLS (Fisher et al., 2017), and 453 

that pharmacological inhibition of muscarinic receptors or opto-activation of adenosine A2A 454 

receptors in DMS suppresses behavioral flexibility (Ragozzino et al., 2002b; Li et al., 2016). A 455 

Fpairings of 2.5Hz could be reminiscent of the upper range of thalamocortical delta waves occurring 456 

during sleep (Steriade et al., 1993) and associated with weakening or forgetting of memories (Kim et 457 

al., 2019). 458 

Anti-Hebbian STDP, mainly reported in Purkinje-like cells, has been proposed to promote storage 459 

and retrieval of a temporally structured negative image of prior sensory stimuli (Roberts and Bell, 460 

2000; Roberts and Leen, 2010; Requarth and Sawtell, 2011). Our model shows that asymmetric anti-461 

Hebbian STDP leads to the maintenance of learned patterns, whereas symmetric LTD causes a rapid 462 



 22 

decrease in memory performance in the absence of reward. Similar to Roberts and Bell (2000), the 463 

LTP/LTD alternation in asymmetric anti-Hebbian STDP, if correctly tuned, forces the synaptic 464 

weights to retain some information on previously learned patterns. On the contrary, with symmetric 465 

LTD, the synaptic weights converge to zero because they are only subject to depression, leaving the 466 

system fresh to construct new associations and identify novel stimuli. Our study shows that DLS-467 

MSNs exhibit asymmetric anti-Hebbian STDP, consistent with DLS role in habit behavior, where 468 

rewards are no longer presented. Conversely, we hypothesize that thanks to symmetric anti-Hebbian 469 

STDP in DMS-MSNs, DMS should be able to adapt quickly between different action-outcome 470 

associations and therefore forget rapidly previous information. Our model shows that this role is 471 

consistent with anti-Hebbian symmetric STDP. This is in line with the role of DMS which is essential 472 

for behavioral flexibility such as strategy-shifting or reversal learning (Bonnavion et al., 2019; 473 

Ragozzino et al., 2002a; Ragozzino, 2007). 474 

It is assumed that DMS is involved in early phases of learning and goal-directed behavior, whereas 475 

DLS is involved in late phases of learning and habit acquisition (Graybiel and Grafton, 2015; Jin and 476 

Costa, 2015). In a motor skill learning, we found that DMS (striatonigral and striatopallidal MSNs), 477 

via DMS plasticity, is involved in early phases of learning and is disengaging upon reiteration and 478 

acquisition of the motor skill. In line with previous studies (Balleine and O’Doherty, 2010; Thorn et 479 

al., 2010; Kimchi et al., 2009; Stalnaker et al., 2010; Kupferschmidt et al., 2017; Bergstrom et al., 480 

2018), DLS plasticity can also be engaged from the early phases of motor skill training. However, we 481 

found that this concerns the striatonigral DLS-MSNs and not striatopallidal DLS-MSNs, these later 482 

being mobilized only during the late stages of learning. Moreover, striatonigral DLS-MSN plasticity 483 

follows DMS-MSNs engagement since LTP can be induced again during the late stages of learning. 484 

The fact that part of the DLS-MSNs (striatonigral DLS-MSNs) are mobilized during early training 485 

while striatopallidal DLS-MSNs take over at later stages agrees with the notion of sequential learning 486 
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implying part of the DLS at early learning stages (Bergstrom et al., 2018) and with the antagonistic 487 

control operated by striatonigral and striatopallidal DLS-MSNs during consolidation phase (Smith et 488 

al., 2021). Interestingly, when striatopallidal DMS-MSNs express asymmetric anti-Hebbian STDP, 489 

similar to DLS-STDP, this plasticity exhibits the same sequence of engagement/disengagement than 490 

in DLS. On the contrary, when symmetric anti-Hebbian STDP is expressed in DMS, this later 491 

evolves oppositely to that of the DLS. In DMS, we observed different plasticity depending on 492 

striatonigral and striatopallidal MSNs but with similar timing of engagement, whereas the reverse 493 

situation was observed in DLS with similar plasticity in MSNs but different timing of engagement of 494 

striatonigral and striatopallidal MSNs. The engagement of striatopallidal DLS-MSN, but not direct 495 

DLS-MSNs, in term of plasticity during extensive training agrees with Yin et al. (2009) showing an 496 

increased ex vivo corticostriatal transmission specifically in the striatopallidal MSNs and not in 497 

striatonigral MSNs after Rotarod extensive training. For 2.5Hz STDP, striatopallidal DMS-MSNs 498 

display asymmetric anti-Hebbian STDP, i.e. similar STDP than in DLS-MSNs, and exhibit similar 499 

engagement/disengagement than striatonigral DLS-MSNs. It indicates, according to model 500 

predictions, that striatonigral and striatopallidal DLS-MSNs favor the maintenance of learned 501 

patterns during early and late stages of learning, respectively. It also suggests that in DMS half of the 502 

MSNs, i.e. striatonigral DMS-MSNs showing a symmetric LTD, are more flexible than the other 503 

half, i.e. striatopallidal DMS-MSNs exhibiting asymmetric anti-Hebbian STDP. Our findings support 504 

the ideas that DMS and DLS display distinct plasticities, are both engaged from the early training 505 

phases, with a progressive disengagement of DMS, theoretically consistent with the plasticity they 506 

express. 507 

 508 

Limitations of the study 509 



 24 

The observations, about the LTD vs LTP dominance in DMS vs DLS or the specific activity regime 510 

for opposite plasticity in striatopallidal DMS-MSNs, remain to be examined in other corticostriatal 511 

domains and also in vivo with the tracking of plasticity across days in behaving animals (Xiong et al., 512 

2015). Because ex vivo (post-Rotarod) results and conclusions are limited to the form of STDP tested 513 

here, post-pre pairings at 2.5Hz, they need to be extended to other frequencies and pre-post pairings. 514 

The specific properties of striatonigral and striatatopallidal MSNs in DMS and DLS (Alegre-Cortés 515 

et al., 2021) may also contribute to the variety of learning abilities. Therefore, future work will be 516 

needed to characterize and integrate such differences in models and study how the network combines 517 

striatonigral and striatopallidal pathways endowed with distinct plasticity rules for procedural 518 

learning.  519 
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Figures 537 

Figure 1: Distinct anti-Hebbian STDP profiles in DLS and DMS. 538 

(a) STDP pairings at 1 Hz with ΔtSTDP<0 and ΔtSTDP>0 referring to post-pre (a1) and pre-post (a2) 539 

pairings. Pre- and postsynaptic stimulations were applied either in the sensorimotor (b) or the 540 

associative (c) cortical and striatal areas. (b) DLS-STDP displays an asymmetric anti-Hebbian 541 

polarity in rats. (b1) Experimental setup. (b2 and b3) Averaged time-courses of (b2) LTP induced by 542 

100 post-pre pairings (n=16) and (b3) LTD induced by 100 pre-post pairings (n=14). (c) DMS-STDP 543 

displays symmetric anti-Hebbian polarity. (c1) Experimental setup. (c2 and c3) Averaged time-544 

courses of LTD induced by (c2) 100 post-pre pairings (n=11) and (c3) 100 pre-post pairings (n=16). 545 

Plasticity values and statistics: Table S1. 546 

Bar graphs represent the average of all STDP experiments and each point represents the percentage 547 

of change in EPSC amplitude at 50-60 min after STDP pairings in a single STDP experiment. Insets 548 

correspond to the average EPSC amplitude at baseline (black) and at 50-60 min after STDP pairings 549 

(grey). Error bars represent the SEM. ****: p<0.0001 by one sample t test. 550 

 551 

Figure 2: Signaling pathways involved in DMS- and DLS-STDP. 552 

(a) Post-pre DLS-LTP was NMDAR-mediated since prevented by D-AP5 (50μM) (n=9) and (b) pre-553 

post LTD was CB1R-mediated since prevented by AM251 (3μM) (n=5). (c) Post-pre DMS-LTD was 554 

not CB1R-mediated, because left unaffected by AM251 (n=8), but was NMDAR- and T-type VSCC-555 

mediated because prevented by D-AP5 (n=7) or mibefradil (20μM) (n=8). (d) Pre-post DMS-LTD 556 

was CB1R-mediated since prevented with AM251 (n=5). 557 

Plasticity values and statistics: Table S1. 558 

Error bars represent the SEM. ****: p<0.0001; ns: not significant by one sample t test. 559 

 560 

Figure 3: LTD and LTP dominates in DMS and DLS, respectively, when pairing frequency 561 

scales up. 562 

(a-d) DLS-STDP by varying ΔtSTDP (-100<ΔtSTDP<100ms) and Fpairings (1, 2.5 and 5Hz) (n=130 DLS-563 

MSNs). Summary graphs of STDP in relation with ΔtSTDP showed at 1Hz (a) an asymmetric anti-564 

Hebbian STDP in a restricted time window (-30<ΔtSTDP<30ms) (n=42), at 2.5Hz (b) a widening of 565 

the temporal window of STDP expression and LTP being also induced for short pre-post pairings 566 

(n=36), and at 5Hz (c) dominance of LTP (n=52). (d) STDP profiles illustrates the progressive 567 
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dominance of LTP and the evolution of the asymmetric anti-Hebbian STDP into symmetric Hebbian 568 

STDP with increasing Fpairings. (e) Averaged time-courses of HFS-LTP (p<0.0001, n=6). (f-i) DMS-569 

STDP by varying ΔtSTDP and Fpairings (n=125 DMS-MSNs). Summary graphs of STDP showed at 1Hz 570 

(f) symmetric anti-Hebbian STDP in a broad time window (-100<ΔtSTDP<100ms) (n=39), at 2.5Hz 571 

(g) mainly LTD except for narrow (-30<ΔtSTDP<0ms) post-pre pairings for which half of the MSNs 572 

exhibited LTD while the other half displayed LTP (n=59), and at 5Hz (h) dominance of LTD (n=27). 573 

(i) STDP profiles show the dominance of LTD and the unique plasticity map at 2.5Hz for which LTP 574 

emerged for post-pre pairings. (j) Averaged time-courses of HFS-LTD (p<0.0001, n=7). 575 

STDP values and statistics: Table S2. 576 

Panels d and i, linear interpolation with a Savitzky-Golay filter. Each point: % of change in EPSC 577 

amplitude 50-60 min after STDP pairings. Error bars represent the SEM. *: p<0.05, **: p<0.01, ***: 578 

p<0.001, ****: p<0.0001 by one sample t test, Mann-Whitney test or Kolmogorov-Smirnov test. 579 

 580 

Figure 4: D1
+ and D1

- DMS-MSNs express opposite plasticity at Fpairings=2.5 Hz. 581 

(a-d) DMS-STDP for post-pre pairings at Fpairings=2.5Hz. (a-c) Whole-cell recordings in D1+ and D1- 582 

MSN pairs (n=8 cell pairs) in Drd1a-eGFP mice. (a) Experimental set-up (b) Example of a D1
+ and 583 

D1
- MSN pair recording: LTD (ΔtSTDP=-19 ms) in a D1

+ and LTP (ΔtSTDP=16ms) in a D1
- DMS-MSN. 584 

(c) Averaged time-courses of MSN pair recordings showing LTD in D1
+ MSNs (7/8 LTD), and LTP 585 

in D1
- MSNs (8/8 LTP); Right: summary graph with synaptic weights determined 40-50 minutes after 586 

pairings. (d) LTD and LTP in, respectively, D1
+ (n=7, p=0.1255) and D1

- (n=6, p=0.5884) MSN are 587 

NMDAR-mediated since prevented by D-AP5. (e) At Fpairings=1Hz, LTD was the unique form of 588 

plasticity at in D1
+ and D1

- DMS-MSNs (p=0.0005, n=5, and p<0.0001, n=6). 589 

Plasticity values and statistics: Table S3. 590 

Error bars represent the SEM. ***: p<0.001; ****: p<0.0001; ns: not significant by one sample t test. 591 

 592 

Figure 5: Region-specific involvement of STDP during motor skill learning 593 

(a) Experimental set-up: Rotarod and ex vivo STDP. Drd2-EGFP mice were divided in habituated 594 

(n=9 mice), early-trained (n=8) and late-trained (n=10) groups. Motor skill learning of mice were 595 

evaluated with the latency to fall from the Rotarod. (b-d) Occlusion experiments in DMS and 596 

averaged time-courses of DMS-MSNs recorded in habituated (b), early-trained (c) and late-trained 597 

(d) mice after post-pre pairings at 2.5Hz (ΔtSTDP~-15ms). (b) Habituated mice: LTD (p=0.0002, n=7) 598 
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and LTP (p<0.0001, n=6) in D2
- (b1) and D2

+ (b2) DMS-MSNs, respectively. (c) Early-trained mice: 599 

no synaptic plasticity detected in D2
- (p=0.1566, n=6) (c1) and D2

+ (p=0.5850, n=7) (c2) MSNs. (d) 600 

Late-trained mice: LTD (p<0.0001, n=10) and LTP (p<0.0001, n=8) in D2
- (d1) and D2

+ (d2) DMS-601 

MSNs, respectively, similarly to the habituated group. (e-g) Occlusion experiments in DLS-MSNs. 602 

(e) Habituated mice: LTP in D2
- (p<0.0001, n=7) (e1) and D2

+ (p<0.0001, n=7) (e2) DLS-MSNs. (f) 603 

Early-trained mice: no synaptic plasticity detected in D2
- (p=0.2795, n=9) (f1) while LTP was 604 

induced in D2
+ (p<0.0001, n=7) (f2) DLS-MSNs. (g) Late-trained mice: a reverse plasticity map was 605 

observed when compared to (f): LTP (p<0.0001, n=10) in D2
- (g1) and no plasticity (p=0.4223, n=7) 606 

in D2
+ (f2) DLS-MSNs. D2

- DLS-MSNs are engaged at early stages, while D2
+ DLS-MSNs remain 607 

available for plasticity, and conversely at late stages. D2
- and D2

+ DMS-MSNs show the same 608 

behavior: they are engaged in the early-trained stages and show a disengagement at late-trained 609 

stages. 610 

Plasticity values and statistics: Table S4. 611 

Error bars represent the SEM. ***: p<0.001; ***: p<0.0001; ns: not significant by one sample t test. 612 

 613 

Figure 6: A pattern recognition task to test the learning, maintenance and relearning in 614 

a computational model of the striatal network. 615 

Striatal network with � = 4 cortical neurons (green), a random input neuron with rate =�  (yellow) 616 

and one MSN, represented by its membrane potential U (brown). Two mechanisms of synaptic 617 

plasticity are considered in the dynamics of the synaptic weight �: anti-Hebbian STDP and LTP 618 

related to the reward signal (reward-LTP). Anti-Hebbian STDP is modeled using exponential kernels, 619 

with different values for ��������� and ��������� = −1. Example of the learning task (left), 620 

separated in four phases (Table S5) with four iterations in each phase. +- = 2 patterns � and ? are 621 

presented to the network, with � being non-rewarded (−) and ? rewarded (+). ∅: iteration with no 622 

pattern presentation. Spiking activity of the cortical neurons (green: pattern spikes; grey: random 623 

spikes) and the random input neuron are represented along with the MSN membrane potential U. 624 

Figure 7: Influence of symmetric and asymmetric anti-Hebbian STDP on 625 

learning, maintenance and relearning of patterns in a striatal network. 626 
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(a) Learning dynamics for � = 10 input neurons, +���; = 3 stimulations by pattern, +� = 15 627 

patterns and the proportion of pattern presentation in the initial/maintenance phases C; = 0. Time-628 

evolution of the learning accuracy through an initialization, learning, maintenance and relearning 629 

phases, for distinct anti-Hebbian plasticities (blue: symmetric, brown: no post-pre learning, orange: 630 

asymmetric). Averaged simulations (plain lines) and controls with ��������� = 0 (dotted lines). (b) 631 

Accuracy at the end of each phase as a function of the type of plasticity (where ���������  632 

parametrizes the plasticity). (c1) Examples of fits obtained from a set of 20 simulations for the 633 

accuracy during the maintenance phase. Averaged simulations (for 20 simulations, open circles), 634 

associated fit (plain lines), tangent at origin (dashed) and fitted final accuracy (dotted). Below: sets of 635 

values for  ;M�N��NMNO�  obtained with this method for ��������� = 0. (c2)  ;M�N��NMNO� as a function 636 

of ���������. (c3) Weight similarity measures VW(�) and ,-(�) as a function of ���������. (c4) 637  ��P�M�N�NQ  as a function of ���������. (d) Dependency of  ;M�N��NMNO�  (d1), accuracy at the end of 638 

the maintenance phase (d2) and  ��P�M�N�NQ(d3) on the type of plasticity ���������  and stimulus 639 

presentation frequency C;. 640 

Mean results computed over 200 simulations (a). Mean of results over 10 sets of 20 simulations with 641 

errors bars ±*Y/2 (b-d). t-test *: - < 0.05, **: - < 0.005, ***: - < 0.0005. 642 

  643 
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 645 

RESSOURCE AVAILABILITY 646 

Lead contact 647 

Further information and requests for resources and reagents should be directed to and will be fulfilled 648 

by the Lead Contact, Laurent Venance (laurent.venance@college-de-france.fr) 649 

Material availability 650 

This study did not generate new unique reagents. 651 

Data and code availability 652 

- All data reported in this paper will be shared by the Lead Contact upon request.  653 

All original code has been deposited at https://github.com/gvignoud/striatalLearning and is publicly 654 

available as the date of publication. DOIs are listed in the key resources table. 655 

- Any additional information required to reanalyze the data reported in this work paper is available 656 

from the Lead Contact upon request. 657 

 658 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 659 

Animals 660 

All experiments were performed in accordance with the guidelines of the local animal welfare 661 

committee and the EU (directive 2010/63/EU). Every precaution was taken to minimize stress and 662 

the number of animals used in each series of experiments. Sprague Dawley rats P25-35 (Charles River, 663 

L’Arbresle, France) and C57BL/6 Drd1a-GFP and Drd2-EGFP (heterozygous) mice P25-50 were used 664 

for brain slice electrophysiology, and behavior and ex vivo electrophysiology, respectively. Animals 665 

of both sexes were used. Animals were housed in standard 12-hour light/dark cycles and food and 666 

water were available ad libitum. 667 
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METHOD DETAILS 668 

Cortico-DLS and -DMS brain slices 669 

We used horizontal and para-sagittal (33° angle) brain slice preparations to stimulate specifically 670 

cortical inputs (layer 5) originating from the sensorimotor S2 or associative cortices CG2, and 671 

projecting to the DLS or DMS, respectively (Fino et al., 2018). Brain slices (300 and 270 µm-thick 672 

for rats and mice, respectively) were prepared with vibrating blade microtome (VT1200S, Leica 673 

Microsystems, Nussloch, Germany). The brains were sliced in an ice-cold cutting solution (in mM: 674 

125 NaCl, 2.5 KCl, 25 glucose 25 NaHCO3, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, 1 pyruvic acid) 675 

through which 95% O2/5% CO2 was bubbled. The slices were transferred to the same solution at 676 

34°C for 45-60 minutes and then to room temperature, before electrophysiology. 677 

 678 

Single and dual patch-clamp recordings 679 

For whole-cell recordings, borosilicate glass pipettes of 6-8MΩ resistance were filled with (in mM): 680 

122 K-gluconate, 13 KCl, 10 HEPES, 10 phosphocreatine, 4 Mg-ATP, 0.3 Na-GTP, 0.3 EGTA 681 

(adjusted to pH 7.35 with KOH). The composition of the extracellular solution was (mM): 125 NaCl, 682 

2.5 KCl, 25 glucose, 25 NaHCO3, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, 10 μM pyruvic acid through 683 

which 95% O2 and 5% CO2 was bubbled. Signals were amplified using EPC10-2 amplifiers (HEKA 684 

Elektronik, Lambrecht, Germany). All recordings were performed at 34°C, using a temperature 685 

control system (Bath-controller V, Luigs&Neumann, Ratingen, Germany). Recordings were sampled 686 

at 10kHz, using the Patchmaster v2x32 program (HEKA Elektronik). 687 

 688 
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Spike-timing-dependent plasticity protocols 689 

Electrical stimulations were performed with concentric bipolar electrodes (Phymep, Paris, France) 690 

placed in layer 5 of S2 or CG2 cortex. Electrical stimulations were monophasic, at constant current 691 

(ISO-Flex stimulator and Master 9, A.M.P.I., Jerusalem, Israel) and adjusted to evoke 100-300pA 692 

EPSCs. Repetitive control stimuli were applied at 0.1Hz. STDP protocols consisted of 100 pairings 693 

of pre- and postsynaptic stimulations (at 1, 2.5 or 5 Hz) separated by a specific ΔtSTDP kept constant 694 

during a given STDP pairing; ΔtSTDP<0 indicating that postsynaptic stimulation preceded presynaptic 695 

stimulation, post-pre pairings, and ΔtSTDP>0 indicating that presynaptic stimulation preceded 696 

postsynaptic activation, pre-post pairings. Presynaptic stimulations corresponded to cortical 697 

stimulations and the postsynaptic stimulation of an action potential evoked by a depolarizing current 698 

step (30ms duration) in the recorded MSN. Recordings were made over a period of 10 minutes at 699 

baseline, and for at least 50 minutes after the STDP protocols; long-term changes in synaptic weight 700 

were measured in the last 10 minutes. Experiments were excluded if the mean input resistance (Ri) 701 

varied by more than 20% through the experiment. 702 

 703 

High frequency stimulation protocols 704 

High-frequency stimulation (HFS) consisted in a single train of cortical stimuli at 100 Hz for 1 705 

second and the depolarization of the postsynaptic element from its holding membrane potential (-706 

75mV) to 0 mV was coincident with the presynaptic stimulation. 707 

 708 

Chemicals 709 

DL-2-amino-5-phosphono-pentanoic acid (D-AP5, 50μM) (Tocris, Ellisville, MO, USA) and 710 

(1S,2S)-2-[2-[[3-(1H-benzimidazol-2yl)propyl]methylamino]ethyl]-6-fluoro-1,2,3,4-tetrahydro-1-(1-711 
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methylethyl)-2-naphthalenyl methoxyacetoacetate dihydrochloride (Mibefradil; 20μM) were 712 

dissolved directly in the extracellular solution. N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-713 

dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251; 3μM) was dissolved in ethanol and 714 

added to the external solution, such that the final concentration of ethanol was 0.01-0.1%. 715 

 716 

Behavioral task: accelerating Rotarod  717 

Mice (P58-62) were trained on the accelerating Rotarod (Ugo Basile, Gemonio, Italy) in a single 718 

session of 10 trials per day for 1 (early-trained group) or 7 consecutive (late-trained group) days. 719 

Each trial consisted of a continuous acceleration from 4 to 40 rpm over 300 seconds. Before the first 720 

trial of the first day, mice were placed on the rod for 30 seconds without acceleration (4 rpm). The 721 

control animal group consisted in mice subjected to the habituation phase, consisting of a single 722 

session with non-accelerating Rotarod (4 rpm) for 300 seconds. The latency to fall off the rod was 723 

measured. Between each trial, mice were placed in their homecage to rest for 15 minutes. 724 

 725 

Ex vivo occlusion experiments 726 

Mice subjected to Rotarod were divided into three groups for occlusion experiments: (1) the 727 

habituated mice, subjected to non-accelerating (4 rpm) Rotarod for 300 seconds, (2) the early-trained 728 

mice, subjected to accelerating Rotarod for one day (the first one) with 10 trials, and (3) the late-729 

trained mice, subjected to accelerating Rotarod for seven days (10 trials/day). After Rotarod task 730 

completion, mice were left in their homecages for 24 hours and then sacrificed for ex vivo patch-731 

clamp recordings. Plasticity occlusion was tested in the following STDP paradigm: 100 pairings at 732 

2.5Hz with ΔtSTDP=-15ms. For each mouse, one brain hemisphere was sliced to obtain cortico-DLS 733 

slices and the other hemisphere was used for cortico-DMS slices. Then, cortico-DLS and -DMS 734 

STDP were assessed in the same mice in most of the cases. 735 
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 736 

Mathematical models 737 

Neuronal network model. To simulate the impact of plasticity on learning, we built a simple 738 

neuronal network model that includes � cortical neurons serving as input neurons to one MSN. The 739 

MSN integrated cortical and external input (section below) and fired when hitting a threshold, 740 

according to the classical leaky integrate-and-fire model (Burkitt, 2006; Gerstner et al., 2014). 741 

Between two spikes, the membrane potential V of the neuron satisfies a linear differential equation: 742 

< Z[Z�  =  −(U(�)  − U�\)  +  ] ^(�)    (1) 743 

Spikes were emitted when the voltage exceeded a threshold U�_, at which time the voltage of the 744 

neuron was instantaneously reset to U�\  and resumed input integration. We set < = 160,, U�\ =745 

−800U and ] = 80)Ω, U�_ = −450U , and the reset potential was the resting potential U�\  (Yim et 746 

al., 2011). 747 

Connectivity and input to the MSN. The input ^(�) received by the MSN is the superposition of the 748 

input received from � cortical neurons, noted �̂��;(�), and an external (to the network) input �̂c�(�) 749 

modeled as a Poisson process with rate =�: 750 

^(�)  =  �̂��;(�)  + �̂c�(�).     (2) 751 

Spikes from cortical neurons and the external source induce instantaneous jumps in the MSN 752 

membrane potential. Jumps associated with cortical sources have amplitudes that vary through 753 

plasticity mechanisms (next section). These amplitudes are modeled through the collection of 754 

synaptic weights �(�)  =  R��(�)Sde�e$. Denoting ��f  the .-th spike time of input neuron � and g the 755 

Dirac mass, we have 756 

�̂��;(�) = < ∑ ∑ ��R��f −Sg(� − ��f) �ije�de�e$    (3) 757 
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where we noted, for a function & being potentially discontinuous at time �, &(�−) the value reached 758 

immediately before the jump. 759 

Contrasting with the network input described above whose synaptic weights are allowed to vary in 760 

time according to plasticity rules (next section), the external input is assumed to induce jumps of 761 

fixed amplitude ��c� = 15� (high enough to evoke spiking activity in MSN): 762 

�̂c�(�) = <��c� ∑ g(� − ��c�f )�klmj e�      (4) 763 

where R��c�f Sfno denotes the sequence of external spike times, which have exponentially distributed 764 

inter-spike intervals. 765 

The factor τ needs to be added in both currents expressions because we chose to use a simple model 766 

of synaptic inputs, where spikes induce a dirac of activity. This scaling was needed to relate synaptic 767 

weight W to EPSC amplitudes measured in experiments. The membrane potential has the following 768 

expression, between spikes of the postsynaptic neuron, 769 

U(�) = U�\ + ] ∑ ∑ ��R��f −S(�(���ij)/p + ]��c� ∑ (�(���klmj )/p�klmj e�   �ije�de�e$  (5) 770 

Cortico-striatal plasticity. We implemented a pair-based model of STDP, where synaptic weights 771 

� were updated after each spike (all-to-all implementation (Morrison et al., 2008)), according to the 772 

spike timing relative to all previous spikes of the other neuron. In detail: 773 

— if the MSN spikes at time �����  (postsynaptic spike), then all weights are updated. Noting ����,�  the 774 

previous spikes of cortical neuron �, ��  is updated according to: 775 

��R�����S = ��R����� −S + q ∑ Φ(����� − ����,�) �stk,ie�suvm    (6) 776 

where q denotes the plasticity rate, chosen in our simulations as q = 0.02. 777 
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— if presynaptic cortical neuron � ∈  {1,··· , �} spikes at time ����,�, noting �����  the times of the MSN 778 

spikes, then �� is updated as: 779 

��R����,�S = ��R����,� −S + q ∑ Φ(����� − ����,�) �suvme�stk,i  (7) 780 

Denoting ∆� = �����  − ����   the timing between the presynaptic (cortical) spike and the postsynaptic 781 

(MSN) spike, we use an exponential STDP kernel (Kusmierz et al., 2017): 782 

Φ(Δt) = x��������� exp yz�pv {           �& Δ� < 0,
��������� exp y− z�pv {       �& Δ� > 0,   (8) 783 

with <� = 20 0,. 784 

Consistent with the anti-Hebbian form of the corticostriatal STDP (Paillé et al., 2013; Valtcheva et 785 

al., 2017), we consider ��������� =  − 1, corresponding to synaptic depression subsequent to a pre-786 

post paired stimulation. The sign of ���������  allows distinguishing between symmetric anti-Hebbian 787 

STDP (��������� ≤ 0) reported at DMS corticostriatal synapses from asymmetric anti-Hebbian 788 

STDP (��������� ≥ 0) reported at DLS corticostriatal synapses. Here, we focused on the influence of 789 

���������  on learning and relearning. 790 

During a learning task (next section), the system is presented with a succession of cortical patterns. 791 

Each pattern corresponds to a temporal window of a fixed duration (1000,), where a subset of 792 

+���; cortical neurons spike at time ��~~��� = 500,. Two types of noise are modeled at the level of a 793 

single cortical neuron. First, each neuron involved in the pattern spikes at a time normally distributed 794 

with mean ��~~���  and standard deviation <� = 0.20,, modeling variability of the spike times. 795 

Second, cortical spikes unrelated to the pattern are added through Poisson spikes with rate =�/�, 796 

representing the random firing of the cortical neuron. Moreover, the influence of external inputs is 797 



 37 

modeled at the level of the postsynaptic neuron, directly with the spikes of the random input 798 

presented above. 799 

A pattern can either be rewarded or not through a simple additive mechanism. If a pattern is 800 

rewarded, then each time a presynaptic neuron � fires during the pattern (even if it is noise), its 801 

associated synaptic weight gets potentiated, following, 802 

∆��  =  V�q����M�Z  >  0.     (9) 803 

If the pattern is not rewarded, the synaptic weight is not modified. 804 

Detailed models, in particular three-factor learning rules (Foncelle et al., 2018; Gerstner et al., 2018; 805 

Kusmierz et al., 2017), are thus approximated here by the presence of a simple reward signal 806 

consisting in the potentiation of the synaptic weight of all presynaptic neurons that spiked during the 807 

pattern (both those involved in the pattern and those associated with noisy inputs). 808 

A framework for corticostriatal plasticity was developed along with the use of dopamine-dependent 809 

STDP curves (Gurney et al., 2015), but only focused on Hebbian STDP. Following the same 810 

principles about the role of dopamine in the reward system, we chose to fix the STDP curves and 811 

modeled the reward influence through an additive potentiation as used in most existing models of 812 

anti-Hebbian STDP (Roberts and Bell, 2000; Williams et al., 2003; Rumsey and Abbott, 2004). 813 

Eventually, synaptic weights are clipped within a realist range [�;�N, �;Mc]  =  [0. ,2. ]5�. The 814 

initial synaptic weights are drawn from a uniform distribution on [0. ,0.05]5�. 815 

Learning with anti-Hebbian STDP rules. To characterize the capacity of learning associated with 816 

each STDP forms, we defined a fixed set of +�  cortical patterns. The system was presented either 817 

with a randomly chosen pattern of correlated cortical activity (from the set +�  patterns) with 818 

probability C, or with probability 1 − C only with noise. Among the set of +�  patterns, a fixed subset 819 

was chosen to be rewarded (rewarded patterns were randomly chosen among all patterns, each 820 
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pattern having a probability 1/2 to be rewarded). A rewarded pattern was deemed learnt if the MSN 821 

fired in response to the presentation of the pattern. Moreover, non-rewarded patterns should not elicit 822 

any spike. 823 

The accuracy of the learning process was estimated through the averaged numbers of correct 824 

responses: 825 

Accuracy = dFs ∑ [3f�f + (1 − 3f)(1 − �f)]defeFs       (10) 826 

where 3f = 1 if . is a rewarded pattern and 0 otherwise, �f = 1 if the MSN spiked and 0 otherwise. 827 

Each simulation emulated learning throughout four phases (Table S5), all of which including STDP 828 

and differing in the frequency of pattern presentation and presence of rewards: 829 

(a) The initial phase of spontaneous activity, where patterns are presented randomly (C = C;) and with 830 

noise. This phase is useful to avoid transient effects due to the initialization by reaching a realistic 831 

synaptic weight regime based on the plasticity rule. Noise was set to =� = 4=E!F = 20HI. 832 

(b) The learning phase during which neurons display spontaneous random activity with pattern presented 833 

at each iteration (C = 1), and Poisson noise with intensity =� = =E!F = 5HI consistent with in vivo 834 

MSN firing (Mahon et al., 2006). The reward signal was present and potentiated all synapses of 835 

presynaptic neurons active during a rewarded pattern. This phase emulates learning, as MSN learns 836 

to discriminate patterns by spiking in response to rewarded patterns and not spiking in response to 837 

non-rewarded patterns. 838 

(c) The maintenance phase models spontaneous activity with =� = 4=E!F = 20HI and random 839 

presentations of patterns (C = C;) in the absence of rewards, allowing to evaluate the system’s 840 

ability to sustain a discrimination between learnt patterns. We chose to take  =� = 4=E!F  to shorten 841 

our simulations and speed up the decrease of memory. All results are still true for  =� = =E!F, except 842 

that memory is maintained for longer times than our simulations permitted. 843 
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(d) The relearning phase, with the same parameters as the learning phase (a), is used to measure the 844 

system ability to learn again patterns, after a period of spontaneous activity. 845 

 846 

QUANTIFICATION AND STATISTICAL ANALYSIS 847 

Data analysis for patch-clamp recordings  848 

Off-line analysis was performed with Fitmaster (Heka Elektronik), Igor-Pro 6.0.3 (Wavemetrics, 849 

Lake Oswego, OR, USA) and Matlab R2012b (Mathworks). Statistical analyses were performed with 850 

Prism 5.02 software (San Diego, CA, USA). “n” refers to the number of experiments (performed on a 851 

single neuron from a single slice). All results are expressed as mean±SEM. Statistical significance 852 

was assessed in one-sample t tests, unpaired t tests, paired t tests or ANOVA as appropriate, using the 853 

indicated significance threshold (p). For the fits in Figures 4d and 4i, we interpolated 100 points 854 

linearly using scipy.interpolate.interp1d for each STDP curve and then applied a Savitzky-Golay 855 

filter (from scipy.signal.savgo_filter) with parameters window_length=25 and polyorder=2. We also 856 

added the same interpolated data for significant LTP and LTD, in the range [-30, 0ms] at 857 

Fpairings=2.5Hz for DMS-MSNs (Fig. 3g and 3i). 858 

 859 

Mathematical model simulations and statistical analysis.  860 

Simulations were performed on Python 3.X, using the Anaconda suite (Anaconda Software 861 

Distribution, Computer software Version 2-2.4.0. Anaconda, Nov. 2016. Web. https 862 

://anaconda.com.). The Python libraries of numeric calculus numpy and plotting matplotlib were 863 

used. Custom code is freely accessible on https://github.com/gvignoud/dms_dls. Simulations were 864 

run on the INRIA CLEPS cluster and HPC resources from GENCI-IDRIS, using GNU parallel 865 

(Tange, O. (2020, May 22). GNU Parallel 20200522 (‘Kraftwerk’). Zenodo. https 866 
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://doi.org/10.5281/zenodo.3841377). We used a Euler scheme to simulate our network and Poisson 867 

processes, with V� = 0.20,. 868 

To study the network evolution during the different phases and compute learning accuracy, we 869 

evaluated some properties of the network every 50 pattern iterations (except at the beginning of each 870 

phase, where we recorded every 5 pattern iterations). During these test sessions, we froze the network 871 

structure by considering that 872 

— Both types of plasticity are turned off; 873 

— The three noise components described above were suppressed (=� = 0, <�  =  0); 874 

— All patterns were successively presented to the network, and the accuracy was computed using the 875 

MSN responses, as described in Equation (1); 876 

— Between each pattern, the MSN potential was reset to its equilibrium value, in order to avoid 877 

influence of one pattern to another. 878 

For each set of parameters, we ran 200 different simulations. Statistics were computed on a random 879 

split of the simulations into 10 sets of 20 simulations, to compare statistics of performance of the 880 

network across multiple conditions. We use statistical t-test from scipy.stats Python library (* - <881 

0.05, ** - < 0.005, *** - < 0.0005). 882 

We started by collecting the mean accuracy at the end of each phase ��  for � = 1,2,3,4. 883 

To characterize the kinetics of learning in the maintenance phase, we fitted a sigmoidal function to 884 

the curve of accuracy as a function of time. This generic sigmoid with 5 parameters, was given by: 885 

*[��N��, ��N��, ��NZ , V, �](�) = ��NZ + (��N�� − ��NZ) × �1 + y���i�imQ {��Z
 (11) 886 

where ��N��  is the initial value of the sigmoid, ��N��  the starting time of the second phase (in terms of 887 

pattern iterations), ��NZ  is the final value, � is a timescale parameter, while V is a shape parameter of 888 

the sigmoid. Fitting the sigmoid allows comparing the dynamics in the maintenance phase for various 889 
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conditions, and in particular the performance of symmetric and asymmetric anti-Hebbian STDP. The 890 

initial value was set at ��N�� = �W and the ending value at ��NZ = �d.The fits were realized by 891 

estimating the best values of V and � to reproduce the accuracy dynamics and were performed using 892 

the scipy.optimize.curvefit function of the scipy Python library. 893 

We compared maintenance of the learning task through the characteristic time of decay to represent 894 

the speed of decrease, 895 

 ;M�N��NMNO� = min ymax y0, QZ{ , 1000{.    (12) 896 

Finally, to measure the relearning characteristic time, i.e. the time necessary for the system to relearn 897 

patterns after the maintenance phase, we define  ��P�M�N�NQ  as follows. Remembering that �d 898 

(respectively, �W) is the accuracy after the initial phase (respectively, learning phase), we define 899 

 ��P�M�N�NQ as the time needed in the relearning phase to learn again at least 60% of the previously 900 

learned accuracy, 901 

 ��P�M�N�NQ = inf{� > 0|�1163/1�(�) − �d > 0.6 × (�W − �d)} .  (13) 902 

We investigated how synaptic weight during the maintenance phase deviate from those at the end of 903 

the learning phase. To this end, we defined ���~  the synaptic weights at the end of the learning 904 

phase, and used various metrics to analyze the divergence of the weights from this value during 905 

maintenance: 906 

- The divergence of the L2 norm, 907 

VW(�) = d
d��∑ y�i��tk�,i{�i

�∑ �tk�,i�i
      (14) 908 

which is equal to 1 when � =  ���~ and decays to 0 as the Euclidean distance between the two 909 

weight vectors increases. A large VW(�) (i.e. close to 1) means that weights remained similar to the 910 
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reference, and a decay of that quantity estimates how quickly the weight vector deviates from 911 

reference. 912 

- One may consider that relative values of weights, rather than their absolute amplitude, contain a 913 

particularly important information in learning. ���~ provides a direction in the space of weights, and 914 

we estimated the alignment of the weight vector at a given time with ���~  through the cosine 915 

similarity of the centered synaptic weight: 916 

,-(�) = ∑ R�i��iS×R�tk�,i��tk�,iSi
�∑ R�i��iS�i ×�∑ R�tk�,i��tk�,iS�i

     (15) 917 

where �̅ for � ∈  ℝ$   denotes the average of the vector component.  918 



 43 

REFERENCES 919 

• Alegre-Cortés, J., Sàez, M., Montanari, R., and Reig, R. (2021). Medium spiny neurons activity reveals 920 

the discrete segregation of mouse dorsal striatum. eLife 10:e60580. 10.7554/eLife.60580. 921 

• Athalye, V. R., Santos, F. J., Carmena, J. M., and Costa, R. M. (2018). Evidence for a neural law of 922 

effect. Science 359(6379):1024-1029. 10.1126/science.aao6058. 923 

• Balleine, B. W., and O'Doherty, J. P. (2010). Human and rodent homologies in action control: 924 

corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35(1):48-925 

69. 10.1038/npp.2009.131. 926 

• Barnes, T. D., Mao, J-B., Hu, D., Kubota, Y., Dreyer, A. A., Stamoulis, C., Brown, E. N., and 927 

Graybiel, A. M. (2011). Advance cueing produces enhanced action-boundary patterns of spike activity 928 

in the sensorimotor striatum. J. Neurophysiol. 105:1861–1878. 10.1152/jn.00871.2010. 929 

• Bergstrom, H. C., Lipkin, A. M., Lieberman, A. G., Pinard, C. R., Gunduz-Cinar, O., Brockway, E. T., 930 

Taylor, W. W., Nonaka, M., Bukalo, O., Wills, T. A., et al. (2018). Dorsolateral Striatum Engagement 931 

Interferes with Early Discrimination Learning. Cell Rep. 23(8):2264-2272. 932 

10.1016/j.celrep.2018.04.081. 933 

• Bonnavion, P., Fernández, E. P., Varin, C., and de Kerchove d'Exaerde, A. (2019). It takes two to 934 

tango: Dorsal direct and indirect pathways orchestration of motor learning and behavioral flexibility. 935 

Neurochem. Int. 124:200-214. 10.1016/j.neuint.2019.01.009. 936 

• Brzosko, Z., Mierau, S. B., and Paulsen, O. (2019). Neuromodulation of Spike-Timing-Dependent 937 

Plasticity: Past, Present, and Future. Neuron 103(4):563-581. 10.1016/j.neuron.2019.05.041. 938 

Burkitt, A. N. (2006). A review of the integrate-and-fire neuron model: I. homogeneous synaptic input. 939 

Biological Cybernetics 95(1) :1–19. 10.1007/s00422-006-0068-6. 940 

• Burton, A. C., Nakamura, K., and Roesch, M. R. (2015). From ventral-medial to dorsal-lateral striatum: 941 

neural correlates of reward-guided decision-making. Neurobiol. Learn. Mem. 117: 51-59. 942 

10.1016/j.nlm.2014.05.003 943 

• Calabresi, P., Picconi, B., Tozzi, A., Ghiglieri, V., and Di Filippo, M. (2014). Direct and indirect 944 

pathways of basal ganglia: a critical reappraisal. Nat. Neurosci. 17: 1022–1030. 10.1038/nn.3743. 945 

Cerovic, M., d’Isa, R., Tonini, R., and Brambilla, R. (2013). Molecular and cellular mechanisms of 946 

dopamine-mediated behavioral plasticity in the striatum. Neurobiol. Learn. Mem. 105, 63-80. 947 
10.1016/j.nlm.2013.06.013. 948 

• Costa, R. M., Cohen, D., and Nicolelis, M. A. L. (2004). Differential corticostriatal plasticity during 949 

fast and slow motor skill learning in mice. Curr. Biol. 14: 1124-1134. 10.1016/j.cub.2004.06.053 950 



 44 

• Corbit, L. H., and Janak, P. H. (2010). Posterior dorsomedial striatum is critical for both selective 951 

instrumental and Pavlovian reward learning. Eur J Neurosci. 31(7):1312-21. 10.1111/j.1460-952 

9568.2010.07153.x 953 

• Cui, Y., Prokin, I., Xu, H., Delord, B., Genet, S., Venance, L., and Berry, H. (2016). Endocannabinoid 954 

dynamics gate spike-timing dependent depression and potentiation. Elife 5: 1–32. 10.7554/eLife.13185 955 

Feldman, D. E. (2012). The spike-timing dependence of plasticity. Neuron 75: 556-571. 956 
10.1016/j.neuron.2012.08.001. 957 

• Fino, E., Vandecasteele, M., Perez, S., Saudou, F., and Venance, L. (2018). Region-specific and state-958 

dependent action of striatal GABAergic interneurons. Nat Commun. 9(1):3339. 10.1038/s41467-018-959 

05847-5. 960 

• Fino, E., Glowinski, J., and Venance, L. (2005). Bidirectional activity-dependent plasticity at 961 

corticostriatal synapses. J. Neurosci. 25: 11279-11287. 10.1523/JNEUROSCI.4476-05.2005. 962 

• Fino, E., Paille, V., Cui, Y., Morera-Herreras, T., Deniau, J., and Venance, L. (2010). Distinct 963 

coincidence detectors govern the corticostriatal sipke timing dependent plasticity. J. Physiol. 588: 964 

3045-3062. 10.1113/jphysiol.2010.188466. 965 

• Fisher, S. D., Robertson, P. B., Black, M. J., Redgrave, P., Sagar, M. A., Abraham, W. C., and 966 

Reynolds, J. N. J. (2017). Reinforcement determines the timing dependence of corticostriatal synaptic 967 

plasticity in vivo. Nat. Commun. 8(1):334. 10.1038/s41467-017-00394-x. 968 

• Foncelle, A., Mendes, A., Jędrzejewska-Szmek, J., Valtcheva, S., Berry, H., Blackwell, K. T., and 969 

Venance, L. (2018). Modulation of Spike-Timing Dependent Plasticity: Towards the Inclusion of a 970 

Third Factor in Computational Models. Front. Comput. Neurosci. 12:49. 10.3389/fncom.2018.00049. 971 

Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. (2014). Neuronal dynamics : from single 972 

neurons to networks and models of cognition. Cambridge University Press, New York, NY, USA. 973 

• Gerstner, W., Lehmann, M., Liakoni, V., Corneil, D., and Brea, J. (2018). Eligibility traces and 974 

plasticity on behavioral time scales : experimental support of neoHebbian three-factor learning rules. 975 

Front. Neural Circuits 12:53. 10.3389/fncir.2018.00053. 976 

• Graybiel, A. M., and Grafton, S. T. (2015). The striatum: where skills and habits meet. Cold Spring 977 

Harb Perspect. Biol. 7: a021691. 10.1101/cshperspect.a021691. 978 

• Gremel, C. M., and Costa, R. M. (2013). Orbitofrontal and striatal circuits dynamically encode the shift 979 

between goal-directed and habitual actions. Nat. Commun. 4:2264. 10.1038/ncomms3264. 980 

• Gurney, K. N., Humphries, M. D., and Redgrave, P. (2015). A new framework for cortico-striatal 981 

plasticity: behavioural theory meets in vitro data at the reinforcement-action interface. PLoS Biol. 13, 982 

e1002034. 10.1371/journal.pbio.1002034. 983 



 45 

• Hawes, S. L., Evans, R. C., Unruh, B. A., Benkert, E. E., Gillani, F., Dumas, T. C., and Blackwell, K. 984 

T. (2015). Multimodal Plasticity in Dorsal Striatum While Learning a Lateralized Navigation Task. J. 985 

Neurosci. 35:10535–10549. 10.1523/JNEUROSCI.4415-14.2015. 986 

• Hintiryan, H., Foster, N. N., Bowman, I., Bay, M., Song, M. Y., Gou, L., Yamashita, S., Bienkowski, 987 

M. S., Zingg, B., Zhu, M., et al.. (2016). The mouse cortico-striatal projectome. Nat. Neurosci. 988 

19(8):1100-14. 10.1038/nn.4332. 989 

• Hooks, B. M., Papale, A. E., Paletzki, R. F., Feroze, M. W., Eastwood, B. S., Couey, J. J., Winnubst, J., 990 

Chandrashekar, J., and Gerfen, C. R. (2018). Topographic precision in sensory and motor corticostriatal 991 

projections varies across cell types and cortical area. Nat. Commun. 9(1):3549. 10.1038/s41467-018-992 

05780-7. 993 

• Hunnicutt, B. J., Jongbloets, B. C., Birdsong, W. T., Gertz, K. J., Zhong, H., and Mao, T. (2016). A 994 

comprehensive excitatory input map of the striatum reveals novel functional organization. ELife 5: 995 

e19103. 10.7554/eLife.19103. 996 

• Jin, X., and Costa, R. M. (2015). Shaping action sequences in basal ganglia circuits. Curr. Op. 997 

Neurobiol. 33, 188-196. 10.1016/j.conb.2015.06.011. 998 

• Kim, J., Gulati, T., and Ganguly, K. (2019). Competing Roles of Slow Oscillations and Delta Waves in 999 

Memory Consolidation versus Forgetting. Cell 179(2):514-526.e13. 10.1016/j.cell.2019.08.040. 1000 

• Kimchi, E. Y., Torregrossa, M. M., Taylor, J. R., and Laubach, M. (2009). Neuronal correlates of 1001 

instrumental learning in the dorsal striatum. J. Neurophysiol.  102: 475-489. 10.1152/jn.00262.2009. 1002 

• Koralek, A. C., Jin, X., Long, J. D., Costa, R. M., and Carmena, J. M. (2012). Corticostriatal plasticity 1003 

is necessary for learning intentional neuroprosthetic skills. Nature 483: 331–335. 10.1038/nature10845. 1004 

• Kupferschmidt, D. A., Juczewski, K., Cui, G., Johnson, K. A., and Lovinger, D. M. (2017). Parallel, 1005 

but Dissociable, Processing in Discrete Corticostriatal Inputs Encodes Skill Learning. Neuron 1006 

96(2):476-489.e5. 10.1016/j.neuron.2017.09.040. 1007 

• Kuśmierz, Ł., Isomura, T., and Toyoizumi, T. (2017). Learning with three factors: modulating Hebbian 1008 

plasticity with errors. Curr. Opin. Neurobiol. 46:170-177. 10.1016/j.conb.2017.08.020. 1009 

• Li, Y., He, Y., Chen, M., Pu, Z., Chen, L., Li, P., Li, B., Li, H., Huang, Z. L., Li, Z., and Chen, J. F. 1010 

(2016). Optogenetic Activation of Adenosine A2A Receptor Signaling in the Dorsomedial 1011 

Striatopallidal Neurons Suppresses Goal-Directed Behavior. Neuropsychopharmacology 41(4):1003-1012 

13. 10.1038/npp.2015.227. 1013 

• Lovinger, D. M. (2010). Neurotransmitter roles in synaptic modulation, plasticity and learning in the 1014 

dorsal striatum. Neuropharmacology 58, 951-961. 10.1016/j.neuropharm.2010.01.008. 1015 

• Ma, T., Cheng, Y., Roltsch Hellard, E., Wang, X., Lu, J., Gao, X., Huang, C. C. Y., Wei, X-Y., Ji, J-Y., 1016 

and Wang, J. (2018). Bidirectional and long-lasting control of alcohol-seeking behavior by 1017 

corticostriatal LTP and LTD. Nat. Neurosci. 21: 373–383. 10.1038/s41593-018-0081-9. 1018 



 46 

• Mahon, S., Vautrelle, N., Pezard, L., Slaght, S. J., Deniau, J. M., Chouvet, G., and Charpier, S. (2006). 1019 

Distinct patterns of striatal medium spiny neuron activity during the natural sleep-wake cycle. J. 1020 

Neurosci. 26(48):12587-95. 10.1523/JNEUROSCI.3987-06.2006. 1021 

• Mathur, B. N., and Lovinger, D. M. (2012). Endocannabinoid–Dopamine Interactions in Striatal 1022 

Synaptic Plasticity. Front. Pharmacol. 3, :66. 10.3389/fphar.2012.00066. 1023 

• Mendes, A., Vignoud, G., Perez, S., Perrin, E., Touboul., J., and Venance, L. (2020). Concurrent 1024 

Thalamostriatal and Corticostriatal Spike-Timing-Dependent Plasticity and Heterosynaptic Interactions 1025 

Shape Striatal Plasticity Map. Cereb. Cortex. 30(8):4381-4401. 10.1093/cercor/bhaa024. 1026 

• Morera-Herreras, T., Gioanni, Y., Perez, S., Vignoud, G., and Venance, L. (2019). Environmental 1027 

enrichment shapes striatal spike-timing-dependent plasticity in vivo. Sci. Rep. 9(1):19451. 1028 

10.1038/s41598-019-55842-z. 1029 

• Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models of synaptic plasticity 1030 

based on spike timing. Biological Cybernetics 98(6) :459–478. 10.1007/s00422-008-0233-1. 1031 

• Muñoz, B., Haggerty, D. L., and Atwood, B. K. (2020). Synapse-specific expression of mu opioid 1032 

receptor long-term depression in the dorsomedial striatum. Sci. Rep. 10(1):7234. 10.1038/s41598-020-1033 

64203-0. 1034 

• O'Hare, J. K., Ade, K. K., Sukharnikova, T., Van Hooser, S. D., Palmeri, M. L., Yin, H. H., and 1035 

Calakos, N. (2016). Pathway-Specific Striatal Substrates for Habitual Behavior. Neuron 89(3):472-9. 1036 

10.1016/j.neuron.2015.12.032. 1037 

• Oberto, V. J., Boucly, C. J., Gao, H. Y., Todorova, R., Zugaro, M. B., and Wiener, S. I. (2022). 1038 

Distributed cell assemblies spanning prefrontal cortex and striatum. Curr. Biol. 32, 1-13. 1039 

10.1016/j.cub.2021.10.007. 1040 

• Paillé, V., Fino, E., Du, K., Morera Herreras, T., Perez, S., Hellgren Kotaleski, J., and Venance, L. 1041 

(2013). GABAergic circuits control spike-timing-dependent plasticity. J Neurosci 33: 9353-9363. 1042 

10.1523/JNEUROSCI.5796-12.2013. 1043 

• Partridge, J. G., Tang, K. C., and Lovinger, D. M. (2000). Regional and postnatal heterogeneity of 1044 

activity-dependent long-term changes in synaptic efficacy in the dorsal striatum. J. Neurophysiol. 1045 

84(3):1422-9. 10.1152/jn.2000.84.3.1422. 1046 

• Pawlak, V., and Kerr, J. N. (2008). Dopamine receptor activation is required for corticostriatal spike-1047 

timing-dependent plasticity. J Neurosci 28: 2435-2446. 10.1523/JNEUROSCI.4402-07.2008. 1048 

• Perrin, E., and Venance, L. (2019). Bridging the gap between striatal plasticity and learning. Curr Opin 1049 

Neurobiol. 54:104–112. 10.1016/j.conb.2018.09.007. 1050 

• Peters, A. J., Fabre, J. M. J., Steinmetz, N. A., Harris, K. D., and Carandini, M. (2021). Striatal activity 1051 

topographically reflects cortical activity. Nature 591(7850):420-425. 10.1038/s41586-020-03166-8. 1052 



 47 

• Ragozzino, M. E., Ragozzino, K. E., Mizumori, S. J., and Kesner, R. P. (2002a).  Role of the 1053 

dorsomedial striatum in behavioral flexibility for response and visual cue discrimination learning. 1054 

Behav. Neurosci. 116(1):105-15. 10.1037//0735-7044.116.1.105. 1055 

• Ragozzino, M. E., Jih, J., and Tzavos, A. (2002b). Involvement of the dorsomedial striatum in 1056 

behavioral flexibility: role of muscarinic cholinergic receptors. Brain Res. 953(1-2):205-14. 1057 

10.1016/s0006-8993(02)03287-0. 1058 

• Ragozzino, M. E. (2007). The contribution of the medial prefrontal cortex, orbitofrontal cortex, and 1059 

dorsomedial striatum to behavioral flexibility. Ann. N. Y. Acad. Sci. 1121:355-75. 1060 

10.1196/annals.1401.013. 1061 

• Reig, R., and Silberberg, G. (2014). Multisensory integration in the mouse striatum. Neuron 1062 

83(5):1200-12. 10.1016/j.neuron.2014.07.033. 1063 

• Requarth, T., and Sawtell, N. B. (2011). Neural mechanisms for filtering self-generated sensory signals 1064 

in cerebellum-like circuits. Curr. Opin. Neurobiol. 21(4):602-8. 10.1016/j.conb.2011.05.031. 1065 

• Roberts, P. D., and Leen, T. K. (2010). Anti-hebbian spike-timing-dependent plasticity and adaptive 1066 

sensory processing. Front. Comput. Neurosci. 4:156. 10.3389/fncom.2010.00156. 1067 

• Roberts, P. D., and Bell, C. C. (2000). Computational consequences of temporally asymmetric learning 1068 

rules: II. Sensory image cancellation. J. Comput. Neurosci. 9, 67–83. 10.1023/a:1008938428112. 1069 

• Rumsey, C. C., and Abbott, L. F. (2004). Equalization of synaptic efficacy by activity- and timing-1070 

dependent synaptic plasticity. J. Neurophysiol. 91(5):2273-80. 10.1152/jn.00900.2003. 1071 

• Schulz, J. M., Redgrave, P., and Reynolds, J. N. (2010). Cortico-striatal spike-timing dependent 1072 

plasticity after activation of subcortical pathways. Front. Synaptic Neurosci 2: 23. 1073 

10.3389/fnsyn.2010.00023. 1074 

• Shan, Q., Ge, M., Christie, M. J., and Balleine, B. W. (2014). The acquisition of goal-directed actions 1075 

generates opposing plasticity in direct and indirect pathways in dorsomedial striatum. J. Neurosci. 34: 1076 

9196–9201. 10.1523/JNEUROSCI.0313-14.2014. 1077 

• Shen, W., Flajolet, M., Greengard, P., and Surmeier, D. J. (2008). Dichotomous dopaminergic control 1078 

of striatal synaptic plasticity. Science 321: 848-851. 10.1126/science.1160575. 1079 

• Smith, A. C. W., Jonkman, S., Difeliceantonio, A. G., O'Connor, R. M., Ghoshal, S., Romano, M. F., 1080 

Everitt, B. J., and Kenny, P. J. (2021). Opposing roles for striatonigral and striatopallidal neurons in 1081 

dorsolateral striatum in consolidating new instrumental actions. Nat. Commun. 12(1):5121. 1082 

10.1038/s41467-021-25460-3. 1083 

• Stalnaker, T. A., Calhoon, G. G., Ogawa, M., Roesch, M. R., and Schoenbaum, G. (2010). Neural 1084 

correlates of stimulus-response and response-outcome associations in dorsolateral versus dorsomedial 1085 

striatum. Front. Integr. Neurosci. 4:12. 10.3389/fnint.2010.00012. 1086 



 48 

• Steriade, M., McCormick, D. A., and Sejnowski, T. J. (1993). Thalamocortical oscillations in the 1087 

sleeping and aroused brain. Science 262, 679-685. 10.1126/science.8235588. 1088 

• Thorn, C. A., Atallah, H., Howe, M., and Graybiel, A. M. (2010). Differential dynamics of activity 1089 

changes in dorsolateral and dorsomedial striatal loops during learning. Neuron 66, 781-795. 1090 

10.1016/j.neuron.2010.04.036. 1091 

• Thorn, C. A., and Graybiel, A. M. (2014). Differential entrainment and learning-related dynamics of 1092 

spike and local field potential activity in the sensorimotor and associative striatum. J. Neurosci. 1093 

34(8):2845-59. 10.1523/JNEUROSCI.1782-13.2014. 1094 

• Valtcheva, S., and Venance, L. (2016). Astrocytes gate Hebbian synaptic plasticity in the striatum. Nat. 1095 

Commun. 7: 13845. 10.1038/ncomms13845. 1096 

• Valtcheva, S., Paillé, V., Dembitskaya, Y., Perez, S., Gangarossa, G., Fino, E., and Venance, L. (2017). 1097 

Developmental control of spike-timing-dependent plasticity by tonic GABAergic signaling in striatum. 1098 

Neuropharmacology 121: 261–277. 10.1016/j.neuropharm.2017.04.012. 1099 

• Vandaele, Y., Mahajan, N. R., Ottenheimer, D. J., Richard, J. M., Mysore, S. P., and Janak, P. H. 1100 

(2019). Distinct recruitment of dorsomedial and dorsolateral striatum erodes with extended training. 1101 

Elife 8:e49536.  10.7554/eLife.49536. 1102 

• Williams, A., Roberts, P. D., and Leen, T. K. (2003). Stability of negative-image equilibria in spike-1103 

timing-dependent plasticity. Phys Rev E 68(2 Pt 1):021923. 10.1103/PhysRevE.68.021923. 1104 

• Xiong, Q., Znamenskiy, P., and Zador, A. M. (2015). Selective corticostriatal plasticity during 1105 

acquisition of an auditory discrimination task. Nature 521:348–351. 10.1038/nature14225. 1106 

• Yim, M. Y., Aertsen, A., and Kumar, A. (2011). Significance of input correlations in striatal function. 1107 

PLoS Computational Biology 7(11): e1002254. 10.1371/journal.pcbi.1002254. 1108 

• Yin, H. H., and Knowlton, B. J. (2006). The role of the basal ganglia in habit formation. Nat. Rev. 1109 

Neurosci. 7: 464–476. 10.1038/nrn1919. 1110 

• Yin, H. H., Mulcare, S. P., Hilário, M. R. F., Clouse, E., Holloway, T., Davis, M. I., Hansson, A. C., 1111 

Lovinger, D. M., and Costa, R. M. (2009). Dynamic reorganization of striatal circuits during the 1112 

acquisition and consolidation of a skill. Nat. Neurosci. 12: 333–341. 10.1038/nn.2261. 1113 




















