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The appearance of macro-segregations in the ingot casting process has led to the development of a solidification model in the Computational Fluid Dynamics software code saturne. It relies on a mixture model encompassing mass, momentum, energy and solute transport equations. After having implemented this model for the Finite Volume (FV) scheme of code saturne, it is here implemented for the CDO framework. The resulting solidification and segregration predictions are validated against an academic test case. Integral and local comparisons are performed and exhibit a good agreement of the CDO approach with results obtained with the FV scheme and with the commercial software SOLID ® . Moreover, the CDO approach relying on a strong velocity-pressure coupling brings a significant improvement in terms of robustness with respect to the time step, allowing for faster computations.

Introduction

The manufacturing process of ingot casting is widespread in the nuclear industry. High quality ingots are expected to forge a nuclear vessel reactor for instance. Understanding the solidification process and the solute redistribution is of paramount importance. This process can namely lead to a potential segregation of alloys (chemical heterogeneities) that are likely to alter the mechanical properties of the materials. A numerical segregation model has been introduced in code saturne, the open-source and general-purpose Computational Fluid Dynamic (CFD) software [7] developped at EDF R&D, in a previous work [START_REF] Demay | Modelling and simulation of ingot solidification with the open-source software Code Saturne[END_REF]. This work relies on a cell-centered colocated Finite Volume (FV) scheme and a fractional step velocity/pressure algorithm. In this paper, we adapt the same segregation model to the Compatible Discrete Operator framework (CDO) [START_REF] Bonelle | Compatible Discrete Operator schemes on polyhedral meshes for elliptic and Stokes equations[END_REF][START_REF] Bonelle | Compatible Discrete Operator schemes for the steady incompressible Stokes and Navier-Stokes equations[END_REF][START_REF] Milani | Compatible Discrete Operator schemes for the unsteady, incompressible Navier-Stokes equations[END_REF] with a fully coupled velocity/pressure algorithm. We compare on an academic test case this new approach to the existing one in code saturne and to the one inside SOLID ® [START_REF] Ahmad | Numerical simulation of macrosegregation: a comparison between finite volume method and finite element method predictions and a confrontation with experiments[END_REF], a commercial software dedicated to this kind of simulation. SOLID ® relies on a staggered FV scheme along with a fractional step algorithm for the velocity/pressure coupling.

Segregation model

Segregation involves multi-scale and multi-physics phenomena in a solid and liquid phase (cf. [START_REF] Pickering | Macrosegregation in steel ingots: The applicability of modelling and characterisation techniques[END_REF] for a review). A trade-off between the accuracy of a model and its complexity has to be found. In this work, we focus on the simulation of the macro-segregation phenomenon of a binary alloy induced by the thermo-solutal convection. Second-order phenomena such as solid grain movement, solidification shrinkage or deformation of the solid network are ignored. The model implemented in code saturne relies on the seminal works of Benon & Incropera [START_REF] Bennon | A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems -i. model formulation[END_REF] and that of Voller & Prakash [START_REF] Voller | A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[END_REF]. For a given variable y, the associated mixture average variable is denoted by y m := g l y l + (1 -g l )y s where g l is the average liquid fraction on a representative elementary volume and y l (resp. y s ) is the average variable in the liquid (resp. solid) phase. The model at stake considers the conservation laws for the mixture. The mixture is always assumed to be at the thermodynamic equilibrium.

No motion in the solid phase is assumed. The micro-segregation is modelled through a closure law named the lever rule. Starting from the Navier-Stokes equations for an incompressible flow and for a Newtonian and laminar fluid under the Boussinesq approximation, a drag force is added in the momentum equation [START_REF] Ahmad | Numerical simulation of macrosegregation: a comparison between finite volume method and finite element method predictions and a confrontation with experiments[END_REF] following the Kozeny-Carman model [START_REF] Carman | Fluid flow through granular beds[END_REF]. The incompressibility constraint (2) states the mass conservation. The solidification process is namely seen as an evolutive porous media where the porosity decreases when the solid portion increases. The conservation of the energy (3) is solved using the temperature T as main unknown and a source term is added to take into account the phase change. The mass density ρ, the dynamic viscosity µ, the thermal (resp. solutal) conductivity λ T (λ C ), the specific heat capacity c p , the latent heat L, the thermal (resp. solutal) coefficient of expansion β T (resp. β C ) are all assumed to be constant. Let Ω be the computational domain. One considers homogeneous Dirichlet boundary conditions for the velocity and a zero-mean constraint for the pressure. Dirichlet and homogeneous Neumann boundary conditions are set on the temperature while a no-flux boundary condition is enforced for the solute concentration C m . Initially, the fluid is at rest and ∀x ∈ Ω, T (x, 0) = T 0 , C m (x, 0) = C 0 . With all these assumptions, choices of modeling and settings, we end up with the following system to solve:

Find (U m , p, T, C m ) ∈ H 1 0 (Ω) × L 2 0 (Ω) × H 1 (Ω) × H 1 (Ω) s.t. ∂ t (ρU m ) + div(U m ⊗ ρU m ) -div µ grad(U m ) + µ K(g l ) U m + grad(p) = ρg (1 -β T (T -T 0 ) + β C (C l -C l,0 )) , (1) div 
(U m ) = 0, (2) 
c p (∂ t (ρT ) + div(ρU m T )) -div λ T grad(T ) = -ρL∂ t (g l (T, C)) + S th , (3) 
∂ t (ρC m ) + div( 1 g l + k p (1 -g l ) C m • ρU m ) -div λ C grad(C m ) = 0, ( 4 
)
with k p the partition coefficient and g the gravity vector. K(g l ) := α

g 3 l (1-g l ) 2
where α is a scaling factor depending on the material. The function g l (T, C m ) is simplified by assuming a linearized liquidus slope (m l ) and the lever rule C s = k p C l ; see Figure 1 for an example of phase diagram considered in the case of a binary alloy. 

Numerical scheme

The CDO framework [START_REF] Bonelle | Compatible Discrete Operator schemes on polyhedral meshes for elliptic and Stokes equations[END_REF] is used for the discretization of the system of equations described in Section 2. The discretization of the Navier-Stokes equations relies on the CDO face-based scheme as defined in [START_REF] Bonelle | Compatible Discrete Operator schemes for the steady incompressible Stokes and Navier-Stokes equations[END_REF][START_REF] Milani | Compatible Discrete Operator schemes for the unsteady, incompressible Navier-Stokes equations[END_REF]. The degrees of freedom (DoFs) for the velocity are the component-wise mean-values over faces and cells, the meanvalues over cells for the pressure. As proved in [START_REF] Milani | Compatible Discrete Operator schemes for the unsteady, incompressible Navier-Stokes equations[END_REF], an inf-sup property holds and we thus do not need any stabilization technique. The fully-coupled velocity-pressure coupling results in a saddle-point problem. DoFs for the temperature and solute concentration are also defined as the mean-value over faces and cells. All the algebraic systems to solve are reduced to only the face DoFs thanks to a static condensation technique. In all conservation equations (momentum, energy, solute), the time discretization relies on an implicit Euler time scheme and the advection scheme is centered for the momentum equation and is an upwind scheme for the other equations. Variable properties such as the liquid fraction g l or the solute concentration in the liquid phase C l are defined in each cell. The main algorithm to solve the state of the system at time t n+1 := t n + ∆t from the state at time t n is described in Algorithm 1.

Algorithm 1 High-level algorithm Require:

U n , p n , C n m , T n , g n l 1:
Initialize the thermo-solutal non-linear algo.:

k = 0, r ∞ = 2 , T n+1,0 ← T n and C n+1,0 m ← C n m 2: while k < N max AND r ∞ > do 3:
C n+1,k+1 m ← Solve the discrete counterpart of (4)

4:

Prepare the implicit/explicit source term contribution from

∂ t g l := ∂g l ∂T | Cm ∂ t T + ∂g l ∂Cm | T ∂ t C m 5:
T n+1,k+1 ← Solve the discrete counterpart of (3)

6:
g n+1,k+1 l ← Solidification path from the knowledge of T n , T n+1,k+1 and C n m , C n+1,k+1 m 7:

r ∞ = max c∈Cells |T n+1,k+1 c -T n+1,k c |/T 0 , |C n+1,k+1 c -C n+1,k c |/C 0 and k ← k + 1 8: end while 9: Update C n+1 l
, K(g l ) (forcing term) and the buoyancy source term from the new thermo-solutal state. 10: U n+1 , p n+1 ← Compute the Navier-Stokes system (Picard algorithm on the convective term)

Numerical results

We compare three approaches: (1) the code saturne CDO approach presented in Section 3, (2) the colocated FV approach of code saturne [7] referred as code saturne FV in the following and (3) the staggered FV approach of the 2D commercial software SOLID ® [10]. In code saturne FV, the spatial discretization is centered without slope test for the advection, a two-point flux approximation is used for the diffusion operator and the Rhie & Chow filter is employed to prevent checkerboard issues as all variables are co-located at the cell centers. A SIMPLEC algorithm is employed with a constant time step. An Euler implicit time scheme is used with up to 10 inner iterations to converge over the Navier-Stokes and thermo-solutal system of equations. The saddle-point problems arising from the CDO discretization are solved using a generalized conjugate residual (GCR) with a symmetric Gauss-Seidel block preconditioning. SOLID ® computations rely on an upwind advection scheme with a PISO-like velocity-pressure coupling. code saturne CDO and FV approaches use the same solidification/segregation model which presents some simplifications with respect to the SOLID ® model where the momentum equation is formulated over the liquid phase instead of the mixture and the energy equation is expressed in enthalpy. Computations were performed with code saturne 8.0.

Case Description

We adapted the Voller & Prakash's benchmark [START_REF] Voller | A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[END_REF] to a segregation problem for a binary alloy (non-dimensionalized properties are listed in Table 1). The geometry is a 2D squared cavity of unit measure with wall boundary conditions. A cold wall condition (T = T cold ) is applied on the left, and a hot wall (T = T hot ) on the right. Adiabatic conditions are imposed on the upper and lower parts of the domain. The domain is initially at rest at T = T 0 and C m = C 0 . The simulation ends at 750 s. A uniform Cartesian mesh (∆x = ∆y = 1/100) is used. 

Results

Three criteria are used to compare the code saturne CDO, code saturne FV and SOLID ® approaches:

1. integral quantities as the solidification rate S R and the segregation index S I (knowing that C 0 = 1)

S R := 1 V tot i∈N cells (1 -g l,i ) V i , S I := 1 V tot i∈N cells (C i -1) 2 V i ,
2. snapshots at the final time of the velocity, temperature and bulk concentration of the solute, 3. profiles at three different heights y = (0.25, 0.5, 0.75) in the domain.

Results. The integral quantities are displayed on Figure 2 and are similar between the code saturne CDO and FV computations.

The snapshots on Figure 3 display the fields at the final time of the simulation for the liquid fraction, the temperature and the velocity magnitude. One observes a good visual agreement of the results.

At the final time of the simulation, we plot the profiles of the values of liquid fractions (Figure 4), of temperatures and velocity magnitudes (Figure 5) with a comparison to SOLID ® simulation results when available. One observes a good agreement of the computed profiles with respect to the SOLID ® reference. Some discrepancies of code saturne CDO and code saturne FV approaches with respect to SOLID ® are likely related to the distinct models used in these solvers. Analysis. We obtained similar results between code saturne CDO and code saturne FV. SOLID ® results present differences as the system of equations is a bit different. Regarding the performances, the choice of the time step was driven by an upstream analysis that compared the error on the maximum velocity with respect to reference values associated to a SOLID ® computation on a refined mesh. Values for the time step are 0.001 s for code saturne FV approach, 1.0 s for code saturne CDO and 0.01 s for SOLID ® . code saturne CDO appeared as more robust, keeping a good quality of results for large time steps and allowed for faster computations: the CDO computation took 40 minutes while the FV approach took around 40 hours to run. Discrepancies between code saturne and SOLID ® approaches are linked to the model and the eutectic treatment: the non linearity handling will be the object of future work.
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 1 Figure 1: Example of phase diagram in the case of a binary alloy.
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 2 Figure 2: Time evolution of integral quantities.
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 5 Figure 5: Profiles at different heights.

Table 1 :

 1 Test problem data for the adapted Voller & Prakash benchmark. The lower part corresponds to values specific to the simplified phase diagram.
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