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Abstract

Probabilistic µ-analysis was introduced 20 years ago as a control system
validation means able to quantify the probability of rare and poten-
tially critical events. But for a long time, no practical tool offering both
good reliability and reasonable computational time was available, mak-
ing this technique hardly usable in an industrial context. The STOchastic
Worst-case Analysis Toolbox (STOWAT) was introduced a few years
ago to bridge this gap between theory and practice. It has been sig-
nificantly improved since then, thanks to the addition of new features,
but above all to increasingly efficient implementations, resulting in a
dramatic reduction in CPU time. However, until recently, it could only
be applied to small-scale models, with up to 4 or 5 uncertainties. In
the perspective of analyzing systems with a larger number of uncer-
tain parameters, a time-consuming and tedious process was carried out.
This led to a complete rewrite of the STOWAT, which is now optimized
down to the sub-function level, and whose performance is assessed in
this paper on a series on benchmarks of increasing complexity with up
to about 20 states and 20 uncertainties. This work represents a new step
towards the development of a consolidated tool that could reasonably
be integrated in the aerospace Verification and Validation process in a
near future, finding its place between Monte Carlo simulations – useful
for quantifying the probability of sufficiently frequent phenomena – and
worst-case µ-analysis – relevant for detecting extremely rare events.

Keywords: uncertain systems, probabilistic µ-analysis, computational tool,
aerospace V&V process
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1 Introduction

Due to their simplicity, Monte Carlo (MC) simulations [1, 2] have long been
the preferred validation means in the aerospace industry. No analytical rep-
resentation of the system is needed, and the probability that a whole set of
requirements are satisfied is easily computed from time-domain simulations,
where the uncertain parameters of the system are sampled based on their
probability distributions. But such an approach is generally time-consuming,
provide only soft bounds [3] and may fail in detecting rare events. In con-
trast with MC simulations, optimization-based techniques intelligently search
the parameter space to find a combination of uncertainties that minimizes or
maximises a stability or performance criterion. They are therefore suitable for
worst-case analysis problems where the aim is to identify rare but possibly
critical events. In particular, stochastic methods such as Genetic Algorithms
or Cross Entropy based optimization [4] have been shown to perform well in a
wide variety of complex aerospace problems [5–7], although there are no for-
mal convergence proofs. But their main drawback is the lack of probabilistic
bounds, such as the Chernoff bound [8], to characterize a confidence level.

On the other hand, less expensive deterministic and simulation-free alter-
natives exist and have reached a good level of maturity, as is the case for
µ-analysis [9–11]. Unlike MC simulations, rare scenarios are no longer missed,
but their probability of occurrence is not measured. Moreover, possible corre-
lations between the uncertain parameters are usually ignored, which may lead
to consider non-physical representations. Thus, for many problems the worst-
case paradigm based on µ can be overly conservative [12] and a control system
may be invalidated on the basis of very rare and therefore extremely unlikely
events [13–15]. So there is a real need to develop new methods to fill the
gap between MC simulations (able to quantify the probability of sufficiently
frequent phenomena) and worst-case µ-analysis (relevant to detect extremely
rare events). They should be able to detect very rare but nonetheless possi-
ble events, and to provide guaranteed bounds on the associated probabilities,
which is not possible with Genetic Algorithms or Cross Entropy based opti-
mization. The ambition is to improve the current industrial standard and to
fasten the V&V process, which currently accounts for up to 80% of the Atti-
tude and Orbit Control Systems (AOCS) total development time in the space
industry.

Researchers started in the 1990s to investigate probabilistic µ-analysis [3,
12, 16], which seeks to combine worst-case bounds determined by µ-analysis
with probabilistic information. But although attractive from a theoretical
perspective, this approach was far from being applicable at that time, as
acknowledged by [12]: It is still not clear how feasible probabilistic µ is. The
first dedicated software was developed more than twenty years later [13]. It
was a major improvement, although still not sufficient to address challeng-
ing industrial applications, as highlighted in [14]: In terms of algorithmic
implementation, the situation is similar to when first appeared the preliminary
implementations of deterministic µ. That is, in some cases it takes prohibitively
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long and on average takes too long for standard use in the control design cycle
– although possibly still acceptable for limited model complexity during analy-
sis in conjunction with Monte Carlo campaigns. The last round began a few
years ago, when [17] developed a new Matlab software based on the Skew Mu
Analysis Robustness Tools (SMART) Library of the Systems Modeling Analy-
sis and Control (SMAC) Toolbox, that implements state-of-the-art µ-analysis
based algorithms to compute robustness margins and performance levels [11].
Shortly afterwards, the first version of the STOchastic Worst-case Analysis
Toolbox (STOWAT) was released by [15]. Better integrated with the SMART
library, it has been significantly improved since then by [18], thanks to the
addition of new features, but above all to increasingly efficient implementa-
tions, resulting in a dramatic reduction in CPU time. However, until recently,
it could only be reasonably applied to small-scale models, with up to 4 or 5
uncertainties. In the perspective of analyzing systems with a larger number of
uncertain parameters, a time-consuming and tedious process was carried out.
This led to a complete rewrite of the STOWAT, which is now highly opti-
mized down to the sub-function level, and whose performance is assessed in
this paper on a series on benchmarks of increasing complexity. More generally,
this work represents a new step towards the development of a consolidated
tool that could reasonably be integrated into the aerospace Verification and
Validation (V&V) process in a near future. To the best of our knowledge, this
is indeed the first time a realistic system with about 20 states and 20 uncer-
tainties – a flexible satellite with sloshing effects in the present case – can be
analyzed by a probabilistic µ approach in only a few minutes.

The paper is organized as follows. Section 2 briefly outlines the µ-analysis
framework, both from a deterministic and probabilistic point of view. Section 3
presents the latest software tools and shows on a series of benchmarks of
increasing complexity how a prototype version limited to academic applications
has become in a few years mature enough to integrate an industrial V&V
process. These tools are finally applied in Section 4 to the aforementioned
satellite benchmark and thoroughly compared to MC simulations.

2 Probabilistic µ-analysis framework

Let us consider the following continuous-time uncertain Linear Time-Invariant
(LTI) system: {

ẋ = A(δ)x+B(δ)u
y = C(δ)x+D(δ)u

(1)

The real uncertain parameters δ = (δ1, . . . , δN ) ∈ RN are bounded and
belong to the uncertainty domain Dδ =

[
δ1 δ1

]
× · · · ×

[
δN δN

]
. It is assumed

without loss of generality that they are normalized (which can always be

done using an affine transformation), i.e. Dδ = Bδ = [−1 1]
N
. Moreover, they

are independent random variables, whose probability density functions
are supported on the bounded interval [−1 1]. Uniform and truncated normal
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distributions are often used in practice, but any other distribution supported
on a bounded interval can be used.

Remark 1 Assuming that the uncertainties are bounded and independent is conve-
nient, since the uncertainty domain is simply the N -cube Dδ. As explained in [15, 18],
the proposed V&V tools implement Branch-and-Bound algorithms that partition Dδ

into smaller and smaller subdomains. If the latter are N -cubes too, the only ques-
tion is in which directions the division should be performed, which can be solved
very quickly by evaluating the µ-sensitivities [19]. Moreover, in many practical appli-
cations, these assuptions are reasonable and Dδ exactly corresponds to the set of
physically meaningful uncertainties. But there also exists cases where the uncer-
tainties are not independent and the corresponding domain has a non-trivial shape.
Encompassing this domain in a unique N -cube Dδ can therefore lead to consider
non-physical models, which might result in the rejection of a satisfactory control
architecture. A possible solution is to cover the uncertainty domain with several N -
cubes and to apply the proposed V&V tools on each of them. This is equivalent to
performing a preliminary partitioning of Dδ and setting the probability of the non-
physical regions to 0. Another solution is to optimize the shape of the subdomains
when applying the B&B algorithm to best fit the exact uncertainty domain, in the
spirit of what is done in [20]. However, this optimization process can be quite costly.
An intermediate solution consisting in considering simple affine relations between
the uncertainties could however allow to adjust the shape of the subdomains using
efficient µ-based tools, therefore keeping a reasonable computational time.

It is assumed that A(δ), B(δ), C(δ), D(δ) are polynomial or rational func-
tions of the δi and that system (1) can be transformed into a Linear Fractional
Representation (LFR) as in Fig. 1: the uncertainties are separated from the
nominal (closed-loop) system M(s) and isolated in a block-diagonal opera-
tor ∆ = diag(δ1In1

, . . . , δNInN
), where ni is the number of ocurrences of δi

in ∆ and Ini
is the ni × ni identity matrix. The question of how this trans-

formation is performed and in which cases exactly it is possible is out of the
scope of this paper, but more information can be found in [9]. The set of
matrices with the same block-diagonal structure as ∆ is denoted ∆. Let then
kB∆ = {∆ ∈ ∆ : |δi| ≤ k, i ∈ [1, N ]}. In the particular case where k = 1,
B∆ = {∆ ∈ ∆ : δ ∈ Bδ} is the subset of ∆ corresponding to Bδ.

-

�

M(s)

∆

-

�

- -u y
M(s)

∆

Fig. 1 Standard interconnections for robust stability (left) and performance (right) analysis
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With these notations in mind, two main problems can be solved either
in a deterministic framework using classical µ-analysis or in a probabilistic
framework using probabilistic µ-analysis. Stability is introduced first and the
corresponding interconnection is shown in Fig. 1 (left).

Problem 1.1 (Deterministic worst-case stability) Compute the worst-
case stability margin kwc = min {k ≥ 0 : ∃∆ ∈ kB∆,M(s)−∆ is unstable}.

Problem 1.2 (Probabilistic robust stability) Given a desired stability

margin k ≥ kwc, compute the probability P
k

∆,f (M(s)) that the interconnection
of Fig. 1 (left) is unstable when ∆ ∈ kB∆.

Remark 2 The uncertainties δ being normalized, a natural choice is k = 1 in
Problem 1.2 and the associated probability is simply denoted P∆,f (M(s)).

H∞ performance is considered next and the corresponding interconnection is
shown in Fig. 1 (right). Let Tu→y(s,∆) denote the transfer from u to y. It
is assumed that kwc > 1, noting that the case where kwc ≤ 1 can be easily
handeled by choosing a subset of B∆ where stability is ensured instead of B∆.

Problem 2.1 (Deterministic worst-case H∞ performance) Compute the
worst-case performance level γwc = max

∆∈B∆

∥Tu→y(s,∆)∥∞.

Problem 2.2 (Probabilistic robust H∞ performance) Given a desired
performance level γ ∈ [0 γwc], compute the probability P

γ

∆,f (M(s)) that
∥Tu→y(s,∆)∥∞ > γ on Fig. 1 (right) when ∆ ∈ B∆.

Once computed, the probabilities P
k

∆,f (M(s)) and P
γ

∆,f (M(s)) can be com-
pared to a given tolerance level ϵ, so as to validate or reject the considered
control system, depending on whether they are lower or higher than ϵ.

The theory behind µ-analysis is not presented in this paper due to space
limitations, but the interested reader can for example refer to [9, 10, 21]
and [13–15, 17, 18] for the classical and the probabilistic versions respectively.
Only a few facts are briefly recalled below to facilitate the understanding of
Sections 3 and 4.

Classical µ-analysis is based on the computation of the structured singu-
lar value µ∆ on the whole frequency range. This computation being NP-hard
in general, bounds on kwc and γwc are usually determined in Problems 1.1
and 2.1 instead of the exact values. Much work has been done in the past
decades to reduce the gap between these bounds, and (almost) exact values of
kwc and γwc are now obtained in most cases with a reasonable computational
time [22]. The main reason why the gap sometimes remains non-negligible and
the computational time significant is the presence of uncertainties repeated
many times in ∆, i.e. high values of some ni.

Probabilistic µ-analysis combines the aforementioned µ-based tools
with a Branch-and-Bound (B&B) algorithm to explore the whole uncertainty
domain Bδ. A simple stability test is first performed at the center of the
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domain, i.e. for ∆ = 0. If the resulting system is stable (resp. unstable), sta-
bility (resp. instability) is then investigated on Bδ using sufficient conditions
involving µ upper bound computations. If it cannot be guaranteed on the
entire domain, Bδ is finally partitioned into smaller boxes and this process is
repeated until each box has guaranteed stability/instability or is sufficiently
small to be neglected (see Algorithm 1 of [15]). This leads to the following
partition of the uncertainty domain Bδ:

Bδ = Ds ∪Ds ∪Dsu (2)

where Ds, Ds and Dsu are three sets of disjoint N-cubes corresponding to the
domains where stability is guaranteed, instability is guaranteed and stabil-
ity is undetermined respectively, with probabilities p(Ds), p(Ds) and p(Dsu).
The domain Dsu stems from the aforementioned NP-hardness issue, but also
from the fact that B&B can only approximate Ds and Ds, and not compute
them exactly. The probability p(Dsu) can be reduced by increasing the num-
ber of iterations of the algorithm, at the price of an increase in the CPU time.
Guaranteed lower and upper bounds on the exact probability P∆,f (M(s)) of
instability are finally obtained as follows, thus solving Problem 1.2:

p(Ds) ≤ P∆,f (M(s)) ≤ 1− p(Ds) = p(Ds) + p(Dsu) (3)

Their accuracy depends on the chosen stopping criterion of the B&B algorithm,
which allows to handle the trade-off between accuracy and computational time.

Remark 3 When executing the B&B algorithm, the probability distributions of
the uncertain parameters δ are only used to decide in which order the boxes are
analyzed (usually by decreasing probability). The most relevant way to compare the
results obtained with different distributions therefore consists of applying the B&B
algorithm only once considering uniform distributions, and then recalculating the
bounds of equation (3) for all distributions of interest, which is very fast.

Performance analysis can be done in the same way. On the one hand,
a µ-based sufficient condition to guarantee H∞ performance on a box
(∥Tu→y(s,∆)∥∞ ≤ γ) is easily obtained using the main loop theorem [23].
On the other hand, checking whether non-performance is guaranteed
(∥Tu→y(s,∆)∥∞ > γ) requires to solve a minimax problem, which cannot be
directly reformulated in the µ framework. Nevertheless, a sufficient condition
is proposed in [15] (see Proposition 3.1 and Algorithm 2) to overcome this
issue. This leads to the following partition of Ds:

Ds = Dγ ∪Dγ ∪Dγu
(4)

where Dγ , Dγ and Dγu correspond to the stability domains where performance
is guaranteed, non-performance is guaranteed and performance is undeter-
mined respectively, with probabilities p(Dγ), p(Dγ) and p(Dγu). Guaranteed
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bounds on the exact probability P
γ

∆,f (M(s)) of non-performance follow, thus
solving Problem 2.2:

p(Dγ) ≤ P
γ

∆,f (M(s)) ≤ p(Ds)− p(Dγ) = p(Dγ) + p(Dγu
) (5)

The only difference with stability is that the investigated domain is limited to
the domain of guaranteed stability Ds, since performance analysis only makes
sense for stable systems. The following partition of the normalized uncertainty
domain Bδ is finally obtained by combining (2) and (4):

Bδ = Dγ ∪Dγ ∪Dγu
∪Ds ∪Dsu (6)

In other words, the uncertain system does not meet the performance require-
ment for a given uncertainty ∆ ∈ ∆ if it is unstable or the H∞ norm exceeds
the desired threshold γ.

3 Computational tools assessment

Problems 1.1 and 2.1 can be solved using the SMART Library of the SMAC
Toolbox [11, 21], which was introduced in 2013 and implements state-of-the-art
µ-analysis based algorithms to compute robustness margins and performance
levels. Based on this library, the STOchastic Worst-case Analysis Toolbox
(STOWAT) [15, 18] allows to solve Problems 1.2 and 2.2 by computing guaran-
teed lower and upper bounds on the probabilities P∆,f (M(s)) and P

γ

∆,f (M(s))
with the desired accuracy.

Many improvements have been brought to the STOWAT since the first ver-
sion presented in [15]. But until recently, it could only be reasonably applied
to small-scale models. It generally gave good results in the presence of 4 or 5
uncertainties, but beyond that the computation time increased rapidly if a sat-
isfactory accuracy was required. In the perspective of analyzing systems
with a larger number of uncertain parameters, a time-consuming and
tedious process was carried out. First, a more clever cube splitting tech-
nique was implemented in the B&B algorithm. It uses the µ-sensitivities [19],
which provide a very efficient way to detect the most critical uncertainties and
therefore to decide in which directions to cut the uncertainty domain. Then,
the whole Matlab code was investigated to detect and rewrite the most time-
consuming parts using differents techniques: vectorization, use of analytical
solutions whenever possible (e.g. avoid using numerical integration to compute
probabilities), store the results of certain calculations to avoid doing them sev-
eral times, avoid using versatile but usually time-consuming functions, stop
the µ computations as soon as accuracy is sufficient to draw a conclusion, use
only simple data types such as matrices instead of structure arrays or LTI
models. . .This led to a complete rewrite of the Matlab code, which
is now optimized down to the sub-function level. This tedious work
is the price to pay to be competitive with, or even outperform, simulation-
based approaches. The result seems to be well worth the effort, as evidenced
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by the following comparison between the successive versions of the tool. Note
that the purpose of this section is not to discuss whether probabilistic analysis
has added value over worst-case analysis for the considered examples, but to
compare the computational efficiency of different versions of the STOWAT for
benchmarks of increasing complexity. The added value of probabilistic analysis
is shown later in Section 4.3.

Let us first consider the following simple example extracted from [17]: ẋ =

[
0 1

−a1(δ1) −a2(δ2)

]
x+

[
0
1

]
u

y =
[
1 0

]
x

(7)

where a1(δ1), a2(δ2) are two uncertain parameters defined as:{
a1(δ1) = 1 + 2δ1
a2(δ2) = 0.8 + δ2

(8)

and δ1, δ2 are two normalized real parametric uncertainties with a uniform dis-
tribution on [−1 1]. Four probabilistic µ codes are compared, all implemented
with Matlab:

1. the tool described in [17], which is the first to rely on the SMART Library
of the SMAC Toolbox,

2. the prototype version (V0) of the STOWAT introduced in 2019 [15], which
proposes a totally new implementation as well as additional features such
as the determination of Ds and Dγ in addition to Ds and Dγ ,

3. the first consolidated version (V1) of the STOWAT developed under ESA
contract RFP/3-16071/19/NL/CRS/hh [18], directly inspired from the
prototype one, but further optimized and robustified,

4. the most recent version (V2) of the STOWAT assessed in the present paper,
which consists of a brand new code optimized down to the sub-function
level as highlighted above.

Codes #1 and #2 have been kindly provided by D. Alazard and S. Thai
respectively, while codes #3 and #4 have been implemented by C. Roos and
J-M. Biannic. Note that all computational times reported in this paper were
obtained using Matlab R2018b runing serially on a single core on a Windows
10 laptop from 2019 with an Intel Core i5-8400H CPU running at 2.5 GHz
and 16 GB of RAM.

The four codes are first applied to solve Problem 1.2 (probabilistic robust
stability), and results are presented in Fig. 2 and Table 1, where it can be
checked that p(Ds) + p(Ds̄) + p(Dsu) = 100% according to equation (2). A
drastic reduction of CPU time is observed. The curve in Fig. 2 is indeed
almost linear on a logarithmic scale and reveals that the computational effort
is divided by about 10 from one version to the next. In particular, the CPU
time has been divided by:
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• 20 between codes #3 and #4, which shows the relevance of the complete
rewrite,

• 1200 since the introduction of the STOWAT in 2019, which makes the most
recent version now applicable in an industrial context (see also Table 3 and
Section 4).

In the meantime, accuracy has also been improved. Code #1 is not able to
quantify p(Ds̄) and p(Dsu). Code #2 can do it, but p(Dsu) remains a bit large
for such a simple example. Finally, codes #3 to #4 allow to drastically reduce
p(Dsu) from 0.47% to 0.01%, which means that 99.99% of the uncertainty
domain can now be categorized in less than 1s.

1 2 3 4

100

101

102

103

C
P

U
 ti

m
e 

[s
]

Fig. 2 CPU time for the successive versions of the tool (stability)

Table 1 Numerical results for the successive versions of the tool (stability)

Code # 1 2 3 4

CPU time [s] 1208 144 20 < 1

p(Ds) [%] 92.52 92.59 92.79 92.79

p(Ds̄) [%] - 6.94 7.20 7.20

p(Dsu) [%] - 0.47 0.01 0.01

The four codes are applied next to solve Problem 2.2 (probabilistic robust
performance), and results are summarized in Table 2, where it can be checked
that p(Dγ) + p(Dγ̄) + p(Dγu

) = p(Ds) according to equation (4). The trend is
the same as before, and a drastic reduction of CPU time is observed. In the
meantime, accuracy is also improved, with p(Dγu

) decreasing from one version
to the next. The decrease in computational time allows to go further in the
analysis by choosing a refined stopping condition for the B&B algorithm. This
is illustrated in the last column of Table 2, which shows that p(Dγu

) can be
divided by almost 6 with a CPU time of only 18s, and in Fig. 3, where the
domains of undetermined stability Dsu or performance Dγu

are hardly visible.
Codes #3 (V1) and #4 (V2) of the STOWAT are now applied to a

series of benchmarks of increasing complexity available in the litterature and
implemented in the SMAC Toolbox [22]. Only probabilistic stability analysis
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Table 2 Numerical results for the successive versions of the tool (performance)

Code # 1 2 3 4

CPU time [s] 3370 132 27 < 2 18

p(Dγ) [%] 41.30 41.30 41.33 41.57 42.30

p(Dγ̄) [%] - 48.68 49.40 49.39 50.18

p(Dγu) [%] - 2.61 2.06 1.82 0.32

Fig. 3 Partition of the uncertainty domain with a refined stopping criterion

(Problem 1.2) is investigated here, but the same trend can be observed for
performance analysis. These test cases are characterized by various fields of
application, system dimensions and structures of the uncertainties. Some of
them contain poorly damped modes, which usually produce extremely sharp
peaks on the µ plot, while others have large state vectors as well as numer-
ous and/or highly repeated uncertainties. All results are gathered in Table 3,
whose second column deserves some explanation:

• 3/3 means that ∆ is composed of 3 non-repeated uncertain parameters,
• 4/5 means that ∆ is composed of 3 non-repeated uncertain parameters and
1 repeated twice,

• the drive-by-wire vehicle has 2 non-repeated uncertain parameters and 7
repeated twice,

• the reentry vehicle has 3 non-repeated uncertain parameters and 2 repeated
4 and 6 times,

• the hard-disk drive has 19 non-repeated uncertain parameters and 4 repeated
twice.

The following test protocol is applied to each benchmark. Using the stability
margin computed in [22], the bounds on the uncertain parameters are first
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modified to get kwc = 0.95 in Problem 1. This ensures that the uncertain
system is not stable on the whole set B∆, but the probability P∆,f (M(s))
of instability is sufficiently small to justify the use of probabilistic µ. The
most recent version of the STOWAT (code #4) is then applied (column 6 of
Table 3) with a computational time of 10 s as stopping criterion of the B&B
algorithm. And the previous version of the STOWAT (code #3) is finally
applied (column 5) with the resulting value of p(Dsu) as stopping criterion
(column 4) to be able to compare the computational time of both versions for
the same accuracy.

The results are consistent with those obtained previously on the academic
model (7)-(8). Columns 5 and 6 indeed show that the CPU time is divided
by about 10 on average (8.7 to be exact) thanks to the complete rewrite. It
remains low even for high-order systems, and a good accuracy – measured here
by the value of p(Dsu) in column 4 – is obtained in all cases. In view of all
these results, it appears that the new version of the STOWAT has reached a
good level of maturity, which makes it possible to use it on realistic industrial
applications, as shown in Section 4.

Let us now analyze Table 3 a little further. As expected, good results
are obtained even for systems with large state vectors. µ-analysis is indeed
a frequency-domain approach, and the size of the frequency response of the
nominal closed-loop system M(s), i.e. the size of the matrix M(jω), does not
depend on the order of the system but only on the size of the uncertainty
matrix ∆. It could however seem more surprising that there is no significant
increase in computational time or decrease in accuracy when the number of
uncertainties increases. The explanation lies in the fact that at each itera-
tion, the B&B algorithm implemented in the STOWAT divides the uncertainty
domain along the direction corresponding to the highest µ-sensitivity [19], i.e.
to the uncertainty with the greatest influence on stability. With such a strat-
egy, the limiting factor of the proposed approach is not the total number of
uncertainties as one might think, but the number of uncertainties that most
impact stability or performance. It is therefore preferable to have a system
with 20 uncertainties, only 4 of which have a high sensitivity, than a system
with 8 uncertainties of equivalent sensitivity. Fortunately, it seems that the
number of critical uncertainties usually remains quite reasonable, even when
the total number of uncertainties is large, as shown in Table 4. Here, code #4
is applied with a computational time of 100 s as stopping criterion of the B&B
algorithm. For each benchmark, all the N-cubes that form the resulting parti-
tion (2) of the uncertainty domain are investigated to determine the maximum
number of times the range of each uncertainty was cut (column 3). A large
number means that the corresponding uncertainty was often the one with the
highest µ-sensitivity, and is therefore a measure of its influence on stability.
It appears that the number of critical uncertainties for which the number of
cuts is greater than or equal to half the largest value (column 4) does not
significantly increase with the complexity of the benchmark.
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Table 4 Number of critical uncertainties with a significant influence on stability

Benchmark
Number of Maximum number Number of critical
uncertainties of cuts uncertainties

1 3 12− 11− 8 3

2 4 10− 92 − 8 4
3 4 10− 8− 7− 6 4

4 4 152 − 4− 1 2

5 9 7− 6− 42 − 34 − 2 4

6 5 84 − 7 5

7 9 11− 9− 22 − 05 2

8 23 5− 43 − 32 − 23 − 112 − 012 6

It must however be kept in mind that an unfavorable configuration will
inevitably occur at some point, which will put the analysis tools in trou-
ble due to the exponential-time behavior of the B&B algorithm. To illustrate
this behavior, code #4 is run again on all benchmarks without using the µ-
sensitivities. This means that all uncertainties are treated as if they had the
same influence on stability, so that the uncertainty domain is divided equally
in all directions. Two stopping criteria are considered: first a CPU time of 10 s
and then the same accuracy p(Dsu) as in Table 3. Results are presented in
columns 3 and 5 of Table 5 respectively. Columns 2 and 4 correspond to the
case where the µ-sensitivities are used. They are similar to column 4 and 6 of
Table 3, but they have been included to make the comparison easier. It can
be seen that the accuracy and the computational time is roughly the same as
before for benchmarks 1-2-6, and sometimes even lower since the calculation
time of the µ-sensitivities is saved. For these benchmarks, Table 4 indeed shows
that the uncertainties almost all have the same influence on stability. The
results are a little less satisfactory for benchmark 3 (highlighted in orange).
This is once again consistent with Table 4, where all uncertainties appear to
have a non-negligible influence on stability, but some more than others. Finally,
the computational effort soars for benchmarks 4-5-7-8, since problems with 4-
9-9-23 uncertainties respectively are solved, instead of only 2-4-2-6 when the
µ-sensitivities were used.

Table 5 Accuracy and CPU time with/without using the µ-sensitivities

Benchmark
Accuracy p(Dsu)[%] CPU time [s] for the

for a CPU time of 10 s accuracy of Table 3

with without with without

1 0.0195 0.0232 10 18.0

2 0.0022 0.0019 10 6.4

3 0.0313 0.0735 10 138.8

4 0.0132 0.3906 10 > 3600

5 0.0244 13.9648 10 > 3600

6 0.0054 0.0204 10 19.3

7 0.0549 6.2500 10 > 3600

8 0.0027 2.9297 10 > 3600
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4 Application to a realistic satellite benchmark

4.1 Open-loop satellite modeling

Without a significant loss of generality, since coupling effects are often neg-
ligible, a single-axis satellite model is considered here. Let θ be the attitude
angle of the satellite around the considered axis and J = 1000 kg.m2 its main
moment of inertia. The rigid dynamic equation simply reduces to:

Jθ̈ = TW + TS + TF + TD (9)

where TW is the control input torque, TS is the torque produced by the pro-
pellant slosh effects, TF is induced by the flexible modes of the solar arrays
attached to the main body, and TD captures all remaining disturbance torques
(possibly produced by the solar pressure but also by an embedded robotic arm
dedicated to on-orbit services). As is usual in the literature, slosh and flexible
effects are represented by poorly damped second-order linear models:

TS + TF =
∑
i

Lis
2

s2 + 2ξiωis+ ω2
i

θ̈ (10)

where the parameters Li, ωi and ξi respectively denote the magnitude, the
frequency and the damping of each mode. The nominal values are presented
in Table 6 and the corresponding open-loop Bode plot of the transfer from TW

to θ is visualized in Fig. 4.

Table 6 Slosh & flexible modes coefficients (nominal values)

Mode #i 1 2 3 4 5

Li [kg.m2] 30 40 50 300 100

ωi [rad/s] 0.1 0.2 0.3 0.6 1

ξi 5× 10−3 4× 10−3 3× 10−3 1× 10−3 1× 10−3

Remark 4 As is further detailed in [32], a more realistic control-oriented repre-
sentation of the slosh effects is obtained with implicitly time-varying frequency and
damping characteristics. The latter generally depend indeed on the angular velocity
and acceleration of the satellite. Such variations have been omitted here to generate
an uncertain but invariant model as imposed by the µ-analysis framework.

Finally, the control input torque TW is generated from the commanded
torque TC by a reaction wheel, which can be approximated by a first-order
linear model with time constant τ = 0.5 s:

TW =
1

1 + τs
TC (11)

Note that this actuator is also rate and magnitude limited. These properties
are taken into account in the design phase but not introduced here since the
considered maneuvers are assumed to be saturation free.
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Fig. 4 Bode plot of the nominal open-loop transfer function of the satellite model from the
control input torque TW to the attitude angle θ (with 3 slosh modes and 2 flexible modes)

4.2 Structured H∞-based robust controller design

A robust attitude tracking controller is designed for the above satellite model.
As illustrated in Fig. 5, a second-order reference model R(s) with desired
frequency ωr = 0.05 rad/s and damping ξr = 0.75 is introduced. This model
delivers reference signals θr and θ̇r which are compared to the outputs of
the plant. As is clearly visible on the diagram, an extended PID structure is
imposed on the controller K(s) which minimizes the H∞ norm of the weighted
transfer from the exogenous inputs w1 = θc and w2 = TD to the exogenous
outputs z1 = ϵ = θr − θ, its integral z2 and z3 = TC . The weighting functions
are tuned so that:

• the optimized controller exhibits good robustness properties against actuator
delay (delay margin should be above 0.45 s),

• the H∞ norm of the transfer TD(s) = TTD→ϵ(s) from disturbance torque
inputs TD to the attitude error ϵ should ideally not exceed 0.01.

The last objective which ensures good tracking performance despite perturba-
tions is hard to achieve simultaneously with the delay margin constraint. After
a reasonably short tuning process, a fifth-order controller K(s) was obtained
with the systune routine from the Matlab Robust Control Toolbox. This con-
troller exhibits a very good delay margin (0.45 s) and acceptably meets the
performance requirement with ∥TD(s)∥∞ = 1.01× 10−2.

Moreover, parametric robustness properties against possible variations of
the inertia, the actuator time constant and the 15 parameters of Table 6 are
partly ensured via a multi-model design approach. There is however no guar-
antee that the whole uncertainty domain is cleared. It is indeed numerically
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Fig. 5 H∞ design model

impossible here to include all parametric variations in the design process since
there are two many parameters. A validation phase to be performed a posteriori
is then required.

4.3 Control system validation

Let us now evaluate the pointing performance properties of the closed-loop
system by confronting the latest version of the STOWAT (code #4 in Section 3)
to a classical Monte Carlo (MC) type approach based on random sampling.
Real parametric uncertainties are introduced on the inertia J of the satellite
and the time constant τ of the reaction wheel, as well as the magnitudes Li,
damping factors ξi and frequencies ωi of the 5 slosh and flexible modes. An
uncertain system with 21 states and 17 uncertainties is therefore obtained.
Problem 1.1 is solved using the SMART Library, which shows that stability is
guaranteed when all uncertainties are allowed to vary independently of each
other by ±11.34% around their nominal values. The main objective is now to
determine if the pointing performance degradation with respect to the nominal
case is acceptable when the uncertain parameters vary by ±11%. For this,
the transfer TD(s,∆) between the external disturbance torque TD and the
attitude error ϵ is considered. As already mentioned in Section 4.2, the nominal
H∞ norm without uncertainties is γnom = ∥TD(s, 0)∥∞ = 1.01× 10−2, which
indicates a good rejection of the perturbation in the absence of uncertainties.

Robust performance is first analyzed using MC. M = 105 samples are
generated for each uncertain parameter, following a uniform distribution on
an interval of ±11% around their nominal value. The highest H∞ norm among
these 105 samples is γmc = 1.11×10−2 and is achieved near the frequency ωs =
0.5 rad/s. This suggests that performance is only minimally affected by the
uncertainties. The Bode plots of the nominal system and the 100 samples with
the highest H∞ norm are shown in red and blue respectively in Fig. 6. There
is a fairly large dispersion on the frequency, but much less on the magnitude,
which is consistent with the previous results. All computations are performed
in 1300 s.

The algorithm introduced in [33] and implemented in the SMART Library
is now used to address Problem 2.1, and more precisely to compute a lower
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Fig. 6 Bode plot of the transfer TD(s,∆) between the external disturbance torque and the
attitude error (red = nominal, blue = 100 worst samples, yellow = worst-case identified by
µ-analysis)

bound on the worst-caseH∞ norm γwc of the transfer TD(s,∆). This is a 2-step
procedure. Coarse lower bounds are first computed quickly for 100 frequencies
covering the entire frequency range. A series of linear programming problems
are then solved with respect to both frequency and uncertainties using the
previous results as an initialization to get a refined bound, as well as the
associated worst-case uncertainty combination. All the calculations take only
9 s and results are partially reproduced in Table 7. It can be seen that in most
cases, a lower bound of about 1.1×10−2 is obtained close to ωs, which is in line
with the results obtained previously by sampling. But grid point #93 reveals
a much higher bound γwc ≥ 2.89 × 10−2 at the frequency ωc = 2.346 rad/s,
which is missed by the sampling approach despite the fact that 105 samples
are considered. The Bode plot of this worst-case configuration is plotted in
yellow in Fig. 6. It is worth noting that ωc is quite different from ωs. Moreover,
it does not coincide with any frequency of the slosh and flexible modes (0.1,
0.2, 0.3, 0.6 and 1 rad/s). It was therefore not possible before applying µ-
analysis to anticipate this phenomenon, which can have a significant impact
on the pointing performance. Let us indeed consider a sinusoidal disturbance
TD(t) = sin (ωc t). The resulting pointing error is plotted in Fig. 7 with the
same color code as above. For the worst-case configuration identified by the
SMART Library, it is about 15 times and 30 times larger than for the worst
random sample and the nominal configuration respectively.

A critical issue is therefore to compute the probability of observing such a
performance degradation, so as to decide whether the proposed control system
is reliable enough or not. The latest version of the STOWAT introduced in
Section 3 is applied for this purpose. As with the previous sampling approach,
all uncertainties follow a uniform distribution. But the frequency range on
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Table 7 Worst-case performance analysis results

Grid point
Initial frequency Final frequency Lower bound on

[rad/s] [rad/s] ∥TD(s,∆)∥∞
1 0.000 0.475 1.10× 10−2

2 0.004 0.483 1.10× 10−2

91 1.772 0.489 1.10× 10−2

92 2.070 0.484 1.10× 10−2

93 2.418 2.346 2.89× 10−2

94 2.825 0.476 1.10× 10−2

99 6.141 0.491 1.11× 10−2

100 7.173 0.499 1.11× 10−2

190 192 194 196 198 200
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Fig. 7 Pointing error in the presence of a sinusoidal disturbance TD(t) = sin (ωc t) (red =
nominal, blue = 100 worst samples, yellow = worst-case identified by µ-analysis)

which performance is investigated is now limited to the interval [2 3] rad/s
(represented by vertical dashed lines in Fig. 6) to focus on the worst-case peak
identified above. In this context, let:

P
γ

[2 3] = P
(
∥TD(s,∆)∥∞,[2 3] > γ

)
(12)

be the probability that the frequency-limited H∞ norm of TD(s,∆) on
[2 3] rad/s is higher than γ. Problem 2.2 is solved with a desired performance
level γ = γnom = 1.01× 10−2, which corresponds to the nominal H∞ norm on
the whole frequency range (represented by a horizontal green line in Fig. 6). In
other words, the objective is to compute guaranteed bounds on P

γnom

[2 3] . Two
stopping criteria are defined for the B&B algorithm, corresponding to differ-
ent levels of accuracy: the probability of undetermined performance p(Dγu

)
should be lower than 10−3 % (resp. 10−4 %). After about 100 s (resp. 1400 s),
the probabilities p(Dγ) = 99.999%, p(Dγ) = 0% and p(Dγu

) = 10−3 % (resp.
p(Dγ) = 99.9999%, p(Dγ) = 0% and p(Dγu

) = 10−4 %) of guaranteed per-
formance, guaranteed non-performance and undetermined performance are
obtained. This means according to (5) that P

γ

[2 3] is upper bounded by 10−3 %
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(resp. 10−4 %). A very large part of the uncertainty domain can therefore be
cleared in a very reasonable computational time.

The results obtained by MC are now analyzed from a statistical point
of view to allow a comparison with probabilistic µ. The classical Cher-
noff bound [8, 34] is first applied, noting that all 105 samples satisfy
∥TD(s,∆)∥∞,[2 3] ≤ γnom. For any ϵ ∈ [0 1] and δ ∈ [0 1]:

M ≥ ln(2/δ)

2ϵ2
⇒ P

(
P

γnom

[2 3] ≤ ϵ
)
≥ 1− δ (13)

where M denotes the number of samples. Assuming for simplicity that δ = ϵ,
M = 105 leads to ϵ = 5.435×10−3, i.e. 0.5435%. The bound introduced in [35]
is computed next. For any ϵ ∈ [0 1] and δ ∈ [0 1]:

M ≥ ln(1/δ)

ln(1/(1− ϵ))
⇒ P

(
P

γmc,[2 3]

[2 3] ≤ ϵ
)
≥ 1− δ (14)

where γmc,[2 3] is the largest value among the 105 samples of the frequency-
limited H∞ norm of TD(s,∆) on [2 3] rad/s, equal to 3.55 × 10−3 (−49 dB)
as can be seen in Fig. 6. Assuming again that δ = ϵ, M = 105 leads to
ϵ = 9.284 × 10−5, i.e. 9.284 × 10−3 ≈ 10−2 %. Accuracy is therefore much
better than with the Chernoff bound. Moreover, as γmc,[2 3] < γnom, it can

be concluded that P
γ

[2 3] is upper bounded by 10−2 % with a probability of
1 − δ ≈ 99.99%. This result shows that in this example, probabilistic µ is 10
(resp. 100) times more accurate than MC when the computational time is 10
times lower (resp. equivalent). Moreover, the bounds provided by probabilitic
µ are guaranteed, whereas those provided by MC come with a confidence level.

Consider now a more realistic case where the uniform distribution is
replaced with a normal distribution with zero mean and variance σ2. All proba-
bilities are quickly recomputed in a few seconds using the STOWAT for several
values of σ2 between 0.1 and 5, without performing the whole analysis again
(see Remark 3). In contrast, applying MC requires to generate 105 samples and
compute the associated H∞ norm for each considered value of σ2, thus signif-
icantly increasing the computational time. The results are plotted in Fig. 8.
They show that p(Dγu

) increases when σ2 increases, the case of a uniform dis-
tribution being recovered when σ → ∞ (the probability density function of the
truncated normal distribution becomes constant on the considered support).
For example, if σ2 = 0.2, the probability of non-performance P

γnom

[2 3] is no larger

than 1.8×10−6 %. And results are even more accurate if σ2 = 0.1, since P
γnom

[2 3]

is bounded by 1.3× 10−9 %, which is negligible. The performance degradation
shown in Fig. 6 and 7 is therefore very unlikely in these cases. So if the system
is well enough identified to ensure that σ remains quite small, there is cer-
tainly no need to invalidate the control system on the basis of this extremely
rare worst-case event. But if σ is larger, performance degradation cannot be
ignored, and either a better controller should be designed or the system should
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be better identified. In contrast, the accuracy of MC is not influenced by the
value of σ in this application. No value of ∆ has indeed been found for which
∥TD(s,∆)∥∞,[2 3] > γnom. Equations (13) and (14) therefore still hold, as

well as the accuracy reported in the previous paragraph, i.e. P
γnom

[2 3] ≤ 10−2

with a probability of 99.99%. This realistic example clearly shows the added
value of probabilistic µ in detecting rare events and to quantify their proba-
bility with precision. The latter is indeed faster and more accurate than MC
simulations on this realistic application, but also less conservative than deter-
ministic µ-analysis in the sense that it does not systematically lead to rejecting
a controller on the basis of a single (and possible extremely rare) scenario.
Moreover, the computational time remains particularly low – a few seconds to
build Fig. 8 – considering the complexity of the model, which contains almost
20 uncertainties.

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9
10 -4

Fig. 8 Probability of undetermined performance as a function of the variance σ2

It should however be kept in mind that probabilistic µ is dedicated to the
analysis of rare events, and it is in this specific case that it outperforms MC.
Accuracy and computational efficiency decrease when the probabilities of the
considered scenarios increase, and MC usually ends up being more competitive.
Moreover, MC analysis does not depend on the number of uncertain parame-
ters and has a wider range of applications including nonlinear and time-varying
systems. So the idea is certainly not to totally replace MC with probabilistic
µ, but rather to use probabilistic µ during the early stages of control laws val-
idation to speed up the process and reduce the number of MC simulations by
better targeting them, as highlighted at the end of [18]. Probabilistic µ could
also be incorporated into an iterative control laws design process, where the
controller would be designed not only based on the nominal system behavior,
but also on critical scenarios with a sufficiently high probability identified by
probabilistic µ. Structured H∞ control [36] would be a good candidate, since
existing tools of the Matlab Robust Control Toolbox such as hinfstruct and
systune already implement a multi-model approach.
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5 Conclusion

The combination of state-of-the-art algorithms and a highly optimized imple-
mentation reveals the interesting potential of probabilistic µ to evaluate the
robustness properties of complex systems. The latest version of the Matlab
STOchastic Worst-case Analysis Toolbox indeed allows to assess the point-
ing performance of a flexible satellite subject to slosh effects in the presence
of about 20 parametric uncertainties, whereas previously existing tools could
hardly handle more than 4 or 5. While it is always possible to further optimize
the code, the effort tends to become inversely proportional to the benefit, and
it is questionable whether it is worth it. More promising directions to make the
analysis faster would be to use parallel computing, and to improve the B&B
strategies to explore the uncertainty domain more efficiently. Research is cur-
rently underway and suggests that by combining the two, it should be possible
to further reduce the computational time by a significant amount, leading to
a third generation of the STOWAT capable of handling even more complex
systems.

The implementation effort reported in this paper paves the way to the
integration of probabilistic µ in the aerospace V&V process in complement to
traditional MC-based techniques. Probabilistic µ has indeed the potential to
speed up the first validation steps by quickly invalidating a contol system or
conversely clearing a large part of the uncertainty domain. The outcomes of this
preliminary analysis could then be used to better orientate the MC simulations
and/or reduce their number, therefore reducing the total computational time.
It should indeed be kept in mind that simulations become unavoidable beyond
a certain level of complexity, due to their ability to consider time-varying
parameters and non-linearities in addition to uncertainties.

Declarations

Funding. The research leading to these results received funding from the
French Centre National d’Etudes Spatiales (CNES) under Grant Agreement
R&T CNES R-S20/BS-0005-073.

Conflict of interest. The authors declare that they have no conflict of
interests.

References

[1] Helton, J., Johnson, J., Sallaberry, C., Storlie, C.: Survey of sampling-
based methods for uncertainty and sensitivity analysis. Reliability Engi-
neering and System Safety 91, 1175–1209 (2006)

[2] Landau, D., Binder, K.: A Guide to Monte Carlo Simulations in Statistical
Physics. Cambridge University Press (2005)



22 Integration of probabilistic µ in the aerospace V&V process

[3] Zhu, X., Huang, Y., Doyle, J.: Soft vs. hard bounds in probabilistic robust-
ness analysis. In: Proceedings of the IEEE Conference on Decision and
Control, pp. 3412–3417 (1996)

[4] de Boer, P., Kroese, D., Mannor, S., Rubinstein, R.: A tutorial on the
Cross-Entropy method. Annals of Operations Research 134, 19–67 (2005)

[5] Morio, J., Balesdent, M.: Estimation of Rare Event Probabilities in Com-
plex Aerospace and Other Systems: a Practical Approach. Woodhead
Publishing (2015)

[6] Wang, W., Menon, P., Bates, D., Ciabuschi, S., Gomes Paulino, N.,
Di Sotto, E., Bidaux, A., Kron, A., Salehi, S., Bennani, S.: Verification
and validation framework for autonomous rendezvous systems in terminal
phase. Journal of Spacecraft and Rockets 52(2), 625–629 (2015)

[7] Mujumdar, A., Menon, P., Roux, C., Bennani, S.: Cross-entropy based
probabilistic analysis of VEGA launcher performance. In: Bordeneuve-
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