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Abstract. The Module Learning With Errors (M-LWE) problem is a
core computational assumption of lattice-based cryptography which of-
fers an interesting trade-off between guaranteed security and concrete ef-
ficiency. The problem is parameterized by a secret distribution as well as
an error distribution. There is a gap between the choices of those distri-
butions for theoretical hardness results (standard formulation of M-LWE,
i.e., uniform secret modulo q and Gaussian error) and practical schemes
(small bounded secret and error). In this work, we make progress to-
wards narrowing this gap. More precisely, we prove that M-LWE with
uniform η-bounded secret for any 1 ≤ η ≪ q and Gaussian error, in both
its search and decision variants, is at least as hard as the standard formu-
lation of M-LWE, provided that the module rank d is at least logarithmic
in the ring degree n. We also prove that the search version of M-LWE
with large uniform secret and uniform η-bounded error is at least as
hard as the standard M-LWE problem, if the number of samples m is
close to the module rank d and with further restrictions on η. The lat-
ter result can be extended to provide the hardness of search M-LWE
with uniform η-bounded secret and error under specific parameter con-
ditions. Overall, the results apply to all cyclotomic fields, but most of
the intermediate results are proven in more general number fields.
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1 Introduction

The Learning With Errors (LWE) problem, introduced by Regev [46], is one
of the main computational assumptions for lattice-based cryptographic schemes.
Given two positive integers d and q, and a secret vector s ∈ Zdq , an LWEd,q,ψ sam-
ple is defined as (a, b = q−1⟨a,s⟩+e mod Z), where a is sampled from the uniform
distribution over Zdq , and e an error term sampled from a distribution ψ over R.
The search version of LWE asks to recover the secret s given arbitrarily many
samples of the LWE distribution. Its decision counterpart asks to distinguish
between LWE samples and the same number of samples drawn from the uniform
distribution over Zdq × T, where the torus is defined by T = R/Z. When the
number of samples m is fixed, we use a matrix representation of the LWEd,m,q,ψ
samples as (A, q−1As + e mod Z), with A uniform over Zm×dq , and e sampled
from ψm. From a theoretical standpoint, LWE is interesting for its ties with
well-known lattice problems. Lattices are discrete additive subgroups of Rd and
arise in many different areas of mathematics, such as number theory, geometry
and group theory. There are several problems on lattices that are proven to be
computationally hard to solve, such as the problem of finding a set of shortest
independent vectors (SIVP). A standard relaxation of the latter, which is more
suitable for building cryptography upon, consists in solving it only up to an ap-
proximation factor γ and is denoted by SIVPγ . The caveat of this relaxation is
that the hardness is only conjectured. The seminal work of Regev [46,47] proves
a worst-case to average-case quantum reduction from SIVPγ to LWE. It means
that if there exists an efficient solver for LWE, then it can be used to construct
a quantum solver for SIVPγ in the worst case, i.e., in any Euclidean lattice.
The subsequent work of Peikert [42], then generalized to any polynomial modu-
lus q by Brakerski et al. [17], dequantized the reduction to obtain fully classical
worst-case to average-case reductions to LWE.

Structured Variants. Cryptographic schemes whose security proofs rely on
the hardness of LWE inherently suffer from large public keys and quite inten-
sive computations, both quadratic in the security parameter. Structured vari-
ants of LWE have been proposed in order to gain in efficiency [51,30]. In this
paper, we focus on the Module Learning With Errors (M-LWE) problem, first
defined by Brakerski et al. [16] and then thoroughly studied by Langlois and
Stehlé [24]. The formulation is similar to that of LWE where the set of inte-
gers Z is replaced by the ring of algebraic integers R of a number field K. This
introduces a new parameter, which is the degree n of the number field. The
integer d now denotes the module rank, and q still denotes the modulus. Fur-
ther, let ψ be a distribution on the field tensor product KR = K ⊗Q R, and
let s ∈ Rdq be a secret vector, where Rq = R/qR. An M-LWEn,d,q,ψ sample is
given by (a, q−1⟨a ,s⟩ + e mod R), where a is uniform in Rdq , and e is sampled
from ψ. The search version asks to find s given arbitrarily many samples, while
the decision version asks to distinguish such samples from uniformly random ones
over Rdq × T, where the torus is T = KR/R. We can also use a matrix formula-
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tion when the number of samples m is fixed by considering the M-LWEn,d,m,q,ψ
distribution (A, q−1As + e mod R) with A uniform in Rm×dq and e from ψm.
When the module rank is d = 1, the problem is called Ring-LWE (R-LWE) [30].
Just like LWE, the M-LWE problem enjoys worst-case to average-case connec-
tions from lattice problems such as SIVPγ [24]. Whereas the hardness results
for LWE start from general lattice problems, the set has to be restricted to
module lattices in the case of M-LWE, which correspond to finitely generated R-
modules. Since its introduction, the M-LWE problem has attracted more and
more interest as it offers a fine-grained trade-off between concrete security and
efficiency, mostly by tweaking the parameters n and d. It is also extremely ver-
satile in the sense that it allows for constructing a wide variety of cryptographic
schemes. As an example, within the ongoing NIST standardization process [40],
several finalist candidates relying on the hardness of M-LWE have recently been
chosen for standardization, e.g., the signature scheme Dilithium [18] and the
key encapsulation mechanism Kyber [10]. However, these efficient schemes use
different parameter settings, and in particular different distributions for the se-
cret and error, that are not yet encompassed by theoretical proofs of hardness.
In these cases, the hardness of M-LWE is argued based on the state of the art
cryptanalysis and attacks on M-LWE.

Short Distributions. The standard formulation of LWE considers a large uni-
form secret and a Gaussian error, but in practice we tend to consider short
distributions, i.e., secret or error with coefficients bounded by η ≪ q. This
corresponds to choosing the secret s or a discrete error distribution ψ to be
over {0, . . . , η − 1} (or {−η, . . . , η}) instead of Zq. Besides gaining in efficiency,
choosing a small secret plays an important role in some applications like fully ho-
momorphic encryption [19] or modulus switching techniques [17,1,56] as it keeps
the noise blowup to a minimum. The LWE problem with uniform bounded se-
cret has been well studied in the case of binary secrets (i.e., secrets in {0, 1}d),
denoted by bin-LWE, but the different approaches easily generalize to slightly
larger secrets. A first study of bin-LWE was provided by Goldwasser et al. [21]
in the context of leakage-resilient cryptography. Although their proof structure
has the advantage of being easy to follow, their result suffers from a large error
increase. Informally, they show a reduction from LWEk,q,Dα to bin-LWEd,q,Dβ

,
where β/α = dω(1) (super-polynomial) and d ≥ k log2 q + ω(log2 d). The distri-
bution Dr denotes a Gaussian distribution with standard deviation r (up to a
factor of

√
2π). It was later improved by Brakerski et al. [17] and Micciancio [35]

using more technical proofs. Both of them achieve a similar dimension increase
between k and d, but only increase the error by roughly β/α = Ω(

√
d) (poly-

nomial). The dimension increase from k to roughly k log2 q is reasonable as it
essentially preserves the number of possible secrets. Recent work by Brakerski
and Döttling [14] extends the hardness results to more general secret distribu-
tions based on entropic arguments.

The hardness of LWE with error uniformly distributed below η with η ≪ q
was first studied by Micciancio and Peikert [38]. They proved that the LWE
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function (s, e) 7→ As + e mod q is one-way with respect to inputs e uniform
over {0, . . . , η − 1}m, provided that the number of samples m is at most d(1 +
O(log2 η/ log2 d)). The one-wayness is proven under the hardness of general lat-
tice problems over lattices of rank O(d log2 η/ log2 d). It was recently extended to
non-uniform binary errors by Sun et al. [52], proving that the maximum number
of samples must be m = d(1 +O(p(d)/ log2 d)), where p(d) is the probability of
getting 1 from the error distribution. The proof of [38] corresponds to p(d) = 1/2.

The question of whether these hardness results carry over to structured vari-
ants, and in particular to the module case, was left open. The work on LWE
with entropic secrets was extended to the R-LWE case by Brakerski and Döt-
tling [15], and the module case by Lin et al. [26]1. However, no results on the
hardness of M-LWE with small uniform error were known, even though they
serve as hardness assumptions for most efficient M-LWE-based schemes. For ex-
ample, the signature scheme Dilithium [18] samples the secret and error from the
uniform distribution over vectors with coefficients between −2 and 2 (security
levels I and III) or between −4 and 4 (security level II).

Our Contributions. In this paper, we provide three main contributions on
the hardness of M-LWE with small secret and/or error, i.e., with coefficients
bounded by some positive integer η. The first two contributions study the hard-
ness of the M-LWE problem with centered η-bounded secret, which we denote
by η-M-LWE, in both its search and decision versions, for any η ≥ 1. They are
generalizations of the results published in our previous conference papers [12]
and [13] respectively, only dealing with the special case bin-M-LWE with secret
coefficients in {0, 1}, which is already mentioned in one of the author’s the-
sis [11]. As opposed to [12,13], we decide to work in the primal ring R and with
a centered representation of secrets with coefficients in {−η, . . . , η}2 to show
that the proofs still work and also to match practical uses of the M-LWE as-
sumption like [10,18]. The third and new contribution concerns the hardness of
the search version of M-LWE with η-bounded error, under more specific restric-
tions on η. The latter contribution can then be used to deduce the hardness of
search M-LWE with small secret and error. To the best of our knowledge, it is
the first result for the hardness of M-LWE with small uniform error. The results
apply to all cyclotomic fields, but most of the intermediate results are proven in
more general number fields.
Contribution 1: Computational hardness of η-M-LWE. We show a first reduction
for the hardness of the search version of η-M-LWE. The formal statement can
be found in Theorem 3.1. It follows the original proof structure of Goldwasser
et al. [21] in the case of LWE, while achieving much better noise parameters by
1 Note that at the time of writing, the paper by Lin et al. is only accessible on ePrint

and has not yet been peer-reviewed.
2 Setting η = 1 gives ternary secrets instead of binary. We however observe that the

parameters covered by the reductions for η = 1 in the centered representation match
those of [12,13], and it has the upside of a larger secret space. This leads to smaller
ranks d by a factor of log2 3.
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using the Rényi divergence instead of the statistical distance to measure the dis-
tance between two distributions. The improvement on the noise rate compared
to [21] stems from the fact that the Rényi divergence only needs to be constant
for the reduction to work, and not necessarily negligibly close to 1 (compared
to negligibly close to 0 for the statistical distance). A similar effect arises with
respect to the rank condition in comparison with Contribution 2 below. More
precisely, as we use the leftover hash lemma (over rings) with respect to the
Rényi divergence, we can have a rank that is logarithmic in the ring degree n,
instead of super-logarithmic. However, using the Rényi divergence as a mea-
sure of distribution closeness only allows us to prove the hardness of the search
variant, denoted by η-M-SLWE. Additionally, its use asks to fix the number of
samples a priori.

The result consists in a reduction from M-SLWE and M-LWE with rank k
and Gaussian width α to η-M-SLWE with rank d and width β. The reduction
preserves the ring degree n, the number of samples m and the modulus q, where q
only needs to be prime. The ranks must satisfy d log2(2η + 1) ≥ k log2 q +
Ω(log2 n), which is due to the use of the leftover hash lemma over rings. The
Gaussian noise parameter α is also increased to β by a factor β/α = d

√
m ·

n3/2η log2(n) in general cyclotomic fields, which can be further improved by a
factor of

√
n in the specific case of power-of-two cyclotomic fields.

Contribution 2: Pseudorandomness of η-M-LWE. We then provide a more in-
volved proof of hardness for the decision version of η-M-LWE through a reduc-
tion from M-LWE to η-M-LWE. The thorough statement is provided in Theo-
rem 3.2. Not only does this reduction apply to the decision versions, but it also
slightly improves the noise rate of the reduction in certain parameter regimes.
In particular, the noise rate no longer depends on the number of samples m, as
opposed to Contribution 1. The technique follows the idea of [17] by introduc-
ing the two intermediate problems first-is-errorless M-LWE and ext-M-LWE. We
start by reducing the M-LWE problem to the first-is-errorless M-LWE variant,
where the first sample is not perturbed by an error. We then reduce the latter
to ext-M-LWE, which can be seen as M-LWE with an extra information on the
error vector e given by ⟨e,z⟩ for a uniformly chosen z in the set of η-bounded ring
vectors. Two other formulations of ext-M-LWE were proposed by Alperin-Sheriff
and Apon [4], and more recently by Lyubashevsky et al. [33], but neither suits
our reduction due to our lossy argument in Lemma 3.5. We discuss further these
differences in Section 3.2.2. Then, to reduce ext-M-LWE to η-M-LWE, we use a
lossy argument, similar to that of Contribution 1 but now relying on the newly
derived ext-M-LWE hardness assumption, as well as the leftover hash lemma.

The main challenge is the use of matrices composed of ring elements. The
proof in [17, Lem. 4.7] requires the construction of unimodular matrices which
is not straightforward to adapt in the module setting because of invertibility
issues. The construction in Lemma 3.2 relies on units of the quotient ring R/qR,
which are much harder to explicitly describe than the units of Z/qZ in the sense
that we do not have practical closed-form expressions. This is the reason why we
need to control the splitting structure of the cyclotomic polynomial modulo q.
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Lemma 2.4 [32, Thm. 1.1] solves this issue but requires q to satisfy certain
number-theoretic properties and to be sufficiently large so that all the non-zero
small norm ring elements are units of Rq.

In the whole reduction, the ring degree n, number of samples m and mod-
ulus q are preserved, where m needs to be larger than d and q needs to be
a prime satisfying the said number-theoretic properties. With the help of the
modulus-switching technique of Langlois and Stehlé [24, Thm 4.8], we can then
relax the restriction on the modulus q to be any polynomially large modulus,
at the expense of a loss in the Gaussian noise parameter. The ranks must sat-
isfy d log2(2η+1) ≥ (k+1) log2 q+ω(log2 n), in the same manner as in Contribu-
tion 1, except that the asymptotic term is now super-logarithmic. The noise rate
is now given by nη

√
2d
√
4n2η2 + 1 = Θ(η2n2

√
d) for cyclotomic fields. This re-

duction removes the dependency in m in the noise rate of Contribution 1, which
can be more advantageous in certain cases as we usually take m = Θ(n log2 n).
In the special case of η = 1 and n = 1, we recover the same noise-ratio Θ(

√
d)

as in the original LWE result from Brakerski et al. [17].

Contribution 3: One-wayness of M-LWE with small error. Our last contribu-
tion focuses on the hardness of M-SLWE when the error distribution is uniform
over η-bounded elements instead of Gaussian. The complete result can be found
in Theorem 4.1. It uses a different proof method from Contributions 1 and 2 by
following the idea of Micciancio and Peikert [38] of proving the one-wayness of
the M-LWE function (s, e) 7→ As + e mod qR, with e uniform in Smη (i.e., η-
bounded vectors over R of dimension m). To do so, we prove the one-wayness
of the M-ISIS function e 7→ (A′)Te mod qR and use the duality between both
functions to conclude. This function is inspired from the Module Short Integer
Solution (M-SIS) problem [24] which asks to find a short non-zero vector e ∈ Rm
such that (A′)Te = 0 mod qR for a public random matrix A′ ∈ Rm×dq . It can be
generalized to an inhomogeneous version by replacing 0 by a public syndrome u.
The one-wayness of the function is ensured by two properties, namely the unin-
vertibility and the second preimage resistance, which we prove using statistical
arguments

We obtain similar results to [38] in terms of the number of samples using the
asymptotic approach. However, the asymptotic approach is not suited for very
small values of d. To overcome this problem, we use a more fine-grained approach
using tighter calculations rather than hiding constants in asymptotic notations.
This leads to more complicated conditions on the parameters, especially the
link between the size of the error η and the number of samples m. We thus
evaluate this condition numerically to determine the concrete parameters that
are encompassed by the result. It shows that in order to reach very small errors,
e.g. ternary, the module rank d has to be large enough. We can still reach a small
error size η for constant module ranks, but not arbitrarily small. The reduction
also gives a condition on the maximal number of samples m we can provide with
such small uniform error. In particular, we have m ≤ d(1 + o(log2 η)) which is
similar to what is obtained in [38]. Then, to prove the hardness of M-SLWE
with small error and secret with m′′ samples, we need to have the hardness
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of M-LWE with small error and m′ +m′′ samples for m′ ≥ d. This restriction
makes it difficult to achieve small error and secret at the same time for a large
enough m′′. We discuss this transformation in more details in Section 4.3.

The M-SLWE problem can be seen as a linear system of equations (d variables
and m equations over Rq or nd variables and nm equations over Zq) with noise.
The presence of noise or error is what makes the problem difficult to solve.
The motivation is therefore to determine the threshold of noise to add to the
equations above which the problem is proven hard. Note that the number of
equations characterized by m and the distribution of the error need to be chosen
carefully with respect to one another. For example, an attack by Arora and
Ge [6] uses the m samples to build noiseless polynomial equations of degree η,
where η is a bound on the error coefficients. If m is sufficiently large, root finding
algorithms can perform well on the latter. In particular, if η = 1 (ternary),
then m ≈ d3 samples is enough to solve LWE in polynomial time. The attack
can also be applied to M-LWE as one equation over Rq gives n equations over Zq.
We discuss the consequences on the parameters in Section 4.4.

Open Problems. In this paper, several results are limited to special classes
of number fields, e.g. cyclotomic fields or fields K = Q(ζ) for which the ring of
integers is R = Z[ζ]. Although it covers the fields that are used in practice, it
may be of independent interest to extend our results to more general fields.

The first two contributions imply the hardness of M-LWE with a small secret
and a moderate rank (e.g., Ω(log2 n) for search and ω(log2 n) for decision) due to
the leftover hash lemma over rings. The hardness of η-M-LWE thus remains open
for lower module ranks. Practical M-LWE-based schemes use a constant rank for
increased efficiency, like the CRYSTALS suite [10,18] chosen for standardization
by NIST.

The hardness proof of η-M-LWE with η-bounded error and m samples cur-
rently requires the hardness of M-LWE with η-bounded error and m+d samples.
Although there is no subexponential attack for m = d, d+1 (even for ternary er-
rors η = 1) yet, our proof does not encompass this range of parameters. We leave
it as a major open problem to prove the hardness of η-M-LWE with η-bounded
error for m ≳ d.

Finally, two of our contributions are only proven for the search version
of M-LWE. One possibility (of more general interest) would be to find search-
to-decision reductions for M-LWE that preserve the secret distribution or the
error distribution without reducing the number of samples m too much. For the
latter, a sample-preserving search-to-decision for LWE [36] is known, but it is
yet to be extended to structured variants.

Organization. In Section 2, we introduce the notions and preliminary results
that are needed in this work. Section 3 is dedicated to the proofs of Contributions
1 and 2 on the hardness of η-M-LWE, generalizing that of our earlier conference
papers [12,13]. Then, in Section 4, we give the proof of Contribution 3 on the
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hardness of M-LWE with η-bounded error. Finally, Section 5 gives a concise view
of the current landscape on the hardness of M-LWE.

2 Preliminaries

Throughout the paper, q denotes an odd prime integer, and Zq denotes the ring
of integers modulo q. We may occasionally identify Zq with the centered set of
representatives {−(q − 1)/2, . . . , (q − 1)/2}. In a ring R, we write ⟨p⟩ for the
principal ideal generated by p ∈ R, and Rp for the quotient ring R/⟨p⟩ = R/pR.
For simplicity, we denote by [n] the set {1, . . . , n} for any positive integer n.
Vectors and matrices are written in bold and their transpose (resp. Hermitian)
is denoted by superscript T (resp. †). We denote the Euclidean norm and infinity
norm of Cn by ∥·∥2 and ∥·∥∞ respectively. We also define the spectral norm of
any matrix A ∈ Cn×m by ∥A∥2 = maxx∈Cm\{0}∥Ax∥2/∥x∥2, and the max norm
as ∥A∥max = maxi∈[n],j∈[m]|ai,j |. The identity matrix of size n is denoted by In.
We use the standard Landau notations, i.e., O(·), o(·), ω(·), Ω(·), Θ(·), and we say
a function ε is negligible in n if ε(n) = n−ω(1). We also say that a probability p
is overwhelming if 1 − p is negligible in n. We use the abbreviation PPT for
probabilistic polynomial-time.

2.1 Algebraic Number Theory

A number field K = Q(ζ) of degree n is a finite field extension of the rational
number field Q obtained by adjoining an algebraic number ζ. We define the
field tensor product by KR = K ⊗Q R. The set of all algebraic integers of K
defines a ring, called the ring of integers which we denote by R. It is always
true that Z[ζ] ⊆ R, where this inclusion can be strict. Some of the results are
restricted to the class of number fields where the equality R = Z[ζ] holds3. This
is the case for some quadratic extensions (i.e., when ζ =

√
d with d square-free

and d ̸= 1 mod 4), cyclotomic fields (i.e., when ζ is a primitive root of the unity)
and number fields with a defining polynomial f of square-free discriminant∆f . In
this paper, we assume that for the number fields we consider, the ring of integers
is efficiently computable and has a good basis representation. In particular, it is
the case for cyclotomic fields.

Space H. We use t1 to denote the number of real roots of the minimal polyno-
mial of the underlying number field, and t2 the number of pairs of complex
conjugate roots, which yields n = t1 + 2t2. The space H ⊆ Cn is defined
by H =

{
x ∈ Rt1 × C2t2 : ∀j ∈ [t2], xt1+t2+j = xt1+j

}
. We can verify that H

is a R-vector space of dimension n with the columns of UH as orthonormal

3 We may sometimes call this class of fields “monogenic fields”, but we note that
rigorously a monogenic number field is K = Q(ζ) for which R = Z[ζ′] for a possibly
different ζ′.
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basis, where

UH =
1√
2

√2It1 0 0
0 It2 iIt2
0 It2 −iIt2

 .
Coefficient embedding. A number field K = Q(ζ) of degree n can be seen as
a vector space of dimension n over the rationals with basis {1, ζ, . . . , ζn−1},
meaning that each element x ∈ K can be written as x =

∑
0≤j≤n−1 xjζ

j

with xj ∈ Q. The coefficient embedding is the isomorphism τ between K and Qn
that maps every x ∈ K to its coefficient vector τ(x) = [x0, . . . , xn−1]

T . For
simplicity, we use τk(x) to denote xk. For a positive integer η, we define Sη =
τ−1({−η, . . . , η}n), which can be seen as the set of polynomials with coefficients
in {−η, . . . , η}. The embedding τ can also be extended to KR, mapping it to Rn.

Canonical embedding. Another way to embed K is to use the canonical
embedding. K has exactly n field homomorphisms σ1, . . . , σn, which are charac-
terized by the fact that they map ζ to one of the distinct roots of f . We order
them so that σ1, . . . , σt1 map to one of the real roots, and σt1+1, . . . , σt1+2t2 map
to one of the complex roots. The canonical embedding is the ring homomorphism
from K to Cn defined by σ(x) = [σ1(x), . . . , σn(x)]

T , and the addition and mul-
tiplication are done component-wise. As f has rational coefficients, it holds that
the complex embeddings come in conjugate pairs, and therefore the range of σ
is a subset of H. We can thus map K to Rn with σH = U†Hσ. We extend the
embeddings to vectors in Kd in the natural way by concatenating the embed-
ding vectors of each coefficient, i.e., τ(x) = [τ(x1)

T , . . . , τ(xd)
T ]T and similarly

for σ and σH . For a vector x ∈ Kd, we define ∥x∥∞ = maxk∈[n],i∈[d]|σk(xi)|,
and ∥x∥2,∞ = maxk∈[n]

√∑
i∈[d]|σk(xi)|

2. We then define the field norm of K
as N(x) =

∏
k∈[n] σk(x) ∈ Q for all x ∈ K.

Distortion between embeddings. Both embeddings play important roles
in this paper, and we recall that the two embeddings are linked by the linear
relation

σ(x) = Vτ(x) for all x ∈ K, where V =


1 α1 − αn−11

1 α2 − αn−12

| | |
1 αn − αn−1n


is the Vandermonde matrix defined by the roots (αk)k∈[n] of the defining poly-
nomial f . This transformation does not necessarily carry the structure from one
embedding to the other, e.g., a binary vector in the coefficient embedding need
not to be binary in the canonical embedding. Changing the embedding also
impacts the norm, which is captured by the inequalities

∥∥V−1∥∥−1
2
∥τ(x)∥2 ≤

∥σ(x)∥2 ≤ ∥V∥2∥τ(x)∥2. Hence, ∥V∥2 and
∥∥V−1∥∥

2
help approximating the dis-

tortion between both embeddings. Roşca et al. [50] and Blanco-Chacón [8] give
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additional insight on this distortion for specific number fields. Throughout this
paper, we are interested in the parameter defined by Bη = maxx∈Sη

∥σ(x)∥∞
for a positive integer η. This parameter is inherent to the ring and intervenes in
the proof of Lemma 3.2, 3.5 and 4.4. Here, we provide an upper-bound on Bη,
that is further simplified for cyclotomic number fields. The proof is provided in
Appendix B.1 for completeness.

Lemma 2.1. Let K be a number field of degree n, R its ring of integers, and V
the associated Vandermonde matrix. Let η be a positive integer. Then, it holds
that 1 ≤ Bη = maxx∈Sη

∥σ(x)∥∞ ≤ nη∥V∥max. In particular, for cyclotomic
fields, it yields 1 ≤ Bη ≤ nη.

Multiplication matrices. The multiplication in K (or KR) translates into
a matrix-vector multiplication once embedded with either τ , σ or σH . In the
canonical embedding, the multiplication matrix can be easily expressed as we
have that for all x and y in K, σ(x ·y) = σ(x)⊙σ(y) = diag(σ(x)) ·σ(y), where ⊙
denotes the coefficient-wise product or Hadamard product. Therefore, the multi-
plication matrix is Mσ(x) = diag(σ(x)). We can then express the multiplication
matrix with respect to σH as MσH

(x) = U†HMσ(x)UH . In the coefficient em-
bedding, we can still write τ(x · y) as Mτ (x) · τ(y), but the expression of Mτ (x)
is more involved. We defer the proof to Appendix B.1.

Lemma 2.2. Let K = Q(ζ) be a number field of degree n, and f = xn +∑n−1
k=0 fkx

k the minimal polynomial of ζ. Then for all x in K, it holds that

Mτ (x) =

n−1∑
k=0

τk(x)C
k, with C =




0 0 −f0
−f1

−fn−1

In−1

the companion matrix of the minimal polynomial f .

In power-of-two cyclotomic fields, we have f = xn + 1 yielding that C is the
generating nega-circulant matrix. The expression of Mτ (x) can be simplified to

Mτ (x) =


x0 −xn−1 − −x1
x1 x0 ⧹ |
| | ⧹ −xn−1

xn−1 xn−2 − x0

 ∈ Qn×n,

which is itself a nega-circulant matrix, with xk = τk(x). We can also translate
the matrix-vector multiplication in Kd to a matrix-vector multiplication in Rnd
by extending the multiplication matrix maps Mσ,MσH

and Mτ to a matrix
in Km×d. More precisely, for a matrix A = [aij ](i,j) ∈ Km×d, we define the
block matrix Mσ(A) = [Mσ(aij)](i,j). We define MσH

(A) and Mτ (A) the same
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way. As we need it later in this paper, we provide a way to obtain the singular
values of such block matrices. This relies on a unified analysis from [49] which
gives conditions to obtain the eigenvalues of a matrix when described by blocks.
In our setting, we end up showing that the spectral analysis of the entire block
matrix Mτ (A) comes down to finding the singular values of the n embedded
matrices σk(A). For convenience, we write S(A) the set of all singular values of
a complex matrix A. The proof can be found in Appendix B.1.

Lemma 2.3. Let K be a number field of degree n, and d,m positive integers.
Let A be a matrix in Kd×m.

S(Mτ (A)) =
⋃
k∈[n]

S(σk(A)) = S(Mσ(A)) = S(MσH
(A)),

where σk(A) = [σk(aij)](i,j)∈[d]×[m]. In particular, it holds that ∥Mτ (A)∥2 =
max
k∈[n]

∥σk(A)∥2.

Ideals, units and modules. An ideal p ̸= R is prime if for all a, b ∈ R, ab ∈ p
implies that a or b is in p. In R, an ideal p is prime if and only if it is maximal,
implying that R/p is a field. For two ideals I and J , the sum I+J is the set of
all x+ y, where (x, y) ∈ I ×J , while the product IJ is the set of all finite sums
of xy, where (x, y) ∈ I × J . An integer q is said to be unramified in R if the
ideal ⟨q⟩ can be factored in a product of distinct prime ideals

∏
i∈[κ] pi. We say

that q is fully splitted in R if κ = n in the above factorization, where n is the
degree of the number field. We also say that q is inert in R if ⟨q⟩ is prime. We
extend the field norm and define the norm of an ideal N(I) as the index of I
as an additive subgroup of R, which corresponds to N(I) = |R/I|. The norm is
still multiplicative and verifies N(⟨a⟩) = |N(a)| for any a ∈ R.

In the construction of Lemma 3.2, we need a condition for small norm ele-
ments of Rq to be invertible for a specific q. To do so, we rely on the small norm
condition proven in [32, Th. 1.1].

Lemma 2.4 ([32, Th. 1.1]). Let K be the ν-th cyclotomic field, with ν =∏
i p
ei
i be its prime-power factorization, with ei ≥ 1. We denote by R the ring

of integers of K. Also, let µ =
∏
i p
fi
i for any fi ∈ [ei]. Let q be a prime such

that q = 1 mod µ, and ordν(q) = ν/µ, where ordν is the multiplicative order
modulo ν. Then, for any element y of R satisfying 0 < ∥τ(y)∥∞ < q1/φ(µ)/s1(µ),
it holds that y mod qR is a unit in Rq, where s1(µ) denotes the spectral norm of
the Vandermonde matrix of the µ-th cyclotomic field.

The number theoretic conditions on q essentially say that ⟨q⟩ splits into φ(µ)
distinct prime ideal factors, each of algebraic norm qφ(ν)/φ(µ) = qν/µ. In the case
where ν is a power of an odd prime, then so is µ and then [30] states that s1(µ) =√
µ. For more general cases, we refer to the discussions from Lyubashevsky and

Seiler [32, Conj. 2.6]. We also refer the reader to [32, Th. 2.5] that discusses the
existence of such primes q for specific values of ν and µ.
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Remark 2.1 (Instantiation in power-of-two cyclotomics). This result is simplified
in the power-of-two case [32, Cor. 1.2] where it is conditioned on the number κ >
1 of splitting factors of xn+1 in Zq[x]. Choosing κ as a power of two less than n =
2ℓ, the only conditions on q are that q has to be a prime congruent to 2κ + 1
modulo 4κ. The invertibility condition then becomes 0 < ∥τ(y)∥∞ < q1/κ/

√
κ

for any y in Rq. The upper bound is decreasing with κ so the smaller κ, the more
invertible elements. The smallest choice for κ is κ = 2, which leads to choosing
a prime q = 5 mod 8, meaning the ideal qR splits into two prime ideal factors
of norm qn/2. In our context in Section 3.2.2, having q1/2/

√
2 > η is sufficient

as our elements have η-bounded coefficients. For the ternary secret case η = 1,
this leads to q > 2, which is subsumed by q = 5 mod 8.

We say that a1, . . . ,aℓ ∈ Rdq are Rq-linearly independent if and only if for
all (λi)i∈[ℓ] ∈ Rℓq,

∑
i∈[ℓ] λiai = 0 implies λi = 0 in Rq for all i ∈ [ℓ]. We now give

results on the linear independence of uniform vectors of Rdq and the singularity
of uniformly random matrices. A result similar to Lemma 2.5 is present in [56]
but the proof unfortunately relies on a flawed argument. We detail this matter
in Appendix A and provide corrected proofs.

Lemma 2.5. Let K be a number field, and R its ring of integers. Let d, q be pos-
itive integers such that q is an unramified prime which factors as ⟨q⟩ =

∏
i∈[κ] pi.

Let ℓ be in {0, . . . , d−1}, and a1, . . . ,aℓ ∈ Rdq be Rq-linearly independent vectors
of Rdq . Then

Pb←↩U(Rd
q )
[a1, . . . ,aℓ,b are Rq-linearly independent] =

∏
i∈[κ]

(
1− 1

N(pi)d−ℓ

)
.

As a result, for any 1 ≤ k ≤ d, it holds that

P(ai)i∼U(Rd
q )

k [(ai)i∈[k] are Rq-linearly independent] =
k−1∏
ℓ=0

∏
i∈[κ]

(
1− 1

N(pi)d−ℓ

)
.

Lemma 2.6. Let K be a number field, and R its ring of integers. Let q be a
prime integer that is unramified in R which splits as ⟨q⟩ =

∏
i∈[κ] pi. Let m ≥ d

be two integers. It holds

PA∼U(Rd×m
q )[A ·R

m
q = Rdq ] ≥

d−1∏
ℓ=0

∏
i∈[κ]

(
1− 1

N(pi)m−ℓ

)
.

When R and q are clear from the context, for m ≥ d, we define δ(m, d) =
1− PA∼U(Rd×m

q )[A ·R
m
q = Rdq ], which we use extensively throughout Section 4.

We note that δ(m, d) can be upper-bounded by d·κ
(mini∈[κ]N(pi))m−d+1 . Hence, if q

splits into only high-norm ideal factors so that mini∈[κ]N(pi) ≥ nω(1/(m−d+1)),
the probability δ(m, d) becomes negligible.
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We also define δ′(k, d) to be the probability that among k ≥ d independent
uniform columns of Rdq , there is no subset of d of those columns that are Rq-
linearly independent. Formally, we define

δ′(k, d) = 1− P(ai)i∈[k]∼U(Rd
q )

k [∃S ⊆ [k], |S| = d ∧ (ai)i∈S are Rq-l. i.]

We note that if Rq was a field, we would have δ(k, d) = δ′(k, d). However, in the
general case, δ(k, d) ̸= δ′(k, d) as a minimal spanning set of an Rq-submodule
of Rdq is not necessarily a basis of said submodule. Additionally, note that δ′(d, d)
is given by Lemma 2.5 as

δ′(d, d) = 1−
d−1∏
ℓ=0

∏
i∈[κ]

(
1− 1

N(pi)d−ℓ

)
.

The probability δ′(k, d) is discussed in Section 4.3 as it only appears in the latter.

2.2 Lattices

A (full-rank) lattice Λ of rank n is a discrete additive subgroup of Rn. Since H
is isomorphic to Rn, we may consider lattices that are discrete subgroups of H.
Each lattice can be represented by a basis B = [bi]i∈[n] ∈ Rn×n as the set of
all integer linear combinations of the bi, i.e., Λ = BZn. We define the dual
lattice of a lattice Λ by Λ∗ = {x ∈ Span(Λ) : ∀y ∈ Λ, ⟨x,y⟩ ∈ Z}. Any ideal I
of R embeds into a lattice σ(I) in H, and a lattice σH(I) in Rn, which we
call ideal lattices. For an R-module M ⊆ Kd, (σ, . . . , σ)(M) is a lattice in Hd

and (σH , . . . , σH)(M) is a lattice in Rnd, both of which are called module lattices.
The positive integer d is the module rank. To ease readability, we simply use I
(resp. M) to denote the ideal lattice (resp. module lattice).

2.3 Probabilities

For a finite set S, we define |S| to be its cardinality, and U(S) to be the uniform
probability distribution over S. The action of sampling x ∈ S from a distri-
bution P is denoted by x ←↩ P , whereas the notation x ∼ P means that the
random variable x is distributed according to P . We now define two distances
for probability distributions, namely the statistical distance ∆, and the Rényi
divergence [48,53] RD. The Rényi divergence was thoroughly studied for its use
in cryptography as a powerful alternative for the statistical distance measure by
Bai et al. [7]. In this paper, it suffices to use the Rényi divergence of order 2
denoted by RD2.

Definition 2.1. Consider two discrete probability distributions P and Q over a
countable set S. The statistical distance between P and Q is defined by ∆(P,Q) =
1
2

∑
x∈S |P (x)−Q(x)|. If Supp(P ) ⊆ Supp(Q), we define the Rényi divergence

of order 2 as RD2(P∥Q) =
∑
x∈Supp(P )

P (x)2

Q(x) . The two definitions extend to
continuous distributions by replacing the discrete sum with an integral.
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The two distances enjoy a probability preservation property and a data pro-
cessing inequality, which are essential in proving our results.

Lemma 2.7 ([25, Lem. 4.1]). Let P,Q be two probability distributions such
that Supp(P ) ⊆ Supp(Q) and E ⊆ Supp(Q) be an arbitrary event. Then, we
have P (E) ≤ ∆(P,Q) + Q(E), and P (E)2 ≤ RD2(P∥Q) · Q(E). Further, for
any (possibly randomized) function f , we define P f (resp. Qf ) the distribution
obtained by sampling x ←↩ P (resp. Q) and outputting f(x). Then, it holds
that ∆(P f , Qf ) ≤ ∆(P,Q) and RD2(P

f∥Qf ) ≤ RD2(P∥Q).

Leftover Hash Lemma. In this work, we use a formulation of the leftover
hash lemma (LHL) that is an adaptation of the one by Micciancio [34], which,
instead of working with vectors over the finite field Zq, operates over the principal
ideal domain Zq[x] for q prime. Given a number field K = Q(ζ), where the
corresponding ring of integers has the form R = Z[ζ], and a prime q, then the
ideals of R/qR can be characterized via the ideals of Zq[x], which is needed in the
proof. Further, we provide not only a bound on the statistical distance, but also
on the Rényi divergence. For completeness, we give the proof in Appendix B.1.

Lemma 2.8. Let n, k, d, q, η be positive integer with q prime. Further, let K =
Q(ζ) be a number field of degree n whose ring of integers is given by R = Z[ζ].
Then, it holds that

RD2((C,Cz)∥(C, s)) ≤
(
1 +

qk

(2η + 1)d

)n
and

∆((C,Cz), (C, s)) ≤ 1

2

√(
1 +

qk

(2η + 1)d

)n
− 1,

where C ∼ U(Rk×dq ), z ∼ U(Sdη) and s ∼ U(Rkq ).

Gaussian measures. For a positive definite matrix Σ ∈ Rn, a vector c ∈ Rn,
we define the Gaussian function by ρc,

√
Σ(x) = exp(−π(x − c)TΣ−1(x − c))

for all x ∈ Rn. We then define the continuous Gaussian probability distribu-
tion by its density Dc,

√
Σ(x) = (det(Σ))−1/2ρc,

√
Σ(x). By abuse of notation, we

call Σ the covariance matrix, even if in theory the covariance matrix of Dc,
√
Σ

is Σ/(2π). We extend this definition to the degenerate case, i.e., positive semi-
definite, and use the same notation for convenience4. If Σ is diagonal with di-
agonal vector r2 ∈ (R+)n, we simply write Dc,r, and if c = 0, we omit it.
4 In the degenerate case, the probability density function cannot be defined with re-

spect to the Lebesgue measure as Σ is not invertible. Standard facts on non-singular
Gaussian distributions can however be extended to the degenerate case by using
the characteristic function which always exists and equals φx(t) = Ex[exp(it

Tx)] =
exp(icT t − πtTΣt). In particular, one can easily show that the sum of two inde-
pendent (potentially degenerate) Gaussians of covariance Σ1,Σ2 is a (potentially
degenerate) Gaussian of covariance Σ1 + Σ2, as needed in this paper. We also
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When Σ = α2In, we simplify further to Dc,α. We also use Ψ≤α to denote the set
of Gaussian distributions Dr with ∥r∥∞ ≤ α.

We then define the discrete Gaussian distribution by conditioning x to be in
a lattice coset Λ+ v for v ∈ Rn, i.e., DΛ+v,c,

√
Σ(x) = Dc,

√
Σ(x)/Dc,

√
Σ(Λ+ v)

for all x ∈ Λ+ v, and where Dc,
√
Σ(Λ+ v) =

∑
y∈Λ+vDc,

√
Σ(y).

Definition 2.2 (Sub-Gaussian Distribution). Let n be a positive integer,
and x a (discrete or continuous) random vector over Rn. We say that x is sub-
Gaussian with sub-Gaussian moment α, if for all unit vector u ∈ Rn, and all t ∈
R, we have E[exp(2πt⟨x,u⟩)] ≤ eπα2t2 .

A standard calculation shows that the discrete Gaussian distribution DΛ,α is
sub-Gaussian with sub-Gaussian moment α [37, Lem. 2.8], for any lattice Λ
and α > 0. In particular, we have the following spectral bound on a discrete
Gaussian matrix. The result is stated in [37, Lem. 2.9] and is derived from the
works of Vershynin [54] on the non-asymptotic random matrix theory.

Lemma 2.9 ([37, Lem. 2.9]). Let ℓ, k be positive integers, and α > 0. Let Λ
be a lattice of rank ℓ. Then, there exists a universal constant C > 0 such that
for any t ≥ 0, it holds PY∼Dk

Λ,α
[∥Y∥2 > Cα(

√
ℓ +
√
k + t)] ≤ 2e−πt

2

. Empiri-

cally, C ≈ 1/
√
2π.

The smoothing parameter of a lattice Λ denoted by ηε(Λ) for some ε > 0,
introduced in [39], is the smallest α > 0 such that ρ1/α(Λ∗) ≤ 1+ε. It represents
the smallest Gaussian parameter α > 0 such that the discrete Gaussian DΛ,c,α
behaves like a continuous Gaussian distribution. We now give a few results re-
lated to discrete Gaussian distributions that we need in this paper. The first is
due to Micciancio and Regev [39] and shows that above the smoothing parame-
ter, a continuous Gaussian coset is statistically close to uniform.

Lemma 2.10 ([39, Lem. 4.1]). Let Λ be lattice of rank n, ε > 0, and α ≥
ηε(Λ). Then the distribution of the coset e+Λ, where e ∼ Dα, is within statistical
distance ε/2 of the uniform distribution over the cosets of Λ.

We also need the following result on the sum of convoluted Gaussian distri-
butions. Note that the distribution of y depends on x.

Lemma 2.11 ([17, Lem. 2.10] & [43, Thm. 3.1]). Let Λ be lattice of rank n.
Let ε ∈ (0, 1/2], and α, β > 0 be such that α ≥ ηε(Λ). Then the distribution
of x+y, obtained by first sampling x from Dβ, and then y sampled from DΛ−x,α,
is within statistical distance 8ε of D

Λ,
√
α2+β2 .

Finally, we need the Rényi divergence between two shifted discrete Gaussians.

note that one can still define a density, but with respect to a degenerate mea-
sure as Dc,

√
Σ(x) = (det+(Σ))−1/2 exp(−π(x − c)TΣ+(x − c)), where Σ+ is the

Moore-Penrose pseudo-inverse, and det+ the pseudo-determinant.
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Lemma 2.12 (Adapted from [25, Lem. 4.2]). Let Λ be lattice of rank n,
ε ∈ (0, 1), α ≥ ηε(Λ), and c a vector of Rn. Then,

RD2(DΛ,c,α∥DΛ,α) ≤
(
1 + ε

1− ε

)2

· exp

(
2π∥c∥22
α2

)
.

Gaussians over number fields. In this section we define Gaussian distri-
butions over R-modules M ⊆ Kd

R, where K = Q(ζ) is a number field, R its
ring of integers, and KR = K ⊗Q R. We need to consider the field tensor prod-
uct KR as the canonical embedding is an isomorphism between KR and H but
not between R and H, nor K and H. Gaussian distributions over KR have
been introduced alongside the R-LWE problem in [30], and then generalized and
used in most papers dealing with structured variants of LWE. We define general
Gaussian distributions over Kd

R through their embedding to Rnd, namely sam-
pling x(H) ∈ Rnd according to DσH(c),

√
Σ, for some c ∈ Kd

R and positive semi-
definite matrix Σ in Rnd×nd, and then mapping it back to Kd

R by x = σ−1H (x(H)).
To ease readability, we denote the described distribution of x ∈ Kd

R by Dc,
√
Σ.

We first provide an upper bound on the spectral norm of a discrete Gaussian
matrix, once embedded via MσH

(·). This combines a bound on the spectral norm
of a block matrix from the spectral norm of each block, with a discrete Gaussian
tail bound. Although it seems folklore, we weren’t able to find a Gaussian tail
bound on σ(x) in the infinity norm for x ∼ DI,s. We therefore derive such a
bound, which is based on [41, Cor. 5.3] proving that ∥σ(x)∥∞ ≤ s log2 n with
overwhelming probability. The proof can be found in Appendix B.1.

Lemma 2.13. Let K be a number field of degree n, and R its ring of integers.
Let I be any (fractional) ideal of R. Let m, d be positive integer, and α > 0.
Then, for all t ≥ 0 it holds that

PN∼Dm×d
I,α

[
∥MσH

(N)∥2 ≥
√
md · αt

]
≤ 2nmd · e−πt

2

.

Choosing t = log2 n gives ∥MσH
(N)∥2 ≤ α log2(n)

√
md with overwhelming prob-

ability if m, d are polynomial in n.

In the proof of Lemma 3.3, we also need the distribution of y = Ue for an
arbitrary matrix U and a Gaussian vector e ∈ Kd

R for which the components are
independent of each other. The proof is in Appendix B.1 for completeness.

Lemma 2.14. Let K be a number field of degree n, and m, d positive integers.
Let S ∈ Rnd×nd be a positive semi-definite matrix, and U ∈ Km×d

R . We de-
note Σ = MσH

(U)SMσH
(U)T ∈ Rnm×nm, Then, the distribution of y = Ue,

where e ∈ Kd
R is distributed according to D√S, is exactly D√Σ over Km

R .

We also need another lemma related to the inner product ofKd
R (which results

in an element of KR) between a discrete Gaussian vector and an arbitrary one. In
particular, we use Lemma 2.15 in the proof of Lemma 3.5 in order to decompose a
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Gaussian noise into an inner product. It generalizes [47, Cor. 3.10] to the module
case. A specific instance is proven in the proof of [24, Lem. 4.15], which is later
mentioned (without proof) in [50, Lem. 5.5]. We defer the proof in Appendix B.1.

Lemma 2.15 (Adapted from [47, Cor. 3.10]). Let M ⊆ Kd be an R-module
(yielding a module lattice), let u, z ∈ Kd be fixed, and let β, γ > 0. Assume
that (1/β2 + ∥z∥22,∞/γ2)−1/2 ≥ ηε(M) for some ε ∈ (0, 1/2). Then the distri-
bution of ⟨z ,v⟩ + e where v is sampled from DM+u,β and e ∈ KR is sampled
from Dγ , is within statistical distance at most 2ε from the elliptical Gaussian Dr

over KR, where rj =
√
β2
∑
i∈[d]|σj(zi)|

2
+ γ2 for j ∈ [n].

2.4 Function Families

In Section 4, we prove that certain families of functions are hard to invert, or
whose output are hard to distinguish from uniformly random ones. As such,
we give in this section the notion of function families as well as the standard
security properties that we desire from them. A function family F over a set of
functions F is a probability distribution over F , where each function of F has
domain X and range Y . In this paper, we only deal with functions that have an
unambiguous and public description in some specified format. In our case, they
can be represented by a public matrix A. Hence, when we say that an adversary
is given a function f as input when it is given its public representation.

Definition 2.3. Let X,Y be two sets, and F a set of functions from X to Y .
Let F ,G be two function families over F . Let X be a probability distribution
over X, and ε ∈ (0, 1).
Indistinguishability. F and G are ε-indistinguishable if for all PPT algo-
rithm A, it holds |Pf∼F [A(f) = 1]− Pg∼G [A(g) = 1]| ≤ ε.
Pseudorandomness. (F ,X ) is ε-pseudorandom if for all PPT algorithm A, it
holds

∣∣P(f,x)∼F×X [A(f, f(x)) = 1]− P(f,y)∼F×U(Y )[A(f, y) = 1]
∣∣ ≤ ε.

Second preimage resistance. (F ,X ) is ε-second preimage resistant if for all
PPT algorithm A, it holds P(f,x)∼F×X

x′←A(f,x)

[x ̸= x′ ∧ f(x) = f(x′)] ≤ ε.

Uninvertibility. (F ,X ) is ε-uninvertible if for all PPT algorithm A, it holds
that P(f,x)∼F×X [A(f, f(x)) = x] ≤ ε.
One-wayness. (F ,X ) is ε-one-way if for all PPT algorithm A, it holds that
P(f,x)∼F×X [f(A(f, f(x))) = f(x)] ≤ ε.

If ε is negligible, we omit it. We then give sufficient conditions to ensure some
of these security properties.

Lemma 2.16 ([38, Lem. 2.2]). Let F be a family of functions computable
in polynomial time. Let X be a distribution on X. If (F ,X ) is ε-uninvertible
and ε′-second preimage resistant, then it is also (ε+ ε′)-one-way.
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Lemma 2.17 ([38, Lem. 2.4]). Let F be a function family with finite do-
main X. For ε = Ef∼F [|f(X)|]/|X|, it holds that (F , U(X)) is ε-uninvertible,
even against unbounded adversaries.

Lemma 2.18 ([38, Lem. 2.5]). Let F be a function family with domain X
and range Y , and G be an efficiently sampleable family of efficiently computable
functions with domain X ′ ⊇ Y . Let X be a distribution on X. If (F ,X ) is
uninvertible, then so is (G ◦ F ,X ).

We now recall the notion of lossy function family from [38]. Note that by
an indistinguishability argument, if (F ,G,X ) is a lossy function family, then so
is (G,F ,X ). In particular, by Lemma 2.16, both (F ,X ) and (G,X ) are one-way.

Definition 2.4. Let X,Y be two sets, and F a set of efficiently computable
functions from X to Y . Let F ,G be two function families over F . Let X be an
efficiently sampleable probability distribution over X. Then (F ,G,X ) is a lossy
function family if it holds that

– F and G are indistinguishable;
– (F ,X ) is uninvertible;
– (G,X ) is second preimage resistant.

2.5 Module Learning With Errors

The module variant of LWE was first defined by Brakerski et al. [16] and thor-
oughly studied by Langlois and Stehlé [24]. As opposed to [24], we decide to use
the primal formulation of the problem to match practical uses of the M-LWE
assumption. It describes the following problem. Let K be a number field of de-
gree n and R its ring of integers. Further, let d denote the rank and let ψ be a
distribution on KR and s ∈ Rdq be a vector. We also define the torus T = KR/R.
We let AMs,ψ denote the distribution on Rdq × T obtained by sampling a vec-
tor a←↩ U(Rdq), an element e←↩ ψ and returning (a, q−1⟨a,s⟩+ e mod R).

Definition 2.5 (Module Learning With Errors). Let q, d be positive in-
tegers with q ≥ 2. Let Ψ be a family of distributions on KR. The search ver-
sion M-SLWEn,d,q,Ψ is as follows: Let s ∈ Rdq be secret and ψ ∈ Ψ . Given arbi-
trarily many samples from AMs,ψ, the goal is to find s. Let Υ be a distribution on
a family of distributions on KR. Its decision version M-LWEn,d,q,Υ is as follows:
Sample s ←↩ U(Rdq) and ψ ←↩ Υ . The goal is to distinguish between arbitrar-
ily many independent samples from AMs,ψ and the same number of independent
samples from U(Rdq × T).

To be thorough, we should use the subscript K instead of n since there can
be several number fields having the same degree n. However, to ease readability
and since most of the other parameters are functions of n, we use the subscript n
and keep the number field implicit. Although our results are mainly theoretical,
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we note that throughout the paper n must be larger than a given security pa-
rameter, and the hardness and negligible advantages are thus expressed in terms
of n rather than a proper security parameter. The advantage of an adversary A
against M-SLWE is defined by Adv[A] = P[A(AMs,ψ) = s] and the advantage

against M-LWE by Adv[A] =
∣∣∣P[A(AMs,ψ) = 1]− P[A(U(Supp(AMs,ψ))) = 1]

∣∣∣. We
say that the corresponding problems are ε-hard if for any PPT adversary A, it
holds that Adv[A] ≤ ε. We say it is hard if ε is negligible in n.

The M-LWE problem encompasses its preceding variants LWE, correspond-
ing to a field of degree n = 1, and R-LWE, corresponding to the module
rank d = 1. We describe here the several variants and notations that we consider
in this paper.

Fixed number of samples. When using the Rényi divergence as a tool to
measure the distance between two probability distributions, we need to fix the
number of requested samples a priori. Let m be the number of requested M-LWE
samples (ai, q−1⟨ai, s⟩+ ei mod R) for i ∈ [m], then we consider the matrix A ∈
Rm×dq whose rows are the ai’s and we set e = [e1, . . . , em]T . We obtain the
representation (A, q−1As+ e mod R). We denote it by M-LWEn,d,m,q,Υ .

Multiple secrets. Let k,m be positive integers, where m denotes the number
of requested samples. In the multiple secrets version, the secret vector s ∈ Rdq is
replaced by a secret matrix S ∈ Rd×kq and the error vector e ∼ ψm by an error
matrix E ∼ ψm×k. There is a simple polynomial-time reduction from M-LWE
using a secret vector to M-LWE using a secret matrix for any k polynomially
large in d via a hybrid argument, as given for instance in [35, Lem. 2.9]. We
denote the corresponding problem by M-LWEkn,d,m,q,Υ .

Discrete version. As pointed out by Lyubashevsky et al. [30], sometimes it
can be more convenient to work with a discrete variant, where the second
component b of each sample (a, b) is taken from a finite set, and not from
the continuous torus T. Indeed, for the case of M-LWE, if the rounding func-
tion ⌊·⌉ : KR → R is chosen in a suitable way, see e.g. [31, Sec. 2.6], then every
sample (a, b = q−1⟨a ,s⟩ + e mod R) ∈ Rdq × T from AMs,ψ can be transformed
to (a, ⌊q · b⌉ mod qR) = (a, ⟨a,s⟩+ ⌊q · e⌉ mod qR) ∈ Rdq ×Rq. We use the latter
representation in Section 3.1 and 4.

Bounded secret. Another possibility is to choose a small secret, i.e., whose
coefficients are bounded by η ≪ (q− 1)/2. Note that the bound η is with regard
to the coefficient embedding τ , meaning that the secret is in Sdη . We denote the
corresponding problem by η-M-LWEn,d,q,Υ .

Worst-case error. We also define the problem with worst-case error distribu-
tion when the error distribution is Dr ∈ Ψ≤α for some possibly unknown (and
possibly secret-dependent) r ∈ (R+)n. We then denote it by M-LWEn,k,m,q,Ψ≤α

.
We reduce to this variant in Section 3.2. Note that when the number of samples is
fixed, one can use the reduction of [45, Lem. 7.2], generalizing [30, Lem. 5.16], to
go to an average-case error with spherical Gaussian Dξ. The reduction increases
the noise from α to ξ = α(nm/ log2(nm))1/4. The result is stated for R-LWE
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but naturally extends to the module setting, and we therefore do not consider
it new and do not include this extra step in the overall reduction.

M-LWE and M-ISIS function families. We now introduce two function
families that are relevant for Section 4.

Definition 2.6. Let K be a number field of degree n, and R its ring of inte-
gers. Let d, q,m be positive integers, and X ⊆ Rm. The M-ISIS(n, d,m, q,X)
function family is the distribution obtained by sampling a matrix A ∈ Rm×dq

uniformly at random, and outputting fA defined by fA(x) = ATx mod qR for
all x ∈ X. The M-LWE(n, d,m, q,X) function family is the distribution ob-
tained by sampling A ∈ Rm×dq uniformly at random and outputting gA defined
by gA(s, e) = As+ e mod qR for all (s, e) ∈ Rdq ×X.

We only define them with discrete inputs (i.e., discrete error for M-LWE) be-
cause they are only needed in Section 4 which studies errors in Smη . When using
the M-LWE function family in Section 4, we assume implicitly that the distri-
bution on the first input s is always U(Rdq) and omit it from the notations.

In most LWE-based schemes, the secret key is (s, e) and the public key
is (A,b = As + e). Note that it is therefore important to prove one-wayness
and not just uninvertibility because an adversary breaking one-wayness could
compute a different secret key for the same public key, which would allow them
to decrypt messages, or forge signatures. It turns out that if the parameters
are chosen appropriately so that the function is second preimage resistant, the
uninvertibility is then equivalent to the one-wayness. Their uninvertibility or one-
wayness therefore captures the hardness of the corresponding search problem,
while their pseudorandomness captures the hardness of the decision problem.
We denote the problem corresponding to the family M-ISIS(n, d,m, q,X) by
search/decision M-ISISd,m.

3 Hardness of η-M-LWE

In this section, we prove the hardness of the η-bounded secret version of M-LWE,
if the module rank is (super-)logarithmic in the degree n of the underlying num-
ber field. It improves upon our previously published works of [12,13] which dealt
with secret with binary coefficients. To the best of our knowledge, [12] was the
first result on the hardness of a structured variant of LWE with small uniform
secret. We propose two independent proofs that achieve different results. The
first one in Section 3.1 proves the hardness of the search version of η-M-LWE,
using a more direct proof. The second one in Section 3.2 is more involved but
allows for proving the hardness of the decision version of η-M-LWE as well as
(slightly) improving the noise parameter.

3.1 Computational Hardness Using the Rényi Divergence

We start by proving the hardness of η-M-SLWE with a quite direct reduction.
To facilitate the understanding, we illustrate the high level idea of the proof in
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Figure 3.1. Given an algorithm for instance (A,Az+ e) of η-M-SLWE, our goal
is to transform it into an algorithm for a related instance of M-SLWE defined
by (B,Bs+e′). Note that the secret z is in Sdη , while the secret s is in Rkq . At the
core of the proof lies a lossy argument, where the public matrix A is replaced by
a lossy matrix BC+N, which corresponds to the second part of some multiple-
secrets M-LWE sample. Note that the rank of the matrix B is smaller than the
one of A, motivating the description lossy. Here, we can see that this argument
does not work for R-LWE (which corresponds to M-LWE with rank 1) as it is
not possible to replace the public matrix consisting of one column by a matrix
of smaller rank. To argue that an adversary cannot distinguish between the
two cases, we need to assume the hardness of the decision M-LWE problem as
well. In a second step, the term Nz + e is replaced by the new noise e′, where
the Rényi divergence between both expressions can be bounded by a constant
using properties of the Rényi divergence of Gaussian distributions. Finally, the
product Cz is replaced by the uniform secret s, where the Rényi divergence
between both elements can be bounded by a constant using Lemma 2.8. The
use of the leftover hash lemma is also the reason why our reduction only works
for module ranks larger than log2 q+Ω(log2 n). Informally speaking, it requires
the ratio between the number of rows of C and its number of columns to be
logarithmic in order to bound the Rényi divergence by a constant. We end up
with some standard M-LWE instance, which is hard to solve due to our hardness
assumption.

, +

+ , + +

, , , +

A A z e

B
C

N B
C z N z e

B
C
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2
3

M-SLWE with Bounded Secret

Multiple Secrets M-LWE
,Not for R-LWE

Noise FloodingLeftover Hash Lemma

M-SLWE with Uniform Secret

Fig. 3.1. Summary of the proof of Theorem 3.1

This consists of a reduction from M-SLWE and M-LWE with rank k to η-
M-SLWE with rank d ≥ k log2(q)/ log2(2η + 1) + Ω(log2(n)/ log2(2η + 1)). It
follows the original proof structure of Goldwasser et al. [21], but achieves better
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parameters by using the Rényi divergence, while being as direct and short as
the original proof. The improvement on the noise rate β/α compared to [21]
comes from the fact that the Rényi divergence only needs to be constant for
the reduction to work, and not necessarily negligibly close to 1 (compared to
negligibly close to 0 for the statistical distance). However, using the Rényi diver-
gence as a measure of distribution closeness requires to move to the search ver-
sion of M-LWE. Overall, this reduction is restricted to number fields for which
the ring of integers is R = Z[ζ]. Furthermore, the norm of the Vandermonde
matrix ∥V∥2 is better understood in cyclotomic fields. We study the M-LWE
problem in its discrete version, as presented in Section 2.5.

Theorem 3.1. Let K = Q(ζ) be a number field of degree n such that its ring of
integers is R = Z[ζ]. Let k, d,m, η and q be positive integers with q prime, m, d =
poly(n) and d log2(2η+1) ≥ k · log2 q+Ω(log2 n). Further, let α and β be positive
such that β ≥ α·d

√
m·∥V∥2η

√
n log2(n), and βq ≥ ηε(Rm) for some ε ∈ (0, 1/2).

There is a PPT reduction from M-SLWEn,k,m,q,DR,βq
and M-LWEdn,k,m,q,DR,αq

to η-M-SLWEn,d,m,q,DR,βq
.

The degree n of K, the number of samples m and the modulus q are preserved.
The reduction increases the rank of the module from k to k log2 q/ log2(2η +
1) + Ω(log2 n/ log2(2η + 1)) and the Gaussian width from αq to αq · d

√
m ·

∥V∥2η
√
n log2(n). In power-of-two cyclotomic fields, ∥V∥2 =

√
n. In the pk-

th cyclotomic field with p an odd prime, we have ∥V∥2 =
√
pk. In general

cyclotomic fields, we have ∥V∥2 ≤ ∥V∥F = (
∑
i,j |α

j−1
i |2)1/2 ≤ n (as αi is a root

of unity). Also, M-LWEn,k,m,q,DR,αq
trivially reduces to M-SLWEn,k,m,q,DR,βq

,
as γq = q

√
β2 − α2 is above ηε(R) for a negligible ε, and sufficiently large so

that DR,γq is efficiently sampleable.

Proof. Fix any n, k, d,m, q, η, α, β and ε as in the statement of the theorem.
Given an η-M-SLWEn,d,m,q,DR,βq

sample (A,A · z+ e mod qR) ∈ Rm×dq × Rmq ,
with z ←↩ U(Sdη) and e ←↩ DRm,βq, the search problem asks to find z and e. In
order to prove the statement, we define different hybrid distributions:

– H0 : Output (A,Az+ e mod qR), as in η-M-SLWEn,d,m,q,DR,βq
;

– H1 : Output (A′ = BC + N mod qR,A′z + e mod qR), where B ←↩
U(Rm×kq ), C←↩ U(Rk×dq ), and N←↩ Dm×dR,αq and z, e as in H0;

– H2 : Output (B,C,N,BCz+Nz+e mod qR), where B,C,N, z, e as in H1;
– H3 : If ∥MσH

(N)∥2 ≤ αq
√
md log2 n, output (B,C,N,BCz+Nz+ e mod

qR), where B,C,N, z, e as in H2;
– H4 : If ∥MσH

(N)∥2 ≤ αq
√
md log2 n, output (B,C,N,BCz+ e′ mod qR),

where e′ ←↩ DmR,βq and B,C,N, z as in H3;
– H5 : If ∥MσH

(N)∥2 ≤ αq
√
md log2 n, output (B,C,N,Bs + e′ mod qR),

where s←↩ U(Rkq ) and B,C,N, e′ as in H4.

For i ∈ {0, . . . , 5}, we denote by Pi the problem of finding the secret z (resp. s
inH5), given a sample of the distributionHi. Recall that problem Pi is hard if for
any PPT attacker A the advantage of solving Pi is negligible, thus AdvPi

[A] =
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PX∼Hi
[A(X) = z] ≤ n−ω(1), where n is the degree of K. The overall idea is to

show that if P5 is hard, then P0 is hard as well.

From P0 to P1: Assuming the hardness of M-LWEdn,k,m,q,DR,αq
, the distribu-

tions H0 and H1 are computationally indistinguishable. We note that the hard-
ness of the latter can be obtained by a hybrid argument, e.g., Lemma 3.4, from
that of M-LWEn,k,m,q,DR,αq

with a reduction loss factor of d in the advantage.
Thus, if M-LWEn,k,m,q,DR,αq

is AdvM-LWE-hard, it holds

AdvP0
[A] ≤ AdvP1

[A] + d ·AdvM-LWE,

where d is the number of secret vectors, i.e., the columns of the matrix C.

From P1 to P2: Since more information is given in distribution H2 than in distri-
bution H1, the problem P1 is harder than P2. From P2 onwards the adversary is
given more elements (namely B,C,N instead of A′) but can simply reconstruct
the M-LWE matrix from these elements. Hence, we have

AdvP1 [A] ≤ AdvP2 [A].

From P2 to P3: Note that conditioned on ∥MσH
(N)∥2 ≤ αq

√
md log2 n, the two

distributions are identical. Yet, Lemma 2.13 for I = R yields the spectral bound
with overwhelming probability. Hence, we have ∆(H2, H3) ≤ P[∥MσH

(N)∥2 >
αq
√
md log2 n] =: pspectral ≤ n−ω(1), resulting in

AdvP2
[A] ≤ AdvP3

[A] + pspectral

From P3 to P4: By the probability preservation property of the Rényi divergence
(Lemma 2.7), we have

AdvP3
[A]2 ≤ AdvP4

[A] · RD2(H3∥H4).

We first explain how to bound the Rényi divergence between Nz+ e and e′ for
a fixed (N, z). First note that Nz + e follows the distribution DRm+Nz,Nz,βq.
Since we have Nz ∈ Rm, this distribution is exactly DRm,Nz,βq. Then, as σ
and σH only differ by the unitary transformation UH , we have that ∥σH(z)∥2 =

∥σ(z)∥2 ≤ ∥V∥2∥τ(z)∥2 ≤ ∥V∥2 ·η
√
nd, as z ∈ Sdη . Finally, because of our condi-

tioning, we have ∥MσH
(N)∥2 ≤ αq log2 n

√
md. It then holds that ∥σH(Nz)∥2 =

∥MσH
(N)σH(z)∥2 ≤ ∥MσH

(N)∥2∥σH(z)∥2 ≤ αqd∥V∥2η
√
nm log2(n). Then, us-

ing that βq ≥ ηε(Rm), Lemma 2.12 yields

RD2 (DRm,Nz,βq∥DRm,βq) ≤
(
1 + ε

1− ε

)2

· exp

(
2π∥σH(Nz)∥22

(βq)2

)
.

However, it holds that exp(2π∥σH(Nz̃)∥22/(βq)2) ≤ exp(2π) because of how we
chose β with respect to α. Without loss of generality, assume ε < 1

2 resulting
in RD2(DRm,Nz,βq∥DRm,βq) = O(1).
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Next, the data processing inequality of Lemma 2.7 gives RD2(H3∥H4) ≤
RD2((N, z, e + Nz)∥(N, z, e′)). We now bound this divergence by a constant
using the previous calculation.

RD2((N, z, e+Nz)∥(N, z, e′)) =
∑

(N̄,z̄,ē)

P[(N, z, e+Nz) = (N̄, z̄, ē)]2

P[(N, z, e′) = (N̄, z̄, ē)]

=
∑

(N̄,z̄,ē)

P[(N, z) = (N̄, z̄)]2P[e+ N̄z̄ = ē]2

P[(N, z) = (N̄, z̄)]P[e′ = ē]

=
∑
(N̄,z̄)

P[(N, z) = (N̄, z̄)]RD2(e+ N̄z̄∥e′)

≤
(
1 + ε

1− ε

)2

· e2π
∑
(N̄,z̄)

P[(N, z) = (N̄, z̄)]

=

(
1 + ε

1− ε

)2

· e2π

= O(1),

as desired.

From P4 to P5: By the probability preservation property and data processing
inequality of the Rényi divergence (Lemma 2.7), we have

AdvP4
[A]2 = P(B,C,N,b)∼H4

[A(B,C,N,b) = z]2

≤ P(B,C,N,b)∼H4
[A(B,C,N,b) = Cz]2

≤ P(B,C,N,b)∼H5
[A(B,C,N,b) = s] · RD2(H4∥H5)

≤ AdvP5 [A] · RD2((C,Cz)∥(C, s)).

The first inequality follows from the fact that if A can find z from (B,C,N,b),
then they can also find Cz, hence the inclusion of events. The second and third in-
equalities come from the probability preservation and data processing inequality
of Lemma 2.7 respectively. By the leftover hash lemma stated in Lemma 2.8, the
Rényi divergence between the distribution (C,Cz) and the distribution (C, s) is
bounded above by (1+ qk/(2η+1)d)n. As we require d log2(2η+1) ≥ k log2 q+
Ω(log2 n), we obtain RD2(H4∥H5) ≤ (1+1/Ω(n))n = O(1) asymptotically in n.

Problem P5: This problem is exactly the M-SLWEn,k,m,q,DR,βq
problem, as C

and N are independent of B, s and e′. So if M-SLWEn,k,m,q,DR,βq
is AdvM-SLWE-

hard, it hold that

AdvP5
[A] ≤ AdvM-SLWE
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Putting all equations from above together, we obtain

AdvP0
[A] ≤ AdvP1

[A] + d ·AdvM-LWE

≤ AdvP2
[A] + d ·AdvM-LWE

≤ AdvP3
[A] + pspectral + d ·AdvM-LWE

≤
√

AdvP4
[A] · RD2(H3∥H4) + pspectral + d ·AdvM-LWE

≤
√√

AdvM-SLWE · RD2(H4∥H5) · RD2(H3∥H4)

+ pspectral + d ·AdvM-LWE.

The choice of parameters yields RD2(H3∥H4),RD2(H4∥H5) = O(1), pspectral ≤
n−ω(1), and our base assumptions give AdvM-LWE,AdvM-SLWE ≤ n−ω(1). It
therefore proves that AdvP0

[A(H0) = z] ≤ n−ω(1).

3.2 Pseudorandomness of η-M-LWE

We now provide a more involved proof of hardness for the decision version of η-
M-LWE. It follows the same idea as in [17] that we extend to modules. More
precisely, we show a reduction from M-LWE with rank k to η-M-LWE with rank d
satisfying d log2(2η+1) ≥ (k+1) log2 q+ω(log2 n). The reduction preserves the
modulus q, that needs to be prime satisfying number-theoretic restrictions, the
ring degree n and the number of samples m, but the noise is increased by a
factor of nη

√
2d
√

4n2η2 + 1. In the case of general cyclotomic fields, the noise
rate slightly improves on the noise rate of d

√
m · n3/2 log2(n)η from Section 3.1.

We indeed improve the noise rate by a factor of roughly
√
8nη/ log2(n)

√
md,

which is advantageous whenever m > 8nη2/d log22 n. As we wish to take η as
a small constant, the condition can be met when m is sub-linear. However, in
the special case of power-of-two cyclotomics, the noise rate from Section 3.1
is improved by

√
n. This means that this new reduction is advantageous (in

terms of noise) only if m > 8n2η/d log22 n = Θ(n2/ log32 n), which is now just
sub-quadratic. Nonetheless, this reduction allows for proving the hardness of the
decision version of η-M-LWE which is preferable for the security of cryptographic
applications. For the reduction, m also needs to be larger than the target module
rank d, and at most polynomial in n because of the hybrid argument used in
Lemma 3.4. The reduction in Theorem 3.2 works for all cyclotomic fields, but
most results apply to all number fields K = Q(ζ) for which the ring of integers
is R = Z[ζ], the bottleneck being the construction in Lemma 3.2.

Theorem 3.2. Let ν =
∏
i p
ei
i , K be the ν-th cyclotomic field of degree n =

φ(ν), and R its ring of integers. Let µ =
∏
i p
fi
i for some fi ∈ [ei], and q

be a prime number such that q = 1 mod µ, ordν(q) = ν/µ, q > (ηs1(µ))
φ(µ),

and qν/µ ≥ nω(1/(k+1)), where s1(µ) denotes the largest singular value of the
Vandermonde matrix of the µ-th cyclotomic field, and η a positive integer. Fur-
ther, let k, d,m be positive integers such that d log2(2η + 1) ≥ (k + 1) log2 q +
ω(log2 n), and d ≤ m ≤ poly(n). Let α ≥

√
n/q ·

√
ln(2nm(1 + ε−1))/π for
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some ε ∈ (0, 1/2), and β ≥ α · nη
√
2d
√

4n2η2 + 1. Then there is a PPT reduc-
tion from M-LWEn,k,m,q,Dα

to η-M-LWEn,d,m,q,Ψ≤β
, such that if A solves the

latter with advantage Adv[A], then there exists an algorithm B that solves the
former with advantage

Adv[B] ≥ 1

3m

(
Adv[A]− 1

2

√(
1 +

qk+1

(2η + 1)d

)n
− 1

)

− 103ε

6
−
∏
i∈[g]

(
1− q−(k+1)ν/µ

)
,

When ν = 2ℓ+1, n = 2ℓ, one can take any prime q such that q = 2κ+ 1 mod 4κ
for some κ = 2l with l ∈ [ℓ], and such that q > (η

√
κ)κ and qν/κ ≥ nω(1/(k+1)).

The modulus is constrained in terms of its splitting behavior. The conditions
essentially mean that q splits into φ(µ) factors, each having algebraic norm qν/µ.
This norm must be at least nω(1/(k+1)) for Lemma 3.1 to go through, and q
must exceed (ηs1(µ))

φ(µ) so that every element of Sη is a unit in Rq. Then, the
noise ratio β/α contains three main terms. The factor nη encapsulates the norm
distortion between the coefficient and the canonical embedding, as well as the
actual length of the η-bounded vectors. The second term

√
2d stems from the

masking of z when introduced in the first hybrid in the proof of Lemma 3.5. The
last factor

√
4n2η2 + 1 solely represents the impact of giving information on the

error in the ext-M-LWE problem.

Proof. We give an overview of the full reduction in Figure 3.2, and detail here
how to combine Lemma 3.1, 3.3, 3.4 and 3.5. For clarity, we define δ1 the

loss incurred by the leftover hash lemma, namely δ1 = 1
2

√(
1 + qk+1

(2η+1)d

)n
− 1,

and δ2 =
∏
i∈[φ(µ)]

(
1− q−(k+1)ν/µ

)
. Assume there exists a PPT distinguisher A

for η-M-LWEn,d,m,q,Ψ≤β
which succeeds with advantage Adv[A]. By Lemma 3.5,

one can construct PPT adversaries B1,B2 and B3 for ext-M-LWEmn,k+1,d,q,ψ,Sd
η
,

M-LWEn,k+1,m,q,Dγ and ext-M-LWEmn,k+1,d,q,ψ,{0}d respectively such that

Adv[B1] + Adv[B2] + Adv[B3] ≥ Adv[A]− 2mε− δ1,

where γ = αBη
√
d
√
4B2

η + 1 and ψ = Dq−1R,α
√

4B2
η+1. Hence, there exists i ∈

{1, 2, 3} such that Adv[Bi] ≥ 1
3 (Adv[A] − 2mε − δ1), otherwise the above in-

equality yields a contradiction.
Case i = 1: By Lemma 3.4, one can use B1 to construct a distinguisher B(1)1

for ext-M-LWE1
n,k+1,d,q,ψ,Sd

η
such that

Adv[B(1)1 ] =
1

m
Adv[B1].

Then, by Lemma 3.3, the latter can be used to construct a distinguisher B(2)1

for first-is-errorless M-LWEn,k+1,d,q,Dα such that

Adv[B(2)1 ] ≥ Adv[B(1)1 ]− 33ε/2.
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Lemma 3.1 then yields a distinguisher B(3)1 for M-LWEn,k,d,q,Dα
with advantage

Adv[B(3)1 ] ≥ Adv[B(2)1 ]− δ2.

Since m ≥ d, we can consider a distinguisher B(4)1 for M-LWEn,k,m,q,Dα which
simply calls B(3)1 on the first d samples. By combining it all, we have

Adv[B(4)1 ] ≥ Adv[B(3)1 ] ≥ Adv[B(2)1 ]− δ2
≥ Adv[B(1)1 ]− δ2 − 33ε/2

=
1

m
Adv[B1]− δ2 − 33ε/2

≥ 1

3m
(Adv[A]− δ1 − 2mε)− δ2 − 33ε/2

=
1

3m
(Adv[A]− δ1)− δ2 − 103ε/6.

Case i = 2: We construct the adversary B(1)2 for M-LWEn,k,m,q,Dα
using B2

as follows. On input (A,b) ∈ Rm×kq × Tm, the adversary B(1)2 , samples a ←↩
U(Rmq ), s ←↩ U(Rq) and e′ ←↩ Dm√

γ2−α2
. It then calls B2 on input (A′,b′) =

([A|a],b + q−1s · a + e′ mod R). If b = q−1As + e mod R, then b′ = q−1A′ ·
[sT |s]T + (e + e′) mod R, and e + e′ is distributed as Dm

γ . Otherwise, if b is
uniform, then so is b′ as b is independent of q−1as+ e′. Hence, we have

Adv[B(1)2 ] ≥ Adv[B2] ≥
1

3
(Adv[A]− δ1 − 2mε)

≥ 1

3m
(Adv[A]− δ1)− δ2 − 103ε/6.

Case i = 3: Since ext-M-LWEmn,k+1,d,q,ψ,Sd
η

reduces to ext-M-LWEmn,k+1,d,q,ψ,{0}d

without transforming the samples, we can assume without loss of generality
that Adv[B1] ≥ Adv[B3]. It then yields Adv[B1] ≥ 1

3 (Adv[A] − 2mε − δ1) as in
Case i = 1.
In any case, we can construct a distinguisher B for M-LWEn,k,m,q,Dα as claimed.

3.2.1 First-is-errorless M-LWE. We follow the same idea as Brakerski et
al. [17] by gradually giving more information to the adversary while proving
that this additional information does not increase the advantage too much. We
define the module version of first-is-errorless LWE, from [17], where the first
equation is given without error. A similar definition and reduction from M-LWE
are given in [4]. The only difference between the two reductions comes from the
pre-processing step, which is performed before receiving the M-LWE samples. In
our case, this step is simplified and extended to general number fields, provided
that the modulus q verifies certain splitting conditions. Further restrictions on q
in our reduction encompasses these conditions.
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M-LWEn,k,m,q,Dα

M-LWEn,k,d,q,Dα

first-is-errorless M-LWEn,k+1,d,q,Dα

ext-M-LWE1
n,k+1,d,q,ψ,Td

η

ψ = D
q−1R,α

√
4B2

η+1

ext-M-LWEmn,k+1,d,q,ψ,Td
η

ψ = D
q−1R,α

√
4B2

η+1

M-LWEn,k+1,m,q,D
αBη

√
d
√

4B2
η+1

η-M-LWEn,d,m,q,Ψ
≤αBη

√
2d
√

4B2
η+1

m ≥ d

Lem. 3.1, q prime with
appropriate splitting

Lem. 3.3, q prime and fulfilling
number-theoretic requirements

Lem. 3.4, m ≤ poly(n)

Lem. 3.5, q prime
d log2(2η + 1) ≥ (k + 1) log2 q + ω(log2 n)

Fig. 3.2. Summary of the proof of Theorem 3.2, where Bη = maxx∈Sη∥σ(x)∥∞ and σ is
the canonical embedding. In cyclotomic fields, we have Bη ≤ nη. Note that Lemma 3.5
uses d samples from ext-M-LWE, where d is the module rank in η-M-LWE. The as-
sumptions on q concern the splitting behavior of the cyclotomic polynomial in Zq[x],
and are discussed in Section 3.2.2.

Definition 3.1 (First-is-errorless M-LWE). Let K be a number field of de-
gree n and R its ring of integers. Let q, k be positive integers, and Υ a distribu-
tion over a family of distributions over KR. The first-is-errorless M-LWEn,k,q,Υ
problem is to distinguish between the following cases. On the one hand, the first
sample is from U(Rkq × q−1R/R) and the rest from U(Rkq × T). On the other
hand, there is some unknown s←↩ U(Rkq ) and ψ ←↩ Υ such that the first sample
is from AMs,{0} and the rest are distributed as AMs,ψ, where {0} is the distribution
that is deterministically 0. When the number of samples m is fixed, we denote
it first-is-errorless M-LWEn,k,m,q,Υ , where only m−1 coefficients contain errors.

Lemma 3.1 (Adapted from [17, Lem. 4.3]). Let K be a number field of
degree n, and R its ring of integers. Then, let k be a positive integer, and Υ
a distribution over a family of distributions over KR. Let q be an unrami-
fied prime integer such that the smallest norm of its prime ideal factors is
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at least nω(1/k). There is a PPT reduction from M-LWEn,k−1,q,Υ to the vari-
ant first-is-errorless M-LWEn,k,q,Υ . If the number of samples m is fixed, it gives
a PPT reduction from M-LWEn,k−1,m−1,q,Υ to first-is-errorless M-LWEn,k,m,q,Υ .
The reduction reduces the advantage by at most 1−

∏
i∈[κ](1−N(pi)

−k), where
the pi’s are the prime ideal factors of ⟨q⟩.

Proof. Pre-processing: The reduction first samples a′ ←↩ U(Rkq ) such that a′

is Rq-linearly independent. As a result, a′ is uniform among the Rq-linearly
independent vectors. We first show that under the conditions of the lemma, the
distribution of a′ is statistically close to U(Rkq ). Denote by S the set of vectors
of Rkq that are linearly independent, and S′ its complement in Rkq . It then holds
that

∆(U(Rkq ), U(S)) =
1

2

∑
x∈S

∣∣∣∣∣ 1∣∣Rkq ∣∣ − 1

|S|

∣∣∣∣∣+ 1

2

∑
x∈S′

∣∣∣∣∣ 1∣∣Rkq ∣∣ − 0

∣∣∣∣∣
=

1

2

(
|S|

(
1

|S|
− 1∣∣Rkq ∣∣

)
+
|S′|∣∣Rkq ∣∣

)

=
|S′|∣∣Rkq ∣∣

= 1− Pa′∼U(Rk
q )
[a′ is Rq-linearly independent]

By Lemma 2.5 for ℓ = 0, we have

Pa′∼U(Rk
q )
[a′ is Rq-linearly independent] =

∏
i∈[κ]

(
1− 1

N(pi)k

)
≥ 1− n

mini∈[κ]N(pi)k

≥ 1− n−ω(1),

by assumption. Hence ∆(U(Rkq ), U(S)) ≤ n−ω(1). Then, from a′, one can effi-
ciently complete it with b2, . . . ,bk ∈ Rkq such that the matrix U = [a′|b2| . . . |bk]
is invertible in Rq. For example, this can be done by successively sampling
the bi’s uniformly at random in Rkq . By Lemma 2.5, the probability that the
newly drawn bℓ+1 is kept is

∏
i∈[κ] 1−N(pi)

−(k−ℓ) ≥ 1− n−ω(1). It would thus
require at most a polynomial number of sampled vectors.
Reduction: Then, sample s0 uniformly in Rq. The reduction is as follows. For
the first sample, it outputs (a′, q−1 · s0 mod R) ∈ Rkq × q−1R/R. The other
samples are produced by taking (a, b) ∈ Rk−1q × T from the M-LWE challenger,
picking a fresh randomly chosen a′′ ∈ Rq, and outputting (U[a′′|aT ]T , b+q−1(s0 ·
a′′) mod R) ∈ Rkq × T. We now analyze correctness. First note that the first
component is uniform over Rkq . Indeed, a′ is uniform over Rkq for the first sample,
and since a is uniform over Rk−1q , a′′ is uniform over Rq, and U is invertible
in Rk×kq , then U[a′′|aT ]T is uniform over Rkq as well.
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If b is uniform, the first sample yields q−1s0 mod R uniform over q−1R/R.
For the other samples, b+q−1(s0 ·a′′) mod R is uniform over T and independent
of U[a′′|aT ]T but also independent from the first sample because b masks q−1(s0 ·
a′′). If b = q−1⟨a ,s⟩ + e mod R for some uniform s ∈ Rk−1q and e ←↩ ψ for
some ψ ←↩ Υ , then q−1s0 = q−1⟨e1 , [s0|sT ]T ⟩ = q−1⟨Ue1 ,U

−T [s0|sT ]T ⟩ =
q−1⟨a′ ,U−T [s0|sT ]T ⟩, where e1 = [1, 0, . . . , 0]T . For the other samples, we have

b+ q−1(s0 · a′′) mod R = q−1⟨a,s⟩+ q−1(s0 · a′′) + e mod R

= q−1⟨[a′′|aT ]T ,[s0|sT ]T ⟩+ e mod R

= q−1⟨U[a′′|aT ]T ,U−T [s0|sT ]T ⟩+ e mod R.

Note that [s0|sT ]T is uniform over Rkq , which implies that U−T [s0|sT ]T is also
uniform over Rkq because U−T is invertible in Rq. Therefore the reduction out-
puts samples according to first-is-errorless M-LWE with secret s′ = U−T [s0|sT ]T .

Remark 3.1. Later in the reduction, we restrict the modulus q to be a prime that
splits into few prime factors in the underlying cyclotomic field to maximize the
number of invertible elements, and more precisely to be able to use Lemma A.3
without having to take superpolynomial q. In this case, one could use moduli
that split into say κ factors such that q−n/κ ≤ n−ω(1).

3.2.2 Extended M-LWE. We now define the module version of the Ex-
tended LWE problem introduced in [17], where the adversary is allowed a hint
on the errors. A first definition of ext-M-LWE was introduced by Alperin-Sheriff
and Apon [4] in which the hints were of the form Tr(⟨zi,e⟩) for a single error vec-
tor e and several hint vectors zi. In our case, we allow for multiple secrets (and
thus errors) and one single hint vector z, as required by our final reduction of
Lemma 3.5. Additionally, as the field trace does not provide enough information
to reconstruct ⟨z,e⟩ from the hint, we instead directly give ⟨z,e⟩ as the hint. We
prove that it does not make the problem easier. Another version of ext-M-LWE
was recently introduced in [33] in the context of lattice-based zero-knowledge
proofs, where they only provide the sign Sign(⟨z,e⟩) as an additional hint for the
attacker. Again, this is not sufficient for our lossy argument in Lemma 3.5.

Definition 3.2 (Extended M-LWE). Let K be a number field of degree n,
and R its ring of integers. Let m, q, k, ℓ be positive integers. Let Z ⊆ Rm

and ψ a discrete distribution over q−1R. The Extended M-LWE problem, de-
noted by ext-M-LWEℓn,k,m,q,ψ,Z , is as follows. The adversary first chooses z ∈ Z
and then receives a tuple (A,B,ET z) over Rm×kq × (q−1R/R)m×ℓ× (q−1R)ℓ. Its
goal is to distinguish between the following cases.
On one side, A is sampled from U(Rm×kq ), E is sampled from ψm×ℓ, and de-
fine B = q−1AS+E mod R for some uniformly chosen S ∈ Rk×ℓq . On the other
side, all is identical except that B is sampled from U((q−1R/R)m×ℓ), indepen-
dently from A and E.
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The parameter ℓ represents the number of given hints on independent noise
vectors, and therefore the number of secret vectors (which generalizes the multi-
ple secret version of M-LWE). The set Z represents the set of hint vectors z that
can be given. The ℓ hints are given in form of the inner product of such a fixed
hint vector z ∈ Z and the corresponding column of E. Later, we are interested
in the case where Z = Smη which is actually the set of secrets for η-M-LWE.
Also, note that if Z = {0}, then we recover the definition of the multiple secret
version of M-LWE from Section 2.5.

Similar to the notation from [35], for a matrix A ∈ Rm×m, we denote
by A]1[ ∈ Rm×(m−1) the submatrix of A obtained by removing the leftmost col-
umn. Our reduction from first-is-errorless M-LWE to ext-M-LWE in Lemma 3.3
requires the construction of a matrix Uz ∈ Rm×m, for all vectors z ∈ Z = Smη ,
satisfying several properties. This matrix allows us to transform samples from
a first-is-errorless M-LWE challenger into samples that we can give to an ora-
cle for ext-M-LWE. The spectral norm of its submatrix U

]1[
z (when embedded

with Mσ), controls the increase in the Gaussian parameter. We propose a con-
struction for which we bound the spectral norm above by a quantity independent
on z, as needed in the reduction.

Lemma 3.2. Let ν =
∏
i p
ei
i , K be the ν-th cyclotomic field of degree n = φ(ν),

and R its ring of integers. Let µ =
∏
i p
fi
i for some fi ∈ [ei], η a positive integer

and q be a prime such that q = 1 mod µ, ordν(q) = ν/µ and q > (ηs1(µ))
φ(µ),

where s1(µ) denotes the spectral norm of the Vandermonde matrix of the µ-th cy-
clotomic field. Finally, let m be a positive integer, and Z = Smη . For all z ∈ Z,
there is an efficiently computable matrix Uz ∈ Rm×m that is invertible mod-
ulo qR and that verifies the following: z is orthogonal to the columns of U

]1[
z ,

and
∥∥∥MσH

(U
]1[
z )
∥∥∥ ≤ 2Bη, where Bη = maxx∈Sη

∥σ(x)∥∞.

When ν = 2ℓ+1, n = 2ℓ, one can take any prime q such that q = 2κ+1 mod 4κ
for some κ = 2l with l ∈ [ℓ], and such that q > (η

√
κ)κ.

Proof. Let z ∈ Z. First, we construct Uz in the case where all the zi are non-
zero. To do so, we define the intermediate matrices A, and B of Rm×m, all
unspecified entries being zeros:


1
z1
-z2

-zm
zm-1

U
]1[
z

Uz = =




1
z1

zm-1

A]1[

+




0 -z2

-zm
0

B]1[

.

The matrix Uz is invertible modulo qR only if all the zi (except zm) are in R×q .
Yet, since they are all non-zero and η-bounded elements, we have that for all i
in [m], 0 < ∥τ(zi)∥∞ ≤ η, where τ is the coefficient embedding. By Lemma 2.4,
since q verifies the algebraic conditions taking all fi = 1 and q1/φ(µ)/s1(µ) > η,
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all the zi are in R×q .
By construction, the lastm−1 columns of Uz are orthogonal to z. Let U]1[

z be the
submatrix of Uz obtained by removing the leftmost column as shown above. As
observed in Lemma 2.3 for example, it holds that

∥∥∥MσH
(U

]1[
z )
∥∥∥
2
=
∥∥∥Mσ(U

]1[
z )
∥∥∥
2
.

Then, using the fact that Mσ is a ring homomorphism, we have Mσ(U
]1[
z ) =

Mσ(A
]1[)+Mσ(B

]1[). We now need to bound the spectral norm of these two ma-
trices, and use the triangle inequality to conclude. For any vector x ∈ C(m−1)n,
we have that

∥∥Mσ(A
]1[)x

∥∥
2
=
√∑

i∈[m−1]
∑
j∈[n]|σj(zi)|

2∣∣xj+n(i−1)∣∣2 ≤ Bη∥x∥2,
because each zi is in Sη. This yields

∥∥Mσ(A
]1[)
∥∥
2
≤ Bη. A similar calculation

on B]1[ leads to
∥∥Mσ(B

]1[)
∥∥
2
≤ Bη, thus resulting in

∥∥∥Mσ(U
]1[
z )
∥∥∥
2
≤ 2Bη.

Now assume that zi0 , . . . , zm are zeros for some i0 in [m]. If the zeros do not ap-
pear last in the vector z, we can replace z with Sz, where S ∈ Rm×m swaps the
coordinates of z so that the zeros appear last. Since S is unitary, it preserves the
singular values as well as invertibility. Then, the construction remains the same
except that the zi0 , . . . , zm on the diagonal are replaced by 1. The orthogonality
is preserved, and

∥∥∥Mσ(U
]1[
z )
∥∥∥
2

can still be bounded above by 2Bη.

Notice that when the ring is of degree 1 and η = 1, the constructions in
the different cases match the ones from [17, Claim 4.6]. So do the singular val-
ues as Bη ≤ nη = 1 by Lemma 2.1. Also, the construction differs from the
notion of quality in [4] due to the discrepancies between the two definitions
of ext-M-LWE. The following lemma shows that the extended variant of M-LWE
with one hint (ℓ = 1) is at least as hard as the first-is-errorless variant of M-LWE,
for carefully chosen parameters.

Lemma 3.3 (Adapted from [17, Lem. 4.7]). Let ν =
∏
i p
ei
i , K be the ν-

th cyclotomic field of degree n = φ(ν), and R its ring of integers. Let µ =∏
i p
fi
i for some fi ∈ [ei], η a positive integer and q be a prime such that q =

1 mod µ, ordν(q) = ν/µ and q > (ηs1(µ))
φ(µ), where s1(µ) denotes the spec-

tral norm of the Vandermonde matrix of the µ-th cyclotomic field. Let m, k be
positive integers, Z = Smη , ε ∈ (0, 1/2) and α ≥

√
n/q ·

√
ln(2nm(1 + ε−1))/π.

There is a PPT reduction from the variant first-is-errorless M-LWEn,k,m,q,Dα to
ext-M-LWE1

n,k,m,q,ψ,Z that reduces the adversary’s advantage by at most 33ε/2,
where ψ = Dq−1R,α

√
4B2

η+1 and Bη = maxx∈Sη
∥σ(x)∥∞.

When ν = 2ℓ+1, n = 2ℓ, one can take any prime q such that q = 2κ+1 mod 4κ
for some κ = 2l with l ∈ [ℓ], and such that q > (η

√
κ)κ.

Proof. First, we clarify the condition on α. Since K is a cyclotomic field, B =
Im⊗q−1[σH(1)| . . . |σH(ζn−1)] is a basis of the lattice σH(q−1Rm), and each vec-
tor has norm

√
n/q. As a result, the max-Euclidean norm of the Gram-Schmidt

orthogonalization of B is at most
√
n/q. By [20, Lem. 3.1, Thm. 4.1], our con-

dition on α ensures that α ≥ ηε(q
−1Rm) and that Dq−1Rm,α is efficiently sam-

pleable.
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Now, assume we have access to an oracle O for ext-M-LWEn,k,m,q,α
√

4B2
η+1,Z .

We take m samples from the first-is-errorless challenger, resulting in

(A,b) ∈ (Rq)
k×m × ((q−1R/R)× Tm−1).

Assume we need to provide samples to O for some z ∈ Z. By Lemma 3.2 we
can efficiently compute a matrix Uz ∈ Rm×m that is invertible modulo qR,
such that its submatrix U

]1[
z is orthogonal to z, and that

∥∥∥Mσ(U
]1[
z )
∥∥∥
2
≤ 2Bη.

The reduction first samples f ∈ Km
R from the continuous Gaussian distribution

of covariance matrix α2(4B2
ηImn −MσH

(U
]1[
z )MσH

(U
]1[
z )T ) ∈ Rmn×mn. The co-

variance matrix is well-defined because
∥∥∥MσH

(U
]1[
z )
∥∥∥
2
≤ 2Bη. The reduction

then computes b′ = Uzb+ f and samples c from Dq−1Rm−b′,α (as it is efficiently
sampleable), and finally gives the following to O

(A′ = UzA,b
′ + c mod R, ⟨z,f + c⟩).

Note that this tuple is in Rm×kq ×(q−1R/R)m×q−1R, as required. We now prove
correctness. First, consider the case where A is uniformly random over Rm×kq

and b = q−1As+ e mod R for some uniform s ∈ Rkq , and e sampled from {0}×
Dm−1
α where {0} denotes the distribution that is deterministically 0. Since Uz is

invertible modulo qR, A′ = UzA is also uniform over Rm×kq as required. From
now on we condition on an arbitrary A′ and analyze the distribution of the
remaining components. We have

b′ = q−1UzAs+Uze+ f

= q−1A′s+Uze+ f .

Since the first coefficient of e is deterministically 0, e is distributed accord-
ingD√S where S = diag(0n×n, α

2In, . . . , α
2In). By Lemma 2.14, Uze is then dis-

tributed according to D√S′ where S′ =MσH
(Uz)SMσH

(Uz). Due to the specific
form of S, we observe that S =MσH

(diag(0, α2, . . . , α2)). Using the ring homo-
morphism property and the form of S, it holds that S′ =MσH

(α2U
]1[
z (U

]1[
z )T ) =

α2MσH
(U

]1[
z )MσH

(U
]1[
z )T . Hence the vector Uze+ f is distributed as the Gaus-

sian over Km
R of covariance matrix α2MσH

(U
]1[
z )MσH

(U
]1[
z )T + α2(4B2

ηImn −
MσH

(U
]1[
z )MσH

(U
]1[
z )T ) which is identical to Dm

α·2Bη
. Since q−1A′s ∈ q−1Rm,

the coset q−1Rm − b′ is the same as q−1Rm − (Uze + f), which yields that c
can be seen as being sampled from Dq−1Rm−(Uze+f),α. Since α ≥ ηε(q

−1Rm),
Lemma 2.11 gives that the distribution of Uze + f + c is within statistical dis-
tance 8ε of Dq−1Rm,α

√
4B2

η+1, which shows that the second component is cor-
rectly distributed up to 8ε. Note that Uze =

∑
i∈[m] ei ·ui is in the space spanned

by the columns of U]1[
z because e1 = 0. This yields ⟨z,Uze⟩ = 0 as z is orthogonal

to the columns of U]1[
z , proving that the third component equals ⟨z,Uze+ f + c⟩

and is thus correctly distributed.
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Now consider the case where both A and b are uniform. Using that α ≥
ηε(q

−1Rm), Lemma 2.10 shows that the distribution of (A,b) is within sta-
tistical distance ε/2 of the distribution of (A, e′ + e) where e′ ∈ (q−1R/R)m

is uniform and e is distributed from {0} ×Dm−1
α . So we can assume our input

is (A, e′ + e). A′ is uniform as before, and clearly independent of the other two
components. Moreover, since b′ = Uze

′+Uze+ f and Uze
′ ∈ q−1Rm, then the

coset q−1Rm − b′ is identical to q−1Rm − (Uze + f). For the same reasons as
above, Uze+ f + c is distributed as Dq−1Rm,α

√
4B2

η+1 within statistical distance
of at most 8ε, and in particular independent of e′. So the third component is
correctly distributed again because ⟨z,Uze⟩ = 0. Finally, since e′ is independent
of the first and third components, and that Uze

′ is uniform over (q−1R/R)m

as Uz is invertible modulo qR, it yields that the second component is uniform
and independent of the other ones as required.

The condition on the modulus q in Lemma 3.2 and 3.3 stems from the in-
vertibility result by Lyubashevsky and Seiler [32] stated in Lemma 2.4. Recall
that these conditions can be simplified in the case of power-of-two cyclotomic
fields as discussed in Remark 2.1.

We now use a standard hybrid argument to show that ext-M-LWE with ℓ
hints is at least as hard as ext-M-LWE with one hint, at the expense of reducing
the advantage by a factor of ℓ. The proof can be found in Appendix B.2 for
completeness.

Lemma 3.4 (Adapted from [17, Lem. 4.8]). Let K be a number field of
degree n, R its ring of integers, and k,m, q, ℓ be positive integers such that ℓ ≤
poly(n). Let ψ be a discrete distribution over q−1R, and Z ⊆ Rm. There is
a PPT reduction from ext-M-LWE1

n,k,m,q,ψ,Z to ext-M-LWEℓn,k,m,q,ψ,Z that re-
duces the advantage by a factor of ℓ.

3.2.3 Reduction to η-M-LWE. We now provide the final step of the overall
reduction, by reducing to the M-LWE problem with η-bounded secret using a
sequence of hybrids. The idea is to use the set Z of the ext-M-LWE problem as
our set of secrets.

To facilitate understanding, we start by illustrating the high level idea of the
proof of Lemma 3.5 in Figure 3.3. Given an instance of η-M-LWE by (A,Az+e),
our goal is to show that it is computationally indistinguishable from (A,b),
where b is a uniformly random vector. To do so, we first decompose the error
vector e into −Nz+ e′, by using properties of Gaussian distributions. We then
make use of a similar lossy argument as for the previous reduction of Section 3.1
by replacing the random matrix A by a lossy matrix A′ = BC+N. As opposed to
the proof from Section 3.1, we can’t simply argue with the hardness of multiple-
secrets M-LWE as the second part of the sample depends on the noise matrix N.
This is the motivation for introducing the ext-M-LWE problem, where we allow
for additional information with respect to the noise. We then use the same
leftover hash lemma as before to replace the product Cz by a uniformly random
vector s. Assuming the hardness of M-LWE, the term Bs+e′ is computationally
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indistinguishable form a uniform vector u. We conclude the proof by re-replacing
the lossy matrix A′ by the original uniform matrix A.

, +

, + +

+ , + , +

,

,A A z e

A A z −N z e′

B
C

N B
C z e′ A′ B

s
e′

A′ u

A u

1

2

3

4

5

≈
Decomposition

ext-M-LWE

LHL
rank increase

M-LWE

ext-M-LWE
(no hints)

Fig. 3.3. Summary of the proof of Lemma 3.5

Lemma 3.5 (Adapted from [17, Lem. 4.9]). Let K = Q(ζ) be a num-
ber field of degree n, such that its ring of integers is R = Z[ζ]. Let k,m, d, η
and q be positive integers with q prime and d log2(2η+1) ≥ k log2 q+ω(log2 n).
Let ε, α, γ, β be such that ε ∈ (0, 1/2), α ≥

√
2ηε(q

−1Rd), γ = αBη
√
d, and β =

αBη
√
2d, where Bη = maxx∈Sη∥σ(x)∥∞. There is a PPT reduction from the

problems ext-M-LWEmn,k,d,q,ψ,Sd
η
, M-LWEn,k,m,q,Dγ and ext-M-LWEmn,k,d,q,ψ,{0}d

with ψ = Dq−1R,α to η-M-LWEn,d,m,q,Ψ≤β
. Hence, for any distinguishing algo-

rithm A for the η-M-LWEn,d,m,q,Ψ≤β
problem, there exist algorithms B1,B2,B3

for ext-M-LWEmn,k,d,q,ψ,Sd
η
, M-LWEn,k,m,q,Dγ

and ext-M-LWEmn,k,d,q,ψ,{0}d re-
spectively such that the following inequality holds.

Adv[A] ≤ Adv[B1] + Adv[B2] + Adv[B3] + 2mε+
1

2

√(
1 +

qk

(2η + 1)d

)n
− 1.

The problem ext-M-LWEmn,k,d,q,α,{0}d mentioned in the lemma statement is
trivially harder than ext-M-LWEmn,k,d,q,α,Sd

η
, that is also why it is not specified

in Figure 3.2.

Proof. Given an η-M-LWEn,d,m,q,Ψ≤β
sample (A, q−1Az+e mod R), with A←↩

U(Rm×dq ), z←↩ U(Sdη) and e ∈ Km
R sampled from the continuous Gaussian Dm

r

with parameter vector r with r2j = γ2 + α2
∑
i|σj(zi)|

2. We have ∥r∥∞ =
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√
γ2 + α2∥z∥22,∞, as well as ∥z∥22,∞ ≤

∑
i∈[d]∥σ(zi)∥

2
∞. Recalling the parame-

ter Bη = maxx∈Sη
∥σ(x)∥∞, that can be bounded above by nη for cyclotomics

by Lemma 2.1, we get ∥r∥∞ ≤
√
γ2 +B2

ηdα
2 = Bη

√
2dα = β. The objective is

to show that (A, q−1Az + e mod R) is computationally indistinguishable from
uniform. To do so, we define different hybrid distributions as follows, and prove
that each one is indistinguishable from the next.

– H0: Output (A, q−1Az+ e mod R) as in η-M-LWEn,d,m,q,Ψ≤β
;

– H1: Output (A, q−1Az−Nz+e′ mod R), where N←↩ Dm×dq−1R,α and e′ ←↩ Dm
γ

and A, z as in H0;
– H2: Output (A′, q−1A′z − Nz + e′ mod R) = (A′, q−1BCz + e′ mod R),

where B ←↩ U(Rm×kq ), C ←↩ U(Rk×dq ), A′ = q(q−1CTBT + NT mod R)T ,
and N, z, e′ as in H1;

– H3: Output (A′, q−1Bs + e′ mod R), where s ←↩ U(Rkq ), and A′,B, e′ as
in H2;

– H4: Output (A′,u), where u←↩ U(Tm), and A′ as in H3;
– H5: Output (A,u), where A←↩ U(Rm×dq ) and u as in H4.

From H0 to H1: We first claim that ∆([−Nz + e′]i, ei) ≤ 2ε for all i ∈ [m].
Indeed, (1/α2+ ∥z∥22,∞/γ2)−1/2 ≥ α/

√
2 and α/

√
2 ≥ ηε(q−1Rd). If ni ∈ q−1Rd

denotes the i-th row of N, Lemma 2.15 yields the claim since we have [−Nz +
e′]i = ⟨ni ,−z⟩+ e′i, thus giving ∆(−Nz+ e′, e) ≤ 2mε.

|P[A(H0) = 1]− P[A(H1) = 1]| ≤ 2mε. (1)

From H1 to H2: We argue that a distinguisher between H1 and H2 can be used
to derive an adversary B1 for ext-M-LWEmn,k,d,q,α,Sd

η
with the same advantage. To

do so, B1 transforms the samples from the challenger of the ext-M-LWE problem
to samples defined in H1 or the ones in H2 depending on whether or not the
received samples are uniform. In the uniform case, (CT , q−1AT ,Nz) can be effi-
ciently transformed into a sample from H1. Note that q−1AT indeed corresponds
to the uniform case of ext-M-LWE, because A is uniform over Rq and q−1Rq can
be seen as q−1R/R. Additionally, the transpose operator comes from the fact
that the hints are Nz, which corresponds to m error vectors of size d. So the sec-
ond component is indeed of size d×m as required. In the other case, if we apply
the same transformation to the ext-M-LWE sample (CT , q−1CTBT +NT mod
R,Nz) where BT and NT are the secret and error matrix respectively, it leads to
a sample from H2. The (randomized) transformation can be described by sam-
pling e′ from Dm

γ and outputting f(X1,X2,x3) = (qXT
2 ,X

T
2 z−x3+e′ mod R).

Hence, B1 is a distinguisher for ext-M-LWEmn,k,d,q,α,Sd
η
, and

|P[A(H1) = 1]− P[A(H2) = 1]| = Adv[B1]. (2)

From H2 to H3: The Ring Leftover Hash Lemma stated in Lemma 2.8 yields that
(C,Cz) is within statistical distance at most δ = 1

2

√
(1 + qk/(2η + 1)d)n − 1
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from (C, s). Note that the condition d log2(2η + 1) ≥ k log2 q + ω(log2 n) im-
plies δ ≤ n−ω(1). This yields

|P[A(H2) = 1]− P[A(H3) = 1]| ≤ δ. (3)

From H3 to H4: A distinguisher between H3 and H4 can be used to derive an
adversary B2 for M-LWEn,k,m,q,γ . For that, B2 applies the efficient transfor-
mation to the samples from the M-LWE challenger, which turns (B,u) into a
sample from H4 in the uniform case, and (B, q−1Bs + e′ mod R) into a sam-
ple from H3 in the M-LWE case. The transformation is given by g(X1,x2) =
(X1C + qN mod qR,x2), where C,N are sampled as in H2. Therefore, B2 is a
distinguisher for M-LWEn,k,m,q,γ such that

|P[A(H3) = 1]− P[A(H4) = 1]| = Adv[B2]. (4)

From H4 to H5: We now change A′ back to uniform. With the same argument
as before, we can construct an adversary B3 for ext-M-LWEmn,k,d,q,α,{0}d (which
corresponds to multiple-secret M-LWE without hint) based on a distinguisher
between H4 and H5. It transforms (CT , q−1(A′)T ,N · 0) into a sample from H4

(M-LWE case) and (CT , q−1AT ,N · 0) into a sample from H5 (uniform case).
The transformation samples u←↩ U(Tm) as in H4 and outputs h(X1,X2,x3) =
(qXT

2 ,u). We then get

|P[A(H4) = 1]− P[A(H5) = 1]| = Adv[B3]. (5)

Putting Equations (1), (2), (3), (4), (5) altogether yields the result.

4 Computational Hardness of M-LWE with Small Error

In this section, we focus on the hardness of M-LWE when the error distribution is
uniform over Smη instead of Gaussian as in the standard formulation of M-LWE.
The overall proof strategy follows the idea of Micciancio and Peikert [38], that we
adapt to modules. It uses a different proof method as the one we used in Section 3
as it relies on proving that the M-LWE function is one-way with small uniform
inputs (errors). On top of that, we provide a more fine-grained analysis to reach
concrete parameters. The security of practical schemes is indeed driven by the
ring degree n as we wish to use a small rank d for efficiency. The asymptotic
approach is then not perfectly suited for achieving very small ranks d and very
small error bounds η simultaneously. We therefore try to avoid asymptotic results
and bounds as much as possible. Even with our approach, we cannot set d and η
arbitrarily small independently of each other. We first recall the duality between
the M-LWE and M-ISIS function families which allows us to switch from one to
other at essentially no cost. We then prove our result in terms of M-ISIS as it
simplifies the analysis. We briefly discuss the practical implications of our work
in Section 4.4.
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4.1 Duality between M-LWE and M-ISIS

In the following, we adapt the duality results from [36, Sec. 4.2] to the module
setting. To the best of our knowledge, this hasn’t been formally done before.
For completeness, we detail the proofs in Appendix B.3. The idea when going
from M-LWE to M-ISIS is to cancel the secret part via a parity check matrix B
that is such that ATB = 0 mod qR. The M-LWE error distribution e then
becomes the input distribution of the M-ISIS instance with matrix B′ = BU
where U simply randomizes B. Note that in this paper we are considering a
parameter regime such that the function family of M-ISIS is injective. In other
words, solutions to M-ISIS are with a very high probability unique. This regime
is sometimes referred to as low-density ISIS [29] or even more generally as a
knapsack problem [36]. For B′ to be well distributed, we need A to be non-
singular which is characterized by the function δ(·, ·) from Section 2.1. The upper
bound derived from Lemma 2.6 for this singularity probability requires q to
be unramified in order to have an easier characterization of units of Rq. Also,
note that the following lemmas are only meaningful if the extra losses incurred
by δ(·, ·) are negligible, which may require to restrict the splitting of q. We
elaborate on the matter in Section 4.2.3.

Lemma 4.1 (Adapted from [36, Lem. 4.8]). Let K be a number field of
degree n, and R its ring of integers. Let d, q,m be positive integers such that q is
an unramified prime, and m ≥ d+1. Let X be a probability distribution on Rm.
If (M-LWE(n, d,m, q,Rm),X ) is ε-uninvertible (resp. one-way, pseudorandom),
then (M-ISIS(n,m − d,m, q,Rm),X ) is ε′-uninvertible (resp. one-way, pseudo-
random), with ε′ = δ(m,m − d) + ε/(1 − δ(m, d)) (resp. ε′ = 2δ(m,m − d) +
ε/(1− δ(m, d)) for pseudorandomness).

Lemma 4.2 (Adapted from [36, Lem. 4.9]). Let K be a number field of
degree n, and R its ring of integers. Let d, q,m be positive integers such that q is
an unramified prime, and m ≥ d+1. Let X be a probability distribution on Rm.
If (M-ISIS(n,m − d,m, q,Rm),X ) is ε-uninvertible (resp. one-way, pseudoran-
dom), then (M-LWE(n, d,m, q,Rm),X ) is ε′-uninvertible (resp. one-way, pseu-
dorandom), with ε′ = δ(m, d)+ ε/(1− δ(m,m−d)) (resp. ε′ = 2δ(m, d)+ ε/(1−
δ(m,m− d)) for pseudorandomness).

4.2 Hardness of M-LWE with Small Error

We now focus on proving the one-wayness of the M-LWE function family with
respect to a short uniform input (i.e., error) distribution, assuming the pseu-
dorandomness of the M-LWE function family with Gaussian input. It therefore
implies the hardness of search M-LWE with small uniform error from that of the
decision version of M-LWE with Gaussian error. To prove the one-wayness of
the M-LWE function, we prove the result in terms of M-ISIS and use Lemma 4.2
to conclude. Recall that by Lemma 2.16, it suffices to prove that M-ISIS is
uninvertible and second preimage resistant with respect to this specific input
distribution. We actually prove the second preimage resistance of the M-ISIS
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function, and the uninvertibility of a decomposition of the M-ISIS function. We
then argue that these two function families are indistinguishable based on the
pseudorandomness of M-ISIS (or M-LWE equivalently). The idea of the proof is
summarized in Figure 4.1.

(D) M-LWEk,ℓ

Gaussian error

(D) M-ISISm−d,ℓ

Gaussian input

(S) M-LWEd,m

η-bounded error

(S) M-ISISm−d,m

η-bounded input

(S) η-M-LWEd,m−d

η-bounded error

Statistical Second
Preimage Resistance

for
e←↩ U(Smη )

Lem. 4.4

m

m− d

Statistical
Uninvertibility

for
e←↩ U(Smη )

Lem. 4.3

ℓ

m− d

ℓ m− ℓ
≈

AT

e

(A′)T Iℓ Y e

Lem. 4.1 Lem. 4.2

Lem. 4.5

Fig. 4.1. Summary of the proof of Theorem 4.1. S denotes the search version, while
D denotes the decision version. The first subscript for M-LWE denotes the rank,
while the second subscript denotes the number of samples. For clarity, we removed,
for both M-LWE and M-ISIS, the subscripts for the ring degree n and the modulus q
as they are preserved throughout the proof. We have ℓ = m− d+ k.

4.2.1 Uninvertibility. In order to prove the uninvertibility of the function
family (M-ISIS(n,m−d,m, q,Rm), U(Smη )), we decompose it into a linear (Gaus-
sian) function family L and a smaller M-ISIS(n,m− d, ℓ, q, Rℓ) function family
with ℓ ≤ m. By Lemma 2.18, it suffices to prove the uninvertibility of (L, U(Smη )).
We first define what we mean by linear (Gaussian) function.

Definition 4.1. Let K be a number field, and R its ring of integers. Let ℓ,m be
positive integers such that m ≥ ℓ, α > 0, and X ⊆ Rm. We define the function
family L(ℓ,m, α,X) obtained by sampling Y from Dℓ×(m−ℓ)R,α , and outputting hY :

X → Rℓ defined by ∀x ∈ X, hY(x) = [Iℓ | Y]x, where | denotes the horizontal
concatenation.

We now use Lemma 2.17 to prove that (L(ℓ,m, α,X), U(X)) is statistically
uninvertible with uniform inputs for carefully chosen parameters. In particu-
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lar, the result is only meaningful when ε3 is negligible. This leads to involved
conditions on the parameters, which we discuss in Section 4.2.3.

Lemma 4.3. Let K be a number field of degree n, and R its ring of integers.
Let ℓ,m, d be positive integers such that m ≥ max(d, ℓ), and α > 0. Let η be a
positive integer and X ⊆ Smη . We define the function family F = M-ISIS(n,m−
d, ℓ, q, Rℓ) ◦ L(ℓ,m, α,X). Then, for any t ≥ 0, (F , U(X)) is (statistically) ε3-
uninvertible for

ε3 =
1

|X|
√
πnℓ

(
η
√
2πe

(
1 + α

√
m− ℓ
ℓ

(
C
√
ℓ+ C

√
m− ℓ+ t

)))nℓ
+ 2ne−πt

2

,

where C > 0 is an absolute constant (empirically C ≈ 1/
√
2π). When t =

ω(
√
log2 n), the second term is negligible.

Proof. We first bound EhY∼L[|hY(X)|] and use Lemma 2.17 to conclude. Let hY
be sampled from L(ℓ,m, α,X). Let x = [xT1 | xT2 ]T ∈ X, with x1 ∈ Sℓη, and x2 ∈
Sm−ℓη . Then, hY(x) = x1+Yx2. As seen in Section 2.1, it holds that τ(hY(x)) =
τ(x1) +Mτ (Y)τ(x2), and therefore

∥τ(hY(x))∥2 ≤ ∥τ(x1)∥2 + ∥Mτ (Y)∥2 · ∥τ(x2)∥2.

Since x1 and x2 are vectors over Sη, it holds that ∥τ(x1)∥2 ≤ η
√
nℓ and

that ∥τ(x2)∥2 ≤ η
√
n(m− ℓ). By Lemma 2.3, we also have

∥Mτ (Y)∥2 = max
k∈[n]
∥σk(Y)∥2.

As σk(Y) is a discrete Gaussian of parameter α, Lemma 2.9 gives that for all k ∈
[n] and all t ≥ 0

P
Y∼Dℓ×(m−ℓ)

R,α

[
∥σk(Y)∥2 > Cα(

√
ℓ+
√
m− ℓ+ t)

]
≤ 2e−πt

2

,

for an absolute constants C > 0, (C ≈ 1/
√
2π). A union bound then yields

P
Y∼Dℓ×(m−ℓ)

R,α

[
∥Mτ (Y)∥2 > Cα(

√
ℓ+
√
m− ℓ+ t)

]
≤ 2n · e−πt

2

.

For t = ω(
√

log2 n), the bound becomes negligible. Hence, with probability at
least 1− 2ne−πt

2

, we have that τ(hY(x)) is bounded by

r =
√
nη
(√

ℓ+ Cα
√
m− ℓ(

√
ℓ+
√
m− ℓ+ t)

)
.

The number of integer points in the nℓ-dimensional ball of radius r is the di-
mensionless volume of the ball which is (

√
πr)nℓ/Γ (nℓ/2 + 1). Yet, it holds
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that Γ (x+ 1) >
√
2πx(x/e)x. Therefore, we have that

|hY(X)| ≤ 1√
πnℓ

(√
2πe

nℓ
· r

)nℓ

≤ 1√
πnℓ

(
η
√
2πe

(
1 + Cα

√
m− ℓ
ℓ

(√
ℓ+
√
m− ℓ+ t

)))nℓ
.

As the bound is independent of Y, let us temporarily denote it by B. We also
define S = {Y ∈ Rℓ×(m−ℓ) : ∥Mτ (Y)∥ ≤ Cα(

√
ℓ +
√
m− ℓ + t)}, and S′ its

complement in Rℓ×(m−ℓ). We then have

E[|hY(X)|] =
∑
Y′∈S

PY[Y = Y′]|hY′(X)|+
∑

Y′∈S′

PY[Y = Y′]|hY′(X)|

≤ B · PY[Y ∈ S] + |X| · PY[Y ∈ S′]

≤ B + |X| · 2ne−πt
2

,

where the first inequality follows from the above calculations and the fact that
for Y′ ∈ S′, we have the trivial bound |hY′(X)| ≤ |X|. Lemma 2.17 then yields
the ε3-uninvertibility of L, with ε3 = B/|X|+2ne−πt

2

. By Lemma 2.18, we thus
obtain the ε3-uninvertibility of F .

4.2.2 Second Preimage Resistance of M-ISIS. We now prove the (sta-
tistical) second preimage resistance of the M-ISIS function family with respect
to the uniform distribution over an η-bounded domain.

Lemma 4.4. Let K be a number field of degree n, and R its ring of inte-
gers. Let k, q,m, η be positive integers such that q is prime. Let X ⊆ Smη .
Then (M-ISIS(n, k,m, q,X), U(X)) is (statistically) ε4-second preimage resis-
tant for

ε4 = (|X| − 1) ·
(
B2η

q

)nk
,

where B2η = maxx∈S2η
∥σ(x)∥∞.

Proof. To prove it statistically, we show that for A,x uniformly chosen, the
probability that there exists x′ ̸= x such that ATx′ = ATx mod qR is less
than ε4, namely

p := PA←↩U(Rm×k
q )

x←↩U(X)

[∃x′ ∈ X \ {x}, ATx′ = ATx mod qR].
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Using the total probability formula and the union bound on x′, we have the
following.

p =
∑

x∗∈X
Px[x = x∗] · PA,x[∃x′ ∈ X \ {x}, ATx′ = ATx mod qR|x = x∗]

=
∑

x∗∈X
|X|−1 · PA[∃x′ ∈ X \ {x∗}, AT (x′ − x∗) = 0 mod qR]

≤ |X|−1
∑

x∗∈X

∑
x′∈X\{x∗}

PA[AT (x′ − x∗) = 0 mod qR].

Let x∗ ∈ X, x′ ∈ X\{x∗}, and set z = x′−x∗. Then, by [34, Lem. 4.4], AT z mod
qR is uniformly distributed in (Iz/qR)k over the randomness of A, where Iz =

⟨z1⟩+ . . . ⟨zm⟩+ ⟨q⟩. Hence the probability that AT z = 0 mod qR is |Iz/qR|−k.
As Iz and qR are ideals of R, we have |Iz/qR| = N(qR)/N(Iz) = qn/N(Iz). Yet,
for all i ∈ [m], ⟨zi⟩ ⊆ Iz, meaning that N(Iz) divides N(⟨zi⟩). Similarly, N(Iz)
divides N(⟨q⟩) = qn. Hence

N(Iz) ≤ gcd (qn, N(⟨z1⟩), . . . , N(⟨zm⟩)) ,

which yields the (loose) bound

N(Iz) ≤ min

(
qn, min

i∈[m]:zi ̸=0
N(⟨zi⟩)

)
.

Since z ̸= 0, there exists i ∈ [m] such that zi ̸= 0. Note that we have z ∈
{a− b; (a,b) ∈ X2} ⊆ Sm2η. It thus holds

N(⟨zi⟩) = |N(zi)| =
∏
j∈[n]

|σj(zi)| ≤ Bn2η,

by Lemma 2.1 where B2η = maxx∈S2η∥σ(x)∥∞. Recall that in cyclotomic fields
we have B2η ≤ 2ηn. Hence PA[AT z = 0 mod qR] ≤ (B2η/q)

nk. Going back to
our original calculation, we then have p ≤ |X|−1|X|(|X| − 1) · (B2η/q)

nk = ε4
which concludes the proof.

Remark 4.1. For common choices of n,m and prime q, we heuristically observe
that the ideals ⟨z1⟩, . . . , ⟨zm⟩, ⟨q⟩ are relatively prime with high probability,
which means that Iz = R in the proof above. In this case, N(Iz) = 1 which
yields a much better bound on the probability. Since the probability sums over
all the possible x′, one would need to evaluate the proportion of z generated as
above that verify Iz = R. We leave it as an open problem.

For example, consider the case of cyclotomic fields. By Lemma 2.4 (or Re-
mark 2.1 for power-of-two conductors), if q splits into few factors and is large
enough with respect to η so that S2η \ {0} mod qR ⊂ R×q , then we have that
for all z ∈ Sm2η \ {0}, Iz = R. Indeed, for such z, there exists i ∈ [m] such
that zi ∈ S2η\{0} and therefore zi mod qR ∈ R×q . This implies that ⟨zi⟩+⟨q⟩ = R
and as a result Iz = R. Hence, we can improve the bound on the probability
to ε4 = (|X| − 1)/qnk if we accept to enforce a specific splitting on q.
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4.2.3 One-wayness of M-LWE with Small Uniform Error. Using the
results from Sections 4.2.1 and 4.2.2, we can give the main theorem of this
section. Under the assumption that the M-LWE function family is pseudorandom
with respect to a Gaussian error distribution, it proves that the M-LWE function
family is one-way with respect to a small uniform error distribution. Recall that
if a function is one-way, then it is also uninvertible. Hence, this shows that
the search version M-SLWE with small uniform error is at least as hard as the
decision version M-LWE with Gaussian error.

Theorem 4.1. Let K be a number field of degree n, and R its ring of integers.
Let d,m, k be positive integers such that m > d ≥ k ≥ 1. Let q be an unramified
prime such that mini∈[κ]N(pi)

min(m−d,k)+1 ≥ nω(1), where the pi’s are the prime
ideal factors of ⟨q⟩. Let η be a positive integer, and X ⊆ Smη . We define ℓ =

m− d+ k. Assume that the function family (M-LWE(n, k, ℓ, q, Rℓ),DℓR,α) is ε1-
pseudorandom for α > 0. Then (M-LWE(n, d,m, q,X), U(X)) is ε-one-way for

ε = δ(m, d) +
(m− ℓ)(2δ(ℓ,m− d) + ε1/(1− δ(ℓ, k))) + ε3 + ε4

1− δ(m,m− d)
,

where ε3, ε4 are defined in the statement of Lemma 4.3 and 4.4 respectively.

Proof. Define the function families F = M-ISIS(n,m−d, ℓ, q, Rℓ)◦L(ℓ,m, α,X),
and G = M-ISIS(n,m− d,m, q,X).
Indistinguishability : Using Lemma 4.1, the pseudorandomness of the M-LWE

function family implies that (M-ISIS(n,m−d, ℓ, q, Rℓ),DℓR,α) is ε2-pseudorandom
with

ε2 = 2δ(ℓ, ℓ− k) + ε1
1− δ(ℓ, k)

.

Take fA ◦hY according to F , and fA′ according to G. Then fA ◦hY is the linear
map x 7→ [AT | ATY]x. Decomposing A′T into [(A′1)

T | (A′2)T ], with A′1 ∈
R
ℓ×(m−d)
q ,A′2 ∈ R

(m−ℓ)×(m−d)
q , we have that fA′ = x 7→ [(A′1)

T |(A′2)T ]x. By
the ε2-pseudorandomness of M-ISIS with respect to DℓR,α, a hybrid argument
yields that F and G are (m− ℓ)ε2-indistinguishable.
Uninvertibility : By Lemma 4.3, it holds that (F , U(X)) is ε3-uninvertible, where
ε3 is defined in Lemma 4.3.
Second Preimage Resistance: By Lemma 4.4, it holds that (G, U(X)) is ε4-second
preimage resistant for

ε4 = (|X| − 1) ·
(
B2η

q

)n(m−d)
.

We thus have that (F ,G, U(X)) is a lossy function family, depending on ε2, ε3, ε4.
Lemma 2.16 yields that (G, U(X)) is ε0-one-way with ε0 = (m− ℓ)ε2 + ε3 + ε4.
Using Lemma 4.2, it gives that (M-LWE(n, d,m, q,X), U(X)) is ε-one-way with

ε = δ(m, d) +
ε0

1− δ(m,m− d)
.
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Combining everything, we get

ε = δ(m, d) +
(m− ℓ)(2δ(ℓ,m− d) + ε1/(1− δ(ℓ, k))) + ε3 + ε4

1− δ(m,m− d)
,

which yields the claim. The condition on q ensures that all the δ(·, ·) are neg-
ligible. Indeed, as noted after Lemma 2.6, if the smallest norm N of the prime
ideal factors is such that Na−b+1 ≥ nω(1) for a ≥ b, then δ(a, b) ≤ n−ω(1).
The condition on q thus yields that δ(m, d), δ(m,m− d), δ(ℓ,m− d), δ(ℓ, k) are
negligible.

Let us now discuss the various conditions that are needed to apply this theorem
in the context of cyclotomic fields. The lower bound on q comes from ensuring
that ε4 is negligible. Indeed, we have that |X| = (2η + 1)nm, and therefore it
suffices to have

(2η + 1)m
(
2nη

q

)m−d
< 1, (6)

which can be written as q > 2nη · (2η + 1)m/(m−d). Hence, for λ > 0 one can
choose q > 2λ/(m−d) · 2nη · (2η + 1)m/(m−d) which ensures ε4 < 2−λn. Once
this lower bound on q is set, one can easily find the closest prime q with an
appropriate splitting as required by the theorem.

The expression of ε3 is more involved, but the idea is the same. For it to be
negligible, we need

ηℓ

(2η + 1)m(πnℓ)1/2n

(
√
2πe

(
1 + Cα

√
m− ℓ
ℓ

(√
ℓ+
√
m− ℓ+ t

)))ℓ
< 1,

(7)
where t = ω(

√
log2 n). Due to the many dependencies in m, k, d and η, it is

harder to extract a closed-form inequality on m given k, d and η. Instead, we
evaluate the inequality with different parameters while trying to minimize η and
maximize m, while ensuring m > d ≥ k ≥ 1. As we aim at proving the hardness
of M-LWE with small parameters, one can evaluate Equations (6) and (7) with
the goal of minimizing η, q and d, while maximizing m and making sure that k ≥
1 (k ≥ 2 being preferable to rely on modules). It turns out that the condition is
not met for all sets of parameters, and η cannot be arbitrarily small for arbitrary
ranks k, d. Nonetheless, we can find settings in which η is a small constant, but
this might require to take d slightly larger. As expected, when m− d grows for
a fixed d, the error bound η must be larger as well. Table 4.1 give two example
sets of parameters that verify the conditions, along with the losses ε3, ε4, one
relying on ideals (k = 1).

Remark 4.2. Note that we can provide the asymptotic behavior ε3 = O(α ·m ·
η · t/

√
ℓ)nℓ/|X| + 2ne−πt

2

, but this approach makes it unclear how to choose
the parameters. In particular, as we can use low ranks like d = O(1), we have
to make sure that k ≥ 1 and m ≥ d + 1, which is not always possible for low
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n k d m η q ε3 ε4

256 1 11 12 1 ≈ 231 ≈ 2−496 + 2−281 2−256

256 2 14 16 10 ≈ 248 ≈ 2−360 + 2−281 2−256

Table 4.1. Example parameter sets reaching the conditions of Theorem 4.1. We
take t = log2 n, and α ≈ log2 n if k = 1 and α ≈ 2

√
k log2 n if k > 1. Empirically,

we have C ≈ 1/
√
2π as noticed for example in [37, Sec. 2.4]. The loss of 2−281 that

dominates in the value of ε3 comes from the spectral bound loss 2n · e−πt
2

. For such
parameters, one can determine the appropriate splitting of q for the δ(·, ·) to be
negligible. For the first set of parameters, if q splits into n/2 factors, all the δ(·, ·) will
be less than 2−117, but if it splits into n/4 factors, they will be less than 2−242. For
the second set of parameters, if q is fully splitted, they can all be bounded by 2−136

and if q splits into n/2 factors, they will be less than 2−281.

values of η. The asymptotic approach gives a more direct condition on m. Indeed,
taking α = 2

√
kt, and denoting by C ′ the asymptotic constant, we have

O(s ·m · η · t/
√
ℓ)nℓ/|X| ≤

(
(2C ′mt2η

√
k/ℓ)ℓ

(2η + 1)m

)n
.

Since ℓ > k, we can choose the parameters to have (2C ′mt2η)ℓ/(2η+1)m ≤ 1/2
to have a exponentially small loss. We thus have

(2C ′mt2η)ℓ/(2η + 1)m ≤ 1/2

⇔ (m− (d− k)) log2(2C ′mt2η) ≤ m log2(2η + 1)− 1

⇔ m(log2(2C
′mt2η)− log2(2η + 1)) ≤ (d− k) log2(2C ′mt2η)− 1

⇔ m ≤ (d− k)(1 + log2(2η + 1)/ log2(2C
′mt2η/(2η + 1)))

− 1/ log2(2C
′mt2η/(2η + 1)).

This leads to a condition on m which is

d < m ≤ (d− k)
(
1 +

log2(2η + 1)

log2(2C
′ ·m · t2/3)

)
,

which is much similar to the condition in [38]. The main difference stems from the
fact that m is no longer our asymptotic parameter, which explains the presence
of t2 = ω(log2 n). It still remains difficult to see which parameter sets meet this
condition, mostly because the constant C ′ can be rather large while we wish d
and k to be small constants. Regardless, if we aim at small values of η, we see that
we obtain m ≤ d(1+o(1)). This bound seems true even with our non-asymptotic
analysis.
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4.3 On Hermite Normal Form M-LWE with Small Keys

We now look at the use of our result to obtain the hardness of M-LWE where both
the error and secret distribution are uniform over small elements. To do so we
combine Theorem 4.1 with a Hermite Normal Form transformation for M-LWE.
Langlois and Stehlé [24, Lem. 4.24] proposed an immediate generalization of the
reduction from LWE to its Hermite Normal Form by Applebaum et al. [5] to
modules. In particular, it relies on the fact that if one has access to sufficiently
many M-LWE samples (ai, bi), they can find a subset of the ai that form a
matrix in GLd(Rq). As our proof of Section 4.2 seemingly limits the number of
available samples, it is relevant for us to understand the trade-off between the
quality of the reduction (in terms of loss in advantage) and the number of initial
samples. More precisely, if one is limited to use m′ ≥ d samples to construct this
invertible matrix, it comes down to evaluating δ′(m′, d). The proof can be found
in Appendix B.3 for completeness.

Lemma 4.5 (Adapted from [5,24]). Let K be a number field, and R its ring
of integers. Let d, q,m′ be positive integers such that q is an unramified prime,
and m′ ≥ d ≥ 1. Let s be an arbitrary vector of Rdq and ψ a distribution over R.
There is an efficient transformation T such that T (As,ψ) = Ax,ψ for some x
sampled from ψd, and T (U(Rdq × Rq)) = U(Rdq × Rq). T can be constructed in
polynomial time using m′ samples from D ∈ {As,ψ, U(Rdq × Rq)} with probabil-
ity 1− δ′(m′, d).

This transformation shows a reduction from worst-case (or average-case if s is
uniformly sampled over Rdq instead of arbitrary) search-M-LWE to search-HNF-
M-LWE, but also from decision-M-LWE to decision-HNF-M-LWE. All the pa-
rameters are preserved except for the number of samples because we need m′ ≥ d
extra samples to construct the transformation, i.e., construct the invertible
matrix A involved in the map with the corresponding b. To prove the hard-
ness of HNF-M-LWE with m′′ samples, we thus need to assume the hardness
of M-LWE with m = m′+m′′ samples. The choice of m′ allows for tweaking the
success probability of the reduction, but at the expense of requiring more sam-
ples. Let us now discuss the loss δ′(m′, d). In the case of integers, Zq is generally
a field which yields a closed-form expression of this probability. Unfortunately,
in the case of Rq, it becomes anything but trivial as explained in Appendix A.
We can still obtain the following bound

δ′(m′, d) ≤ δ′(d, d)⌊m
′/d⌋ =

1−
d−1∏
ℓ=0

∏
i∈[κ]

(
1− 1

N(pi)d−ℓ

)⌊m
′/d⌋

,

which we briefly prove here.
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Proof. For each j ∈ [⌊m′/d⌋], we define Sj = {(j − 1)d + 1, . . . , jd} which is of
size d. We then have

δ′(m′, d) = P(ai)i∈[m′]∼U(Rd
q )

m′

 ⋂
S⊆[m′],|S|=d

{(ai)i∈S are not Rq-l. i.}


≤ P(ai)i∈[m′]∼U(Rd

q )
m′

 ⋂
j∈[⌊m′/d⌋]

{(ai)i∈Sj
are not Rq-l. i.}


=

∏
j∈[⌊m′/d⌋]

P(ai)i∈Sj
∼U(Rd

q )
d [(ai)i∈Sj

are not Rq-l. i.]

= δ′(d, d)⌊m
′/d⌋,

where the first inequality is just an inclusion of events, the second equality is by
independence of the ai’s as none of the Sj overlap, and the last equality follows
from the definition of δ′(d, d).

We note that δ′(d, d) highly depends on the size and splitting of q as it is
essentially dominated by 1

mini∈[κ]N(pi)
. Hence, depending on the splitting of q,

we would need to take m′ = Cd with C sufficiently large to make δ′(m′, d) negli-
gible. Our bound is however not tight and we expect δ′(m′, d) to decrease much
faster when m′ grows. Unfortunately, we were not able to find a better bound
on δ′(m′, d) which would support this conjecture. We leave it as an interesting
open problem.

As concrete examples, let us take the parameters of Table 4.1. If q ≈ 231 splits
into n/4 = 64 factors of inertia degree 4, for d = 11, we have δ′(d, d) ≈ 2−118. As
a result, m′ = 2d ensures δ′(m′, d) ≤ 2−236. However, if q splits into n/2 = 128
factors of inertia degree 2, we now have δ′(d, d) ≈ 2−55, and we would thus need
to take a larger m′.
We then obtain the following result by combining Theorem 4.1 with Lemma 4.5.

Corollary 4.1. Let K be a number field of degree n, and R its ring of integers.
Let d,m, k be positive integers such that m > d ≥ k ≥ 1. Let q be an unrami-
fied prime such that mini∈[κ]N(pi)

min(m−d,k)+1 ≥ nω(1), where the pi’s are the
prime ideal factors of ⟨q⟩. Let m′ be a positive integer such that m > m′ ≥ d
and δ′(m′, d) ≤ n−ω(1). Then, let η be a positive integer, and X ⊆ Smη . We
define ℓ = m − d + k. Assuming that the decision version M-LWEn,k,q,ℓ,DR,α

is ε1-hard for α > 0, it holds that search version η-M-SLWEn,d,q,m−m′,U(Tη)

is ε′-hard for

ε′ = δ′(m′, d) + δ(m, d) +
(m− ℓ)(2δ(ℓ,m− d) + ε1/(1− δ(ℓ, k))) + ε3 + ε4

1− δ(m,m− d)
,

where ε3, ε4 are defined in the statement of Lemma 4.3 and 4.4 respectively.
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4.4 A Thought on Practical Hardness

Several cryptanalytic works target the LWE problem, with sometimes increased
efficiency when the parameters are small, e.g. particularly small secret, or par-
ticularly small error. They leverage either lattice reduction [27,28], combinato-
rial [55,9,23] or algebraic [6,3] techniques. The latter attack by Arora and Ge
specifically targets LWE with small errors. It does not depend on the underlying
structure, and therefore also applies to the more general case of M-LWE. The
idea is to see the (search) LWE problem as solving a noisy system of equations,
and transforming it into a noiseless polynomial system (where the degree of the
polynomials depend on the size of the LWE error). Then, using root finding
algorithms for multivariate polynomials, one can solve the new system.

More precisely in the case of LWE with η-bounded error (e ∈ {−η, ..., η}m),
the Arora and Ge attack [6] solves the problem in polynomial time if m ≈(
d+2η+1
2η+1

)
= Ω(d2η+1), where d is the LWE dimension. For η = 1, the attack

becomes exponential for m = O(d). It has been refined in [3] to obtain subex-
ponential attacks whenever m = Ω(d log2 log2 d) in the uncentered binary case
({0, 1}). As the attack ignores the structure, one can embed the mM-LWE equa-
tions with d unknowns over Rq into nm equations with nd unknowns over Zq
and apply the same attack. However, we now obtain a polynomial attack only
for nm = Ω((nd)2η+1) and therefore m = Ω(n2ηd2η+1). In practical schemes
relying on M-LWE with small errors [10,18], the rank d is a small constant
and n drives the security parameter. Additionally, we saw in Section 4.3 that
roughly m = m′ + m′′ is enough to establish the hardness of M-LWE with
small secret and error with m′′ samples. For common parameters where m′′ = d
or d + 1, we thus have m = m′ + m′′ = O(d) ≪ n2ηd2η+1. This is why we
think that the hardness of M-LWE with both small secret and error is yet to be
determined. The gap between what we proved in this section and the applicable
attacks can still be reduced in either direction: either by finding new attacks
that require fewer samples, or by improving theoretical hardness results to allow
for more samples.

5 A Quick Survey on the Hardness of M-LWE

This section aims at gathering all known results on the hardness of the M-LWE
problem along with our new contributions, and comparing them whenever pos-
sible.

General Hardness. Although the M-LWE problem was originally introduced
in [16] for power-of-two cyclotomic fields, its hardness was first studied by Lan-
glois and Stehlé in [24]. They established the hardness of the standard formula-
tion M-LWEn,d,m,q,Υα

based on the quantum hardness of Mod-GIVPηεγ (which
is a generalized version of SIVPγ), where α = Ω̃(d

√
n/γ). Although the proof

for the decision version requires q to be a fully splitted prime in the cyclotomic
ring, the authors gave a modulus switching reduction showing that the form of q
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is not restrictive if one accepts a (moderately) increased error. This reduction
proves that if M-LWEn,d,m,q,Υα

is hard, then so is M-LWEn,d,m,p,Υα′ for an ar-
bitrary modulus p. This comes at the expense of increasing the error from α
to α′ ≥ α · max(1, q/p) · n3/4

√
dω(log22 n). Then, combined with [12, Lem. 13],

one can obtain the hardness of M-LWE with error in DR∨,α′q for α′ = αω(log2 n)
instead of Υα, and where R∨ is the dual of R. The quantum reduction from [24]
was later used in [4] to derive the hardness of M-LWR (Module Learning With
Rounding) which we do not cover in this discussion.

As discussed in [16], the M-LWE problem offers a trade-off between secu-
rity and efficiency depending on whether the parameters lean towards LWE
(degree n equal to 1) or R-LWE (rank d equal to 1) respectively. In particular,
establishing a hierarchy of hardness between M-LWE and the widely studied and
used R-LWE was up for debate. Albrecht and Deo [1] provided a first answer
by showing that R-LWE with modulus qd is at least as hard as M-LWE with
modulus q and rank d. This actually comes as a byproduct of their more gen-
eral result showing a modulus-rank switching reduction from M-LWEn,d,m,q,Dα

to M-LWEn,d′,m,q′,Dα′ . The moduli and ranks can be arbitrarily chosen provided
that one can efficiently describe the lattice Λ = q′

−1
GTRd

′
+ Rd for a cho-

sen G ∈ Rd′×d. It also requires to increase the error from α to α′ ≥
√
α2 +∆,

where ∆ depends on the size of the secret distribution and the quality of the
description of Λ. As a result, the reduction becomes less interesting for very
large secrets. We refer to [1,2] for the detailed expression of ∆. The reduction
to R-LWE was later improved and generalized by Wang and Wang [56] to hold
over all cyclotomic fields. A revision of the work by Albrecht and Deo, which
can be found in [2], further improved this line of work with a new analysis.
Additionally, a result from Peikert and Pepin [44] tightly proves the hardness
of M-LWE over a number field K of degree n and with rank d assuming the
hardness of R-LWE over any one of a class of number field extensions K ′/K
with extension degree d = [K ′ : K]. Instead of showing a modulus-rank trade-off
as in [1], they provide a degree-rank trade-off, where the underlying ring struc-
ture is changed, while preserving the modulus q. Note that, in contrast to [1],
their reduction allows for an arbitrary large uniform secret.

Small Distributions Hardness. The work of this paper focuses on the hard-
ness of M-LWE when the secret and error distributions deviate from the orig-
inal formulation. The first result in this line of work was due to [24], which
extended the reduction by Applebaum et al. [5] to modules. In particular, com-
bined with their main proof of hardness, it can be used to obtain the hard-
ness of M-LWEn,d,m,q,DR∨,α

with secrets drawn from DdR∨,α. As observed in
Lemma 4.5, this is at the expense of using m′ ≥ d M-LWE samples to construct
the transformation.

Section 3 provides proofs of hardness for M-LWE with small bounded secret,
in both the search (Section 3.1) and decision (Section 3.2) variants. As discussed,
they generalize the approaches by Goldwasser et al. [21] and by Brakerski et
al. [17] respectively, which are the analog results for LWE. The prior version
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from [12] can be used to derive the classical hardness of M-LWE, meaning that
if one has a classical solver for M-LWE, then it can also construct a classical
solver for worst-case module lattice problems. This removes the need for quan-
tum algorithms in the reduction of [24], with the caveat of introducing further
restrictions on the parameters. More precisely, the result of our previously pub-
lished work [12] proves the classical hardness of M-LWE. It yields a classical re-
duction from Mod-GapSVPγ in module lattices of rank nk to M-LWEn,d,m,p,Ψ≤α

,
where d ≥ k2n/2 +Ω(log2 n).

Another line of work studied by Brakerski and Döttling for LWE [14] and
R-LWE [15] was recently extended to M-LWE by Lin et al. [26]. It looks at the
hardness of the problem when the only requirement on the secret distribution
is to contain a sufficient entropy. Although [15] cannot be instantiated for η-
bounded secret with η being a small constant, the result by [26] on M-LWE
can with certain restrictions. In particular, the entropy condition in this specific
instantiation becomes a condition on the module ranks d and k that is similar
to ours, i.e., d log2(2η + 1) ≳ k log2 q. This does not come as a surprise as the
proof relies more or less on the same lossy argument as ours.

Finally, prior to our work, no result was formally known about the hardness
of M-LWE with unusually small uniform error. We once again stress that the
rank d, number of samples m and error bound η must be cautiously chosen with
respect to one another for Theorem 4.1 to apply. As mentioned, the algebraic
attacks, e.g. [6], on this variant do not depend on the underlying structure and
therefore apply for LWE as well as M-LWE. When the number of samples m
covered by the proof of hardness is sufficiently larger than the rank d, the Hermite
Normal Form transform from Lemma 4.5 can be used to derive the hardness
of M-LWE with uniform η-bounded secret and error. This regime would give
strong hardness guarantees for practical schemes, provided that the number of
available samples is sufficient once again.

Summary. We summarize the results and the achieved parameters when clear
in Table 5. The achievable rank d depends on the secret distribution (for [26],
Sections 3.1 and 3.2) or on the error size (for Section 4).
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[24] [12] [26] Sec. 3.1 Sec. 3.2 Sec. 4
(quantum) (classical)

Field K of
degree n

Cyclo Cyclo All Monogenic Cyclo All

Rank d All Ω(n) (Depends) Ω(log2 n) ω(log2 n) All1

Modulus q All (S) Prime (S) All (S) Prime Prime, number-
FSP (D) FSP (D) IP (D) theoretic cond.

Secret s
Mod q Mod q Entropic η-bounded η-bounded Mod q

Gaussian2 η-bounded2

Error e Gaussian Gaussian Gaussian Gaussian Gaussian η-bounded

Variant S/D S/D S(/D3) S S4/D S

Table 5.1. Summary of the results on the hardness of the M-LWE problem.
FSP stands for Fully Splitted Prime, IP for Inert Prime, and S denotes the
search version, while D denotes the decision version. By abuse of language, we
call monogenic the number fields K = Q(ζ) for which R = Z[ζ]. Note that
rigorously, a monogenic number field is K = Q(ζ) for which R = Z[ζ′] for a
possibly different ζ′.

1 Low ranks can be achieve at the expense of a larger η. However, one can still
reach log2 n ranks (instead of Ω(log2 q) + ω(log2 n)) for constant values of η.

2 Obtained by the Hermite Normal Form transformation reduction from [24].
3 The hardness proof for the decision version of M-LWE requires q to be an

inert prime. This is a very restrictive condition as certain number fields do
not contain any inert primes. For example, there exist inert primes in the ν-th
cyclotomic field if and only if ν is 2, 4 or 2bpk for b ∈ {0, 1} and p an odd
prime. Then, (almost) all power-of-two cyclotomic fields do not contain inert
primes.

4 The hardness of the search version is obtained from the decision version
through a trivial reduction.
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Appendix A Singularity of Uniform Matrices

In this section, K denotes an arbitrary number field and R its ring of integers.
Throughout the entire section, q is an prime integer that does not ramify in R
and that splits as qR =

∏
i∈[κ] pi, where κ ≤ n = [K : Q]. We still use Rq to

define R/qR and we also define Fi = R/pi for each i ∈ [κ]. We recall that for
each i ∈ [κ], Fi is a finite field of size N(pi), see e.g. [31, Sec. 2.5.3].

We prove several results on the probability that a uniformly random ma-
trix A ∈ Rd×dq is invertible in Rq. For a ring A and an integer d, we denote
by GLd(A) the set of matrices of Ad×d that are invertible in A. We note that
such results were provided in [56]. However, the proofs were based on a flawed
argument which was that a vector of Rdq which is linearly independent (with
itself) must contain a coefficient in R×q . This is not the case as a vector of Rdq
consisting only of zero divisors can still be linearly independent. We give more
details in Section A.2. We also provide new corrected proofs for their results
which essentially rely on analyzing each residue modulo pi.

A.1 Preliminaries

The ringRq is a finite commutative ring. As such, an element ofRq is either a unit
or a zero divisor. We denote the set of units by R×q , and the set of zero divisors
by Z(Rq) = {r ∈ Rq : ∃s ∈ Rq\{0}, rs = 0 mod qR}. By the Chinese Remainder
Theorem [30, Lem. 2.12], there exists an isomorphism θ between Rq and ⊕i∈[κ]Fi
such that for all r ∈ R, θ(r mod qR) = (r mod p1, . . . , r mod pκ). Note that
the direct sum ⊕i∈[κ]Fi is here canonically isomorphic to the direct product,
which also corresponds to the Cartesian product ×i∈[κ]Fi with coordinate-wise
operations. We thus identify the elements in the range of θ as vectors. Also, R×q
is isomorphic to ⊕i∈[κ]F×i = ⊕i∈[κ]Fi \ {0}.

In what follows, we consider vectors and matrices over Rq. Since Rq is not
a field, we cannot use regular linear algebra results. Instead we use results from
module theory to obtain similar results over Rq. Although many of the following
may be folklore for the reader who is familiar with module theory, we provide
proofs for completeness. First, we give a characterization of invertible matrices
in Rq using the determinant.

Lemma A.1. Let A ∈ Rd×dq . Then: A ∈ GLd(Rq)⇔ detA ∈ R×q .

Proof. Assume A ∈ GLd(Rq). Then, there exists B ∈ Rd×dq such that AB =
BA = Id. Then (detA)(detB) = detAB = det Id = 1. Hence, detA ∈ R×q .
Reciprocally, assume that detA ∈ R×q . Since Rq is a commutative ring, we have

Com(A)T ·A = A · Com(A)T = (detA)Id,

where Com(A) is the comatrix of A. Since detA ∈ R×q , it holds that

(detA)−1Com(A)T ·A = A · (detA)−1Com(A)T = Id,

thus proving that A ∈ GLd(Rq).
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We recall that k vectors (a1, . . . ,ak) of Rdq are Rq-linearly independent if and
only if for all (λ1, . . . , λk) ∈ Rkq , if

∑
j∈[k] λjaj = 0 mod qR, then λj = 0 mod qR

for all j ∈ [k]. We first show that Rq-linear independence can be analyzed from
the Fi-linear independence of the residues.

Lemma A.2. Let a1, . . . ,aℓ be vectors of Rdq . Then (a1, . . . ,aℓ) are Rq-linearly
independent if and only if for all i ∈ [κ], (a1 mod pi, . . . ,aℓ mod pi) are Fi-
linearly independent.

Proof. We extend the CRT isomorphism θ to vectors coefficient-wise. For j ∈ [ℓ]

and i ∈ [κ], we denote aj mod pi by a
(i)
j for clarity.

First, assume that for all i ∈ [κ], (a(i)1 , . . . ,a
(i)
ℓ ) are Fi-linearly independent.

Let (λ1, . . . , λℓ) be in Rℓq such that
∑
j∈[ℓ] λjaj = 0 mod qR. By applying θ, we

have that for all i ∈ [κ] ∑
j∈[ℓ]

(λj mod pi)a
(i)
j = 0 mod pi.

By assumption, it gives that for all j ∈ [ℓ] and all i ∈ [κ], λj mod pi = 0. Then,
for all j ∈ [ℓ], it holds

λj = θ−1(λj mod p1, . . . , λj mod pκ) = θ−1(0, . . . , 0) = 0,

where the equalities are in Rq. Hence, (a1, . . . ,aℓ) are Rq-linearly independent.
Reciprocally, assume that (a1, . . . ,aℓ) areRq-linearly independent. Let i ∈ [κ]

and let (µ1, . . . , µℓ) be in Fℓi such that
∑
j∈[ℓ] µja

(i)
j = 0 mod pi. For each j ∈ [ℓ],

define λj = θ−1(0, . . . , 0, µj , 0, . . . , 0), where µj is at position i. Then,

θ

∑
j∈[ℓ]

λjaj

 =

0, . . . ,0,
∑
j∈[ℓ]

µja
(i)
j ,0, . . . ,0

 = (0, . . . ,0).

Hence,
∑
j∈[ℓ] λjaj = 0 mod qR and by assumption, it holds that λj = 0 mod qR

for all j ∈ [ℓ]. As a result, it gives that µj = 0 mod pi for all j ∈ [ℓ], thus proving
that (a

(i)
1 , . . . ,a

(i)
ℓ ) are Fi-linearly independent. Being valid for all i ∈ [κ], it

yields the claim.

We can now prove that a square matrix is invertible if and only if its columns
are Rq-linearly independent, as claimed in [56, Lem. 18]. The following can be
used to show that if ℓ > d, then ℓ vectors of Rdq cannot be Rq-linearly indepen-
dent.

Lemma A.3. Let A = [a1| . . . |ad] be in Rd×dq . It then holds that A ∈ GLd(Rq)
if and only if (a1, . . . ,ad) are Rq-linearly independent.

Proof. First, by contraposition, assume that (a1, . . . ,ad) are not Rq-linearly in-
dependent. Hence, there exists (λ1, . . . , λd) ∈ Rdq \ {0} such that

∑
j∈[d] λjaj =
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0 mod qR. There exists some j0 ∈ [d] such that λj0 ̸= 0 mod qR. We then have

λj0 · detA = det ([a1| . . . |aj0−1|λj0aj0 |aj0+1| . . . |ad])

= det

a1| . . . |aj0−1|λj0aj0 + ∑
j∈[d]\{j0}

λjaj |aj0+1| . . . |ad


= det ([a1| . . . |aj0−1|0|aj0+1| . . . |ad])
= 0 mod qR.

This proves that detA ∈ Z(Rq) and thus detA /∈ R×q . By Lemma A.1, it holds
that A /∈ GLd(Rq).

Now assume that (a1, . . . ,ad) are Rq-linearly independent. Then, Lemma A.2
yields that for all i ∈ [κ], (a1 mod pi, . . . ,ad mod pi) are Fi-linearly independent.
Let i be in [κ]. Since Fi is a field and that (a1 mod pi, . . . ,ad mod pi) are Fi-
linearly independent, then the matrix A mod pi is in GLd(Fi). Hence detA ̸=
0 mod pi, which proves that (detA) mod pi ∈ F×i . Being valid for all i ∈ [κ], the
Chinese Remainder Theorem yields detA ∈ R×q . Hence, by Lemma A.1, A ∈
GLd(Rq).

A.2 Linear Independence in Uniform Matrices − Lemma 2.5

As a warm-up for proving Lemma 2.5, we first analyze the probability that a
random vector of Rdq is Rq-linearly independent. The formula given in footnote 9
of [56] provides only a lower bound. This formula relies on the flawed observation
that a vector is Rq-linearly independent if and only if it contains a coefficient
in R×q . The argument provided for this claim is as follows. If a = [a1| . . . |ad]T ∈
Z(Rq)

d, then there exist y1, . . . , yd ∈ (Rq \{0})d such that ai ·yi = 0 mod qR for
all i ∈ [d]. Then, by defining λ =

∏
i∈[d] yi, we get λa = 0 mod qR. However, the

authors claim at this point that λ ̸= 0 mod qR, which has no reason to be the
case. We provide the following lemma to show the contrary, as well as a concrete
counterexample that satisfies the conditions of the lemma.

Lemma A.4. Let K be a number field, and R its ring of integers. Let q be a
prime integer that is not inert5 in R. Let r, s be elements of R such that r mod
qR ∈ Z(Rq), s mod qR ∈ Z(Rq) and ⟨r⟩ + ⟨s⟩ = R. Then, the vector [r mod
qR, s mod qR]T ∈ Z(Rq)2 is Rq-linearly independent.

Proof. By assumption, r and s are coprime and therefore there exists u, v in R
such that u·r+v·s = 1. Hence (u mod qR)(r mod qR)+(v mod qR)(s mod qR) =
1 mod qR. Define x = [r mod qR, s mod qR]T . By assumption x ∈ Z(Rq)

2.
Let λ ∈ Rq be such that λx = 0 mod qR. It implies that λ(r mod qR) =

5 If q is inert, then Rq is a field, and therefore Z(Rq) = {0}, meaning that there does
not exist r, s satisfying the conditions.
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0 mod qR and λ(s mod qR) = 0 mod qR. As a result, it holds

λ = λ · ((u mod qR)(r mod qR) + (v mod qR)(s mod qR)) mod qR

= (u mod qR) · λ(r mod qR) + (v mod qR) · λ(s mod qR)

= 0 mod qR

It thus proves that the only common annihilator of r mod qR and s mod qR is 0,
which in other terms means x is Rq-linearly independent.

The conditions of the previous lemma can easily be met. As a concrete ex-
ample, in the cyclotomic field of conductor ν = 256, for q = 257, one can check
that the elements r = ζ + 3 and s = ζ + 6 verify the conditions of the above
lemma. Such counterexamples can easily be found by enumerating the first few
zero divisors, or by sampling a few zero divisors at random.

We then recall the following lemma which we need to prove Lemma 2.5. We
provide a proof for completeness.

Lemma A.5. Let r be a random variable that is uniformly distributed over Rq.
Then, the random variables (r mod pi)i∈[κ] are independent and uniformly dis-
tributed over their respective support Fi.

Proof. Denote by r = θ(r), which is the random vector composed of the r mod pi.
Since θ is an isomorphism, it holds that r ∼ U(⊕i∈[κ]Fi). Let s be the random
vector over ⊕i∈[κ]Fi such that the coordinates are independent and uniform over
each Fi respectively. Let r′ ∈ ⊕i∈[κ]Fi. It holds

Pr[r = r′] = q−n =
∏
i∈[κ]

N(pi)
−1 =

∏
i∈[κ]

Psi [si = r′i] = Ps[s = r′].

This proves that r and s are identical random vectors, which yields that the
coordinates of r are independent and uniform over each Fi.

We now focus on proving Lemma 2.5, where the first part was claimed in [56,
Lem. 9]. First, we note that we cannot naively use the analysis over residues to
obtain a proof of [56, Lem. 19]. The latter argues that if (a1, . . . ,aℓ) ∈ (Rdq)

ℓ

are Rq-l. i. with ℓ ≤ d, then one can always extract a submatrix in GLℓ(Rq) by
selecting some subset of the rows. However, this is not generally true for such
matrices over Rq. This is due to the fact that a minimal spanning set of an Rq-
submodule of Rdq is not necessarily a basis of said submodule. When analyzing
the problem in the residues, we will obtain submatrices in GLℓ(Fi). But it is
not guaranteed that these submatrices correspond to the same subsets of rows,
in which case we cannot re-combine the residues. We show that we do not need
this fact to prove Lemma 2.5. For convenience, we now abbreviate “Rq-linearly
independent” by “Rq-l. i.”.

Proof (of Lemma 2.5). By Lemma A.2 and A.5, we can analyze the residues and
first determine Pb(i)∼U(Fd

i )
[(a1 mod pi, . . . ,aℓ mod pi,b

(i)) are Fi-l. i.] for each
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i ∈ [κ] individually. Let i be in [κ]. Since (a1, . . . ,aℓ) are Rq-linearly independent,
then again the residues (a1 mod pi, . . . ,aℓ mod pi) are Fi-linearly independent
by Lemma A.2. It yields that two linear combinations of (a1 mod pi, . . . ,aℓ mod

pi) that are equal must have equal coefficients. Hence, there are |Fi|ℓ distinct
linear combinations of the (a1 mod pi, . . . ,aℓ mod pi).

As a result, if we denote by Si the set of b(i) ∈ Fdi that are not in the Fi-span
of (a1 mod pi, . . . ,aℓ mod pi), we have |Si| = |Fi|d−|Fi|ℓ. Note that when ℓ = 0,
there are |Fi|0 = 1 vectors in the span of 0. In this case, we obtain |Si| = |Fi|d−1
which is coherent with the previous formula. Since we work over a field Fi, and
thus a vector space, if b(i) is in Si, then (a1 mod pi, . . . ,aℓ mod pi,b

(i)) are Fi-
linearly independent (which is not necessarily true in a module). It then yields

Pb(i)∼U(Fd
i )
[(a1 mod pi, . . . ,aℓ mod pi,b

(i)) are Fi-l. i.] = Pb(i)∼U(Fd
i )
[b(i) ∈ Si]

=
|Si|
|Fi|d

= 1− 1

N(pi)d−ℓ
.

By combining the residues, we obtain

Pb∼U(Rd
q )
[(a1, . . . ,aℓ,b) are Rq-l. i.] =

∏
i∈[κ]

(
1− 1

N(pi)d−ℓ

)
. (8)

We note that we can still prove the relaxed lower bound claimed in [56]. Since all
the prime ideal factors pi are above q, we have N(pi) = qfi ≥ q for some fi ≥ 1.
It yields ∏

i∈[κ]

(
1− 1

N(pi)d−ℓ

)
≥
(
1− 1

qd−ℓ

)κ
≥ 1− κ

qd−ℓ
≥ 1− κ

q
,

where the second inequality holds by the Bernoulli inequality, and the last follows
from the fact that d−ℓ ≥ 1. Since κ is at most the degree n of the number fieldK,
we can lower bound the probability by 1− n/q.

Finally, let us prove the last formula. Fix ℓ ∈ {1, . . . , k − 1}. We study the
following probability

P(aj)j∈[ℓ+1]∼U(Rd
q )

ℓ+1 [(aj)j∈[ℓ+1] are Rq-l. i.].

It can be decomposed by the total probability formula as∑
(āj)j∈[ℓ]

P(aj)j∈[ℓ]
[(aj)j∈[ℓ] = (āj)j∈[ℓ]] · Paℓ+1

[((āj)j∈[ℓ],aℓ+1) are Rq-l. i.].

Note that if the summands (āj)j are not Rq-linearly independent, it directly
gives that ((āj)j∈[ℓ],aℓ+1) cannot beRq-linearly independent and that the second
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probability is therefore 0. Hence, we consider the sum over the (āj)j that are Rq-
linearly independent. By the first formula, the second probability over aℓ+1 is
given by

∏
i∈[κ](1 − 1/N(pi)

d−ℓ). As it does not depend on the summand, we
have that the probability is exactly

P(aj)j∈[ℓ]∼U(Rd
q )

ℓ [(aj)j∈[ℓ] are Rq-l. i.] ·
∏
i∈[κ]

(
1− 1

N(pi)d−ℓ

)
.

Using Equation (8) with ℓ = 0 for initialization, induction on ℓ then yields

P(ai)i∈[k]∼U(Rd
q )

k

[
(ai)i∈[k] are Rq-l. i.

]
=

k−1∏
ℓ=0

∏
i∈[κ]

(
1− 1

N(pi)d−ℓ

)
,

as desired.

We note that the number of columns is k ≤ d. Additionally, in Rq we still
have the fact that a linearly independent family of vectors of Rdq cannot contain
more that d vectors. As a result, when k > d, we have to analyze the following
probability

P(ai)i∈[k]∼U(Rd
q )

k [∃S ⊆ [k], |S| = d ∧ (ai)i∈S are Rq-l. i.]

As explained, even if there exists subsets Si ⊆ [k] with |Si| = d and (aj mod
pi)j∈Si are Fi-l. i., there is no guarantee that all the Si are equal.

A.3 Singularity of Uniform Matrices − Lemma 2.6

In this section, we can show that the equality of the Si is not necessary to
guarantee that the columns form a spanning set of Rdq .

Proof (of Lemma 2.6). We prove the lower bound by inclusion of events. Let A =
[a1| . . . |am] ∈ Rd×mq be such that

∀i ∈ [κ],∃Si ⊆ [m], |Si| = d ∧ (aj mod pi)j∈Si
are Fi-l. i.. (9)

We show that this guarantees that A · Rmq = Rdq . Consider the CRT basis
λ1, . . . , λκ defined by λi = θ−1(ei) where (e1, . . . , eκ) is the canonical basis
of ⊕i∈[κ]Fi. We index each set Si as Si = {j(i)1 , . . . , j

(i)
d }. We then construct the

vectors bℓ =
∑
i∈[κ] λiaj(i)ℓ

for all ℓ ∈ [d]. We now prove that (bℓ)ℓ∈[d] are Rq-

linearly independent. Let (µℓ)ℓ∈[d] ∈ Rdq be such that
∑
ℓ∈[d] µℓbℓ = 0 mod qR.

Let i∗ ∈ [κ]. It holds that

0 =
∑
ℓ∈[d]

(µℓ mod pi∗)(bℓ mod pi∗) =
∑
ℓ∈[d]

(µℓ mod pi∗)(aj(i
∗)

ℓ

mod pi∗),
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where the equality is over Fi∗ . The last equality follows from the construction
of the bℓ as bℓ mod pi∗ =

∑
i∈[κ] δi,i∗(aj(i)ℓ

mod pi∗) = a
j
(i∗)
ℓ

mod pi∗ . By def-
inition of Si∗ , the (a

j
(i∗)
ℓ

mod pi∗)ℓ∈[d] are Fi∗ -linearly independent and there-
fore µℓ mod pi∗ = 0. Being true for all i∗, it proves by Lemma A.2 that (bℓ)ℓ∈[d]
are Rq-linearly independent.

We can then write B = [b1| . . . |bd] = AC ∈ Rd×dq where the matrix C ∈
Rm×dq is composed of the λi at the correct positions. More precisely, the ℓ-th
column of C is

∑
i∈[κ] λie

′
j
(i)
ℓ

∈ Rmq , where the e′1, . . . , e′m represent the canonical
basis of Rmq . By Lemma A.3, since the columns of B are Rq-linearly independent,
then B ∈ GLd(Rq). Hence, for all y ∈ Rdq , there exists x′ ∈ Rdq such that Bx′ =
y mod qR. By defining x = Cx′ ∈ Rmq , we have Ax = y mod qR. This proves
that A ·Rmq = Rdq .

As a result, for any matrix A verifying (9), it holds that A · Rmq = Rdq . By
inclusion of events, we have

PA∼U(Rd×m
q )[A ·R

m
q = Rdq ]

≥ PA∼U(Rd×m
q )[∀i ∈ [κ],∃Si ⊆ [m], |Si| = d ∧ (aj mod pi)j∈Si are Fi-l. i.].

We now evaluate the right-hand side. By Lemma A.5, the latter probability
equals∏

i∈κ
PA(i)∼U(Fd×m

i )[∃Si ⊆ [m], |Si| = d ∧ (a
(i)
j mod pi)j∈Si

are Fi-l. i.]

Let i ∈ [κ]. Since Fi is a field, we have the following

PA(i)∼U(Fd×m
i )[∃Si ⊆ [m], |Si| = d ∧ (a

(i)
j mod pi)j∈Si are Fi-l. i.]

= PA(i)∼U(Fd×m
i )[Column-Rank(A(i)) = d]

= PA(i)∼U(Fd×m
i )[Row-Rank(A(i)) = d]

= P(a′
i)i∈[d]∼U(Fm

i )d [(a
′
i)i∈[d] are Fi-l. i.].

=
d−1∏
ℓ=0

(
1− 1

N(pi)m−ℓ

)
,

where the last inequality is the special case of Lemma 2.5 over the residue field Fi.
Combining it all yields

PA∼U(Rd×m
q )[A ·R

m
q = Rdq ] ≥

d−1∏
ℓ=0

∏
i∈[κ]

(
1− 1

N(pi)m−ℓ

)
.

61



Appendix B Missing Proofs

B.1 Missing Proofs of Section 2

Lemma 2.1.

Proof. The lower bound is due to the fact that every non-zero element x of R
has algebraic norm N(x) ≥ 1, which implies that ∥σ(x)∥∞ ≥ 1. Let x be in Sη,
and i ∈ [n]. Then, it holds that

|σi(x)| ≤
n−1∑
j=0

∣∣τj(x)σi(ζ)j∣∣ = n−1∑
j=0

|τj(x)||αi|j

≤ ∥τ(x)∥1∥V∥max ≤ nη∥V∥max.

Taking the maximum over all i ∈ [n] and x ∈ Sη yields Bη ≤ nη∥V∥max. In
the case of cyclotomic fields, the αi are roots of unity and therefore, all the
entries of V have magnitude 1. Hence ∥V∥max = 1 which yields Bη ≤ nη in this
case.

Lemma 2.2.

Proof. Let f = xn +
∑n−1
k=0 fkx

k denote the minimal polynomial of ζ, and K =
Q(ζ). Let C denote the companion matrix of f , as in the lemma statement. It is
well known that the characteristic (and minimal) polynomial of the companion
matrix of f is f itself. This entails that C has the roots of f for eigenval-
ues, which we denote by α1, . . . , αn. Recall that the field embeddings are such
that σi(ζ) = αi for all i ∈ [n]. Since the roots of f are distinct, it means that C
is diagonalizable. More precisely, it holds that C = V−1diag(α1, . . . , αn)V =
V−1diag(σ(ζ))V. Now let x be in K. We have

∀y ∈ K, τ(xy) = V−1σ(xy) = V−1diag(σ(x))σ(y) = V−1diag(σ(x))Vτ(y),

thus proving that Mτ (x) = V−1diag(σ(x))V. We can then rewrite this expres-
sion in terms of the τk and C as follows.

V−1diag(σ(x))V = V−1diag

(
σ1

(
n−1∑
k=0

τk(x)ζ
k

)
, . . . , σn

(
n−1∑
k=0

τk(x)ζ
k

))
V

=

n−1∑
k=0

τk(x)V
−1diag(σ1(ζ)

k, . . . , σn(ζ)
k)V

=

n−1∑
k=0

τk(x)V
−1diag(σ(ζ))kV

=

n−1∑
k=0

τk(x)C
k,

concluding the proof.
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Lemma 2.3.

Proof. For (i, j) in [d] × [m], we define the polynomial function aij(·) : t 7→∑n−1
k=0 τk(aij)t

k. The way aij ∈ K is defined, we have aij = aij(ζ). Lemma 2.2
gives Mτ (aij) =

∑n−1
k=0 τk(aij)C

k = aij(C). Finally, for k ∈ [n], if αk de-
notes σk(ζ), it holds that aij(αk) = σk(aij). We then define the function over
complex matrices by A(t) = [aij(t)](i,j) for all t. By the prior observations, we
get that A = A(ζ), Mτ (A) = A(C), and A(αk) = σk(A).

Consider B(t) = A(t)†A(t). The same reasoning holds for A(t)A(t)†. First, no-
tice that C is diagonalizable with eigenvalues α1, . . . , αn, as its minimal polyno-
mial is the minimal polynomial of ζ. [49] then states that B(C) is diagonalizable
if and only if the n matrices B(αk) are diagonalizable, in which case the spec-
trum (set of eigenvalues) of B(C) is the union of the spectra of the B(αk). By
construction, for every k in [n], B(αk) is Hermitian and therefore diagonaliz-
able. Since the eigenvalues of B(αk) (resp. B(C)) are the square singular values
of A(αk) (resp. A(C)), we directly get that

S(A(C)) =
⋃
k∈[n]

S(A(αk)),

which proves the first equality.
For the third equality, recall that MσH

(A) = (Id ⊗U†H)Mσ(A)(Im ⊗UH).
Since UH is unitary, we have S(MσH

(A)) = S(Mσ(A)). We now prove the
second equality. Recall that Mσ(A) is the block matrix of size nd × nm whose
block (i, j) ∈ [d]×[m] is diag(σ(aij)). The matrix can therefore be seen as a d×m
matrix with blocks of size n×n. The idea is now to permute the rows and columns
ofMσ(A) to end up with a matrix of size n×n with blocks of size d×m only on the
diagonal. For that, we define the following permutation πk of [nk] for any positive
integer k. For all i ∈ [nk], write i − 1 = k

(i)
1 + nk

(i)
2 , with k

(i)
1 ∈ {0, . . . , n − 1}

and k
(i)
2 ∈ {0, . . . , k − 1}. Then, define πk(i) = 1 + k

(i)
2 + k · k(i)1 . This is a

well-defined permutation based on the uniqueness of the Euclidean division. We
can then define the associated permutation matrix Pπk

= [δi,πk(j)](i,j)∈[nk]2 ∈
Rnk×nk. Then, by defining Pπd

and Pπm
as described, it holds that

Pπd
Mσ(A)PT

πm
=

σ1(A)
. . .

σn(A)

 .
Since Pπd

,Pπm
are permutation matrices, they are also unitary and there-

fore S(Mσ(A)) = S(Pπd
Mσ(A)PT

πm
). As Pπd

Mσ(A)PT
πm

is block-diagonal, it
directly holds that S(Pπd

Mσ(A)PT
πm

) = ∪k∈[n]S(σk(A)), thus proving the sec-
ond equality.

Finally, by taking the maximum of the sets involved in the first equality, we
obtain ∥Mτ (A)∥2 = max

k∈[n]
∥σk(A)∥2 as claimed.
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Lemma 2.8. We begin with stating some lemmas that we need for the proof.
The first two bound the Rényi divergence and statistical distance, respectively, if
the second distribution is the uniform distribution over the support of the first.

Lemma B.1. Let P be a probability distribution and Q be the uniform distri-
bution over its support Supp(P ). It holds

RD2(P∥Q) = |Supp(P )| · P[P = P ′],

where P ∼ P ′ are independent and identically distributed.

Proof. By the definition of the Rényi divergence, it yields

RD2(P∥Q) =
∑

x∈Supp(P )

P (x)2

Q(x)
= |Supp(P )| ·

∑
x∈Supp(P )

P (x)2

= |Supp(P )| · P[P = P ′].

The following result has been attributed to Rackoff by Impagliazzo and Zuck-
erman [22].

Lemma B.2 ([22, Claim 2][34, Lem. 4.3]). Let P be a probability distribu-
tion and Q be the uniform distribution over its support Supp(P ). It holds

∆(P,Q) ≤ 1

2

√
|Supp(P )| · P[P = P ′]− 1,

where P ∼ P ′ are independent and identically distributed.

We also adapt [34, Lem. 4.4] from vectors to matrices over a finite ring.

Lemma B.3. Let A be a finite ring and k, d be positive integers. Further, take
an arbitrary vector z = (zj)j∈[d] ∈ Ad. If C ∼ U(Ak×d), then Cz is uniformly
distributed over the module ⟨z1, . . . , zd⟩k. In particular, the probability that Cz =
0 is exactly 1

|⟨z1,...,zd⟩|k
.

Proof. Let z ∈ Ad. For b ∈ Ak we define Tb =
{
C ∈ Ak×d : Cz = b

}
. Notice

that the probability that Cz = b over the uniform random choice of C is ex-
actly |Tb|

|A|k·d . If b /∈ ⟨z1, . . . , zd⟩k , then Tb = ∅ and hence PC∼U(Ak×d)[Cz = b] =

0. We now show that all b ∈ ⟨z1, . . . , zd⟩k have the same probability. Let b be
an arbitrary element of ⟨z1, . . . , zd⟩k, i.e., it can be represented as Cz = b for
some fixed C ∈ Ak×d. It follows that C′ ∈ Tb if and only if C′ −C ∈ T0. Fur-
ther, the mapping C′ 7→ C′−C is a bijection between Tb and T0, which implies
that |Tb| = |T0|. This shows that all b ∈ ⟨z1, . . . , zd⟩k have the same probability,
completing the proof.
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Proof (of Lemma 2.8). Let P be the distribution that samples C ←↩ U(Rk×dq )

and z ←↩ U(Sdη) and outputs (C,Cz) ∈ Rk×dq × Rkq . Let Q be the uniform
distribution over the support of P , i.e., it samples C ←↩ U(Rk×dq ) and s ←↩
U(Rkq ), and outputs (C, s) ∈ Rk×dq ×Rkq . Note that |Supp(P )| = qnk(d+1).

In the following we bound the collision probability of P and then we simply
apply Lemma B.1 and B.2 (with the finite ring Rq) to conclude the proof.

For C,C′ ∼ U(Rk×dq ) and z, z′ ∼ U(Sdη) it yields

P[C = C′ ∧Cz = C′z′] = P[C = C′] · P[Cz = C′z′|C = C′]

=
1

|Rq|k·d
· P[C(z− z′) = 0].

By Lemma B.3 over the random choice of C and the size of the finite ring Rq,
we can further transform this equation to

1

qn·k·d
· P[C(z− z′) = 0] =

1

qnkd
·
∑
I∈I

P
[
⟨z1 − z′1, . . . , zd − z′d⟩k = Ik

]
|I|k

≤ 1

qnkd
·
∑
I∈I

P
[
⟨z1 − z′1, . . . , zd − z′d⟩k ⊆ Ik

]
|I|k

=
1

q(nk)·(d+1)
·
∑
I∈I

qnk

|I|k
·
∏
j∈[d]

P
[
(zj − z′j) ∈ I

]
,

where I denotes the set of all ideals in Rq and we conditioned on the ideal ⟨z1−
z′1, . . . , zk − z′k⟩.

We now specify I. For K = Q(ζ), let f be the minimal polynomial of ζ and
let f =

∏
i∈[κ] fi be its factorization in irreducible polynomials in Zq[x]. As Zq

is a field, Zq[x] is a principal ideal domain. The ideal correspondence theorem
in commutative algebra states that every ideal in Rq corresponds to an ideal
in Zq[x] containing ⟨f⟩. As each ideal in Zq[x] itself is principal, thus of the
form ⟨g⟩ for a polynomial g ∈ Z[x], this is equivalent to g dividing f . Hence, we
know that the ideals of Rq are given by I = {⟨fG⟩ : G ⊆ {1, . . . , κ}}, where we
define fG =

∏
i∈G fi. By convention, we say that the empty set ∅ defines the

constant polynomial f∅ = 1. For any fG, it holds that

P
[
(zj − z′j) ∈ ⟨fG⟩

]
= P

[
zj = z′j mod fG

]
≤ max

z̃
P [zj mod fG = z̃] ≤ 1

(2η + 1)deg(fG)
,

where the maximum is taken over all z̃ ∈ R with deg(z̃) < deg(fG). As explained
in [34], the last inequality follows from the fact that for any fixed value of the
n−deg(fG) highest degree coefficients of z, the map z 7→ z mod fG is a bijection
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between sets of size (2η + 1)deg(fG). We then get

qnk

|⟨fG⟩|k
∏
j∈[d]

P
[
(zj − z′j) ∈ ⟨fG⟩

]
≤ qnk(

qn−deg(fG)
)k ( 1

(2η + 1)deg(fG)

)d

=

(
qk

(2η + 1)d

)deg(fG)

.

Adding up over all ideals we can deduce

∑
⟨fG⟩∈I

qnk

|⟨fG⟩|k
·
∏
j∈[d]

P
[
(zj − z′j) ∈ ⟨fG⟩

]
≤

∑
G⊆{1,...,κ}

(
qk

(2η + 1)d

)deg(fG)

=
∏
i∈[κ]

(
1 +

(
qk

(2η + 1)d

)deg(fi)
)

≤
∏
i∈[κ]

(
1 +

qk

(2η + 1)d

)deg(fi)

=

(
1 +

qk

(2η + 1)d

)n
.

Putting everything together, it holds

P[P = P ′] ≤
(
1 +

qk

(2η + 1)d

)n
q−nk(d+1),

where P ∼ P ′ are independent and identically distributed. Using Lemma B.1
and B.2 together with |Supp(P )| = qnk(d+1) completes the proof.

Lemma 2.13.

Proof. First, we derive the Gaussian tail bound for a single element a. Notice
that ∥MσH

(a)∥2 = ∥Mσ(a)∥2 = ∥diag(σ(a))∥2 = ∥σ(a)∥∞. Let a ∈ I be sampled
from DI,α. Then σH(a) is distributed according to DΛ,α where Λ = σH(I).
So ∥σ(a)∥∞ = ∥UHσH(a)∥∞ ≤ ∥σH(a)∥∞. We briefly explain the last inequality.
For clarity, we define a = σH(a). By decomposing a = [aT1 |aT2 |ãT2 ]T , with a1 ∈
Rt1 and a2, ã2 ∈ Rt2 , a standard calculation gives

UHa =
1√
2

 √2a1a2 − iã2
a2 + iã2

 .
Thus, ∥UHa∥∞ = max{∥a1∥∞, ∥a2 + iã2∥∞/

√
2}. Yet ∥a1∥∞ ≤ ∥a∥∞, and for

all k ∈ [t2], |a2,k + iã2,k|/
√
2 =

√
a22,k + ã22,k/

√
2 ≤ ∥a∥∞. Hence ∥UHa∥∞ ≤
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∥a∥∞. By the second part of [41, Cor. 5.3] for m = 1, z = 1 and c = 0, it holds
that for all t ≥ 0

Pa∼DΛ,α
[∥a∥∞ ≥ αt] ≤ 2n · e−πt

2

.

Note that in the case where c = 0, the restriction of α ≥ ηε(Λ) for some ε ≤
1/(2m + 1) is not necessary, and the calculation of the bound on the probabil-
ity saves a factor of e for that reason. With the observation that ∥σ(a)∥∞ ≤
∥σH(a)∥∞ it holds

Pa∼DI,α
[∥σ(a)∥∞ ≤ αt] ≥ Pa∼DI,α

[∥σH(a)∥∞ ≤ αt] ≥ 1− 2n · e−πt
2

.

Now let N be sampled from Dm×dI,α . Fix any vector x = [xT1 , . . . ,x
T
d ]
T ∈ Cnd,

where each xi ∈ Cn. It holds that ∥Mσ(N)x∥22 =
∑
i∈[m] ∥

∑
j∈[d]Mσ(ni,j)xj∥22.

Yet, for each i ∈ [m], we have∥∥∥∥∥∥
∑
j∈[d]

Mσ(ni,j)xj

∥∥∥∥∥∥
2

≤
∑
j∈[d]

∥Mσ(ni,j)∥2∥xj∥2 ≤
√∑
j∈[d]

∥Mσ(ni,j)∥22
√∑
j∈[d]

∥xj∥22

=

√∑
j∈[d]

∥Mσ(ni,j)∥22∥x∥2.

Using the tail bound that we previously derived, a union bound on (i, j) ∈
[m]× [d] yields the claim.

Lemma 2.14.

Proof. We simply use the definition of the multiplication matrix which yields
that σH(y) =MσH

(U)σH(e). Then, since σH(e) is distributed according toD√S,
a standard fact on multi-dimensional Gaussian distributions gives that σH(y)
is Gaussian with covariance matrix MσH

(U)SMσH
(U)T = Σ. We note that it

still applies in the degenerate case. In particular, the result still holds when S,U
are not full-rank, and also when m > d which automatically results in Σ being
singular.

Lemma 2.15. We need a result on the sum of independent Gaussian distribu-
tions. We therefore extend a result on the sum of a continuous Gaussian and
a discrete one to more general Gaussian distributions. In particular, the lemma
works for two elliptical Gaussians, which we use in the proof of Lemma 2.15.

Lemma B.4 (Adapted from [24, Lem. 2.8] & [47, Claim 3.9]). Let Λ be
an n-dimensional lattice, a ∈ Rn, R,S two positive definite matrices of Rn×n,
and T = R+S. We define U =

(
R−1 + S−1

)−1, and assume that ρ√U−1(Λ
∗) ≤

1+ε for some ε ∈ (0, 1/2). Consider the distribution Y on Rn obtained by adding
a discrete sample from DΛ+a,

√
R and a continuous sample from D√S. Then we

have ∆(Y,D√T) ≤ 2ε.
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Proof (of Lemma B.4). The density function Y is given by

Y (x) =
∑

y∈Λ+a

DΛ+a,
√
R(y)D√S(x− y)

=
1

ρ−a,
√
R(Λ)

√
detS

∑
y∈Λ+a

ρ√R(y)ρ√S(x− y)

=
1

ρ−a,
√
R(Λ)

√
detS

∑
y∈Λ+a

ρ√T(x)ρRT−1x,
√
U(y) [43, Fact 2.1].

=
ρ√T(x)√
detT

·
√
detTρRT−1x,

√
U(Λ)

√
detSρ−a,

√
R(Λ)

= D√T(x) ·
(
√
detR

√
detS/

√
detT)−1ρ̂x′,

√
U(Λ∗)

(
√
detR)−1ρ̂−a,

√
R(Λ∗)

,

where x′ = RT−1x, and f̂ denotes the Fourier transform of f . First notice
that (detR·detS)/ detT = 1/ det(R−1TS−1) = 1/ detU−1. Moreover, recalling
that ρ̂c,√Σ(w) =

√
detΣe−2iπ⟨c,w⟩ρ√Σ−1(w), we get∣∣∣1− (
√
detU)−1ρ̂x′,

√
U(Λ∗)

∣∣∣ ≤ ρ√U−1(Λ
∗ \ {0}) ≤ ε.

For the denominator, we first notice that for two positive semi-definite matri-
ces A and B, if A − B is positive semi-definite, then ρ√A(w) ≥ ρ√B(w) for
all w ∈ Rn. Since U−1−R−1 = S−1 is positive semi-definite, it yields ρ√R−1(Λ

∗\
{0}) ≤ ρ√U−1(Λ

∗ \{0}) ≤ ε. Therefore, using the same method as above, we get∣∣∣1− (
√
detR)−1ρ̂−a,

√
R(Λ∗)

∣∣∣ ≤ ρ√R−1(Λ
∗ \ {0}) ≤ ε.

which leads to

(
√
detR

√
detS/

√
detT)−1ρ̂x′,

√
U(Λ∗)

(
√
detR)−1ρ̂−a,

√
R(Λ∗)

∈
[
1− ε
1 + ε

,
1 + ε

1− ε

]
⊆ [1− 2ε, 1 + 4ε],

assuming that ε < 1/2. We thus end up with
∣∣Y (x)−D√T(x)

∣∣ ≤ 4εD√T(x).
Integration and factor 1/2 of the statistical distance yield the lemma.

We also need another lemma related to the inner product ofKd
R (which results

in an element of KR) between a discrete Gaussian vector and an arbitrary one. In
particular, we use Lemma 2.15 in the proof of Lemma 3.5 in order to decompose a
Gaussian noise into an inner product. It generalizes [47, Cor. 3.10] to the module
case. A specific instance is proven in the proof of [24, Lem. 4.15], which is later
mentioned (without proof) in [50, Lem. 5.5].

Lemma B.5 ([24, Lem. 2.13]). Let r ∈ (R+)n ∩H, z ∈ Kd fixed and e ∈ Kd
R

sampled from D√Σ, where
√
Σ = [δi,jdiag(r)]i,j∈[d] ∈ Rnd×nd. Then ⟨z ,e⟩ =∑

i∈[d] ziei is distributed according to Dr′ with r′j = rj

√∑
i∈[d]|σj(zi)|

2.
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Proof (of Lemma 2.15). Consider h ∈ (KR)
d distributed according to Dr′,...,r′ ,

where r′ is given by r′j = γ/
√∑

i∈[d]|σj(zi)|
2 for j ∈ [n]. Then by Lemma B.5, ⟨z,

h⟩ is distributed as Dγ and therefore ∆(⟨z,v⟩+ e,Dr) = ∆(⟨z,v+h⟩, Dr). Now,
we denote t such that tj =

√
β2 + (r′j)

2 for j ∈ [n]. Note that by assumption

min
j∈[n]

βr′j/tj = (1/β2 +max
j∈[n]

∑
i∈[d]

|σj(zi)|2/γ2)−1/2

= (1/β2 + ∥z∥22,∞/γ
2)−1/2 ≥ ηε(M).

Lemma B.4 therefore applies and yields that v + h is distributed as Dt,...,t,
within statistical distance at most 2ε. By applying once more Lemma B.5 and
noticing that the statistical distance does not increase when applying a func-
tion (here the inner product with z), then we get that ⟨z,v + h⟩ is distributed

as Dr within statistical distance at most 2ε, where rj = tj

√∑
i∈[d]|σj(zi)|

2
=√

β2
∑
i∈[d]|σj(zi)|

2
+ γ2 for j ∈ [n].

B.2 Missing Proofs of Section 3

Lemma 3.4.

Proof. Let O be an oracle for ext-M-LWEℓn,k,m,q,ψ,Z . For each i ∈ {0, . . . , ℓ}, we
denote by Hi the hybrid distribution defined as

(A, [b1, . . . ,bi,ui+1, . . . ,uℓ], [⟨ej ,z⟩]j∈[ℓ]),

where A ∼ U(Rm×kq ), the uj are independent and identically distributed (i.i.d.)
from U((q−1R/R)m), the ej are i.i.d. from ψm, and bj = q−1Asj + ej mod R
for sj i.i.d. from U(Rkq ) for every j ∈ [ℓ]. By definition, we have Adv[O] =
|P[O(Hℓ) = 1]− P[O(H0) = 1]|. The reduction A works as follows.

1. Sample z←↩ U(Z) and get (A,b, ⟨e,z⟩) as input of ext-M-LWE1
n,k,m,q,ψ,Z .

2. Sample i∗ ←↩ U([ℓ]).
3. Sample s1, . . . , si∗−1 ←↩ U(Rkq ), e1, . . . , ei∗−1, ei∗+1, . . . , eℓ ←↩ ψm and fi-

nally ui∗+1, . . . ,uℓ ←↩ U((q−1R/R)m).
4. Compute bj = q−1Asj + ej mod R for all j ∈ [i∗ − 1].
5. Define the hybrid matrix B = [b1, . . . ,bi∗−1,b,ui∗+1, . . . ,uℓ], and the er-

ror matrix E = [e1, . . . , ei∗−1, e, ei∗+1, . . . , eℓ]. Then call the oracle O on
input (A,B,ET z), and return the same output as O.

If b is uniform, then the distribution in 5. is exactlyHi∗−1 whereas if b is M-LWE,
then the distribution is Hi∗ . By a standard hybrid argument, the oracle can dis-
tinguish between the two for some i∗ if it can distinguish between H0 and Hℓ.
So the output is correct over the randomness of i∗. Since i∗ is uniformly chosen
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we have

Adv[A] = |P[A(b M-LWE) = 1]− P[A(b uniform) = 1]|

=

∣∣∣∣∣∣
∑
i∗∈[ℓ]

1

ℓ
P[A(Hi∗) = 1]−

∑
i∗∈[ℓ]

1

ℓ
P[A(Hi∗−1) = 1]

∣∣∣∣∣∣
=

1

ℓ
Adv[O].

B.3 Missing Proofs of Section 4

Lemma 4.1.

Proof. We start by describing the transformation T of [36] to move from M-LWE
to M-ISIS. Given (A,b) ∈ Rm×dq × Rm, where A is uniformly sampled, T first
checks if the rows of A generate Rdq . If not, T returns ⊥. By the quantity de-
fined in Section 2.1, T aborts at this step with probability δ(m, d) (which can
be upper bound from Lemma 2.6). We now condition on A being non-singular.
From A, T computes B ∈ R

m×(m−d)
q whose columns generate the set of vec-

tors x ∈ Rmq that verify ATx = 0 mod qR. T samples U ∈ R
(m−d)×(m−d)
q

uniformly at random such that U is invertible in Rq, and define B′ = BU.
As A is uniform in the set of non-singular matrices, B′ is uniform in the
set of matrices whose rows generate Rm−dq . Again, by definition of δ(·, ·), we
get ∆(B′, U(R

m×(m−d)
q )) ≤ δ(m,m−d). Finally, T computes c = B′

T
b mod qR,

and returns (B′, c).

Assume that there exists an adversary A that attacks the ε′-uninvertibility
of M-ISIS. We construct B that breaks the ε-univertibility of M-LWE by callingA
on the sampled transformed by T . Consider (A,As+ e mod qR), with (s, e)←↩
U(Rdq)×X . We denote E the event {B(A,As+ e+ qR) = (s, e)}. Then

P[E] = P[A non-singular]P[E|A non-singular] + P[A singular]P[E|A singular]︸ ︷︷ ︸
0 (abort)

= (1− δ(m, d))P[A(B′, c) = e|A non-singular]
> (1− δ(m, d)) · (ε′ − δ(m,m− d))
= ε.

Indeed, by the transformation, we have

(B′)Tb mod qR = (B′)TAs+ (B′)Te mod qR

= (ATB′ mod qR)T s+ (B′)Te mod qR

= (B′)Te mod qR.
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Then, B uses linear algebra to recover s from b− e. The proof for one-wayness
is the same where E = {gA(B(A,As+e mod qR)) = As+e mod qR} (recalling
that gA(s, e) = As + e mod qR). For the pseudorandomness, we define E =
{B(A,b uniform) = 1}, E′ = {B(A,b = As + e mod qR) = 1}, and F the
event {A non singular}. It then holds that

|P[E]− P[E′]|
= P[A non-singular] · |P[E|A non-singular]− P[E′|A non singular]|
= (1− δ(m, d))

∣∣P[A(B′, c uniform) = 1|F ]− P[A(B′, (B′)Te mod qR) = 1|F ]
∣∣

> (1− δ(m, d)) · (ε′ − 2δ(m,m− d))
= ε,

concluding the proof.

Lemma 4.2.

Proof. The transformation T now works as follows. Given (B, c) ∈ Rm×(m−d)q ×
Rm−d with B uniformly distributed, T checks whether the rows of B gener-
ate Rm−dq . If not, it aborts, and that with probability δ(m,m − d). Condition-
ing on B being non-singular, T computes A ∈ Rm×dq that generate {x ∈ Rmq :
BTx = 0 mod qR}. The transformation then randomizes A by a random ma-
trix U ∈ Rd×dq that is invertible in Rq to obtain A′ = AU. Similarly as in
the previous proof, ∆(A′, U(Rm×dq )) ≤ δ(m, d). Then, T finds a vector b such
that BTb = c mod qR, and returns (A′,b). Note that if c = BTe mod qR for
some e←↩ X , then b−e is in the span of the columns of A′ and therefore, there
exists s ∈ Rdq such that b−e = A′s mod qR. If c is uniform, we can argue that b
is also uniform. Using the same calculations as before, we get that

Adv[B] > (1− δ(m,m− d)) · (ε′ − δ(m, d)) = ε,

where Adv[B] denotes the probability of breaking uninvertibility or one-wayness,
or the absolute difference of probability in the case of pseudorandomness.

Lemma 4.5.

Proof. Consider the distribution D supported over Rdq × Rq that is either As,ψ

or U(Rdq ×Rq).
Construction: Sample independently ((ai, bi))i∈[m′] from D. In both cases, the
first component is uniformly distributed over Rdq . If there is no subset S ⊆ [m′] of
size d such that the (ai)i∈S are Rq-linearly independent, the reduction aborts. By
the quantity defined in Section 2.1, this happens with probability δ′(m′, d). So
now, we assume that there exists a set S ⊆ [m′] of size d such that the (ai)i∈S
are Rq-linearly independent. Consider the matrix A ∈ Rd×dq whose rows are
the (aTi )i∈S , and b ∈ Rdq whose coefficients are the (bi)i∈S . By construction, A
is invertible in Rd×dq . Additionally, if D = As,ψ, then b = As+x mod qR∨ for x
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sampled from ψd. On the other hand, if D = U(Rdq × Rq), then b is uniform
over Rdq .
Reduction: The transformation T works as follows. Given (a, b) sampled from D
as input:

– Compute a′ = −(A)−T · a mod qR;
– Compute b′ = b+ ⟨a′ ,b⟩ mod qR;
– Output (a′, b′).

First, we verify that (a′, b′) indeed belongs to Rdq ×Rq. Since A is invertible
modulo qR, then −(A)−T is in Rd×dq . Therefore, a′ is also in Rdq . Additionally,
as b ∈ Rdq , ⟨a′ ,b⟩ is in R. It thus holds that b′ is in Rq.

As −(A)−T is invertible modulo qR, and a is uniform in Rdq , then a′ is also
uniform in Rdq . Now, we look at the distribution of b′ in both cases. First, assume
that D = As,ψ. Then b = ⟨a,s⟩ + e mod qR for some e ←↩ ψ, and b = As + x
mod qR. It holds that

b′ = ⟨a,s⟩+ e+ ⟨a′ ,As+ x⟩ mod qR

= ⟨a+A
T
a′ ,s⟩+ ⟨a′ ,x⟩+ e mod qR

= ⟨a′ ,x⟩+ e mod qR.

So (a′, b′) is indeed distributed according to Ax,ψ for x ←↩ ψd as desired. Now
assume that D = U(Rdq × Rq). Then b is uniform over Rq and b is uniform
over Rdq . So b′ is clearly uniform over Rq as well, proving that (a′, b′) is uniformly
distributed over Rdq ×Rq as desired.
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