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Abstract. In 2020, Bernard and Roux-Langlois introduced the Twisted-
PHS algorithm to solve Approx-Svp for ideal lattices on any number
field, based on the PHS algorithm by Pellet-Mary, Hanrot and Stehlé.
They performed experiments for prime conductors cyclotomic fields of
degrees at most 70, one of the main bottlenecks being the computation
of a log-S-unit lattice which requires subexponential time.
Our main contribution is to extend these experiments to cyclotomic fields
of degree up to 210 for most conductors m. Building upon new results
from Bernard and Kučera on the Stickelberger ideal, we use explicit
generators to construct full-rank log-S-unit sublattices fulfilling the role
of approximating the full Twisted-PHS lattice. In our best approximate
regime, our results show that the Twisted-PHS algorithm outperforms,
over our experimental range, the CDW algorithm by Cramer, Ducas and
Wesolowski, and sometimes beats its asymptotic volumetric lower bound.
Additionally, we use these explicit Stickelberger generators to remove al-
most all quantum steps in the CDW algorithm, under the mild restriction
that the plus part of the class number verifies h+

m ≤ O(
√
m).

Keywords: Ideal lattices, Approx-SVP, Stickelberger ideal, S-unit at-
tacks, Twisted-PHS algorithm

1 Introduction

The ongoing NIST Post-Quantum Cryptography competition illustrates the im-
portance of the Learning With Errors (Lwe) problem as an intermediate building
block for a wide variety of cryptographic schemes. Most of these cryptographic
schemes rely on a structured version of the Lwe problem allowing for much
more satisfactory performance, compared to schemes based on the unstructured
Lwe problem. The first structured variant of Lwe, later known as the Ring-Lwe
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problem, is shown to be at least as hard as the Approximate Shortest Vector
Problem on ideal lattices (Approx-id-Svp) using quantum worst-case to average-
case reductions [SSTX09,LPR10]. One important matter is to determine whether
using this structured version of Lwe could lower the hardness hypothesis of the
scheme. Notably, an efficient solver for Approx-id-SVP would render the worst-
case to average-case reduction to Ring-Lwe meaningless as a security argument.
Note however that even in this case, this would not directly imply an efficient
solver for the Ring-Lwe problem.

In the case of arbitrary lattices, Approx-Svp is a well-studied hard problem.
It consists in finding relatively short vectors of a given lattice, within an approx-
imation factor of the shortest vector. The best theoretical trade-off between run-
time and approximation factor is known as Schnorr’s hierarchy [Sch87]: one can

reach, for any α ∈ (0, 1), an approximation factor 2Õ(nα) in time 2Õ(n1−α). The
closest known practical algorithm to this trade-off is the BKZ algorithm [SE94],
a generalization of the well-known LLL algorithm [LLL82]. In the particular
case of ideal lattices, i.e., lattices that correspond to ideals of the ring of inte-
gers OK of a number field K, one could hope that the best reduction algorithms
would remain those associated with arbitrary lattices. However, this simplifying
assumption seems questionable, since the underlying number-theoretic struc-
ture is precisely what makes Ring-Lwe a more efficient building block. Thus,
going beyond the BKZ algorithm and estimating the hardness of Approx-id-
Svp using algebraic ideas has gathered more attention, starting by works from
[EHKS14,CGS14,BS16,CDPR16]. Earlier works aimed at the more restricted
case of Approx-id-Svp for principal ideals. A strategy for this case is devised as
a two parts algorithm. The first part requires solving the Principal Ideal Problem
(Pip), i.e., finding any generator of the ideal; the second part aims at finding
the shortest one, by solving a Closest Vector Problem (Cvp) in the so-called
log-unit lattice. This shortest generator is expected to solve Approx-Svp for a
sufficiently small approximation factor. Ultimately, for the particular case of cy-
clotomic fields of prime power conductors, [CDPR16] proved that Approx-id-Svp
on principal ideals is solvable in quantum polynomial time, but only reaching an
approximation factor 2Õ(

√
n).

Subsequent works in a more general case can be divided in two different paths.
The first one [CDW17,CDW21] aimed at extending the results from [CDPR16] to
arbitrary ideal lattices over any cyclotomic fields, while still reaching in quantum
polynomial time an approximation factor 2Õ(

√
n). One of their contributions is

to reduce the arbitrary ideal case to the principal ideal case by solving the Close
Principal Multiple Problem (Cpmp): given an ideal b, one computes an ideal c
of small algebraic norm s.t. bc is a principal ideal. In order to ensure that c
has a small norm, a new key technical ingredient, specific to cyclotomic fields,
was the use of the Stickelberger lattice, which has good geometric properties.
Then, the results from [CDPR16] are applied to bc to obtain a candidate short
element of b, using the fact that c has a small norm. The concrete consequences
of this method were experimented in [DPW19], under different regimes which
mainly differ upon which Cvp solver is used. The first regime (called “Naive”)
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uses Babai’s Nearest Plane algorithm, whereas the second regime uses a heuris-
tic Cvp algorithm relatively to ad hoc pseudo-norms. From these experiments,
the asymptotic performance of those decoding algorithms was estimated, which
led to simulated approximation factors reached by the CDW algorithm. Finally,
given experimentally verified constants, a volumetric lower bound was derived for
the approximation factors that could be reached in the best scenario. Accord-
ing to this lower bound, the CDW algorithm is expected to beat the BKZ300

algorithm for cyclotomic fields of degrees at least larger than 7000. Since NIST
submissions based on structured lattices rely on cyclotomic fields of degree at
most 1024, this could be perceived as somewhat reassuring.

The second path is explored in [PHS19,BR20]. Those works, applying to ar-
bitrary number fields, replace the two reductions steps from [CDW21] with a
single Cvp instance, so as to find a principal multiple ideal which is not only of
small algebraic norm, but is also generated by a small element. A key ingredient
achieving this is to use a generalization of the units of OK , called S-units; this
formalism was an underlying feature of [PHS19] and was later made explicit in
[BR20]. The PHS algorithm splits into a preprocessing phase and a query phase.
The preprocessing phase consists in preparing the decoding of a particular lattice
depending only on the number field K, via the computation of a hint following
Laarhoven’s Cvp with preprocessing algorithm [Laa16], which takes exponential
time. Then, any Approx-id-Svp instance in K can be interpreted as an Approx-
Cvp instance in this lattice, efficiently solved thanks to the hint. Up to the pre-
processing, the query phase yields new time/quality trade-offs: as in [CDW21]
for cyclotomic fields, it reaches approximation factor 2Õ(

√
n) in quantum poly-

nomial time; however, the PHS algorithm also allows for better trade-offs than
Schnorr’s hierarchy, from polynomial to 2Õ(

√
n) approximation factors. On the

downside, the computation of the lattice itself takes classically subexponential
time, which is a serious obstacle for studying their geometry and obtaining con-
crete asymptotic estimations as was done in [DPW19] for the CDW algorithm.

Then, [BR20] introduced Twisted-PHS, a “Twisted” version of the PHS algo-
rithm whose main difference lies in a fundamental modification of the underlying
lattice, thanks to a natural normalization coming from the Product Formula. The
problem of finding a short vector is expected to be better encoded within this new
lattice, ultimately leading to smaller outputs. Even though the proven trade-offs
between runtime and approximation factor remain the same for the Twisted-PHS
algorithm as for the PHS algorithm, very significant improvements have been
experimentally illustrated in [BR20, Fig. 5.3], showing much better approxima-
tion factors compared to the PHS algorithm for number fields of degree up to
60, where Laarhoven’s Cvp algorithm is replaced in practice by Babai’s Nearest
Plane algorithm [Bab86]. These were to our knowledge the first experimental ev-
idence of the geometric peculiarity of normalized log-S-unit lattices and of the
practical potential of this type of attack. In this practical version, experiments
are solely limited by the classical complexity of computing the lattice.

Unfortunately, the attained dimensions, up to 60, are not sufficient to assess
the practical limits of the Twisted-PHS algorithm: its heuristic analysis [BR20]
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Fig. 1.1 – Average of approximation factors using (sublattices of) log-S-unit lat-
tices in cyclotomic fields, over random simulated instances, achieved
by our implementation of Twisted-PHS (our work) as compared to
those achieved by CDW [DPW19], assuming the Gaussian Heuristic
throughout all instances.

could give only a loose upper bound, or miss unexpected performance in practical
dimensions due to its asymptotic nature, even in the cryptographical range.

Our contributions. We develop theoretical and practical improvements re-
garding algorithms for solving Approx-id-Svp, in both lines of work following
the CDW algorithm and the Twisted-PHS algorithm. Even though the hardness
of the Approx-id-Svp does not concretely impact the security of cryptographic
schemes, it is important to get a better understanding of both approaches, which
are the only ones successfully exploiting the structure of a lattice.

Our core ingredient is the introduction of a full-rank family of independent S-
units, whose algebraic properties are proven in §3. In §4, we use this family to
remove most quantum steps of the CDW algorithm, leaving only one step during
a preprocessing phase done once for any given field, and one step for each query.

In §5, this family allows us to achieve experiments on algorithms in the
(Twisted-)PHS family, for most cyclotomic fields of dimension up to 210. By
comparison, previous experiments [DPW19,BR20] only considered cyclotomic
fields of conductors m = p > 2 prime and m = 2e > 2. Our work comes with
an improved implementation of the initial Twisted-PHS algorithm, allowing us
to extend the experiments conducted in [BR20] up to dimension 80 and for all
cyclotomic fields. It also includes different regimes of approximation for this
algorithm, using sublattices of the log-S-unit lattice obtained thanks to our new
construction beyond dimension 80 up to 210. These regimes yield concrete upper
bounds for the approximation factors that could be reached by the full Twisted-
PHS algorithm up to dimension 210, as illustrated in Fig. 1.1:

1. The depicted approximation factors were estimated using the Gaussian Heuris-
tic, matching the exact ones obtained by [BR20] without this hypothesis.
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2. Our best approximate regime yields approximation factors that are compa-
rable (sometimes even smaller) to the asymptotical volumetric lower bound
regime of the CDW algorithm.

In [DPW19], it was already noted that the PHS approach should outperform the
lower bound, but at the cost of computing Laarhoven’s hint in exponential time.
Our work show that for medium dimensions, where asymptotical results should
start to be meaningful, the Twisted-PHS algorithm is at least comparable to the
CDW lower bound, though without this exponential hint precomputation.

As suggested in [BR20], and illustrated in small dimensions, the Twisted-
PHS algorithm performance may be explained by the peculiar geometric nature
of the log-S-unit lattice. In our work, this is confirmed by the computations
of several geometrical parameters on the basis obtained by our implementa-
tion, across all considered cyclotomic fields, sublattices and factor bases. This
specificity, observed in a wide variety of regimes and even in medium dimen-
sions, suggest a deeper explanation, a possibility recently explored by Bernstein
and Lange [BL21]. We provide a full implementation of all our experiments
at https://github.com/ob3rnard/Tw-Sti.

Technical overview. In [BR20], the log-S-unit lattice needed for the prepro-
cessing phase was built using generic number theory tools. Our main idea is to
shortcut this generic computation by considering a maximal family F of inde-
pendent S-units, where S verifies some conditions (detailed in §3), leading to
sublattices of the log-S-unit lattice. The family F is composed of three parts:

1. Circular units, also known as cyclotomic units, e.g. in [Was97, §8];
2. Generators coming from the explicit proof of Stickelberger’s theorem proof;
3. Real S-units coming from the maximal real subfield K+

m of Km, where Km

is the cyclotomic field of conductor m.

The first two parts are classically easy to compute. In particular, the effectiveness
of the second part comes from two recent results of [BK21]: the knowledge of
an explicit short Z-basis of the Stickelberger ideal for any conductor [BK21,
Th. 3.6], and the effective computations of generators corresponding to these
short relations using Jacobi sums [BK21, §5]. On the contrary, the last part still
relies on generic number theory tools which are classically costly, but are now
performed in a number field of half degree, which propels us to degree 210.

As an important theoretical contribution, we prove in Th. 3.11 that F is in-
deed a full-rank family of multiplicatively independent S-units, by computing
explicitly its (finite) index in the full S-unit group. This can be seen as a gener-
alization of the strategy of [CDW17, Def. 2] to obtain a full-rank lattice of class
relations, restricted to the relative class group. In particular, our result proves the
experimentally conjectured value [DPW19, Rem. 3] of the index of their family.

Finally, the index of F contains a large power of 2 that can be removed using
classical 2-saturation techniques of §3.5, leading to a family Fsat. We then use
the explicit knowledge of these special S-units in two different situations.

Theoretical improvements of the CDW algorithm. In §4, we remove almost all
quantum steps of the CDW algorithm while still guaranteeing its approximation
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factor [CDW21, Th. 5.1], at the small price of restricting to cyclotomic fields
s.t. h+m ≤ O(

√
m) (Hyp. B.1), whereas [CDW21, Ass. 2] uses h+m ≤ poly(m),

where h+ denotes the plus part of the class number (defined in §2.2).
For that purpose, we first propose an equivalent rewriting of [CDW21, Alg. 7],

making explicit some hidden steps that are useful for subsequent modifications.
Then, the explicit Stickelberger generators and real S-units are used to remove
the last call to the quantum Pip solver. Finally, considering the module of all
real class group relations allows us to remove the quantum random walk mapping
any ideal of Km into the relative class group. This last part uses our Th. 3.11
and needs Hyp. B.1 to obtain the same bound on the approximation factor.

Only two quantum steps remain: the first is performed once to compute real S-
units in K+

m, of degree only half, the second is for solving the Cldl for each query.

Experimenting the Twisted-PHS algorithm in medium dimensions. We apply
Twisted-PHS [BR20] on our full-rank sublattices of the log-S-unit lattice, yield-
ing approximated regimes of the Twisted-PHS algorithm. Up to degree 210,
for most conductors, the newly implemented algorithm is used to compute the
sublattices associated with F and Fsat, for varying subsets S according to the
number of Galois orbits of totally split primes used. In particular, we explicitly
compute the Stickelberger generators and real generators of F and effectively
perform the 2-saturation of F to get Fsat. Up to degree 80, the whole log-S-unit
lattice is also computed, corresponding to a fundamental system Fsu of S-units.
This last computation of Fsu remains unfeasible at higher dimensions. We eval-
uate the geometry of all these lattices with standard indicators described in
§2.5: the root-Hermite factor δ0, the orthogonality defect δ and the logarithm of
the Gram-Schmidt norms. We consistently observe the same phenomena already
pointed out in [BR20, §5.1 and 5.2], that indicate close to orthogonal lattices.

Next, since computing Cldl solutions for random ideals quickly becomes in-
tractable, we simulate this step by sampling random outputs similarly to what
was done in [DPW19, Hyp. 8]. Given those targets and the preprocessed lat-
tices associated with F, Fsat and Fsu, we evaluate the approximation factors
reached by these different regimes, by assuming the Gaussian Heuristic. These
two assumptions, i.e., using simulated targets and the Gaussian Heuristic, are
validated by the fact that up to degree 80, where it is feasible to compute the
full S-unit group generated by Fsu, our approximation factors match the ex-
act approximation factors obtained in [BR20, Fig. 1.1], where those heuristics
were not used. Finally, we compare our results to the approximation factors
obtained by the CDW algorithm [CDW21] in the “Naive” regime of [DPW19],
under the same working assumptions as above. We observe that in our best ap-
proximate regime, using Fsat, our estimated approximation factors are close, and
sometimes smaller, than the theoretical lower bound derived in [DPW19]. This
suggests that the crossover with BKZ300 could be lower than expected for the
Twisted-PHS algorithm.

Relations to other works related to S-units. Some recent mathematical re-
sults regarding the Stickelberger lattice were established in [BK21]. The authors
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described, for any conductor, an easily computable short basis for this lattice,
and how to explicitly compute the associated principal ideal generators through
Jacobi sums. In our work, this result is brought into fruition to solve Approx-id-
Svp. The completion of this short basis into a full-rank lattice of class relations,
the effective computation of the explicit generators and the 2-saturation of these
elements, yielded the different approximated regimes of Twisted-PHS and al-
lowed us to remove many quantum steps from the CDW algorithm.

In a talk on August 2021 at SIAM Conference,4 Bernstein announced a joint
work with Eisenträger, Rubin, Silverberg and van Vredendaal, by illustrating the
construction of small S-units using Jacobi sums that lead to an “S-unit attack”
in the power-of-2 conductor case up to degree 64, assuming h+2e = 1. The talk
also announced a paper that has yet to appear. In this light, we are not able to
compare our use of explicit Stickelberger generators to their work. However, this
talk does neither mention a short basis of the Stickelberger lattice, which is at
the heart of our work, nor lift all obstructions to apply it to any conductor.

In December 2021, a “filtered-S-unit software” was released by Bernstein,
treating the prime p ≤ 43 conductor case, on a webpage5 describing the “sim-
plest S-unit attack” using a technique described in [BL21]. This work is not re-
lated to our construction. Finally, the authors of [BL21] argued that “spherical
models” should not be applied to log-S-unit lattices, which may have particular
geometric properties. This phenomenon was experimentally observed already in
[BR20], and is confirmed by all of our experiments in medium dimensions.

2 Preliminaries

Notations. For any i, j ∈ Z with i ≤ j, the set of all integers between i and j
is denoted by Ji, jK. For any x ∈ Q, let

{
x
}

denote its fractional part, i.e., such

that 0 ≤
{
x
}
< 1 and x−

{
x
}
∈ Z. A vector is represented by a bold letter v,

and for any p ∈ N∗∪{∞}, its `p-norm is written ‖v‖p. The n-dimensional vector
with all 1’s is denoted by 1n. All matrices are given using row vectors.

2.1 Cyclotomic fields

We denote the cyclotomic field of conductor m, m 6≡ 2 mod 4, by Km = Q[ζm],
where ζm is a primitive m-th root of unity. It has degree n = ϕ(m), its maximal
order is OKm = Z

[
ζm
]

([Was97, Th. 2.6]), and its discriminant is given precisely

by ∆Km =
(
−1
)ϕ(m)/2 mϕ(m)∏

p|m pϕ(m)/(p−1) ([Was97, Pr. 2.7]), which is of order nn.

In this paper, we consider any conductor m > 1 of the general prime fac-
torization m = pe11 p

e2
2 · · · p

et
t , m 6≡ 2 mod 4, and let qi = peii for all i ∈ J1, tK.

In particular, m has exactly t distinct prime divisors. Let Gm denote the Galois
group of Km, which can be made explicit by ([Was97, Th. 2.5]):

Gm =
{
σs : ζm 7−→ ζsm; 0 < s < m, (s,m) = 1

}
'
(
Z/mZ

)×
.

4 The slides are available at https://cr.yp.to/talks.html#2021.08.20.
5 This is hosted by https://s-unit.attacks.cr.yp.to/filtered.html.
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In particular, we denote by σs ∈ Gm the automorphism sending any m-th root of
unity to its s-th power. For convenience, the automorphism induced by complex
conjugation is written τ = σ−1.

The algebraic norm of α ∈ Km is defined by N (α) =
∏
σ∈Gm σ(α), hence the

absolute norm element in the integral group ring Z[Gm] is Nm =
∑
σ∈Gm σ.

Maximal real subfield. The maximal real subfield of Km, written K+
m, is the fixed

subfield of Km under complex conjugation, i.e., K+
m := K

〈τ〉
m = Q

(
ζm+ ζ−1m

)
. Its

maximal order is OK+
m

= Z
[
ζm + ζ−1m

]
(see e.g. [Was97, Pr. 2.16]).

By Galois theory, since
〈
τ
〉

is a normal subgroup of Gm, the maximal real

subfield of Km is a Galois extension of Q with Galois group G+
m := Gal

(
K+
m/Q

)
isomorphic to Gm

/〈
τ
〉
. We identify G+

m with the following system of represen-
tatives modulo τ restricted to K+

m:

G+
m =

{
σs|K+

m
; 0 < s < m

2 , (s,m) = 1
}
.

Technically, each σs|K+
m
∈ G+

m extends in Gm to either σs or τσs = σ−s. For

simplicity, we always choose to lift σs|K+
m
∈ G+

m to σs ∈ Gm and drop the restric-

tion to K+
m which should be clear from the context. This slight abuse of notation

appears to be very practical. For example, the corestriction CorKm/K+
m

(
σs|K+

m

)
,

defined as the sum of all elements of Gm that restricts to σs|K+
m

, namely σs+τσs,
is written using the much simpler expression (1 + τ) · σs.

2.2 Real and relative class groups

Fractional ideals of Km form a multiplicative group Im containing the normal
subgroup Pm :=

{
〈α〉; α ∈ Km

}
of principal ideals. The quotient group Im

/
Pm

is called the class group ofKm and denoted by Clm. It is finite and its cardinal hm
is the class number of Km. For any b ∈ Im, the class of b in Clm is written

[
b
]
.

The integral group ring Z[Gm] acts naturally on Im; more precisely, for any
element α =

∑
σ∈Gm aσσ ∈ Z[Gm], and any b ∈ Im, bα :=

∏
σ∈Gm σ

(
b
)aσ

.
The class group and class number of the maximal real subfield K+

m are denoted
respectively by Cl+m and h+m. The relative norm map NKm/K+

m
induces a homo-

morphism from Clm to Cl+m, whose kernel is the so-called relative class group,
written Cl−m and of cardinal the relative class number h−m. Hence, by construc-
tion, for any b s.t.

[
b
]
∈ Cl−m, b1+τ ∩K+

m is principal. One important specificity
of cyclotomic fields is that the real class group Cl+m embeds into Clm via the
natural inclusion map, which to each ideal class

[
b
]
∈ Cl+m associates the ideal

class
[
b·OKm

]
∈ Clm [Was97, Th. 4.14]. Concretely, it implies that hm = h+m ·h−m

is the product of the plus part and the relative part of the class number.

Plus part and relative part of the class number. Generally, not much is known
about the class number of a number field, and the analytic class number formula
[Neu99, Cor. 5.11(ii)] allows obtaining a rough upper bound hm ≤ Õ

(√
|∆Km |

)
.
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m ϕ(m) h+
m m ϕ(m) h+

m m ϕ(m) h+
m m ϕ(m) h+

m m ϕ(m) h+
m m ϕ(m) h+

m

225 120 1 213 140 1 205 160 2 203 168 1 460 176 1 416 192 1
231 120 1 219 144 1 352 160 1 215 168 1 552 176 1 448 192 1
244 120 1 285 144 1 400 160 1 245 168 1 209 180 1 576 192 1
248 120 4 296 144 1 440 160 5 261 168 1 217 180 1 612 192 1
308 120 1 304 144 1 492 160 1 392 168 1 279 180 1 672 192 1
372 120 1 380 144 1 528 160 1 516 168 1 297 180 1 275 200 1
396 120 1 432 144 1 600 160 1 588 168 1 235 184 1 375 200 1
384 128 1 444 144 1 660 160 1 267 176 1 564 184 1 500 200 1
201 132 1 540 144 1 243 162 1 345 176 1 291 192 1
207 132 1 237 156 1 249 164 1 368 176 1 357 192 1

Table 2.1 – Additional values of h+m for some m with ϕ(m) ≤ 200.

In the case of cyclotomic fields though, the structure of the relative class
group is better understood. Using analytic means, the relative class number has
the following explicit expression [Was97, Th. 4.17]:

h−m = Qw ·
∏
χ odd

(
− 1

2B1,χ

)
,

where w = 2m if m is odd and w = m if m is even, Q = 1 if m is a prime power
and Q = 2 otherwise, and B1,χ is defined by 1

f

∑f
a=1 a·χ(a) for any odd primitive

character χ modulo m of conductor f dividing m. Computing this value is in
practice very efficient, using adequate representations of Dirichlet characters.

The hard part of cyclotomic class numbers computations is to obtain the plus
part h+m, and relatively few of them are known. We use the values from [Was97,
Tab. §4], [Mil14, Th. 1.1 and 1.2] and [BFHP21, Tab. 1], consistently assuming
the Generalized Riemann Hypothesis (GRH). We also provide 58 additional val-
ues of h+m in Tab. 2.1 for completeness.

The fact that the plus part of the class number seems much smaller than the
relative part is striking. Weber’s conjecture claims that h+2e = 1 for any e > 1,
and Buhler, Pomerance and Robertson [BPR04] argue, based on Cohen-Lenstra
heuristics, that for all but finitely many pairs (p, e), where p is a prime and e is a
positive integer, h+pe+1 = h+pe . For prime power conductors, this conjecture claims
that the plus part is asymptotically constant. These conjectures are backed up
by Schoof’s extensive calculations [Sch03] in the prime conductor case, and by
the above explicit values. In particular, under GRH, Miller proved Weber’s con-
jecture up to m = 512, and we note that according to Schoof’s table, h+m ≤

√
m

holds for more than 96.6% of all prime conductors m = p < 10000.

Prime ideal classes generators. When picking a set of prime ideals in the algo-
rithms of this paper, an important feature is that they generate the class group.
In general, even assuming GRH, only a large bound on the norm of genera-
tors is known, indeed Bach proved [Bac90, Th. 4] that N (Lmax) ≤ 12 ln2|∆Km |,
where Lmax is the biggest ideal inside a generating set of Clm of minimum norm.
In practice though, this bound seems very pessimistic [BDF08, §6].

On the other hand, as prime ideals belong to Cl−m only with probability
roughly 1/h+m, searching for generators of the subgroup Cl−m mechanically in-
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creases the provable upper bound on generators. More precisely, writing as L−max

the biggest ideal of a generating set of Cl−m, Wesolowski proved [Wes18, Rem. 2]

that N (L−max) ≤
(
2.71h+m · ln|∆Km |+ 4.13

)2
.

Finally, we use the notation hm,(L1,...,Lk) to denote the cardinal of the sub-

group of Clm generated by the k classes
[
Li
]
, i.e., the determinant of the kernel of

fL1,...,Lk :
(
e1, . . . , ek

)
∈ Zk 7−→

∏
1≤i≤k

[
Li
]ei ∈ Clm .

2.3 Logarithmic S-embeddings

We briefly introduce log-S-unit lattices and discuss proper normalization by the
Product Formula that was at the heart of the practical improvements of [BR20]
compared to [PHS19].

Places of the cyclotomic field Km are usually split into two parts: the set S∞
of infinite places can be identified with the (complex) embeddings of Km into C,
up to conjugation; the set S0 of finite places is specified by the infinite set of
prime ideals of Km, each prime ideal p inducing an embedding of Km into its p-
adic completionKm,p. Hence, any place v ∈ S∞∪S0 induces an absolute value |·|v
on Km, and Ostrowski’s theorem for number fields [Nar04, Th. 3.3] shows that all
possible absolute values on Km are obtained in this way. Concretely, for α ∈ Km:
∀σ ∈ S∞, |α|σ =

∣∣σ(α)
∣∣ and ∀p ∈ S0, |α|p = p−vp(α), where vp(·) is the valuation

of α at p and 〈p〉 = p∩Z. A remarkable fact is that all these absolute values are
tied by the Product Formula [Nar04, Th. 3.5]:

∀α ∈ Km,
∏

v∈S∞∪S0

|α|[Km,v :Qv]v = 1. (2.1)

The S∞-part of this product is
∣∣N (α)

∣∣, as for σ ∈ S∞, Km,σ = C and Qσ = R, so

that [Km,σ : Qσ ] = 2. Similarly, for p ∈ S0, we have |α|[Km,p:Qp]p = N (p)−vp(α).

S-unit group structure. Fix a finite set S of places; in this paper we shall con-
sider that S always contains S∞. The so-called S-unit group of Km, denoted
by O×Km,S , is the multiplicative subgroup of Km generated by all elements whose
valuations are non zero only at the finite places of S. Formally:

O×Km,S =
{
α ∈ Km; 〈α〉 =

∏
p∈S∩S0

pvp(α)
}
.

Theorem 2.1 (Dirichlet-Chevalley-Hasse [Nar04, Th. III.3.12, Cor. 1]).
The S-unit group is the direct product of the group of roots of unity µ

(
O×Km

)
and a free abelian group with |S| − 1 generators. There exists a fundamental
system of S-units ε1, . . . , ε|S|−1 such that any ε ∈ O×Km,S is uniquely written

as: ε = µ ·
∏|S|−1
i=1 εkii , where µ ∈

〈
±ζm

〉
is a root of unity and ki ∈ Z.
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Log-S-unit lattice. A fundamental ingredient of the proof of this theorem is to
build an embedding of O×Km,S into the real space of dimension |S|, whose kernel
is µ
(
O×Km

)
and whose image is a lattice of dimension

(
|S|−1

)
. This embedding is

called the logarithmic S-embedding, and its image is called the log-S-unit lattice.

Several equivalent definitions of this logarithmic S-embedding are accept-
able for the proof. However, for cryptanalytic purposes, experimental evidence
[BR20] suggests that it is crucial to use a properly normalized embedding for
the decodability of the log-S-unit lattice. Thus, we define [Nar04, §3, p.98]:

LogS α =
(
[Km,v : Qv]·ln|α|v

)
v∈S =

({
2 ln|σ(α)|

}
σ∈S∞

,
{
−vp(α) lnN (p)

}
p∈S∩S0

)
.

From the definition of O×Km,S , it is easy to see that R⊗LogS O×Km,S is included in
the hyperplane orthogonal to 1|S|. Showing that its dimension is at least |S|− 1
is more involved.

A basis of the log-S-unit lattice is given by the images LogS εi of the funda-
mental system of S-units of Th. 2.1, as in [BR20, Eq. (2.7)]. Actually, we shall
use later that for any maximal set of independent S-units, their images under
any logarithmic S-embedding form a full rank sublattice of the corresponding
log-S-unit lattice. Its volume is given by [BR20, Pr. 2.2 and Eq. (2.8)].

As mentioned in [PHS19,BDPW20,BR20], a convenient trick in the context
of the cryptanalysis of id-Svp is to consider an expanded version of the logarith-
mic S-embedding, halving and repeating twice S∞-coordinates, namely:

LogS α =
({

ln|σ(α)|, ln|σ(α)|
}
σ∈S∞

,
{

[Km,p : Qp] · ln|α|p
}
p∈S∩S0

)
.

In particular, this reduces the volume of the log-S-unit lattice, as shown by
[BR20, Pr. 2.3]. In practice though, we did not observe any fundamental differ-
ence between the approximation factors obtained using LogS or LogS .

2.4 Hard problems in Number Theory

One of the most difficult classical steps of the Approx-id-Svp algorithms propo-
sed in [CDW17,PHS19,BR20,CDW21] is to find a solution to the Cldl defined as:

Problem 2.2 (Class Group Discrete Logarithm (ClDL)). Given a basis
of prime ideals

{
L1, . . . ,Lk

}
, and a challenge ideal b, find α ∈ Km and inte-

gers e1, . . . , ek such that 〈α〉 = b ·
∏
i L

ei
i , if this decomposition exists.

In this definition, we also ask for an explicit element α of the field, contrary to
the definition of, e.g., [CDW17, Pr. 2]. Nevertheless, we note that in both quan-
tum and classical worlds, the standard way to solve this problem boils down to
computing S-units, for S containing b and the Li’s, so that this explicit element
is a byproduct of the resolution. Furthermore, put in this form it encompasses
the well-known Principal Ideal Problem (Pip), using an empty set of ideals.

The Shortest Generator Problem (Sgp) asks, from a generator α of a principal
ideal, for the shortest generator α′ such that 〈α〉 = 〈α′〉. Similarly, we define:
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Problem 2.3 (Shortest Class Group Discrete Logarithm (S-ClDL)).
Given a solution 〈α〉 = b ·

∏
i L

ei
i to the Cldl problem, find w1, . . . , wk ∈ Z≥0

and α′ ∈ Km such that 〈α′〉 = b ·
∏
i L

wi
i and α′ is the smallest possible one.

The condition for the wi’s to be positive is crucial. Note that all recent
algorithms for Approx-id-Svp that are not bound to principal ideals eventually
output an approximate solution of the S-Cldl [CDW21,PHS19,BR20]. If the set
of prime ideals is sufficiently large compared to b, then S-Cldl is exactly id-Svp.

We also mention the Close Principal Multiple (Cpm) problem which, given
an ideal b, asks to find c such that bc is principal and N (c) is small. This specific
problem is used in [CDW21], and the authors prove that under GRH and using
a factor base containing all prime ideals of norm up to m4+o(1), there exists a
solution c with N (c) ≤ exp

(
Õ(m1+o(1))

)
[CDW21, §1.3.4].

Complexities. As shown in [BS16], class groups, unit groups, class group discrete
logarithms and principal ideal generator computations can be reduced to S-unit
groups computations for appropriate sets of places S. Denote by TS(Km) the run-
ning time of the computation of the S-unit group in Km. Under GRH, in a quan-
tum setting, TS(Km) = poly

(
ln|∆Km |,

∣∣S∣∣,maxp∈S lnN (p)
)

by [EHKS14,BS16].
In a classical setting, TS(Km) = poly

(∣∣S∣∣,maxp∈S lnN (p)
)
· exp Õ

(
ln2/3(|∆K |

)
is mainly subexponential in the degree of the cyclotomic field Km [BF14,PHS19].
The exponent can be lowered to 1/2 when m is a prime power [BEF+17].

2.5 Lattices

Let L be a Euclidean lattice of full rank n. The first minimum λ1(L) of L is
defined as the `2-norm of the smallest vector v ∈ L∗, and the `2-distance from t
to L, for any t in the span L⊗R of L, is defined by dist2(L, t) = minv∈L‖t− v‖2.

The Approximate Shortest Vector Problem (Approx-Svp) is, given a lattice L
and an approximation factor af, to find v ∈ L such that ‖v‖2 ≤ af ·λ1(L).
Similarly, the Approximate Closest Vector Problem (Approx-Cvp) asks, given a
lattice L, an approximation factor af and a target t in the span L⊗R of L, for
a vector v ∈ L such that ‖t− v‖2 ≤ af ·dist2(L, t). A practical Approx-Cvp
oracle is given by Babai’s Nearest Plane algorithm [Bab86].

Bounding approximation factors. An ideal lattice of Km is the full-rank image
under the Minkowski embedding in Rϕ(m) of a fractional ideal b of Km. Unlike
generic lattices, a lower bound of the first minimum is implied by the arithmetic-
geometric mean inequality, using that for any b ∈ b, N (b) divides |N (b)|. Thus:

√
n · N (b)1/n ≤ λ1(b) ≤

√
n · N (b)1/n

√
|∆Km |

1/n
, (2.2)

where n = ϕ(m) = degKm and the right inequality is Minkowski’s inequality.
Actually, applying the Gaussian Heuristic to ideal lattices would give that on av-
erage, λ1(b) ≈

√
n

2πe ·Vol1/n(b), where Vol(b) = N (b)
√
|∆Km |. This hypothesis

is commonly used for the analysis of cryptosystems based on structured lattices,
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and we note that the exact approximation factors reached by the Twisted-PHS
algorithm in [BR20] match this heuristic.

For any x ∈ b, let af(x) = ‖x‖2/λ1(b) denote the approximation factor
reached by x for the Svp in the ideal lattice b. In general, λ1(b) is not known,
but Eq. (2.2) imply the bounds af inf(x) ≤ af(x) ≈ afgh(x) ≤ afsup(x), where:

af inf(x) :=
‖x‖2√

n ·Vol1/n(b)
, afsup(x) :=

‖x‖2√
n · N (b)1/n

,

afgh(x) :=
√

2πe · af inf(x).

(2.3)

Quality of a lattice basis. Several indicators have been used in the literature to
attempt to measure the quality of a lattice basis B = (b1, . . . ,bn) relatively to
the Svp or the Cvp. We will focus on the following three standard quantities:

1. the root-Hermite Factor δ0(B), defined by δn0 (B) = ‖b1‖2/Vol1/nB, is com-
monly used to compare lattice reduction algorithms like LLL [LLL82] or
BKZ [CN11]. On average, LLL reaches δ0 ≈ 1.022 [GN08] whereas BKZ

with blocksize b ≥ 50 heuristically yields δ0 ≈
(
b

2πe (πb)1/b
)1/(2b−2)

[Che13].

2. the (normalized) orthogonality defect δ(B), given by δn(B) =
∏
i

( ‖bi‖2
Vol1/n B

)
[MG02, Def. 7.5] involves all vectors of the basis. By Minkowski’s second
theorem, its smallest possible value is upper bounded by

√
1 + n

4 .
3. the logarithms of the norms of Gram-Schmidt Orthogonalization (GSO) vec-

tors b?i give also valuable information. For example, a rapid decrease in the
sequence ln‖b?i ‖2 at i ≥ 2 indicates that bi is rather not orthogonal to the
previously generated subspace

〈
b1, . . . ,bi−1

〉
.

3 An explicit full-rank family of independent S-units

In this section, we exhibit a full rank family of independent S-units, where the
finite places S correspond to a collection of full Galois orbits of split prime ideals.
As mentioned in introduction, this family is composed of three parts:

1. Circular units are recalled in §3.1 using the material from [Kuč92, Th. 6.1];
2. Stickelberger generators are in §3.2, sticking to the exposition of [BK21];
3. Real S+-units (apart from real units), where S+ is the set S ∩K+

m of places
of S restricted to K+

m, are in §3.3.

Considering real S+-units and proving in §3.4 the multiplicative index of our
family in the full S-unit group constitute our main theoretical contributions.
Finally, the saturation process used to mitigate this index is described in §3.5.

Remark 3.1. Recall that m has prime factorization m = q1q2 · · · qt 6≡ 2 mod 4,
where qi = peii > 2 for i ∈ J1, tK. In the rest of the section, we will use subsets M+

m

and M ′m of J1,mK that are useful to describe resp. a fundamental family of
circular units and a short Z-basis of the Stickelberger ideal of Km. Their precise
definitions from resp. [Kuč92, p.293] and [BK21, Eq. (11)] can be found in §A.1.
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3.1 Circular units

Circular units are sometimes called cyclotomic units in the litterature, as in
[Was97, §8]. We prefer to use the historical terminology from algebraic number
theory, see e.g. Sinnott [Sin78, §4] and Kučera [Kuč92, §2], in order to avoid any
confusion with the whole unit group O×Km of the m-th cyclotomic field.

Definition 3.2 (Circular units [Was97, §8.1]). Let Vm be the multiplicative
subgroup of K×m generated by

{
1− ζam; 1 ≤ a ≤ m

}
. The group of circular units

is the intersection Cm := Vm ∩ O×Km .

Note that Vm contains the torsion of Km, since −ζm =
(
1− ζm

)/(
1− ζ−1m

)
.

The circular units form a subgroup of O×Km of finite index, more precisely:

Proposition 3.3 ([Sin78, Th. p.107]). The index of Cm in O×Km is finite:

[
O×Km : Cm

]
= 2b · h+m, with b =

{
0 if t = 1,

2t−2 + 1− t otherwise,

where t is the number of distinct prime divisors of m.

Hence, circular units provide a very large subgroup of O×Km : indeed, the real
part of the class number is expected to be small (§2.2), and the other factor gener-
ically grows linearly in m (see [HW38, Th. 430 and 431] for a precise statement).

An explicit system of fundamental circular units for any m has been given
in [GK89] and independently in [Kuč92, Th. 6.1]. More precisely, for 0 < a < m,
define the following special circular units, where mi = m/peii [Kuč92, p.176]:

va =


1− ζam if ∀i ∈ J1, tK, mi - a,
1− ζam
1− ζmim

otherwise, for the unique mi | a.
(3.1)

Theorem 3.4 ([Kuč92, Th. 6.1]). Recall M+
m ( J1,mK is defined in §A.1.

The set
{
va; a ∈M+

m

}
is a system of fundamental circular units of Km: for any

circular unit η ∈ Cm, there exist a uniquely determined map k : M+
m → Z and

root of unity µ ∈
〈
±ζm

〉
s.t. η = µ ·

∏
a∈M+

m
v
k(a)
a .

A crucial point for the cryptanalysis of id-Svp in [CDW21] is that the
logarithmic embedding of these elements is short. Namely, explicitly writing
the constants that appear in the proof of [CDW21, Lem. 3.5], we have, for
any 0 < a < m, that ‖LogS∞(1− ζam)‖2 ≤ 1.32 ·

√
m.

3.2 Stickelberger generators

In this section, we use [BK21, Th. 3.1] to describe a short basis of the so-called
Stickelberger ideal, viewed as a Z-module. These Stickelberger short relations

14



correspond to principal ideals whose generators are surprisingly easy to compute
using Jacobi sums as in [BK21, §6]. Following Sinnott [Sin80], for all a ∈ Z, let:

θm(a) =
∑

s∈(Z/mZ)×

{
−as
m

}
· σ−1s ∈ Q

[
Gm
]
, (3.2)

and let Nm be the absolute norm element Nm =
∑
σ∈Gm σ. It is easy to check

that a ≡ b mod m implies θm(a) = θm(b) and that θm(a) + θm(−a) = Nm
whenever m - a.

Definition 3.5 (Stickelberger ideal [Sin80, p.189]). Let S ′m be the Z-
module of Q

[
Gm
]

generated by
{
θm(a); 0 < a < m

}
∪
{

1
2Nm

}
. The Stickelberger

ideal of Km is the intersection Sm = S ′m ∩ Z
[
Gm
]
.

As in [CDW21], we shall refer to the Stickelberger lattice when Sm is viewed as
a Z-module. Note that in some references, like in [Was97, §6.2], the Stickelberger
ideal is defined as the smaller ideal Z

[
Gm
]
∩θm(−1)Z

[
Gm
]
, which coincides with

Def. 3.5 if and only if m is a prime power [Kuč86, Pr. 4.3].

Theorem 3.6 (Stickelberger’s theorem [Sin80, Th. 3.1]). The Stickelberger
ideal Sm of Km annihilates the class group of Km. Hence, for any ideal b of Km

and any α =
∑
σ∈Gm aσσ ∈ Sm, the ideal bα =

∏
σ∈Gm σ(b)aσ is principal.

An outstanding point is that the proof of this important result is completely
explicit, i.e., for any α ∈ Sm, and any fractional ideal b ofKm, an explicit γ ∈ Km

s.t. 〈γ〉 = bα is constructed. It appears that when α is a short element of Sm,
this explicit generator is very efficiently computable.

A short basis of the Stickelberger lattice. An element of the integral
group ring Z

[
Gm
]

is called short if it is of the form
∑
σ∈Gm aσσ ∈ Z

[
Gm
]
,

where aσ ∈ {0, 1} for all σ ∈ Gm. Short elements of Sm have been identified
in [Sch08, Th. 9.3(i) and Ex. 9.3] in the prime conductor case, and the proof has
been adapted to any conductor in [CDW21, Lem. 4.4] to prove the shortness of
the following generating set of Sm:

W =
{
wa; a ∈ J2,mK

}
, with wa = θm(1) + θm(a− 1)− θm(a). (3.3)

Note that using θm(a) + θm(−a) = Nm when m - a, we obtain wa = wm−a+1

whenever 1 < a < m, and that wm = Nm using also θm(m) = 0. Hence, W is
the set

{
wa; 2 ≤ a ≤

⌈
m
2

⌉}
∪
{
Nm
}

.
We emphasize that only knowing a generating set of short elements as in

[CDW21] is not necessarily sufficient. Though it would be possible to build a basis
from this generating set to solve the Cvp like in [CDW21, Cor. 2.2], without any
geometric loss using e.g. [MG02, Lem. 7.1], we observed that the slight euclidean
norm growth of the obtained basis vectors translates into a dramatic increase of
the size of the (possibly rational) coefficients of the corresponding generators, in
a way that significantly hinders subsequent computations. In particular, in order
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to climb dimensions as far as possible and best approach log-S-unit lattices using
the saturation process described in §3.5, it is crucial to constrain both the number
of elements we use and their size, i.e., to use a basis of the Stickelberger lattice
containing only short elements. In [BK21], a very large family of short elements
[BK21, Pr. 3.1] encompassing W \ {Nm} is made explicit:

Proposition 3.7 ([BK21, Pr. 3.1]). Let a, b ∈ Z satisfying m - a, m - b
and m - (a+ b). Then α = θm(a) + θm(b)− θm(a+ b) is a short element of Sm.
Moreover, (1 + τ) ·α = Nm, so exactly one half of the coefficients of α are zeros.

Note that the second part of the proposition actually specifies [CDW21,
Lem. 4.4(3)]: for any w ∈ W \ {Nm}, it implies that the `2-norm of w, viewed
as a vector in Zϕ(m) 'Z Z[Gm], is exactly

√
ϕ(m)/2. Then, from this family, a

short basis is computationally easy to extract:

Theorem 3.8 ([BK21, Th. 3.6]). Recall M ′m ( J1,mK is defined in §A.1.
There exists an efficiently computable map αm(·) from J1,mK to the family of
short elements of Sm described in Pr. 3.7, s.t.

{
αm(c); c ∈ M ′m

}
∪
{
Nm
}

is
a Z-basis of the Stickelberger lattice Sm of Km having only short elements.

The explicit definition of αm(·) can be found in [BK21, §3.2], and is included
for completeness in §A.2. We stress that when m is a prime, this basis coincides
with the one given by [Sch08, Th. 9.3(i)] and with the set W in Eq. (3.3).

Effective Stickelberger generators using Jacobi sums. As previously men-
tioned, the proof of Th. 3.6 is explicit, i.e., for any α ∈ Sm and any fractional
ideal b of Km, it builds an explicit γ ∈ Km such that 〈γ〉 = bα [Was97, §6.2],
[Sin80, §3.1]. Moreover, when α is a short basis element from Th. 3.8, it turns
out that γ has a simple expression using Jacobi sums [BK21, §5].

We briefly treat the split case here. Let ` ∈ Z be a prime such that ` ≡ 1
mod m, and let L be any fixed (split) prime ideal of Km above `. Let a, b be
such as in Pr. 3.7, then for α = θm(a) + θm(b)− θm(a+ b), we have that Lα is a
principal ideal generated by the following Jacobi sum [BK21, Pr. 5.1]:

JL(a, b) = −
∑

u∈OKm/L

χaL(u)χbL(1− u) ∈ Km, (3.4)

where χL(u) ∈
〈
ζm
〉

verifies χL(u) ≡ u(`−1)/m mod L, for any u ∈
(
OKm/L

)×
,

and χL(0) = 0. When α = αm(c) for c ∈ M ′m, we shall write γ−L,c for the
generator of Lαm(c). Using a discrete logarithm table for elements of OKm/L×,
the computation, for a fixed prime L, of all Jacobi sums corresponding to the
short basis

{
αm(c); c ∈ M ′m

}
is very fast. As noted in [BK21, §5], the Galois

group also acts on the involved Jacobi sums in a way that allows to replace some
of the Jacobi sum computations by the application of a suitable automorphism.

Finally, as a direct consequence of [Was97, Lem. 6.1], all these Jacobi sums
are `-Weil numbers, i.e., they verify the Weil relation JL(a, b)JL(a, b) = `, for a
and b as above. This implies

∣∣σ(JL(a, b)
)∣∣ =

√
` for all σ ∈ Gm, meaning that

any of these elements is the shortest generator of its corresponding Lα.
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3.3 Real S+-units

A consequence of Th. 3.8, since
∣∣M ′m∣∣ = ϕ(m)

2 , is that the Stickelberger lattice

only has rank ϕ(m)
2 + 1 in Z

[
Gm
]
; in particular, it is not full rank, hence cannot

be directly used as a lattice of class relations. In previous works, obtaining a full
rank lattice in Z[Gm] from Sm was done by projecting into (1− τ)Sm [CDW21,
§4.3], or by the adjonction of (1+τ)Z[Gm] [CDW17, Def. 2]. Both can be used as
a lattice of class relations for the relative class group Cl−m. In particular, the so-
called augmented Stickelberger lattice Sm+(1+τ)Z[Gm] annihilates the relative
class group and has full rank in Z[Gm], as shown in [CDW17, Lem. 2].

We generalize this result by considering the module of all real class group
relations between relative norm ideals of ideals from the entire class group Clm.
In §3.4, we shall prove that the Stickelberger lattice augmented with these real
class group relations yields a lattice of class relations for the whole class group.
Note that, as opposed to other modules like (1− τ)Sm or Sm + (1 + τ)Z

[
Gm
]
,

real class group relations actually depend on the underlying prime ideals.
On one hand, this affects negatively the shortness of the obtained relation

vectors: putting those in Hermite Normal Form, we shall see later that each
relation, viewed as a vector of integer valuations, has `2-norm at most h+m. On
the other hand, removing the constraint to belong to the relative class group
brings a significant practical and theoretical gap: first, it allows to choose prime
ideals of smallest possible norms, which as shown in [BR20, §3.3] or [CDW21,
Th. 4.8] lowers in practice the obtained approximation factor; second, whereas
prime ideals of norm at most Bach’s bound are sufficient to generate the entire
class group, prime generators for the relative class group are only proven to be
of norm bounded by the larger bound (2.71 ·h+m · ln∆Km + 4.13)2 from [Wes18].

Lifting real class group relations. Let `1, . . . , `d be distinct prime integers
satisfying `i ≡ 1 mod m, so that `i is split in Km, for all i in J1, dK. For each i,
fix a prime ideal Li | `i in Km of norm `i, and let li = NKm/K+

m

(
Li
)

= L1+τ
i ∩K+

m

be the relative norm ideal of Li. Since Li is a split prime ideal of Km dividing `i,
the ideal li is a split prime ideal of K+

m of norm `i, and by Kummer-Dedekind’s
theorem we have li · OKm = L1+τ

i . This justifies the slight abuse of notation of

writing lσi = L
(1+τ)σ
i ∩K+

m, for any σ ∈ Gm.
We are interested in the real class group relations between all prime ideals

in the G+
m-orbits of the li, i.e., between the following prime ideals of K+

m:{
lσsi ; i ∈ J1, dK, 0 < s < m

2 , (s,m) = 1
}
. (3.5)

The important point is, any class relation in K+
m between ideals from Eq. (3.5)

translates to a class relation in Km using repeatedly lσi · OKm = L
(1+τ)σ
i . More

precisely, let
(
r1, . . . , rd

)
∈ Z

[
G+
m

]d
represent a real class relation in K+

m between

ideals
{
lσsi
}

of Eq. (3.5), i.e., there exists γ+r ∈ K+
m such that γ+r ·OK+

m
=
∏d
i=1 l

ri
i .

Then, this relation lifts naturally to a class relation
(
(1 + τ) · r1, . . . , (1 + τ) · rd

)
in Km between prime ideals in the Gm-orbits

{
Lσi ; i ∈ J1, dK, σ ∈ Gm

}
as:

γ+r · OKm =

d∏
i=1

L
(1+τ)ri
i . (3.6)
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Let C+
l1,...,ld

denote the lattice of class relations between elements of all G+
m-

orbits of {li; i ∈ J1, dK}. Concretely, it is the kernel of the following map:

fl1,...,ld :
(
ri,s
)

1≤i≤d,
0<s<m/2,(s,m)=1

∈ Zd·
ϕ(m)

2 7−→
∏
i,s

[
lσsi
]ri,s ∈ Cl+m . (3.7)

Using the canonical isomorphism of Z-modules Zd·
ϕ(m)

2 'Z Z[G+
m]d, the lattice

of class relations C+
l1,...,ld

may be viewed as a Z-submodule of Z[G+
m]d. Lifting

all these relations back to Km as in Eq. (3.6), we therefore obtain the submod-
ule (1 + τ) · C+

l1,...,ld
⊆ (1 + τ)Z[Gm]d, that we shall call the lattice of real class

relations between the Gm-orbits of {Li; i ∈ J1, dK}.

Remark 3.9. When h+m = 1, C+
l1,...,ld

is isomorphic to d copies of the integral
group ring Z[G+

m] and the lattice of real class relations is simply (1 + τ)Z[Gm]d.

Euclidean norm of real class relations. We now identify a real class group
relation from C+

l1,...,ld
to a vector in Zd·

ϕ(m)
2 . In other words, we consider only

the valuations of these relations on the G+
m-orbits of the prime ideals l1, . . . , ld.

Furthermore, C+
l1,...,ld

is put in Hermite Normal Form, conveniently for the proof,
but better bounds might easily be obtained using e.g. the LLL algorithm.

Proposition 3.10. Suppose the lattice C+
l1,...,ld

of real class relations is in HNF.

Then, for all w ∈ C+
l1,...,ld

⊆ Z[G+
m]d, we have ‖w‖2 ≤ ‖w‖1 ≤ h+m.

This means that (1 + τ) ·C+
l1,...,ld

can be used in the CDW algorithm instead
of (1 + τ)Z[Gm], as we will see in §4, while still reaching the same asymptotic
approximation factor as long as h+m ≤ O

(√
ϕ(m)

)
. This slightly more restrictive

hypothesis (see the discussion in §2.2) will be more than compensated by the
fact that it removes the need for the li’s to be principal, which has a significant
impact in practice on the algebraic norm of the chosen ideals, and thus on the
final approximation factor reached in [CDW21, Alg. 6].

Proof. The image of the map fl1,...,ld given in Eq. (3.7) is a subgroup of Cl+m,
so the volume of its kernel C+

l1,...,ld
is at most h+m. By definition of the Hermite

Normal Form,6 C+
l1,...,ld

has diagonal elements h1, . . . , hϕ(m)/2 > 0, and the j-
th column contains integers cij such that 0 ≤ cij < hj for i < j and cij = 0
for i > j. We shall prove hi +

∑
i<j cij ≤ hi ·

∏
i<j hj for any row of fixed index

i ∈ J1, ϕ(m)
2 K, which yields the result. This is done by induction on the dimension,

using repeatedly the fact that for any integers x, y ≥ 1, x+ (y − 1) ≤ (xy).

Explicit real generators. For each relation r =
(
r1, . . . , rd

)
∈ C+

l1,...,ld
, we

compute an explicit γ+r ∈ K+
m ( Km that verifies Eq. (3.6). Together with the

unit group O×K+
m

of K+
m, they form a fundamental system of S+-units, where the

finite places of S+ are the G+
m-orbits of the relative norm ideals li.

6 In this proof, we consider an upper-triangular HNF with row vectors.
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In the next section, we shall see that adding the explicit Stickelberger gener-
ators of §3.2 to these real generators yields a maximal set of independent S-units
in the degree ϕ(m) cyclotomic field Km, at the much smaller cost of computing

a fundamental system of real S+-units in K+
m of degree only ϕ(m)

2 .
In practice, though this remains the main bottleneck of our experimental

setting, it allows us to push effectively our experiments up to degree ϕ(m) = 210,
whereas the (full) S-units computations of [BR20] were bound to ϕ(m) = 70.

3.4 A S-unit subgroup of finite index

As in §3.3, let `1, . . . , `d be prime integers satisfying `i ≡ 1 mod m; for each i,
fix a (split) prime ideal Li | `i in Km and let li = Li∩K+

m. Let S be a set of places
containing, apart the infinite places of Km, all Gm-orbits of the Li’s. Combining
the results of §3.1, §3.2 and §3.3, we get the following family of S-units:

F =
{
va; a ∈M+

m

}
∪
{
γ−Li,b; i ∈ J1, dK, b ∈M ′m

}
∪
{
γ+r; r ∈ C+

l1,...,ld

}
(3.8)

where the first set is the set of circular units given by Th. 3.4, the second is the
set of explicit Stickelberger generators stated at the end of §3.2 and the last one
is the set of real generators as in Eq. (3.6).

This family has
(
ϕ(m)/2−1

)
+d·ϕ(m) elements, which matches precisely the

multiplicative rank of the full S-unit group modulo torsion O×Km,S
/
µ
(
O×Km

)
.7 In

this section, we prove that these S-units are indeed independent and we compute
the index of the subgroup of O×Km,S generated by those elements.

Theorem 3.11. Let hm,(L1,...,Ld) (resp. h+m,(l1,...,ld)) be the cardinal of the sub-

group of Clm (resp. Cl+m) generated by the Gm-orbits of L1, . . . ,Ld (resp. the G+
m-

orbits of l1, . . . , ld). The family F given in Eq. (3.8) is a maximal set of indepen-
dent S-units. The subgroup generated by F in O×Km,S

/
µ
(
O×Km

)
has index:(

hm · h+m,(l1,...,ld)
hm,(L1,...,Ld)

)
· 2b ·

(
h−m
)d−1 · (2

ϕ(m)
2 −1 · 2a

)d
,

where a = b = 0 if m is a prime power, and a = 2t−2 − 1, b = 2t−2 + 1 − t
whenever m has t distinct prime divisors.

Note that when the Gm-orbits of the Li’s generate Clm, the first term in this
index equals h+m. As we shall see in §3.5, the powers of 2 can be killed by standard
saturation techniques, so the real problem comes from the (h−m)d−1 part, which
has generically huge prime factors. Intuitively, this comes from the fact that the
Stickelberger relations miss all class group relations that exist between two (or
more) distinct Gm-orbits.

First, we show that the lattice obtained by adding one copy of the Stickel-
berger ideal per Gm-orbit, to the lattice (1 + τ) · C+

l1,...,ld
of real class relations,

7 Note that for our purpose, the torsion units play no role and can thus be put aside.
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yields a full-rank submodule of Z[Gm]d. Hence, we have obtained a full-rank
lattice of class relations for the union of all Gm-orbits above `1, . . . , `d.

We begin by restricting our attention to the case d = 1. We need the following
lemma, which extends and proves an observation already made in [DPW19,
Rem. 3] in the prime conductor case:

Lemma 3.12. The index of Sm + (1 + τ) · Z[G+
m] in Z[Gm] is finite:[

Z[Gm] : Sm + (1 + τ) · Z[G+
m]
]

= 2ϕ(m)/2−1 · 2a · h−m,

where a = 0 if t = 1 and a = 2t−2 − 1 else, where m has t prime divisors.

Proof. The proof is due to R. Kučera. First, note that (1+τ)·Z[G+
m] contains Nm,

hence by Th. 3.8, Sm+(1+τ)·Z[G+
m] is generated by the following ϕ(m) elements:{

αm(b); b ∈M ′m
}
∪
{

(1 + τ)σs; 0 < s < m
2 , (s,m) = 1

}
.

Therefore, its index is given by the absolute value of the determinant of the
transition matrix from the canonical basis of Z[Gm] to the above generating set:

[
Z[Gm] : Sm + (1 + τ) · Z[G+

m]
]

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det

1 1
...

. . .

1 1





{
ab,s

}
b∈M ′m

0<s<m, (s,m)=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where for any b ∈ M ′m, we write αm(b) =
∑
σs∈Gm ab,sσs. Subtracting suitable

combinations of rows of the lower half of this matrix to rows of the upper half to
cancel the upper right block, this is the absolute value of the determinant of the

square matrix of dimension ϕ(m)
2 with coefficients

{
ab,s−ab,−s

}
, for b ∈M ′m and

s prime with m such that 0 < s < m
2 . By Pr. 3.7, ab,s + ab,−s = 1, which implies

that ab,s− ab,−s = 2ab,s− 1, therefore we recognize the matrix appearing at the
very end of the proof of [BK21, Cor. 4.1] with each coefficient being multiplied
by 2. Combining this with [BK21, Eq. (26)], we obtain:[

Z[Gm] : Sm + (1 + τ) · Z[G+
m]
]

= 2
ϕ(m)

2 · 12
[
R−m : S−m

]
,

and the result follows from Sinnott’s theorem [Sin78, Th. p.107].

When h+m = 1, the lattice of real class relations is always (1 + τ) ·Z[G+
m], and

Lem. 3.12 gives the whole story. In the general case h+m 6= 1, we deduce:

Lemma 3.13. Let ` be a prime integer that splits in Km, let L | ` in Km and
let l = L1+τ ∩K+

m. Let h+m,(l) be the cardinal of the subgroup of Cl+m generated by
the G+

m-orbit of l in K+
m. The Z-module generated by Sm and the lattice (1+τ)·C+

l

of real class relations of the Gm-orbit of L, has finite index in Z[Gm]:[
Z[Gm] : Sm + (1 + τ) · C+

l

]
= 2ϕ(m)/2−1 · 2a · h−m · h+m,(l),

where a = 0 if t = 1 and a = 2t−2 − 1 else, where m has t prime divisors.
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Proof. By definition of C+
l as the kernel of the map fl of Eq. (3.7), we have:[

Z[G+
m] : C+

l

]
= h+m,(l) =

[
(1 + τ) · Z[G+

m] : (1 + τ) · C+
l

]
.

Note also that Nm belongs to (1 + τ) · C+
l ⊆ (1 + τ) · Z[G+

m], hence, again by
means of transition matrix:[
Sm + (1 + τ) · Z[G+

m] : Sm + (1 + τ) · C+
l

]
=
[
(1 + τ) · Z[G+

m] : (1 + τ) · C+
l

]
.

Finally, putting things together with Lem. 3.12, the result comes from:[
Z[Gm] : Sm + (1 + τ) · C+

l

]
=
[
Z[Gm] : Sm + (1 + τ) · Z[G+

m]
]

·
[
Sm + (1 + τ) · Z[G+

m] : Sm + (1 + τ) · C+
l

]
=
(
2ϕ(m)/2−1 · 2a · h−m

)
·
[
Z[G+

m] : C+
l

]
.

Finally, for the case where there are d ≥ 1 orbits, a reasoning very similar to
the proofs of Lem. 3.12 and 3.13 leads to:

Proposition 3.14. Let h+m,(l1,...,ld) be the cardinal of the subgroup of Cl+m gen-

erated by all G+
m-orbits of l1, . . . , ld. Then, the Z-module generated by the lat-

tice (1+τ)·C+
l1,...,ld

⊆ (1+τ)·Z[G+
m]d of real class relations between the Gm-orbits

of the Li’s, and the diagonal block matrix of d copies of
(
Sm \NmZ

)
, verifies:[

Z[Gm]d : Sdm + (1 + τ) · C+
l1,...,ld

]
=
(
2ϕ(m)/2−1 · 2a · h−m

)d · h+m,(l1,...,ld).
Proof of Th. 3.11. The independence comes from Pr. 3.14 and the trivial fact
that circular units are independent from Stickelberger and real generators. The
index of the subgroup generated by F in O×Km,S

/
µ
(
O×Km

)
is given by:[

O×Km : Cm
]
·
[
Z[Gm]d : Sdm + (1 + τ) · C+

l1,...,ld

]∣∣det
(
ker fS

)∣∣ ,

where ker fS is the lattice of all class group relations between finite places of S.
The first term is given by Pr. 3.3, the numerator of the second term is given by
Pr. 3.14, and by definition of O×Km,S , the denominator is precisely hm,(L1,...,Ld).
Rearranging terms adequately yields the result.

3.5 Saturation

Saturation is a standard tool of computational algebraic number theory that has
been used in various contexts like unit and class group computations, and can
be traced back at least to [PZ89, §5.7].

Intuitively, the e-saturation procedure applied to F consists in detecting e-th
powers in the subgroup generated by F, including their e-th roots in the set,
using e.g. the generalized Montgomery’s e-th-root algorithm from [Tho12, §3],
and rebuilding a basis of multiplicatively independent elements. At the end, the
index of the new basis is no longer divisible by e. Remark that the output size
does not depend on e, but only on the number and size of the elements of F.
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As the index given by Th. 3.11 is divisible by a large power of 2, it is therefore
natural to 2-saturate F in order to mitigate its exponential growth, obtaining the
2-saturated family Fsat. However, as the relative class number h−m in the index of
Th. 3.11 hides huge prime factors, we stress that this strategy is at first glance
hopeless in general to obtain the full S-unit group from F.

In the following, we briefly describe the 2-saturation procedure we use, and
refer to e.g. [BFHP21, §4.3] for a formal exposition.

Recognizing squares. Let U =
〈
g1, . . . , gk

〉
be a finitely generated multiplicative

subgroup of O×Km,S . The first step of the 2-saturation process is to recognize

squares in U ∩ (O×Km,S)2. This is done by using local information provided by
quadratic characters.

Fix a prime p /∈ S such that N (p) ≡ 1 mod lcm(m, 2). Define χp as the
Legendre symbol such that χp(a) ≡ a(N (p)−1)/2 mod p for any a ∈ U . As p /∈ S
and a ∈ O×Km,S , we have χp(a) ∈ {−1, 1}. If a is a square, χp(a) = 1 as a is
still a square modulo p. The converse is not true, but by considering many char-
acters χp1 , . . . , χpN as above, it is expected that at least one of them evaluates
to −1. Hence, recognizing squares boils down to compute the kernel of:

log−1,χ : U −→ FN2
a 7−→

{
log−1 χpi(a); i ∈ J1, NK

}
.

An element of this kernel is still not guaranteed to be a square. Nevertheless,
a standard heuristic, first stated in the context of integer factorization [BLP93,
§8] and also used in multiquadratic fields [BBV+17, §4.2], [BV18, H. 4.3], is to
assume that if the pi are all distinct (split) prime ideals, then the log−1 χpi

behave as independent uniform random elements of Hom
(
U
/(
U ∩ (K×m)2

)
,F2

)
.

Concretely, this means that these should span this dual with probability at
least

(
1− 1/2N−k

)
[BLP93, Lem. 8.2]; in that case, any element of the kernel of

log−1,χ is indeed a square. In other words, if
∑

1≤i≤k vi log1,χ gi = 0, then with

high probability the product g =
∏

1≤i≤k g
vi
i indeed belongs to U ∩ (O×Km,S)2.

Square roots algorithm. Once we have identified combinations of elements of U
that are S-unit squares, it remains to compute their square roots explicitly.

First, we note that it is useful to systematically reduce those products modulo
all squared circular units C2

m to contain the coefficients size. This is done as usual
by projecting the logarithmic embedding LogS∞ g of the obtained g ∈ (O×Km,S)2

into 2·LogS∞ Cm, finding a closest vector y = LogS∞ u
2 and replacing g by g/u2.

The traditional method to compute the square root of an element g ∈ (K×m)2

is to factor the polynomial x2 − g in Km[x], using e.g. Trager’s method [Coh93,
Alg. 3.6.4] or Belabas’ p-adic method [Bel04]. As, according to Th. 3.11, we have
many square roots to compute, we choose instead to use a batch strategy in the
spirit of [LPS20, Alg. 5] using complex embeddings approximations.

Since LLL seminal paper [LLL82], it is known that one can retrieve an al-
gebraic number from approximations of one of its complex embeddings. Indeed,
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fix an embedding σ ∈ Gm and a Q-basis
(
ω1, . . . , ωn

)
of OKm , and LLL-reduce:

Bκ :=


−σ(ω1) C 0 . . . 0

−σ(ω2) 0 C
.. .

...
...

...
. . .

. . . 0
−σ(ωn) 0 . . . 0 C

 .

where C > 0 is a constant and approximations are computed at precision κ ∈ N.
Then, for any g ∈ OKm , applying e.g. Babai’s Nearest Plane algorithm on the
LLL basis of Bκ and target

(
σ(g), 0, . . . , 0

)
gives a combination (g1, . . . , gn)

such that g =
∑n
i=1 giωi. As explained in [LPS20], it is possible to mutualize the

computation of Bκ and reuse the unitary transformation to hasten computations
when increasing κ is required.

We use an improvement that benefits from the existence of the maximal real
subfield K+

m. Each g ∈ Km = K+
m[ζm] can be uniquely written as g = g0+g1 ·ζm,

with g0, g1 ∈ K+
m. For σ ∈ G+

m, the relative Minkowski embedding of σ relatively
to the extension Km/K

+
m is defined by σKm/K+

m
(gσ0 , g

σ
1 ) =

(
gσ , gσ

)
∈ C2. This

is a linear homomorphism of C2. When g = h2, its square root h0 + h1ζm can
be retrieved from approximations of hσ0 and hσ1 instead of hσ, as follows:

1. Compute σKm/K+
m

(gσ0 , g
σ
1 ) =

(
gσ , gσ

)
∈ C2;

2. Choose one complex square root z of gσ and apply σ−1
Km/K

+
m

to (z, z) to get

potential approximations
(
h̃σ0 , h̃

σ
1

)
of hσ0 and hσ1 respectively;

3. Using LLL as above in K+
m on h̃σ0 and h̃σ1 , obtain

(
h̃0, h̃1

)
in K+

m, which are
candidates for resp. h0 and h1.

4. If (h̃0 + h̃1 · ζm)2 6= g, then increase κ using the fast method of [LPS20].

Hence, this method amounts to LLL reducing a matrix of size n
2 × (n2 + 1) and

decoding using e.g. Babai’s Nearest Plane algorithm. This offers a great speed-up
compared to reducing a n×(n+1) matrix. For further details and generalizations
to higher order polynomial roots, we refer the interested reader to [Les21].

Rebuilding a basis. After the square root step, we obtain new elements h1, . . . , hr,
where r = dim

(
ker log−1,χ

)
. To extract a set of k independent elements from the

extended set
{
h1, . . . , hr, g1, . . . , gk

}
, we compute an LLL-basis of the matrix

constituted of their valuations at the places of S. Note that this matrix can be
computed entirely from the valuations of the initial set {gi} and the basis of
ker log−1,χ. Using the same trick as for matrix A in [BBV+17, Alg. 5.2], this
contains the height of the transformation matrix, sufficiently for our needs.

At the end of this process we obtain a maximal set of independent S-units
of index given by Th. 3.11 where no factor 2 remains.

4 Removing quantum steps from the CDW algorithm

The complete material for this section is given in §B, and the main points are
summarized here. The CDW algorithm for solving Approx-Svp was introduced
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in [CDW17] for cyclotomic fields of prime power conductors, using short relations
of the Stickelberger lattice as a keystone. [CDW21] extended it to all conductors.

In this section, we show how to use the results of §3.2, §3.3 and §3.4 to remove
most quantum steps of [CDW21]. More precisely, we first propose in §B.2 an
equivalent rewriting of [CDW21, Alg. 7] that enlightens some hidden steps that
reveal useful for subsequent modifications. Then, in §B.3, we plug in the explicit
generators of §3.2 ([BK21]) and Eq. (3.6) for relative class group orbits, to remove
the last call to the quantum Pip solver. Finally, by considering the module of all
real class group relations, using Pr. 3.14 and Th. 3.11, we remove in §B.4 the need
of a random walk mapping any ideal of Km into Cl−m, at the (small) additional
price of restricting to cyclotomic fields such that h+m ≤ O(

√
m) (Hyp. B.1).

An equivalent rewriting of CDW (§B.2). Omitting details, the CDW algorithm
works as follows, for any challenge ideal a of Km [CDW21, Alg. 7]:

1. Random walk to Cl−m: find b such that
[
ab
]
∈ Cl−m.

2. Solve the Cldl of ab on Gm-orbits of the prime ideals L1, . . . ,Ld of Cl−m. This
gives a vector8 ε = (ε1, . . . , εd) ∈ Z[Gm]d such that ab ·

∏
i L

εi
i is principal.

3. Solve the Cpmp by projecting each εi in π(Sm) = (1 − τ)Sm, find a close
vector vi = yi · π(Sm) and lift vi to get some ηi s.t. π(ηi) = vi, ‖ε− η‖1 is
small with positive coordinates, and ab ·

∏
i L

εi−ηi
i is principal.

4. Apply the Pip algorithm of [BS16] to get a generator of this principal ideal.
5. Reduce the obtained generator by circular units like in [CDPR16].

This eventually outputs h ∈ a of length ‖h‖2 ≤ exp
(
Õ(
√
m)
)
· N (a)1/ϕ(m)

[CDW21, Th. 5.1].

We focus on the lift procedure of Step 3. In [CDW21], v ∈ π(Sm) is lifted
to η ∈ Sm with non-negative coordinates by setting (ησ , ητσ) = (vσ , 0) if vσ ≥ 0
and (0,−vσ) otherwise, for all σ ∈ G+

m. This works because [c]−1 = [cτ ] for
any c ∈ Cl−m, but hides which exact product of relative norm ideals is involved.
We propose a totally equivalent lift procedure: from v = y · π(Sm), consider the
preimage η̃ = y · Sm, from which we remove min

{
η̃σ , η̃τσ

}
to each η̃σ coordinate

to obtain η. Now, it is obvious that η is a combination y of relations in Sm, and
of relative norm relations given by the min part. Details are in Alg. B.6.

Using explicit Stickelberger generators (§B.3). Each element wa of the generating
set W of Sm corresponds to a generator JL(1, a − 1) (see §3.2). Similarly, each
relative norm ideal writes 〈γ+s 〉 = L(1+τ)σs (see §3.3). Hence, from an (explicit)
Cldl solution 〈α〉 = ab · Lε, and given a Cpmp solution, explicitly written as
above as η = y ·W + u · (1 + τ) ·Z[G+

m], we have that a generator of ab ·Lε−η is
directly given by α

/(∏
a JL(1, a− 1)ya

∏
s(γ

+
s )us

)
. This allows us to remove the

quantum Pip in dimension n in step 4 (for each query). In exchange, we need
to compute (only once) all real generators for relative norm relations, which can
be done in dimension ϕ(m)/2 by [BS16, Alg. 2].

8 In the CDW algorithm, the explicit generator given by the Cldl solver is discarded.
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Avoiding the random walk (§B.4). Finally, note that several quantum steps are
performed (for each query) in the random walk that maps ideals to Cl−m. Using
the results of §3.3, we replace the module (1 + τ) · Z[Gm]d by the module of all
real class group relations. Asymptotically, we prove in Pr. B.7 that this does not
change the bound on the approximation factor obtained in [CDW21, Th. 5.1],
under the same assumption on the Galois-module structure of Clm [CDW21,
Ass. 1], as long as we restrict to fields Km with h+m ≤ O(

√
m) (Hyp. B.1). This

additional tiny assumption is largely compensated by the fact that only two
quantum steps remain: one is performed only once in dimension ϕ(m)/2 to com-
pute real class group relations and generators, and the second is solving the Cldl
for each query (see Tab. B.1).

5 Computing log-S-unit sublattices in higher dimension

Our main goal is to simulate the Twisted-PHS algorithm for high degree cyclo-
tomic fields. To this end, we compute full-rank sublattices of the full log-S-unit
lattice using the knowledge of the maximal set F of independent S-units defined
by Eq. (3.8) and its 2-saturated counterpart Fsat from §3.5. These sets are lifted
from a complete set of real S+-units (see §3.3), hence are obtained at the classi-
cally subexponential cost of working in the half degree maximal real subfield. We
note that by Th. 3.11, the index of these families grows rapidly as the number of
orbits increases, hence these approximated modes give an upper bound on the
approximation factors that can be expected when using Twisted-PHS.

The Twisted-PHS algorithm is briefly recalled in §5.1, and our experimental
setting is detailed in §5.2. Then, we analyse in §5.3 the geometric characteristics
of our log-S-unit sublattices and the obtained approximation factors in §5.4.

5.1 The Twisted-PHS algorithm

The Twisted-PHS algorithm [BR20] was introduced as an improvement of the
PHS algorithm [PHS19]. Both aim at solving Approx-id-Svp in any number field
and have the same theoretically proven bounds for running time and reached ap-
proximation factors. However, the explicit S-units formalism in [BR20] leads to a
proper normalization of the used log-S-embedding, weighting coordinates ac-
cording to finite places norms. This turned out to give experimentally significant
improvements on the lattices’ decodability and on reached approximation factors.

Both algorithms are split in a preprocessing phase, performed only once for
a fixed number field, and a query phase, for each challenge ideal. More precisely:

1. The preprocessing phase consists in choosing a set of finite places S gen-
erating the class group, computing the corresponding log-S-unit lattice for
an appropriate log-S-embedding, and preparing the lattice for subsequent
Approx-Cvp requests using the Laarhoven’s algorithm from [Laa16];

2. For each challenge ideal b, the query phase consists in first solving the Cldl
relatively to S, obtaining 〈α〉 = b·

∏
L∈S L

vL . Then, this element is projected
onto the span of the above log-S-unit lattice, and a close vector of this lattice
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gives a S-unit s s.t. α/s is hopefully small. Here, guaranteeing that α/s ∈ b
is achieved by applying a drift parameterized by some β on the target.

In the Twisted-PHS case, since the obtained lattice, after proper normaliza-
tion, appears to have exceptionally good geometric characteristics, it was pro-
posed to replace Laarhoven’s algorithm by a lazy BKZ reduction in the prepro-
cessing phase and Babai’s Nearest Plane algorithm in the query phase [BR20,
Alg. 4.2 and 4.3]. We will consider only this practical version in our experiments.

In details, for a number field K, the log-S-unit lattice used in the Twisted-
PHS algorithm is defined as ϕtw(O×K,S), where ϕtw is the log-S-embedding given
by fH ◦ LogS [BR20, Eq. (4.1)], for an isometry fH from the span H of LogS
to Rk, where k equals the multiplicative rank of O×K,S modulo torsion.

Among the consequences of the proper normalization induced by LogS , the
authors showed how to optimally choose a set of finite places that generate the
class group [BR20, Alg. 4.1]. Namely, taking ideals of increasing prime norms in
the set S, they noticed that the density of the associated (twisted) log-S-unit
lattice ϕtw(O×K,S) increases up to an optimal value before decreasing.

Finally, a tricky aspect of the resolution resides in guaranteeing that the
output solution is indeed an element of the challenge ideal, i.e., that vL(α/s) ≥ 0
for all L ∈ S∩S0. In [BR20], this is done by applying a drift vector in the span of
the log-S-unit lattice, parameterized by some β whose optimal value is searched
using a dichotomic strategy in the query phase. Concretely [BR20, Eq. (4.7)]:

t = fH

({
ln|α|σ−

kβ + lnN (b)−
∑

L∈S lnN (L)

[K : Q]

}
σ
,
{

ln|α|[KL:Q`]
L +β− lnN (L)

}
L∈S

)
.

5.2 Experimental settings

Computing the full group of S-units in a classical way is rapidly intractable,
even in the case of cyclotomic fields; therefore, experiments performed in [BR20]
on Twisted-PHS were bound to ϕ(m) ≤ 70. We apply the Twisted-PHS algo-
rithm using our full-rank sublattices of the whole log-S-unit lattice induced by
the independent family F of Eq. (3.8), its 2-saturated counterpart Fsat (§3.5)
and, when feasible, a fundamental system Fsu for the full S-unit group. Approxi-
mated modes with F or Fsat give a glimpse on how Twisted-PHS scales in higher
dimensions, where asymptotic phenomena like the growth of hm start to express.

Source code and hardware description. All experiments have been implemented
using SageMath v9.0 [Sag20], except for the full S-unit groups computations for
which we used Magma [BCP97], which appears much faster for this particular
task and also offers an indispensable product (“Raw”) representation. Moreover,
fplll [FpL16] was used to perform all lattice reduction algorithms. The entire
source code is provided on https://github.com/ob3rnard/Tw-Sti.

Most of the computations were performed in less than two weeks on a server
with 72 Intel® Xeon® E5-2695v4 @2.1GHz with 768GB of RAM, using 2TB of
storage for the precomputations. Real class group computations were performed
on a single Intel® Core™ i7-8650U @3.2GHz CPU using 10GB of RAM.
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m ϕ(m) h+
m m ϕ(m) h+

m m ϕ(m) h+
m m ϕ(m) h+

m m ϕ(m) h+
m m ϕ(m) h+

m

136 64 2 408 128 2 205 160 2 356 176 † 520 192 4 265 208 †
212 104 5 268 132 † 328 160 † 376 184 † 840 192 † 424 208 †
145 112 2 284 140 † 440 160 5 191 190 11 303 200 † 636 208 †
183 120 4 292 144 † 163 162 4 221 192 † 404 200 †
248 120 4 504 144 4 332 164 † 388 192 † 309 204 †
272 128 2 316 156 † 344 168 † 476 192 † 412 204 †

Table 5.1 – List of ignored conductors (†: failure to compute Cl+m within a day).

Targeted cyclotomic fields. We consider cyclotomic fields of any conductor m
s.t. 20 < ϕ(m) ≤ 210 with known real class number h+m = 1, including those from
Tab. 2.1. The restriction to h+m = 1 is only due to technical interface obstructions,
i.e., we are not aware of how to access the non-trivial real class group relations
internally computed by SageMath. Additionally, for some of the conductors,
we were not able to obtain the real class group within a day. Thus, we are left
with 210 distinct cyclotomics fields, and Tab. 5.1 lists all ignored conductors.

Finite places choice. The optimal set of places computed by [BR20, Alg. 4.1]
yields a number dmax of splitGm-orbits of smallest norms maximizing the density
of the corresponding full log-S-unit lattice. However, the index of our log-S-unit
sublattices, given by Th. 3.11, grows too quickly, roughly in (h−m)d−1, so that
their density always decreases as soon as d > 1. This remark motivates us to
compute all log-S-unit sublattices for d = 1 to dmax first split Gm-orbits.

Full rank log-S-unit sublattices. The first maximal set of independent S-units
that we consider is F from Eq. (3.8). The 2-saturation process of §3.5 mitigates
the huge index of F, yielding family Fsat. A fundamental system Fsu of the full S-
unit group O×Km,S (modulo torsion) is also used whenever it is computable in
reasonable time, i.e., up to ϕ(m) < 80. As noted in §2.3, their images under any
log-S-embedding ϕ form full-rank sublattices resp. Lurs, Lsat, Lsu, generated by
resp. ϕ(F), ϕ(Fsat), ϕ(Fsu), of the corresponding full log-S-unit lattice ϕ(O×Km,S).

We consider several choices of the log-S-embedding ϕ. Namely, we tried to
evaluate the advantage of using the expanded LogS (exp) over LogS , labelled tw
(as twisted by [C : R] = 2). We also considered versions with (iso) or without
(noiso) the isometry fH of [BR20, Eq. (4.2)]. This yields four choices for ϕ,
e.g. tag noiso/tw is ϕ = LogS and iso/exp gives the original ϕtw = fH ◦ LogS .

Compact product representation. In order to avoid the exponential growth of
algebraic integers viewed in Z[x]

/〈
Φm(x)

〉
, we use a compact product represen-

tation, so that any element α in F (resp. Fsat or Fsu) is written on a set g1, . . . , gN
of N small elements as α =

∏N
i=1 g

ei
i . Hence, besides the gi’s, each α is stored as

a vector e ∈ ZN , and for any choice of ϕ, we have ϕ(α) =
∑N
i=1 ei · ϕ(gi). This

allows us to compute ϕ without the coefficient explosion encountered in [BR20,
§5], which unlocks the full log-S-unit lattices computations beyond degree 60.

Lattice reductions. For each of the constructed log-S-unit sublattices, i.e. for each
number of orbits d ∈ J1, dmaxK, for each family of independent S-units F, Fsat and
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m d set k Vol1/k
δ max1≤i≤k‖bi‖2

raw LLL bkz40 raw LLL bkz40

152

1
urs 107 8.691 2.016 1.570 1.551 45.007 38.466 38.202
sat 107 6.928 4.398 1.787 1.822 752.306 23.280 21.720
su 107 6.928 28.396 1.805 1.828 3163.723 21.953 21.446

2
urs 179 9.683 2.157 1.623 1.590 48.754 41.313 41.404
sat 179 7.384 7.670 1.885 1.896 6273.562 23.280 22.772
su 179 6.816 65.355 2.226 2.322 3427.134 23.221 24.741

211

1
urs 314 14.325 2.672 2.291 2.257 96.068 97.930 96.569
sat 314 11.386 9.998 2.581 2.562 9742.552 59.387 59.578

5
urs 1154 18.232 3.118 2.542 2.497 118.124 119.160 115.888
sat 1154 13.341 19.443 2.918 2.901 32067.612 71.428 72.752

7
urs 1574 18.976 3.161 2.557 2.512 120.838 121.129 119.020
sat 1574 13.771 26.841 2.927 2.910 530646.708 71.428 72.752

Table 5.2 – Geometric characteristics of Lurs, Lsat and Lsu for Q(ζ152) and
Q(ζ211) with log-S-embedding ϕtw (of type iso/exp). For all bases,
the root-Hermite factor verifies |δ0 − 1| < 10−3.

(when feasible) Fsu, and for each choice of log-S-embedding, we compare several
levels of reduction: no reduction (“raw”), LLL-reduction and BKZ40-reduction.

5.3 Geometry of the lattices

For all described choices of log-S-unit sublattices, we first evaluate several ge-
ometrical parameters (see §2.5): reduced volume V 1/k, root-Hermite factor δ0,
orthogonality defect δ. For clarity’s sake, we only give here a few examples giving
a glimpse of what happens in general, and additional data can be found in §C.1.

Table 5.2 contains data for cyclotomic fields Q(ζ152) and Q(ζ211) of de-
grees resp. 72 and 210. All values correspond to the iso/exp log-S-embedding,
i.e., ϕ = ϕtw. Indeed, as illustrated by Tab. C.2, we experimentally note that
using (no)iso/exp seems geometrically slightly better than using (no)iso/tw. No-
tice how small is the normalized orthogonality defect after only LLL reduction,
unambiguously below the tight Minkowski bound

√
1 + k

4 .
We then look at the logarithm of the Gram-Schmidt norms, for every de-

scribed choice of log-S-unit sublattices. Figure 5.1 plots the Gram-Schmidt log
norms before and after BKZ reduction of the lattices Lsat, using the original
iso/exp log-S-embedding ϕtw. As in [BR20, Fig. B.1–10], for each field the two
curves are almost superposed, which is consistent with the previous observations
on the orthogonality defect. We also checked the impact of the log-S-embedding
choice among all four options on the Gram-Schmidt logarithm norms of the unre-
duced basis ϕ(Fsat). As expected, the isometry fH has absolutely no influence
on the Gram-Schmidt norms. On the other hand, using LogS or LogS seems to
alter only the first norms, and in a very small way. This can be seen in Fig. C.4.
Again, increasing the number of orbits does not influence these behaviours.

We stress that these very peculiar geometric characteristics – shape of the
logarithm of the norms of the Gram-Schmidt basis, ease of reduction, very small
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Fig. 5.1 – Lsat lattices for Q(ζ152) and Q(ζ211): Gram-Schmidt log norms before
and after reduction by BKZ40.

orthogonality defect (after LLL) – already observed in [BR20, §5.1–2], are consis-
tently viewed across all conductors, degrees, log-S-unit sublattices and number
of orbits. To give a concrete idea of e.g. the striking ease of reduction of these
log-S-unit sublattices, we report that for m = 211, BKZ40 terminates in around
7 minutes (resp. 30 minutes) on the log-S-unit sublattice of dimension k = 1154
(resp. 1574) corresponding to d = 5 (resp. dmax = 7), which is unusually fast.

This very broad phenomenon suggests that the explanation is possibly deep,
an observation that has been recently developed by Bernstein and Lange [BL21].

5.4 Evaluation of the approximation factor

In [BR20], evaluating in practice the approximation factors reached by Twisted-
PHS is done by choosing random split ideals of prime norm, solving the Cldl
for these challenges and comparing the length of the obtained algebraic integer
with the length of the exact shortest element. As the degrees of the fields grow,
solving the Cldl and exact id-Svp becomes rapidly intractable. Hence, we resort
to simulating random outputs of the Cldl, similarly to [DPW19, Hyp. 8], and
estimate the obtained approximation factors with inequalities from Eq. (2.3).
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Simulation of Cldl solutions. To simulate targets that heuristically correspond
to explicit generators α output by the Cldl, we assume that for each ideal Li ∈ S,

the vector
(
vLσi (α)

)
σ∈Gm of Z

ϕ(m)
2 is uniform modulo the lattice of class relations,

and that after projection along the 1-axis,
(
ln|σ(α)|

)
σ

is uniform modulo the
log-unit lattice. These hypotheses have already been used in [DPW19, Hyp. 8] or
[BR20, H. 4.8], and are backed up by theoretical results in [BDPW20, Th. 3.3].

Drawing random elements modulo a lattice of rank k is done by following a
Gaussian distribution of sufficiently large deviation. Concretely, we first choose
a random split prime p in J297, 2103K. Then, for each L ∈ S ∩S0, we pick random
valuations vL(α) modulo the lattice of class relations of rank

∣∣S∩S0∣∣ and random
elements (uσ)σ∈G+

m
∈ Rϕ(m)/2 in the span of the log-unit lattice of rank ϕ(m)

2 − 1.

Finally, we simulate (ln|σ(α)|)σ by adding
ln p+

∑
L∈S vL lnN (L)

ϕ(m) to each coordi-

nate uσ , so that their sum is ln |N (α)|
2 . For each field, we thereby generate 100

random targets on which to test Twisted-PHS on all lattice versions.

Reconstruction of a solution. For each simulated Cldl generator α, given as a
random vector ({ln|σ(α)|}σ∈G+

m
, {vL(α)}L∈S∩S0), it is easy to compute ϕ(α) for

any log-S-embedding ϕ and to derive a target as in [BR20, Eq. (4.7)], including a
drift parameterized by some β. Then, considering e.g. Lsat = ϕ(Fsat), given by the
BKZ40-reduced basis Ubkz ·ϕ(Fsat), we find a close vector v = (y ·Ubkz) ·ϕ(Fsat) to
this target using Babai’s Nearest Plane algorithm, and from y, Ubkz and Fsat we
easily recover, in compact representation, s ∈ O×Km,S s.t. v = ϕ(s) and also α/s.

The purpose of the drift parameter β is to guarantee vL(α/s) ≥ 0 on all finite
places. As mentioned in [BR20], the length of α/s is extremely sensitive to the
value of β, so that they searched for an optimal value by dichotomy. However,
this positiveness property actually does not seem to be monotonic in β, and in
practice, using the same β on each finite place coordinate is too coarse when
the dimension grows, resulting in unnecessarily large approximation factors. We
instead obtained best results using random drifts in `∞-norm balls of radius 1
centered on the 1 axis. A first sampling of O(ϕ(m)) random points β ·1 +B∞(1)
for a wide range of random β’s allows us to select a β0 around which we found the
best ‖α/s‖2 with all vL(α/s) being positive. Then we sample O(ϕ(m)) uniform
random points in the neighbourhood of β0, namely in [0.9β0, 1.1β0] · 1 +B∞(1),
and output the overall optimal ‖α/s‖2 having all vL(α/s) ≥ 0.

Estimator of the approximation factor. Since we do not have access to the short-
est element of a challenge ideal, we cannot compute an exact approximation fac-
tor as in [BR20]. Instead, we estimate the retrieved approximation factor using
the inequalities implied by Eq. (2.3). We focus on the Gaussian Heuristic, which
gives consistent results with the exact approximation factors found in [BR20],
in small dimensions. For each cyclotomic field, the plotted points are the means,
over the 100 simulated random targets, of the minimal approximation factors
obtained using options iso/noiso and exp/tw. For each family F, Fsat and Fsu, we
chose to keep only the factor base that gives the best result. This systematically
translated into using d = 1 Gm-orbit for F and Fsat, whereas we had to use
d = dmax for Fsu, as predicted by the Twisted-PHS algorithm.
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Fig. 5.2 – Approximation factors, with Gaussian Heuristic, reached by Tw-PHS
for cyclotomic fields of degree up to 210, on lattices Lurs, Lsat and Lsu.

Fig. 5.3 – Approximation factors, with Gaussian Heuristic, reached by Tw-PHS
for cyclotomic fields of degree up to 100, on lattices Lsat and Lsu.

Figure 5.2 shows the approximation factor afgh obtained for all lattices Lurs,
Lsat and Lsu (when applicable) after BKZ40 reduction. Figure 5.3 is a zoom
of Fig. 5.2 that focuses on Lsat and Lsu on small dimensions. First, we remark
that using F from Eq. (3.8), the retrieved approximation factors are increasing
rapidly. Using the 2-saturated family Fsat yields much better results, and looking
closely at Fig. 5.3 shows that using a basis Fsu of the full S-unit group, when
feasible, even improves the picture if dmax > 1, in which case Lsu is denser than
Lsat. For Lsu, we stress that we obtain estimated approximation factors very
similar to the exact ones observed in [BR20].

More generally, we observe a very strong correlation between the density of
our lattices and the obtained approximation factors – the denser, the better. As
an important related remark, the variance seen for afgh in Fig. 5.2 for distinct
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fields of same degree follows the variations of the norm of the first split prime,
thus of the reduced volume of the considered log-S-unit sublattice. We expect
this variance to be smoothed through conductors for the full log-S-unit lattice.

Furthermore, considering m = 211, the F family gives Vol1/314 Lurs ≈ 14.325
and an estimated afgh ≈ 13170, for Fsat we get Vol1/314 Lsat ≈ 11.386 and a much
smaller estimated afgh ≈ 16.4, whereas the optimal number of orbits predicted by
the Twisted-PHS factor base choice algorithm [BR20, Alg. 4.1] is dmax = 7, which

yields a full log-S-unit lattice of reduced volume only Vol1/1574 Lsu ≈ 9.635.

Comparison to the CDW algorithm. Using the same experimental setting, we
compute the approximation factors obtained using the CDW algorithm as imple-
mented in [DPW19] (“Naive version”) with additional BKZ40 lattice reductions,
as well as the experimentally derived volumetric lower bound from [DPW19,
Eq. (5) and Tab. 1]. Those values are also represented in Fig. 5.2 and 5.3.

We note that our experimental results using the Fsat family are comparable
to this volumetric lower bound. Moreover, for some fields, e.g. in dimensions
96, 160, 168, 200, this lower bound is defeated by the (approximated version of
the) Twisted-PHS algorithm. Note that this does not invalidate the lower bound
itself, which is stated for the two-phase CDW algorithm, but indicates the power
of combining both steps in only one lattice as in the Twisted-PHS algorithm.
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for the proof of Lem. 3.12, and for thorough and invaluable discussions about
the Stickelberger ideal. Andrea Lesavourey is funded by the Direction Générale
de l’Armement (Pôle de Recherche CYBER), with the support of Région Bre-
tagne. This work is supported by the European Union PROMETHEUS project
(Horizon 2020 Research and Innovation Program, grant 780701).

References

Bab86. L. Babai: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica, 6(1), pp. 1–13, 1986.
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SSTX09. D. Stehlé, R. Steinfeld, K. Tanaka, K. Xagawa: Efficient public key
encryption based on ideal lattices. In ASIACRYPT, vol. 5912 of LNCS, pp.
617–635, Springer, 2009.
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A Arithmetic details for the description of an explicit
full-rank family of independent S-units

A.1 Two special subsets of J1,mK

We recall here from resp. [Kuč92, p.293] and [BK21, Eq. (11)] the definition of
two subsets M+

m and M ′m of J1,mK that are useful to describe resp. a fundamental
family of circular units and a short Z-basis of the Stickelberger ideal of Km.

Recall that m has prime factorization m = q1q2 · · · qt 6≡ 2 mod 4, where
qi = peii > 2 for i ∈ J1, tK. Let Xm be the set of all positive integers a < m that
are either divisible by qi or relatively prime to qi for each i ∈ J1, tK, i.e.:

Xm =
{
a ∈ Z; 0 < a < m,

(
a, m

(a,m)

)
= 1
}
.

Let M±m ⊆ Xm be the sets of all a ∈ Xm satisfying ([Kuč92, p.293]):9

– for all i ∈ J1, tK, if qi - a then a 6≡ −(a,m) mod qi,
– if a - m, let k = max

{
i ∈ J1, tK; a 6≡ (a,m) mod qi

}
, then

{
a

(a,m)qk

}
< 1

2 ,

– if a | m then the set
{
i ∈ J1, tK; qi - a

}
has an even (resp. odd) number of

elements when defining M+
m (resp. when defining M−m).

Finally, the set M ′m is defined from the previous set M−m using [BK21, Eq. (11)]:

M ′m =
{
a ∈M−m; ∀i ∈ J1, tK, mqi - a

}
∪
( t⋃
i=1

{
mb
qi

; 1 ≤ b ≤ ϕ(qi)
2

})
.

Note that M+
m (resp. M ′m) contains ϕ(m)

2 − 1 elements (resp. ϕ(m)
2 elements).

Both sets are obviously easy to compute, using only simple arithmetic criteria.

A.2 Explicit description of the map αm(·)

For the sake of being self-contained, we recall here, sticking to the exposition of
[BK21, §3.2], the description of the map αm(·) : J1,mK→ Sm, whose image lies

9 Actually, the set M+ defined in [Kuč92, p.293] is M+ = M+
m ∪ {0}.
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in the family of short elements described in Pr. 3.7. It yields a short basis of the
lattice Sm \ {Nm} when applied on the set M ′m ( J1,mK defined in §A.1.

For any positive b ∈ Z, define Jb as the set
{
i ∈ J1, tK; qi | b

}
, hence

rb =
∏
i∈Jb qi is the maximal divisor of (b,m) s.t.

(
rb,

m
rb

)
= 1. Let J ′b = J1, tK\Jb

be the set of indices i s.t. qi - b. If b < m, then J ′b 6= ∅ and αm(b) is defined by:

1. If J ′b = {j}, then b = c · mqj for 0 < c < qj , and [BK21, Eq. (16) and (15)]:

αm(b) =

{
2θm

(ϕ(qj)·m
2·qj

)
− θm

(ϕ(qj)·m
qj

)
if c = 1,

θm
(
m
qj

)
+ θm

(
b− m

qj

)
− θm(b) otherwise.

2. If
∣∣J ′b∣∣ > 1, let u = qi for some i ∈ J ′b and v = m

urb
. Since (u, v) = 1, there

exist x, y ∈ Z s.t. ux+ vy = 1, and [BK21, Eq. (14)]:

αm(b) = θm(bux) + θm(bvy)− θm(b).

In [BK21, Lem. 3.2], these elements are shown to satisfy the conditions of Pr. 3.7.
In particular, for any b ∈ Z s.t. 0 < b < m, this implies that αm(b) ∈ Sm is short
and (1 + τ) · αm(b) = Nm.

B Removing quantum steps from the CDW algorithm

In §3.2 a short basis for the Stickelberger lattice has been introduced in Th. 3.8,
as well as associated generators. We make use of these new elements and see how
they can be applied to the approx-Svp algorithm from [CDW17,CDW21]. First,
we recall the original algorithms with only aesthetic rearrangement that will re-
veal useful later on. Then, using explicit Stickelberger elements corresponding to
the class group relations of the relatively short generating family W of [CDW21],
as well as principal relative norm ideals generators, we replace the last Pip call
in the query phase by a class group computation in the preprocessing phase in
the maximal real subfield, hence in dimension half of the initial field. Finally, we
remove the need of using the random walk mapping challenge ideals into the mi-
nus part of the class group, by using the module of all real class group relations
C+

l1,...,ld
introduced in §3.3, under the restriction that h+m ≤ O(

√
m) (Hyp. B.1).

Note that this last part requires using the index formula from Pr. 3.14.

B.1 Hypothesis on the plus part of the class number

The CDW algorithm from [CDW21] assumes that h+m ≤ poly(m) for any conduc-
tor m [CDW21, Ass. 2]. This is needed for their random walk procedure mapping
any ideal to Cl−m to have a running time in poly(m). To remove this reduction
to Cl−m constraint, we use a slightly more restrictive hypothesis.

Hypothesis B.1. We restrict to cyclotomic fields Km verifying h+m ≤ O(
√
m).

This assumption is certainly not true in general. Nevertheless, by the discus-
sion in Section 2.2, it should be valid when m is a power of 2 and asymptotically
when m is a prime power. Finally, according to Schoof’s table, we note that
h+m ≤

√
m holds for more than 96.6% of all prime conductors m = p < 10000.

We stress that this restriction only impacts the results of §B.4.
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B.2 An equivalent rewriting of the CDW algorithm

The following general proposition will be useful for fully understanding algo-
rithms from [CDW21] as well as the improvements we provide.

As stated in §2.1, given a cyclotomic field Km, recall we identify Gm/〈τ〉 with
G+
m, and we consider the natural lift of those elements to Gm. For any σ ∈ G+

m,
and any α ∈ Z[Gm], we write ∆σ(α) := ασ − αστ .

Proposition B.2. Let α ∈ Z[Gm]. Then for all β ∈ Z[Gm], we have:

β ≡ α mod (1 + τ) ⇐⇒ ∀σ ∈ G+
m, ∆σ(β) = ∆σ(α).

Moreover, let β ≡ α mod (1 + τ), then:

1. For any σ ∈ G+
m:

– βστ = 0 if, and only, if βσ = ∆σ(α),
– βσ = 0 if, and only, if βστ = −∆σ(α).

2. There is a unique β ≡ α mod (1 + τ) with nonnegative integer coordinates
and minimal `1-norm, it is defined by:

∀σ ∈ G+
m, (βσ, βστ ) =

{
(∆σ(α), 0) if ∆σ(α) > 0

(0,−∆σ(α)) if ∆σ(α) < 0.
(B.1)

Proof. The first assertion is easy since β ≡ α mod (1 + τ) if, and only if, for all
σ ∈ G+

m, (βσ, βστ ) ∈ (ασ, αστ ) + (1, 1) ·Z. Thus, locally in the coordinates σ, στ
(with a fixed σ), there is in the class of α modulo (1 + τ) a unique β such that
βστ = 0 and a unique β such that βσ = 0. These are exactly (ασ − αστ , 0) and
(0, αστ − ασ). A coordinate pair (βσ, βστ ) ∈ Z2 (of β ∈ Z[Gm]) is parametrized
as ∆σ(α)(1− λ,−λ) for some λ ∈ R. The segment delimited by (∆σ(α), 0) and
(0, ∆σ(α)) are the points such that λ ∈ [0, 1]. For any λ > 1 we have:

‖∆σ(α)(1− λ,−λ)‖1 = |∆σ(α)|(2λ− 1) > |∆σ(α)|,

and for λ < 0 one has:

‖∆σ(α)(1− λ,−λ)‖1 = |∆σ(α)|(2|λ|+ 1) > |∆σ(α)|.

Last, if λ ∈ [0, 1] the norm is |∆σ(α)|. Finally, in order to find a minimal element
in a given class of Z[Gm] modulo (1 + τ) with nonnegative coefficients only, it is
sufficient to find a minimal pair (βσ, βστ ) with nonnegative coefficients for each
σ ∈ G+

m. Fix σ ∈ G+
m and assume without loss of generality that ∆σ(α) > 0.

Then following the characterisation above, any equivalent pair with minimal
norm can be written ∆σ(α)(1− λ,−λ) with λ ∈ [0, 1]. Among them, (∆σ(α), 0)
is clearly the only pair such that both coefficients are nonnegative.
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Algorithm B.1 WalkToCl−(a): random walk to Cl−m
Input: an ideal a ⊂ OKm .
Output: an ideal b ⊂ OKm s.t. [ab] ∈ Cl−m and N (b) ≤ exp(Õ(m)).
1: ` = Õ(m), B = poly(m)
2: repeat
3: for i = 1, . . . , ` do
4: Choose Li uniformly at random among prime ideals of norm less than B
5: b←

∏d
i=1 Li

6: until N
Km/K

+
m

(ab) is principal, using the (quantum) Pip algorithm from [BS16]
7: return b

Algorithm B.2 Reduce(W, ξ): finds a reduction of ξ

Input: α ∈ Z[Gm] and W ⊂ Z[Gm] a generating set of the Stickelberger lattice.
Output: β ∈ Z[Gm] s.t. ‖β‖1 ≤ 1

4
· ϕ(m)3/2, and Cα = Cβ for any C ∈ Cl−m.

1: v ← Cvp(π(W ), π(α))
2: γ ← π(α)− v · π(W )
3: Define (aσ)

σ∈G+
m

as the integral coordinates of γ in the basis (π(σ))
σ∈G+

m
of

Z[Gm]/(1 + τ)
4: β ←

∑
σ∈G+

m
aσσ ∈ Z[Gm]

5: return β

Algorithm B.3 Cpm−(W,L, α): solves the CPM problem for ideal Lα

Input: A generating set W [CDW21, Lem. 4.4] of the Stickelberger lattice, an ideal
L such that [L] ∈ Cl−Km and an element α ∈ Z[Gm].

Output: an integral ideal b = Lγ s.t. Lαb is principal and and N (b) =

N (L)O(ϕ(m)3/2).
1: β ← Reduce(W,α)
2: Write β as β =

∑
σ∈G+

m
aσσ

3: for σ ∈ G+
m do

4: (a+σ , a
−
σ )←

{
(aσ, 0) aσ ≥ 0,

(0,−aσ) otherwise

5: γ ←
∑
σ∈G+

m
(a+σ + a−σ τ)σ

6: return Lγ .

We can now recall the main algorithms from [CDW21]. Algorithm B.1 is
WalkToCl− [CDW21, Alg. 5]. This algorithm gives reduces the general case
to the case where the input ideal is in the relative class groups, for which the
Stickelberger ideal is a natural lattice of class relations.

Once this technical requirement is satisfied, the main steps described in
[CDW21] are given by the Reduce algorithm in Alg. B.2 which corresponds
to [CDW21, Alg. 3]. This algorithm is subsequently used in algorithm Cpm− de-
scribed in Alg. B.3 and which corresponds to [CDW21, Alg. 4]10. Note also that

10 This algorithm was originally called ClosePrincipalMultiple− in [CDW21].
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compared to [CDW21, Alg. 4], the end of Cpm− algorithm is slightly modified
to satisfy the convention we use for the Cldl algorithm.

Finally, all the previously introduced algorithms are used to define the algo-
rithm CDW [CDW21, Alg. 7] solving Approx-Svp for ideal lattice algorithm11.
For this last algorithm, it will be useful for us to use an equivalent rewriting of it
in a preprocessing phase (Alg. B.4) and a query phase (Alg. B.5). We also recall
there exists an algorithm ShortGenerator [CDW21, Alg. 1] whose property
is described in Th. B.3.

In order to be coherent with future algorithms that will be described with
a preprocessing phase and a query phase, we argue that the (randomized) Cldl
step of [CDW21, Alg. 6, lines 4–8] can be rewritten as follows. Essentially, instead
of testing whether the Cldl algorithm succeeds within the algorithm, we fix a
number of orbits d during the preprocessing phase (Alg. B.4) before moving to
the query phase (Alg. B.5). If the Cldl step of the query phase fails then we
go back to the preprocessing phase with a higher d. Also, for any of such d, we
choose the bound B = poly(m) so that M = {L | N (L) ≤ B, [L] ∈ Cl−m} has at
least d elements allowing us to pick the d ideals of smallest norm within M, as in
step 3 of Alg. B.4. After a small number of query we expect to find a sufficiently
big d such that the ideals L1, . . . ,Ld generates Cl−m.

Algorithm B.4 CDWpre-proc: find a generating family of Cl−m
Input: a cyclotomic field Km of conductor m and an integer d
Output: a family B of prime ideals (expected to generate Cl−m)
1: B = poly(m)
2: M← {L | N (L) ≤ B, [L] ∈ Cl−m}
3: Choose L1, . . . ,Ld with smallest norm in M
4: B← {Lσi | σ ∈ Gm, i = 1, . . . , d}
5: return B

Algorithm B.5 CDWquery(a): finding mildly short vectors in the ideal a

Input: an ideal a ∈ OKm , a family B← {Lσi | σ ∈ Gm, i = 1, . . . , d}
Output: an element h ∈ a of norm ‖h‖2 ≤ exp(Õ(

√
m)) · N (a)1/ϕ(m)

1: b′ ←WalkToCl−(a)
2: (yi,σ)σ∈Gm,i=1,...,d ← CldlB(ab′) . ab′

∏
i,σ(Lσi )yi,σ ∼ 1

3: for i = 1, . . . , d do
4: ξi ←

∑
σ∈Gm yi,σσ ∈ Z[Gm]

5: b′i ← Cpm−(W,Li, ξi)

6: b← b′
∏d
i=1 b

′
i

7: g ← Pip(ab)
8: h← ShortGenerator(g)
9: return h

Theorem B.3 ([CDW21, Th. 3.6]). There is a randomized algorithm
ShortGenerator that for any g ∈ OKm (in compact representation), finds

11 This algorithm was originally called IdealSVP in [CDW21].
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an element h ∈ OKm (in compact representation) such that g · OKm = h · OKm
and ‖h‖2 = exp

(
O(
√
m logm)

)
·N (g)1/ϕ(m), and runs in polynomial time in the

size of the input.

Now that we have introduced algorithms used in [CDW21], we first look
into steps 2–5 of Alg. B.3. Essentially, these steps guarantee that the exponent
γ ∈ Z[Gm] has only nonnegative coordinates in the basis ((σ)σ∈G+

m
, (στ)σ∈G+

m
),

using the property L−1 ∼ Lτ that was ensured by the restriction to the relative
class group. However, it is also important that the resulting γ has small norm
‖γ‖1. In Pr. B.4, we show that steps 2–5 of Alg. B.3 guarantee that the returned
exponent γ is actually minimal in a certain sense. Before that, we introduce the
subroutine PositiveOptim in Alg. B.6 that generalizes steps 2–5 of Alg. B.3.
This algorithm also applies to elements whose “right part” of coordinates are
not all zero and explicitely shows that the modification are done using elements
of (1 + τ) · Z[G+

m].

Algorithm B.6 PositiveOptim(α): returns an element in the class of α mod-
ulo (1 + τ) ·Z[G+

m] whose coordinates in basis ((σ)σ∈G+
m
, (στ)σ∈G+

m
) are nonneg-

ative integers and which is minimal for `1-norm inside the equivalence class.

Input: an element α ∈ Z[Gm]
Output: an element α̃ ≡ α of minimal `1-norm and whose coordinates in basis

((σ)
σ∈G+

m
, (στ)

σ∈G+
m

) are nonnegative integers.

1: Write α as ((aσ)
σ∈G+

m
, (aστ )

σ∈G+
m

) on the basis
(

(σ)
σ∈G+

m
, (στ)

σ∈G+
m

)
of Z[Gm]

2: α̃← α
3: for σ ∈ G+

m do . Dealing with negative coordinates
4: if aσ ≤ aστ then
5: α̃← α̃− aσ(1 + τ)σ
6: else if aστ ≤ aσ then
7: α̃← α̃− aστ (1 + τ)σ

8: return α̃.

Proposition B.4. In Alg. B.3, it is possible de replace steps 2–5 by subroutine
PositiveOptim. Moreover, this shows the resulting γ has minimal `1-norm
given β ← Reduce(W,α) as in step 1 of Alg. B.3.

Proof. We identify α ∈ Z[Gm] with its coordinates ((aσ)σ∈G+
m
, (aστ )σ∈G+

m
) in

the basis
(

(σ)σ∈G+
m
, (στ)σ∈G+

m

)
. Then, PositiveOptim, act the following way.

For any σ ∈ G+
m, α := (. . . , aσ, . . . , aστ , . . .) is mapped to (. . . , ∆σ(a), . . . , 0, . . .)

if ∆σ(a) ≥ 0, and if ∆σ(a) < 0, it is mapped to (. . . , 0, . . . ,−∆σ(a), . . .). This
is precisely what steps 2–5 returns in the particular case where for all σ ∈ G+

m,
aστ = 0. Note that by Pr. B.2, those images are precisely of minimal norm
(inside a fixed equivalence class). All in all, we conclude that the transformation
β 7→ γ of Alg. B.3 remains inside the equivalence class of β and that it returns
the element of minimal `1-norm inside this class.
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In Pr. B.4, we proved that given a particular class modulo (1 + τ), algorithm
PositiveOptim returns an element (with nonnegative coordinates) of the class
whose `1-norm is minimal among all elements of the class. Nevertheless, among
all the coset α+Sm how can we find the class whose associated minimal value is
the smallest value among all the possible lower bounds? In previous works such
as [CDW17,DPW19,CDW21] the question is raised when discussing whether to
use a Cvp solver on π(Sm) and then lifting it back, or directly on the extended
Stickelberger lattice Sm+(1+τ)Z[Gm]12. The following proposition proves that,
given an exact Cvp solver, the construction using π(Sm) is optimal.

Proposition B.5. Let α ∈ Z[Gm], Wbk the short basis of the Stickelberger ideal
Sm as introduced in Th. 3.8 and note Cvp an exact close vector problem solver
on π(Wbk), for `1 norm. Define γ(v) := PositiveOptim(α − v · Wbk), as a
function of v ∈ Zϕ(m)/2, then: argminv∈Zϕ(m)/2‖γ(v)‖1 = Cvp(π(Wbk), π(α)).

Proof. We note {w1, . . . , wϕ(m)/2} the elements of Wbk and we write v as the

vector (v1, . . . , vϕ(m)/2) ∈ Zϕ(m)/2. Then:

‖γ(v)‖1 =
∑
σ∈G+

m

|∆σ(PositiveOptim(α− v ·Wbk))|

=
∑
σ∈G+

m

|∆σ(α−
ϕ(m)/2∑
i=1

viwi)|

by applying Pr. B.2, since subroutine PositiveOptim does not alter the equiv-
alence class. Now, by definition of the projection π,

∑
σ∈G+

m

|∆σ(α−
ϕ(m)/2∑
i=1

viwi)| =
∑
σ∈G+

m

|π(α)σ −
∑
i

viπ(wi)σ|

= ‖π(α)− v · π(Wbk)‖1.

Hence, minimizing ‖γ(v)‖1 is equivalent to minimizing ‖π(α)− v · π(Wbk)‖1,
which is achieved by taking v = Cvp(π(Wbk), π(α)).

B.3 Using explicit Stickelberger generators

Many quantum steps are required in the query phase of the CDW algorithm
(Alg. B.5). First, the random walk to reach Cl−m requires a polynomial number
(in h+Km) of steps and each of these steps requires a Pip test in the maximal
real subfield. Second, a Cldl step is performed in the cyclotomic field to obtain
inputs used in the Cpm− subroutine. Finally, a final Pip is performed in the
cyclotomic field in order to recover a short generator.

Our goal in this subsection is to use Th. 3.8, the associated generators and
the subroutine PositiveOptim, to reduce the cost of the last Pip call (inside

12 Both modules being used as a replacement for Sm not being full-rank.
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Alg. B.5). In order to do so, one key ingredient is to replace the generating set
W by the short basis Wbk of the Stickelberger lattice, introduced in Th. 3.8. This
last switch is beneficial for several reasons:

1. In order to solve Cvp, using [CDW21, Cor. 2.2], one does not need any-
more to compute a maximal set of linearly independent vectors inside W
(in a greedy manner). We also note that this full-rank set of vectors only
ensures that the Cvp algorithm is done inside a (full rank) sublattice of the
Stickelberger lattice. Whereas, using the complete Stickelberger lattice basis
ensures the best result for the Cvp algorithm, regarding the approximation
factor.

2. The second advantage is that, we can use the explicit Stickelberger gener-
ators (associated to the principal ideals resulting from the action of Wbk).
Exhibiting such Stickelberger generators is (in general) not possible for ele-
ments of the generating set W . This point will be of importance for replacing
the last Pip call in dimension n (which is done for any challenge) in the CDW
algorithm, by the computation of the real class group. Note that this last
part also required the introduction of PositiveOptim (Alg. B.6).

Concretely, we define (Cpm−)′ as Alg. B.7 and CDWexplicit as the successive
combinaison of algorithms Alg. B.8 and B.9, defining a preprocessing phase and
a query phase.

We first prove correctness of the new algorithms we introduced. Notably, we
prove that prove that Cpm− returns the same result as (Cpm−)′. Subsequently
we deduce the correctness of algorithm CDWexplicit which is splitted in a pre-
processing phase (Alg. B.8) and then a query phase (Alg. B.9).

Corollary B.6. Algorithm (Cpm−)′ and CDWexplicit are correct. Notably, let L
be a an ideal st. [L] ∈ Cl−m and α ∈ Z[Gm], then, algorithms Cpm− and (Cpm−)′

output the same result on input (Wbk,L, α).

Proof. The correctness of algorithm (Cpm−)′ is a straightforward corollary of
Pr. B.4, since this proposition essentially shows that using steps 2–5 of Alg. B.2
or subroutine PositiveOptim (Alg. B.6) returns the same element (and note
that we use the same Cvp solver in both Cpm− and (Cpm−)′). This result
is not dependant on Wbk and would have been true for the original generating
family W from [CDW21]. For the correctness of CDWexplicit, we first use the fact
that Cpm− and (Cpm−)′ output the same result on input (Wbk,L, α). Secondly,
using results specific to Wbk, we note that §3.2 provides us with Stickelberger
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Algorithm B.7
(
Cpm−

)′
(Wbk,L, α): solves the CPM problem for ideal Lα

Input: Wbk the basis of the Stickelberger lattice defined in §3.2, an ideal L such
that [L] ∈ Cl−Km and an element α ∈ Z[Gm].

Output: an integral ideal b = Lγ s.t. Lαb is principal and N (b) = N (L)O(ϕ(m)3/2).
1: v ← Cvp(π(Wbk), π(α))
2: β ← α− v ·Wbk

3: γ ← PositiveOptim(β)
4: return Lγ .

Algorithm B.8 CDWexplicit
pre-proc: finding a generating family for the relative class

group and generators for certain principal ideals

Input: a cyclotomic field Km of conductor m and an integer d
Output: a family B ← {Lσi | σ ∈ Gm, i = 1, . . . , d} generating Cl−m and generators

of the principal ideals {Lαm(b)
i }i,b (αm(b) ∈Wbk) and {L1+τ

i }i
1: d = polylog(m), B = poly(m)
2: M← {L | N (L) ≤ B, [L] ∈ Cl−m}
3: Choose L1, . . . ,Ld with smallest norm in M
4: B← {Lσi | σ ∈ Gm, i = 1, . . . , d}

subsec:stigens
5: Compute generators {γ−Li,b}b st. L

αm(b)
i = 〈γ−Li,b〉 for αm(b) ∈Wbk and i = 1, . . . , d

. See §3.2
6: Compute generators {γ+

r}r st. 〈γ+
r〉 =

∏d
i=1 L

(1+τ)ri
i for r ∈ Z[G+

m]d . See Eq. (3.8)
and Rem. 3.9

7: return B, {γ−Li,b}i=1,...,d
b∈M′m

, {γ+
Lr
}
r∈Z[G+

m]

Algorithm B.9 CDWexplicit
query (a): finding mildly short vectors in the ideal a

Input: an ideal a ∈ OKm , a family B ← {Lσi | σ ∈ Gm, i = 1, . . . , d} generating
Cl−m and generators {γ−Li,b}i=1,...,d

b∈M′m

, {γ+
Lr
}
r∈Z[G+

m]

Output: an element h ∈ a of norm ‖h‖2 ≤ exp(Õ(
√
m)) · N (a)1/ϕ(m)

1: b′ ←WalkToCl−(a)
2: ξ, (yi,σ)σ∈Gm,i=1,...,d ← CldlB(ab′) . 〈ξ〉 ∼ ab′

∏
i,σ(Lσi )yi,σ

3: for i = 1, . . . , d do
4: ξi ←

∑
σ∈Gm yi,σσ ∈ Z[Gm]

5: Lγii ← (Cpm−)′(Wbk,Li, ξi)
where γi = ξi −

∑
b vi,bαm(b)− (1 + τ)ri

for integers (vi,b)b∈M′m and ri ∈ Z[G+
m]

6: g ← ξ
/(

γ+
r ·
∏
i=1,...,d
b∈M′m

(γ−Li,b)
vi,b

)
where r = (r1, . . . , rd) ∈ Z[G+

m]

7: h← ShortGenerator(g)
8: return h
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generators associated to the lattice basis Wbk. In other words, for any ideal Li
of the basis, there exists elements {γ−Li,b}b st. L

αm(b)
i = 〈γ−Li,b〉 for b ∈ M ′m.

Moreover, the Cldl algorithm from Biasse and Song (used in Alg. B.5) not only
recovers the family (yi,σ)σ∈Gm,i=1,...,d but also the element ξ ∈ OKm such that:

ab′ = 〈ξ〉
∏

i=1,...,d

σ∈Gm

(Lσi )−yi,σ = 〈ξ〉
∏
i

L−ξii

with the notation ξi :=
∑
σ∈Gm yi,σσ for i = 1, . . . , d. Now, for a fixed ideal Li,

on input (Li, ξi), algorithm (Cpm−)′ returns an element Lγii with γi = ξi −∑
b∈M ′m

vi,bαm(b)− (1 + τ)ri where (vi,b)b∈M ′m is the vector with integral coor-

dinates obtain by the Cvp subroutine inside (Cpm−)′, and ri ∈ Z[G+
m]. Then:

ab′

( ∏
i=1,...,d

Lγii

)
= 〈ξ〉

∏
i=1,...,d

b∈M ′m

L
−

∑
b vi,bαm(b)

i L
−(1+τ)ri
i .

To conclude, recall from Eq. (3.6) and Rem. 3.9 that for r = (r1, . . . , rd) ∈
Z[Gm]d, we have 〈γ+r〉 =

∏
i=1,...,d L

(1+τ)ri
i .

In terms of calls to quantum algorithms, we replaced the last Pip in dimension
n (for each query) by the computation of some generators during the prepro-
cessing phase (step 6, Alg. B.8). Now, these generators can be all obtained by the
computation of the real class group. Indeed, following [BS16, Th. 1.1 and Alg. 1],
we note that the computation of the class group reduces to the calculation of
S-units for a particular set S. In particular, this implies that the calculation of
the class group also yields, at the same time, the generators associated to those
class relations. Finally, from [BS16, Alg. 2], we deduce that the cost of computing
S-units is similar to the cost of the Pip algorithm. Concretely, this means that
computing the relations during the preprocessing has a quantum cost equivalent
to the cost of a single query to the Pip algorithm in dimension n/2.

B.4 Avoiding the random walk

In the previous algorithms presented, in the original, as well as the first mod-
ification, working on the minus part of the class group is still required. Hence
doing the random walk from Alg. B.1 is still required during the query phase.
We note this random walk calls for polynomially (in h+Km) many calls to the Pip

algorithm (in dimension n/2), in order to test membership to Cl−m of candidate
ideals by testing principality in O+

Km
(of the images by the relative norm map

NKm/K+
m

). A possible theoretical solution to bypass those Pip calls is to use re-
lations induced from relations on ClK+

m
. These relations were introduced in §3.3

as C+
l1,...,ld

for ideals l1, . . . , ld associated to ideals L1, . . . ,Ld generating ClKm
and required the computation of the real class group. Using the same argument
made at the end of the previous paragraph means that steps 3–4 of Alg. B.10 can
be done using a single call to a S-units computation, whose cost is equivalent to
the a single call to Pip in dimension n/2.
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One technical issue is that using relations coming from real classes does not
let us use algorithm PositiveOptim anymore, yet we still need to recover an
element γ ∈ Z[Gm] with nonnegative integer coordinates. We proceed “à la
PHS” (or Twisted-PHS) by computing a “drifted” Cvp, the added drift being
chosen greater than the infinity decoding radius of the Cvp solver used. Note that
using the Cvp algorithm requires the lattice to be full-rank, and this is precisely
the result from Pr. 3.14. Like previous CDW and CDWexplicit algorithms, the
CDWno-walk algorithm is splitted in a preprocessing phase (Alg. B.10) followed
by a query phase (Alg. B.11).

Algorithm B.10 CDWno-walk
pre-proc: finding a generating family for the relative class

group and generators for certain principal ideals

Input: a cyclotomic field Km of conductor m
Output: a family B← {Lσi | σ ∈ Gm, i = 1, . . . , d} generating ClKm , the generators

of the principal ideals {Lαm(b)
i }i,b (αm(b) ∈ Wbk), the real class relations C+

l1,...,ld

for li = N
Km/K

+
m

(
Li
)

(i = 1, . . . , d) as well as the associated generators

1: Compute ClKm = 〈L1, . . . ,Ld〉 with d ≤ polylog(m),maxiN (Li) := B ≤ poly(m)

2: Compute generators {γ−i,b}i,b st. L
αm(b)
i = 〈γ−i,b〉 for αm(b) ∈ Wbk and i = 1, . . . , d

. Using §3.2
3: Compute the real class relations C+

l1,...,ld
associated to ideals li = N

Km/K
+
m

(
Li
)

(i = 1, . . . , d) . See §3.3

4: Compute generators {γ+
r}r st. 〈γr〉 =

∏d
i=1 L

(1+τ)ri
i for r = (r1, . . . , rd) ∈ C+

l1,...,ld

5: return B, {γ−i,b}i=1,...,d
b∈M′m

, {γ+
r}r∈C+

l1,...,ld

Algorithm B.11 CDWno-walk
query (a): finding mildly short vectors in the ideal a

Input: an ideal a in OKm , a family B ← {Lσi | σ ∈ Gm, i = 1, . . . , d} generat-
ing ClKm , generators {γ−i,b}i=1,...,d

b∈M′m

, {γ+
r}r∈C+

l1,...,ld

and a drift β greater than the

decoding radius of the Cvp algorithm

Output: h ∈ a of norm ‖h‖2 ≤ exp
(
Õ(max(

√
ϕ(m), h+

Km
))
)
· N (a)1/ϕ(m)

1: ξ, y ← CldlB(a) where y := (yi,σ)σ∈Gm,i=1,...,d . 〈ξ〉 ∼ a
∏
i,σ(Lσi )yi,σ

2: Let B = Sdm + (1 + τ)C+
l1,...,ld

3: v ← Cvp
(
B, y + (β, . . . , β)

)
, where v :=

[
(vi,b)1≤i≤d,b∈M′m , (vr)r∈C+

l1,...,ld

]
4: g ← ξ

/(∏
r∈C+

l1,...,ld

(γ+
r)
vr
∏

1≤i≤d,b∈M′m
(γ−Li,c)

vi,b

)
5: h← ShortGenerator(g)
6: return h

Proposition B.7. Algorithm CDWno-walk is correct.

Proof. We first note that the Cvp algorithm in the query phase is meaningful
since the lattice Λ = Sdm + (1 + τ)C+

l1,...,ld
is full-rank, using Pr. 3.14. Now, the

drifted Cvp algorithm described in step 3 ensures that g (given in step 4) is in
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a. Indeed, fix i ∈ {1, . . . , d}. Note z = [(vi,b)i,b, (v
′
r)r] ·Λ, by definition of the de-

coding radius D of the Cvp algorithm, ‖y + (β, . . . , β)− z‖∞ ≤ D ≤ β. Taking
coordinates, it follows that for any i = 1, . . . , d and σ ∈ Gm, |yi,σ +β− zi,σ| ≤ β
and then 0 ≤ yi,σ − zi,σ ≤ 2β. Since by definition, 〈g〉 = a

∏
i,σ(Lσi )yi,σ−zi,σ , the

algorithm returns g ∈ a. We now use Th. B.3 and corollary [CDW21, Cor. 2.2].
Notably, in our situation,

max
w∈[Wbk|C+

l1,...,ld
]
‖w‖2 = max(

√
ϕ(m)/2, h+Km),

using Pr. 3.10 and that short elements of the basis Wbk have `2-norm equal to√
ϕ(m)/2 (see Th. 3.8). It follows that if h = ShortGenerator(g), then:

‖h‖2 = exp
(
O(
√
m logm)

)
· N (g)1/ϕ(m)

≤ exp
(
O(
√
m logm)

)
· (Bd·|Gm|·max(

√
ϕ(m)/2,h+

Km
))1/ϕ(m) · N (a)1/ϕ(m)

≤ exp
(
Õ(max(

√
ϕ(m), h+Km)

)
· N (a)1/ϕ(m).

The last inequality is obtained using the assumption [CDW21, Ass. 1] stating
that B can be chosen as poly(m) while d can be chosen as polylog(m) (line 1 of
Alg. B.10). Originally, this assumption was stated for Cl−m but the justification
in [CDW21, §6] readily extends to the whole class group under Hyp. B.1.

The quantum steps used in algorithms CDW, CDWexplicit and CDWno-walk

are summarized in Tab. B.1. We emphasize that the computation of the class
group has a cost equivalent to the Pip algorithm (in the same dimension), since
they both reduce to a single call to the computation of S-units, for suitable sets
S of prime ideals.

Preproccessing phase Query phase
Class group

computation (dim. n/2)
Pip (dim. n) Pip (dim. n/2) Cldl

CDW 0 1 O(poly(h+
Km

)) 1

CDWexplicit 1 0 O(poly(h+
Km

)) 1

CDWno-walk 1 0 0 1

Table B.1 – Number of quantum steps used for algorithms CDW, CDWexplicit

and CDWno-walk.
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C Additional experimental results

C.1 Geometry of log-S-unit sublattices

In the following, we provide data regarding the geometry of the log-S-unit sub-
lattices Lurs and Lsat for additional cyclotomic fields.

m d set k Vol1/k
δ max1≤i≤k‖bi‖2

raw LLL bkz40 raw LLL bkz40

159

1
urs 155 11.291 2.177 1.702 1.686 71.228 62.253 60.096

sat 155 8.989 6.143 1.898 1.921 3168.773 35.391 35.703

2
urs 259 12.576 2.350 1.781 1.739 72.069 62.357 60.675

sat 259 9.572 6.902 2.028 2.036 3168.773 36.062 35.703

3
urs 363 13.364 2.419 1.798 1.750 75.913 65.973 63.701

sat 363 9.978 7.602 2.066 2.066 3168.773 37.480 37.132

149

1
urs 221 12.192 2.828 2.091 1.999 74.637 71.073 68.291

sat 221 9.697 12.473 2.305 2.244 12554.466 44.327 44.326

2
urs 369 13.353 3.134 2.233 2.149 78.906 74.039 71.298

sat 369 10.150 14.472 2.507 2.467 12554.466 47.719 46.438

3
urs 517 13.962 3.269 2.271 2.190 80.529 76.289 76.007

sat 517 10.410 22.211 2.569 2.531 85211.593 47.719 48.556

4
urs 665 14.415 3.327 2.300 2.223 83.176 78.268 77.926

sat 665 10.632 20.731 2.606 2.576 85211.593 47.768 48.556

516

1
urs 251 11.815 2.535 2.026 2.013 77.904 73.051 72.993

sat 251 9.395 6.508 2.341 2.359 4850.233 44.290 43.783

2
urs 419 12.921 2.833 2.156 2.129 82.452 76.629 75.586

sat 419 9.818 8.208 2.550 2.565 5761.443 46.559 46.426

3
urs 587 13.850 2.945 2.202 2.167 91.958 84.961 86.487

sat 587 10.321 10.348 2.620 2.623 9544.834 49.096 49.971

4
urs 755 14.445 2.998 2.222 2.188 93.457 86.198 87.794

sat 755 10.650 12.682 2.652 2.652 26820.239 54.045 52.543

181

1
urs 269 12.855 2.747 2.308 2.146 81.230 79.924 79.204

sat 269 10.220 7.486 2.537 2.499 5185.677 49.694 48.264

2
urs 449 14.033 2.958 2.456 2.268 87.161 85.755 84.008

sat 449 10.661 9.849 2.736 2.706 5185.677 50.406 51.466

3
urs 629 14.823 3.064 2.508 2.311 92.620 90.665 88.578

sat 629 11.045 12.340 2.801 2.778 9957.084 52.207 51.880

4
urs 809 15.330 3.096 2.529 2.330 93.988 91.158 89.982

sat 809 11.300 12.307 2.829 2.814 9957.084 53.598 53.519

209

1
urs 269 10.796 2.678 2.239 2.238 70.154 70.428 68.371

sat 269 8.583 8.273 2.599 2.609 8920.663 42.887 42.683

2
urs 449 12.651 2.921 2.320 2.300 92.739 89.996 88.251

sat 449 9.612 14.860 2.729 2.722 45374.160 53.927 53.643
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m d set k Vol1/k
δ max1≤i≤k‖bi‖2

raw LLL bkz40 raw LLL bkz40

217

1
urs 269 12.110 2.608 2.137 2.115 83.336 76.670 76.186

sat 269 9.629 6.814 2.420 2.410 4415.772 47.546 46.464

2
urs 449 13.741 2.857 2.270 2.251 96.095 87.194 87.023

sat 449 10.440 10.474 2.630 2.623 14735.404 56.381 56.328

3
urs 629 14.646 2.941 2.319 2.313 99.437 89.912 93.209

sat 629 10.913 11.667 2.696 2.696 14735.404 56.381 57.135

279

1
urs 269 12.059 2.573 2.080 2.064 81.546 76.724 84.960

sat 269 9.588 11.575 2.391 2.397 12586.042 51.509 50.663

2
urs 449 13.528 2.836 2.212 2.195 92.187 86.744 96.124

sat 449 10.278 12.899 2.603 2.604 12586.042 57.098 57.696

3
urs 629 14.378 2.965 2.263 2.250 96.095 89.520 96.124

sat 629 10.713 16.966 2.677 2.683 25638.489 57.098 57.696

4
urs 809 14.971 3.010 2.285 2.268 99.014 92.948 99.817

sat 809 11.036 17.733 2.709 2.713 25638.489 58.977 58.807

5
urs 989 15.396 3.053 2.302 2.280 100.238 93.692 99.817

sat 989 11.271 18.878 2.729 2.731 26995.083 61.123 59.322

297

1
urs 269 12.331 3.169 2.074 2.005 86.980 81.006 81.451

sat 269 9.804 21.668 2.308 2.319 94056.513 48.941 48.984

2
urs 449 13.513 3.676 2.252 2.148 90.321 83.985 85.236

sat 449 10.266 36.211 2.540 2.546 94056.513 50.795 51.447

3
urs 629 14.165 3.895 2.327 2.196 92.913 86.090 85.236

sat 629 10.555 37.241 2.645 2.640 94056.513 51.969 51.524

4
urs 809 14.674 4.007 2.356 2.224 96.821 89.321 87.488

sat 809 10.816 40.952 2.688 2.685 94056.513 52.120 53.167

235

1
urs 275 11.873 2.631 2.183 2.132 80.433 77.904 79.127

sat 275 9.439 7.618 2.479 2.470 5297.502 47.586 46.684

2
urs 459 13.287 2.936 2.347 2.275 91.190 87.506 82.926

sat 459 10.094 12.645 2.706 2.699 28003.197 51.044 51.229

3
urs 643 14.178 3.061 2.398 2.328 96.709 91.765 91.485

sat 643 10.563 13.258 2.780 2.772 28003.197 52.348 52.334

4
urs 827 14.743 3.099 2.423 2.349 98.093 93.292 92.979

sat 827 10.867 13.861 2.815 2.807 28003.197 55.931 54.179

564

1
urs 275 12.264 2.551 2.035 2.061 82.573 77.166 76.021

sat 275 9.750 14.624 2.390 2.370 39653.048 46.848 46.757

2
urs 459 13.384 2.831 2.193 2.230 87.333 81.561 80.426

sat 459 10.168 15.707 2.655 2.637 39653.048 50.285 49.290

3
urs 643 14.393 2.984 2.240 2.274 98.851 90.926 90.825

sat 643 10.724 17.342 2.727 2.714 39653.048 53.003 53.868

4
urs 827 15.032 3.029 2.256 2.292 100.234 91.997 92.037

sat 827 11.080 18.829 2.757 2.744 39653.048 55.358 55.921

Table C.1 – Geometric characteristics of Lurs, Lsat and Lsu for some cyclotomic
fields with log-S-embedding ϕtw (of type iso/exp). For all bases,
the root-Hermite factor verifies |δ0 − 1| < 10−3.
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m d ϕtw-type k Vol1/k
δ max1≤i≤k‖bi‖2

raw LLL bkz40 raw LLL bkz40

159

1

iso/exp 155 8.989 6.143 1.898 1.921 3168.773 35.391 35.703
iso/tw 155 10.088 7.533 2.117 2.143 4481.257 38.437 37.421

noiso/exp 155 8.989 6.143 1.894 1.905 3168.773 34.229 34.689
noiso/tw 155 10.088 7.533 2.119 2.139 4481.257 37.723 38.596

2

iso/exp 259 9.572 6.902 2.028 2.036 3168.773 36.062 35.703
iso/tw 259 10.258 8.805 2.313 2.337 4481.257 38.437 37.670

noiso/exp 259 9.572 6.902 2.024 2.024 3168.773 35.579 35.802
noiso/tw 259 10.258 8.805 2.317 2.334 4481.257 37.723 38.596

3

iso/exp 363 9.978 7.602 2.066 2.066 3168.773 37.480 37.132
iso/tw 363 10.484 9.857 2.373 2.397 4481.257 39.327 39.938

noiso/exp 363 9.978 7.602 2.064 2.064 3168.773 38.643 38.255
noiso/tw 363 10.484 9.857 2.376 2.392 4481.257 39.286 41.548

149

1

iso/exp 221 9.697 12.473 2.305 2.244 12554.466 44.327 44.326
iso/tw 221 10.883 15.626 2.672 2.602 17754.669 49.653 49.399

noiso/exp 221 9.697 12.473 2.307 2.266 12554.466 43.736 45.013
noiso/tw 221 10.883 15.626 2.668 2.612 17754.669 49.143 48.693

2

iso/exp 369 10.150 14.472 2.507 2.467 12554.466 47.719 46.438
iso/tw 369 10.878 18.958 2.982 2.936 17754.669 52.622 53.154

noiso/exp 369 10.150 14.472 2.509 2.483 12554.466 48.576 47.820
noiso/tw 369 10.878 18.958 2.982 2.949 17754.669 54.041 50.666

3

iso/exp 517 10.410 22.211 2.569 2.531 85211.593 47.719 48.556
iso/tw 517 10.938 29.658 3.084 3.050 120507.386 52.788 53.154

noiso/exp 517 10.410 22.211 2.569 2.552 85211.593 48.576 48.778
noiso/tw 517 10.938 29.658 3.085 3.058 120507.386 54.041 52.131

4

iso/exp 665 10.632 20.731 2.606 2.576 85211.593 47.768 48.556
iso/tw 665 11.050 27.968 3.149 3.117 120507.386 53.017 53.154

noiso/exp 665 10.632 20.731 2.606 2.594 85211.593 48.576 48.778
noiso/tw 665 11.050 27.968 3.149 3.128 120507.386 54.041 52.385

516

1

iso/exp 251 9.395 6.508 2.341 2.359 4850.233 44.290 43.783
iso/tw 251 10.544 8.112 2.739 2.733 6859.195 49.680 50.548

noiso/exp 251 9.395 6.508 2.342 2.354 4850.233 42.774 44.385
noiso/tw 251 10.544 8.112 2.730 2.739 6859.195 52.260 50.964

2

iso/exp 419 9.818 8.208 2.550 2.565 5761.443 46.559 46.426
iso/tw 419 10.522 10.682 3.059 3.062 8147.832 51.931 53.538

noiso/exp 419 9.818 8.208 2.549 2.557 5761.443 46.306 47.683
noiso/tw 419 10.522 10.682 3.055 3.064 8147.832 52.534 51.448

3

iso/exp 587 10.321 10.348 2.620 2.623 9544.834 49.096 49.971
iso/tw 587 10.845 13.713 3.168 3.167 13498.373 56.763 56.892

noiso/exp 587 10.321 10.348 2.617 2.615 9544.834 51.019 51.870
noiso/tw 587 10.845 13.713 3.169 3.167 13498.373 54.998 57.177

4

iso/exp 755 10.650 12.682 2.652 2.652 26820.239 54.045 52.543
iso/tw 755 11.068 16.973 3.221 3.219 37929.528 58.551 56.892

noiso/exp 755 10.650 12.682 2.649 2.650 26820.239 51.019 51.870
noiso/tw 755 11.068 16.973 3.221 3.220 37929.528 57.437 57.177

Table C.2 – Geometric characteristics of Lsat for some cyclotomic fields. Com-
parison between choices iso/noiso and exp/tw.
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C.2 Gram-Schmidt logarithm norms

Here, we provide figures showing the Gram-Schmidt log norms for other cyclo-
tomic fields and number of orbits, comparing values before and after reduction.

Fig. C.1 – Lsat lattices for Q(ζ209) and Q(ζ181): Gram-Schmidt log norms before
and after reduction by BKZ40, for d = 1 and d = 2 Gm-orbits.
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Fig. C.2 – Lsat lattices for Q(ζ187) and Q(ζ249): Gram-Schmidt log norms before
and after reduction by BKZ40, for d = 1 and d = 2 Gm-orbits.

51



Fig. C.3 – Lsat lattices for Q(ζ235) and Q(ζ297): Gram-Schmidt log norms before
and after reduction by BKZ40, for d = 2 and d = 4 Gm-orbits.
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Finally, Fig. C.4 shows the impact of the four choices of log-S-embedding on
the Gram-Schmidt logarithm norms of the unreduced basis ϕ(Fsat).

Fig. C.4 – Lsat lattices for Q(ζ149) and Q(ζ211): effect of the log-S-embedding
choices iso/noiso and exp/tw.
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