
HAL Id: hal-04028110
https://hal.science/hal-04028110

Submitted on 14 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptative sloshing simulation using model reduction
and GENERIC structure

Flavien Alonzo

To cite this version:
Flavien Alonzo. Adaptative sloshing simulation using model reduction and GENERIC structure.
Instituto Universitario de Investigacion en Ingenieria de Aragon. 2019. �hal-04028110�

https://hal.science/hal-04028110
https://hal.archives-ouvertes.fr


Adaptative sloshing simulation using model
reduction and GENERIC structure

Flavien Alonzo
April 7, 2019

September 27, 2019

Supervisors :
Elias Cueto and Beatriz Moya

1



Contents

1 Context of the internship 6

2 Introduction to Fluid mechanics 7
2.1 Characteristics of a fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Common liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Abaqus 11
3.1 Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 SPH: Smoothed Partial Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 ALE: Arbitrary Lagrangian-Eulerian . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Building model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Edit geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Edit material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.3 Add viscoelastic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.4 Edit mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.5 Edit boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 GENERIC structure 23
4.1 GENERIC formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 GENERIC resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 GENERIC numerical resolution on Matlab . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 GENERIC complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 GENERIC correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Reduction methods 26
5.1 POD: Proper Orthogonal Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 LLE: Local Linear Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 t-SNE: t-Distributed Stochastic Neighbor Embedding . . . . . . . . . . . . . . . . . . . . 28
5.4 UMAP: Uniform Manifold Approximation and Projection . . . . . . . . . . . . . . . . . 29
5.5 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.6 From the embedded space to the initial space . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Results 32
6.1 Reduction method applied to simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 GENERIC numerical scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7 Conclusions 40

A Data-set of the common liquids 43

B VUVISCOSITY subroutine 48

2



List of Figures

1 Density’s histogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Viscosity’s histogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Density and absolute viscosity of liquids in the data-set. ρXY = cov(X,Y )

σXσY
= −1.86%. . . 8

4 Boxplots of N (−0.54, 1.212) and the viscosity’s logarithm distributions. . . . . . . . . . 9
5 Comparison between the distribution functions for the values of density and its model. . 10
6 Histogram of density of 1000 simulated values, histogram of the viscosity’s logarithm

of 1000 simulated values and simulation of 1000 liquids with independent viscosity and
density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

7 RX material configuration (Lagrangian), Rκ spatial configuration (Eulerian), Rχ refer-
ence configuration (ALE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

8 Representation of ALE mesh on the right as a mix between Lagrangian description on
the left and Eulerian description in the middle. . . . . . . . . . . . . . . . . . . . . . . . 13

9 Geometry part that has to be implemented in ABAQUS. . . . . . . . . . . . . . . . . . . 14
10 Screenshots of the meshes on the xy plan at t = 0.1s for water facing a velocity of

υ = 0.05m/s. For the green mesh, a contact between a rigid body and the water is
defined. For the blue mesh, I include the container the borders with boundary conditions. 14

11 Maxwell model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
12 Relationship between τ and γ̇ depending of the liquid’s type. . . . . . . . . . . . . . . . 16
13 Screenshots from xy plan of the water facing a initial velocity υ = 0.10m/s. On the

left column t = 0.1s and on the right column t = 0.25s. The first line correspond to
water simulated via the abaqus viscosity toolbox, the second line correspond to water
simulated with the use of the VUVISCOSITY subroutine. . . . . . . . . . . . . . . . . . 18

14 Screenshot from abaqus showing the mesh designed with C3D8R elements. Sweep con-
trol is used to minimize the mesh transition. The global seed is h ≈ 0.004. . . . . . . . . 19

15 Screenshot from abaqus showing how to control the ALE adaptative mesh. . . . . . . . 20
16 10000 points uniformly chosen of the Klein bottle, colored along the u parameter on the

left and colored along the v parameter on the right. . . . . . . . . . . . . . . . . . . . . 26
17 Klein bottle after POD, colored along the u parameter on the left and along the v

parameter on the right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
18 Klein bottle after LLE,colored along the u parameter on the left and the v parameter

on the right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
19 Klein bottle after t-SNE, colored along the u parameter on the left and the v parameter

on the right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
20 Klein bottle after UMAP, colored along the u parameter on the left and the v parameter

on the right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
21 Clustering of the different liquids using t-SNE. Every color correspond to a liquid, blue

(water), butter (yellow), blood (red), chocolate (dark brown), honey (brown) and may-
onnaise (green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

22 2D embedded spaces of blood and butter using UMAP. Each color is a different trajec-
tory (velocity). Arrows point to the first point of each trajectory. . . . . . . . . . . . . . 33

23 2D embedded spaces of chocolate and honey using UMAP. Each color is a different
trajectory (velocity). Arrows point to the first point of each trajectory. . . . . . . . . . . 34

24 2D embedded spaces of mayonnaise and water using UMAP. Each color is a different
trajectory (velocity). Arrows point to the first point of each trajectory. . . . . . . . . . . 35

25 Values of the error er2 for every trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . . 37
26 Values of the error E∞ for every trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . 38
27 Values of the error Er∞ for every trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . 39

3



List of Tables

1 First momenta of the viscosity’s logarithm distribution. . . . . . . . . . . . . . . . . . . 8
2 Density and viscosity for blood, melted butter, melted chocolate, honey, mayonnaise

and water when they are considered as Newtonian fluid. For each liquid, there is the
information if the Newtonian assumption is accurate or not. . . . . . . . . . . . . . . . . 15

3 Shear modulus of chocolate and water corresponding to the Maxwell model . . . . . . . 16
4 Examples of liquids following the Herschel-Bulkley model. Each column represents a

category of Non-Newtonian behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5 Rheological parameters for the Herschel-Bulkley model for ketchup, blood, mayonnaise

and melted chocolate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6 Simulations done and the parameters corresponding to them. Videos of the simulations

are available on Youtube. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7 Mean and maximum of er2,, Einf and Er∞ for each trajectory. . . . . . . . . . . . . . . . 36

4



DATA-DRIVEN LEARNING OF SLOSH DYNAMICS
Beatriz Moya, David González, Icíar Alfaro, Francisco Chinesta, Elías Cueto

@BeatrizMoyaG

beam@unizar.es

MOTIVATION

• Goal: development of  physically consistent 
integrator to learn fluid behavior from perception

METHOD
1. Obtain discretized data to construct the 

integrator

2. Find reduced order  manifold from data

3. Build physically sound structure of the problem 

TEST
ü A new trajectory was  simulated

ü The height reconstruction error remained under 
7%

ü Simulation of 1.7 seconds was performed in 1.64 
seconds

RESULTS
• Model built with non-linear methodologies
• Real-time achieved 
• Accurate enough to develop computer vision 

applications

FUTURE RESEARCH LINES
• Widen data base to include Newtonian and Non

Newtonian fluids
• Test the integrator with information from the scene

APPLICATION
This technology is now under the spotlight of simulation-
based control of robots. 

THE GENERIC FORMALISM
Generic provides a physically consistent structure of the dynamics to build the integrator from 
the evolution of energy and entropy:

Degeneracy conditions ensure accomplishment of thermodynamics laws:

MODEL ORDER REDUCTION 
OF NONLINEAR DYNAMICS

• Proper orthogonal decomposition

• Locally linear embedding

• Topological Data Analysis

BACKGROUND
Models built from data usually employ deep leaning 
techniques, but they:

Are not physically coherent

Deviate from ground truth in long term simulations

TESTING RESULTS

Ground truth

Simulation results

References
ROWEIS S. T. and SAUL L. K. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323{2326, 2000. 
WASSERMAN L., Annual Review of Statistics and Its Application 5(1), 501 (2018). 
ÖTTINGER H.C., Beyond Equilibrium Thermodynamics (Wiley, 2005)
MOYA B., GONZALEZ D., ALFARO I., CHINESTA F., CUETO E. Learning Slosh Dynamics by means of data. Comp. Mech. (2019). P1:13



1 Context of the internship

This work is the result of my third-year internship at the Instituto Universitario de Investigacion en
Ingenieria de Aragon in the University of Zaragoza (Spain).
My work follows the one from a PhD student that works on the problematic to solve real-time sloshing
problems, from the detection of initial data with a camera to its rendering. Her first paper [1] shows
that a numerical scheme based on the GENERIC structure [2] is able to reproduce in real-time the
sloshing behavior of water with data-driven fluid simulation. The data were obtained on Abaqus with
the SPH method [3]. A poster resuming her work is available in the previous page.
My objectives were to enhance the simulations by adding more liquids, even non-Newtonian, and to
change the method to simulate the data on Abaqus.
Finally, I have been able to simulate liquids behavior with the ALE-mesh [4] and to generalize the
method to simulate non-Newtonian liquid behavior with it, to extract and convert the data obtained
in those simulations to get the manifold of the data, to embed this manifold in a 2D space with a
high fidelity of the structure of trajectory using the UMAP [5] method and to compute the GENERIC
numerical scheme on those trajectories to reconstruct them from the initial time step with high accuracy
compared with the initial data.

6



2 Introduction to Fluid mechanics

2.1 Characteristics of a fluid
In Fluid mechanics, there are a lot of parameters that can be physically defined and found in equations.
A list of those that will be used in the rest of this report are introduced here:

• ρ: fluid density (kg/m3)

• −→υ : velocity (m/s)

• t: time (s)

• p: pressure (N/m2)

• µ: viscosity (Pa.s)

• e: internal energy (J)

• K : thermal conductivity (W.m−1.K−1)

• θ: temperature (K)

• σ: Cauchy stress tensor

• ε: Strain tensor

•
−→
f : specific body force vector

• c: sound speed (m/s)

2.2 Common liquids
In this work, I am only interested in liquids that could be manipulated in a glass by a robot. Which
means that I am interested in liquids such as water, melted chocolate, melted butter, blood, mayon-
naise,...

Figure 1: Density’s histogram.

In this purpose, I have
been looking for the
usual parameters of com-
mon liquids (such as
density, viscosity,...), and
have built a data-set
composed of 113 liq-
uids that could be
found in a glass. This
data-set is available in
appendix A. Most val-
ues of density and vis-
cosity come from [6]
and [7], other sources
coming from internet.
The most important
values here, are the density and the viscosity of a liquid, I have then inspected the distribution of
those two parameters for the liquids in the data-set. The distribution of the density is represented in
the figure 1 and the viscosity’s one in the figure 2. I have also studied the assumption that density
and viscosity are independent parameters or not.

7



Mean Standard deviation Skewness Kurtosis
-0.54 1.21 0.183 2.64

Table 1: First momenta of the viscosity’s logarithm distribution.

Figure 2: Viscosity’s histogram.

To be graphically con-
vinced of that indepen-
dence, each liquids is a
point with density and
viscosity as coordinate.
In the figure 3, there
are those points rep-
resented and no cor-
relation can be seen.
Concretely the correla-
tion coefficient ρXY =
cov(X,Y )
σXσY

is approximately
−1.86%. The as-
sumption of indepen-
dent density and viscosity is taken for the rest of the report.

Figure 3: Density and absolute viscosity of liquids in the data-set. ρXY =
cov(X,Y )
σXσY

= −1.86%.

I have also tried to approximate the distribution of density and viscosity in case it would be necessary
to simulate them.
For the viscosity, it has been observed in the figure 2 that its logarithm distribution was shaped like
a Gaussian distribution. Table 1 gives it’s first momenta, and, because the values of skewness and
kurtosis are close to 0 and 3, the approximation may stand.
Let’s H0 : The viscosity’s logarithm distribution follows N (−0.54, 1.212), be the assumption here.
Let’s F (X) be the distribution function and Fn(X) its approximation.
The Kolmogrov-Smirnov test [8] tells that if

D = max
x
|Fn(x)− F (x)| < Dn,α

then Fn(X) is a good approximation of F (X).

8



Here we get:
0.1053 = D < D198,0.02 = 0.1078

So Log-N (−0.54, 1.212) is a good approximation of the distribution of viscosity. A comparison of the
boxplots of the viscosity’s logarithm distribution and its model is showed in figure 4.

Figure 4: Boxplots of N (−0.54, 1.212) and the viscosity’s logarithm distributions.

Modeling the density’s distribution was a bit more complicated because the previous way to model
was not accurate enough. But I managed to find a good approximation nonetheless:
Let’s note Φµ,σ the distribution function of N (µ, σ2).
The model given to F associated with the density distribution follows:

X ↪→ F−1(U) = Φ−1
µ,σ(4U(1− U))1{U≤0.1}

+ (A+ (C −A).
U − 0.10

0.70− 0.10
)1{0.1<U<0.7}

+ (C + 1300− Φ−1
µ,σ(4U(1− U)))1{U≥0.7}

With µ = 1000, σ = 284, A = Φ−1
µ,σ(0.36), C = Φ−1

µ,σ(0.84) and U ∼ U (0, 1).
A comparison between the density’s distribution function and its model is given in figure 5.

9



Figure 5: Comparison between the distribution functions for the values of density and its model.

Finally, if I simulate 1000 liquids with independent density and viscosity, I can obtain the following
results showed in figure 6.

Figure 6: Histogram of density of 1000 simulated values, histogram of the viscosity’s logarithm of 1000 simulated values
and simulation of 1000 liquids with independent viscosity and density.

10



3 Abaqus

ABAQUS is a professional software for FEM (Finite Element Method) calculus. It has been devel-
oped by ABAQUS, Inc (Dassault Systèmes). In this work, I’ve used ABAQUS/CAE with the solver
ABAQUS/Explicit which uses explicit schemes for integrating dynamic or quasi-static, non-linear
problems.

3.1 Meshes
All FEM methods are based on the existence of a mesh with nodes where the variables remain to be
actualised. ABAQUS can solve differently problems depending on the mesh chosen.

3.1.1 SPH: Smoothed Partial Hydrodynamics
This method comes from a work made in 1988 [3], it has the ambition to assimilate elements as
particles, and so, to actualise the variables of each element by an interpolation of the closest points.
The method works as follow:
The approximation of the value of f at a point x ∈ Ω is:

〈f(x)〉 =

∫
Ω

f(r)w(x− r, h)dr =

∫
Ω

f(r)

ρ(r)
w(x− r, h)ρ(r)dr (1)

where w is a kernel function, that follows two rules:

•
∫

Ω
w(x− r, h)dr = 1,∀h

• lim
h→0

w(x− r, h) = δ(x− r)

Usually on ABAQUS, the kernel function is a cubic spline kernel. Its expression in 3D is:

w(q, h) =
1

πh3
(1− 3

2
q2(1− q))1{0≤q≤1} +

1

4πh3
(2− q)31{1≤q≤2} (2)

Where q = |x−rh |. SPH is a particle analysis meaning that we are looking at particles that all have
characteristics such as a density ρ and a mass m.
By subdividing Ω in N elementary volumes, it is possible to get a discrete representation of the previous
interpolated function, for example with:

〈f(x)〉S =

N∑
k=1

f(rk)

ρk
w(x− rk, h)mk (3)

(3) is the Riemann sum associated with (1), in which case the accuracy of the numerical approximation
is:

|〈f(x)〉 − 〈f(x)〉S | ≤
||∇g||L∞(Ω)|Ω|2

2N
(4)

Where g(r) = f(r)w(x− r, h).
By doing an Taylor series of (1) and using the properties of the cubic kernel 2, the accuracy of the
kernel approximation is:

|f(x)− 〈f(x)〉| = 1

2
H(f)(x)

∫
Ω

(x− r)2w(x− r, h)dr + Θ(h3) = Θ(h2) (5)

11



Combining (4) and (5), the accuracy of the SPH is in Θ( 1
N ) + θ(h2), or in Θ( 1

N2 ) + θ(h2) with a better
numerical approximation than (3):

|f(x)− 〈f(x)〉S | ≤ |f(x)− 〈f(x)〉|+ |〈f(x)〉 − 〈f(x)〉S | = Θ(
1

N
) + Θ(h2) (6)

Usually, if h is chosen constant for every particles, its value is h = 1

ρ̄
1
3

in 3D. For liquids, ρ̄ '

1000kg.m−3 so usually h ' 0.1. And for example, the number of particles N in [1] is 2898.

3.1.2 ALE: Arbitrary Lagrangian-Eulerian
ALE method uses both Lagrangian and Eulerian descriptions in order to solve problems without
assimilating elements as particles like in the SPH. ALE method is described in [4].

Figure 7: RX material configuration (Lagrangian), Rκ
spatial configuration (Eulerian), Rχ reference configuration
(ALE).

Lagrangian description is good for following the
shape of a material because it follows the physical
points but that implies that there are possible
errors coming if the mesh is too distorted around
a position (which is easy to happen with liquids).
Eulerian description is good against distortion
because the mesh doesn’t move through time but
it simplifies too much the shape of the material
(for example the shape of the free surface for a
liquid).
The trick is then to use another configuration for
actualising every variables. In figures 7 and 8
are showed the different configurations and the
notations used to switch from one to another.
Following the notations of the figure 7, the fact
that ϕ = φ ◦ ψ−1 applied to Navier-Stokes equa-
tions, enables to get the Navier-Stokes equations
in χ:

∂ρ
∂t |χ + c̃.∇ρ = −ρ∇.~υ
ρ(∂~υ∂ |χ + (c̃.∇)~υ) = ∇.σ + ρb̄

ρ(∂E∂t |χ + c̃.∇E) = ∇.(σ.~υ) + ~υ.ρb̄

ρ(∂e∂t |χ + c̃.∇e) = σ : ( 1
2 (∇~υ +∇~υT ))

With c̃, the convective velocity. It is then possible to calculate the different variables of the nodes in
χ.

12



Figure 8: Representation of ALE mesh on the right as a mix between Lagrangian description on the left and Eulerian
description in the middle.

3.2 Building model
Some studies ([9] or [10]) showed that the ALE mesh would give more detailed and more accurate
results than with the SPH method. This is why I have had to simulate sloshing problems using the
ALE mesh.
The next sections will show how it is possible to implement a sloshing problem using an ALE mesh
with ABAQUS/Explicit.

3.2.1 Edit geometry
Following the work of [1], I designed the geometry of the liquid part as shown in figure 9.
To sketch that in ABAQUS, I have defined the liquid as a revolved solid. The section sketch is then a
rectangle of height 7 cm and width 5 cm and the revolution along the vertical axis.
Even if physically there is a glass to play the role of the container, it can be not physically present in
ABAQUS.
Indeed I can simulate the container by using the boundary conditions. Creating the glass physically
create a contact between the liquid and the glass but the contact showed to be wrong during simulation
which is why the glass is implemented through boundary conditions.

13



Figure 9: Geometry part that has to be implemented in ABAQUS.

In the figure 10, water is represented in green with a physical glass material and in blue with boundary
conditions instead with the same other properties. It is possible to see that with the glass, there is a
bad shape of water on the free surface, close to the side surface. However, that problem does not show
when the glass is implemented with the use of boundary conditions. For these reason, I implemented
the container with the use of boundary conditions.

Figure 10: Screenshots of the meshes on the xy plan at t = 0.1s for water facing a velocity of υ = 0.05m/s. For the
green mesh, a contact between a rigid body and the water is defined. For the blue mesh, I include the container the borders
with boundary conditions.

3.2.2 Edit material
The liquid’s material is made using 3 toolboxes: density, EOS (Equation Of State) and viscosity.
The density is temperature independent and set as uniformly distributed through the material.
EOS determine the pressure (positive in compression) as a function of the density and the specific
energy: p = f(ρ, e). It is used in the equation of conservation of energy :

ρ
∂e

∂t
= (p− pbv)

1

ρ

∂ρ

∂t
+ S : ė+ ρq̇ (7)

where pbv = ∇.U ×K is the pressure induced by the bulk viscosity (K), S is the deviatoric part of σ,
ė the one from ε and q is the heat rate.

14



Liquids Density (kg.m−3) Viscosity (Pa.s) Newtonian?
Blood [12] 1060 0.0035 No
Butter [7] 911 0.042 Yes
Chocolate [7] 1325 0.280 No
Honey [13] 1420 14 Yes
Mayonnaise [7] 910 20 No
Water [14] 983 0.0013 Yes

Table 2: Density and viscosity for blood, melted butter, melted chocolate, honey, mayonnaise and water when they are
considered as Newtonian fluid. For each liquid, there is the information if the Newtonian assumption is accurate or not.

In this work, I have used the Mie-Grüneisen equations of state [11] which sets the pressure as a function
of three parameters: p = f(c,Γ, s), which is available in ABAQUS in the EOS toolbox with the type
USUP. I have decided to use the same parameters for every liquids: (c,Γ, s) = (1500m/s, 0, 0).
In Abaqus/Explicit the viscosity toolbox can only define viscosity for Newtonian fluids, meaning that
the viscosity η through the material is constant and is used as follow:

S = 2η.ė (8)

In table 2 there are the density and viscosity of some liquids that I have simulated on ABAQUS. The
viscosity parameter correspond to the value of η in (8) even tough some of this liquids are not well
approximated with a Newtonian hypothesis.

3.2.3 Add viscoelastic properties

Figure 11: Maxwell model

Most liquids from my data-set don’t show Newto-
nian behavior, only 48.2% of them are considered
to have a Newtonian behavior. So it is very inter-
esting to be able to add some viscoelastic prop-
erties to the liquid material to be able to model
well the behavior of the Non-Newtonian liquids.
Using only the Abaqus/Explicit interface, the
only way to have viscoelastic properties is to use
a Maxwell model for the material. A Maxwell
model is the association of a spring and a dash-point in series, as shown in the figure 11. For this
model σ and ε follow this equations:

σ = E.εS

σ = η.ε̇D

ε = εS + εD

=⇒ σ̇ +
E

η
σ = Eε̇ (9)

The problem of the Maxwell model is that it is well suited for viscoelastic solids but not for viscoelastic
liquids which means that it is hard to find the couple (E,η) for liquids. Moreover there is no way to give
the elastic coefficient E, instead it has to be a shear modulus (G) which is unknown for every liquids.
With simulations, there is a possibility to attribute a shear modulus to a liquid based on the behavior
that is simulated. For example, I tried with this method to find the shear modulus corresponding to
chocolate and water. The results are shown in the table 3.
A model that is more accurate to simulate viscosity’s behavior is the Herschel-Bulkley model [15]:

τ(t) = k.γ̇n(t) + τ0 (10)

15



Liquids Density (kg.m−3) Viscosity (Pa.s) Shear modulus (Pa)
Chocolate 1325 0.280 7.5 ∼ 25
Water 983 0.0013 130

Table 3: Shear modulus of chocolate and water corresponding to the Maxwell model

Figure 12: Relationship between τ and γ̇ depending of the liquid’s type.

16



Pseudoplastic Newtonian Dilatant Bingham
Ketchup Water Oobleck Mayonnaise

Whipped cream Mineral oil Quicksand Toothpaste
Blood Gasoline Silly putty Sludge
Paint Alcohol melted chocolate

Nail polish Honey

Table 4: Examples of liquids following the Herschel-Bulkley model. Each column represents a category of Non-Newtonian
behavior.

Liquids k (Pa.sn) n τ0 (Pa)
Ketchup [16] 22.56 0.28 -
Blood [17] 0.017 0.708 -
Mayonnaise [18] 45.40 0.495 98.18
melted chocolate [19] 5.764 0.6973 9.096

Table 5: Rheological parameters for the Herschel-Bulkley model for ketchup, blood, mayonnaise and melted chocolate.

(called Power law model if τ0 = 0), depending on the values of k, n and τ0, there are different name
given to the fluid behavior:

• τ0 > 0: Bingham fluid

• n < 1: Shear thinning fluid

• n > 1: Shear thickening fluid

• n = 1 and τ0 = 0: Newtonian fluid

If k isn’t constant through time (not in my case):

• t 7→ k′(t) > 0: Rheopectic fluid

• t 7→ k′(t) < 0: Thixotropic fluid

Some example of common liquids are shown in table 4 and sort by their parameters for the Herschel-
Bulkley model.
The parameters of the Herschel-Bulkley model for the Non-Newtonian liquids from table 2 are given
in table 5.
Because I am using Abaqus/Explicit the Herschel-Bulkley is not available in the interface from the
viscosity toolbox (it is available with Abaqus/CFD). So I had to implement a subroutine to add this
viscoelastic behavior to the material. The easiest subroutine to use turned out to be a VUVISCOSITY
subroutine that allows to give the explicit relationship between the shearing stress (τ) and the shearing
strain (γ̇) by changing the definition of η given in (8) with:

η(γ̇) = τ0.1{γ̇=0} + (
τ0
γ̇

+ kγ̇n−1).1{γ̇>0} (11)

17



The subroutine is written in Fortran and is available in the appendix B. In order to use it, the line
corresponding for the viscosity in the inp file has to be switched with:

*Viscosity, definition=User, Properties =3
η, n, τ0,

and in order for ABAQUS to run the analyse, the abaqus’ line command should be:

»abaqus job=inpfile interactive user=VUVISCOSITYsubroutine.f

To make sure that the subroutine works perfectly, I tested the subroutine on a Newtonian liquid that
can be modeled by the viscosity toolbox as already introduced. In the figure 13, there are screenshots
of water simulated with and without the subroutine with the same other parameters. It shows that
the subroutine is working because the results are almost perfectly identical between the two ways to
implement the viscosity.

Figure 13: Screenshots from xy plan of the water facing a initial velocity υ = 0.10m/s. On the left column t = 0.1s and
on the right column t = 0.25s. The first line correspond to water simulated via the abaqus viscosity toolbox, the second line
correspond to water simulated with the use of the VUVISCOSITY subroutine.

3.2.4 Edit mesh
The mesh that I used is made with C3D8R elements (An 8-node linear brick, reduced integration,
hourglass control). It is not possible to use C3D8 elements with the ALE mesh, even if using C3D8R
implies to have hourglass effects (a pattern of "boom and bust"). Because of the geometry of the
liquid, I chose to add a sweep control in order to minimize the mesh transition. The shape of the mesh
is shown in figure 14.

18



Figure 14: Screenshot from abaqus showing the mesh designed with C3D8R elements. Sweep control is used to minimize
the mesh transition. The global seed is h ≈ 0.004.

To use the ALE mesh, I had to create it in:

»Step »Other »ALE Adaptative Mesh Domain

A lot of parameters can be used to control the ALE mesh, all described in [20]. Because of the nature
of the problem, I have used the ALE Adaptative Mesh Controls toolbox with the parameters showed in
figure 15. The frequency of using re-meshing sweeps is every 1 iterations and the number of re-meshing
sweeps is 5 per increment.

19



Figure 15: Screenshot from abaqus showing how to control the ALE adaptative mesh.

3.2.5 Edit boundary conditions
Still following the work that has been made in [1], the simulation follows two steps:

• Step 1: The glass follows a straight line along an horizontal axis with a constant velocity for 0.1s

• Step 2: The glass stops moving, the liquid sloshes and the simulation stops when the liquid reach
equilibrium.

I only considered velocities that were not too fast for the liquid, in the sense that the liquid would not
be divided in several parts during the simulation.
Assuming that the surfaces of the liquid in contact physically with the glass would always remain
in contact during the experiment, the boundary conditions can be applied directly to the surfaces in
contact with the glass. It allows mainly, as already said before, to not use a contact interaction between
the container and the liquid, and so to only have to implement the liquid and not the container.
I have imposed then boundary conditions of type Velocity/Angular velocity. The vertical axis here is
along the y coordinate. The translation of the glass is along the x coordinate.
For the external surface on the side, the boundary conditions are:

Vx = υ0 in Step 1, 0 in Step 2.
Vz = 0

Ωx = 0

Ωy = 0

Ωz = 0

(12)

20



For the bottom surface, the boundary conditions are:

Vx = υ0 in Step 1, 0 in Step 2.
Vy = 0

Vz = 0

Ωx = 0

Ωy = 0

Ωz = 0

(13)

To complete the implementation, I just needed to add a load force to have the gravity applied on the
liquid. Here I assumed that ~g = (0,−9.81, 0)~x,~y,~z.

3.3 Simulations
The work from [1] had simulated water with the SPH method. In my work, I have simulated the 6
liquids introduced in table 6 using the ALE mesh. But it is easy to simulate a new liquid when an
input file using the ALE mesh is given.
Concretely to simulate a new liquid, given a previous input file (.inp file), you need to change the
viscosity parameters k, n and τ0 from the Herschel-Bulkley model with the ones corresponding to the
new liquid. You can change the time-increment, the initial velocity given to the liquid and the time
of simulation. The ALE-mesh can be changed too by changing the frequency and the number of mesh
sweeps per frequency.
It is possible to simulate every liquid with the ALE mesh based on my computation, however with a
high accuracy level, simulations can take a really long time to compute. For example, on my computer,
10 days are not enough to compute 10 seconds of water with 12141 nodes.
So, because of time consumption, I have simulated the less viscous liquids with less mesh accuracy
rather than high viscous fluid. As described in table 6, blood has then less nodes than high viscosity
liquids (chocolate, honey and mayonnaise). Water and butter have also a height of 2cm (instead of
7cm). With those changes, all simulations can run within 24 hours.
In table 6, the initial velocities were chosen depending on the viscosity of the liquid to make sure that
the velocity was high enough to see sloshing with enough magnitude but not too high to don’t have
extreme deformations.
Right now, using Abaqus/Explicit, there is no direct way to impose incompressibility to a material.
This appears to become an issue when simulating low viscous liquids (water, butter and blood), because
the liquids compress on themself. One way to change that outcome is to play with the bulk viscosity.
However as explained in [21], increasing the bulk viscosity parameter will make the liquid closer to
incompressibility but excessively small time-increment will be needed to get the solution. So it is not
sure that incompressibility can be solved this way.
Videos of those simulations can be found on Youtube1.
To extract the data of those simulations and work on them later on, I have to extract variables from
abaqus and to convert them to be readable on Matlab.
For each nodes, I have extracted the values of those variables every 10−3s:

• position, in R3

• velocity, in R3

• the internal energy, in R

• the stress components, in R6

1https://youtu.be/8iUi5cn7Ups

21

https://youtu.be/8iUi5cn7Ups


Liquids velocities υ0(m/s) Time of simulation (s) Number of nodes
Blood 0.05 0.1 0.15 0.2 5.1 1790
Butter 0.05 0.1 0.15 0.2 5.1 716
Honey 0.25 0.5 0.75 0.9 0.6 12141
Mayonnaise 0.25 0.5 0.75 0.9 0.6 12141
melted chocolate 0.25 0.5 0.75 0.9 0.6 12141
Water 0.05 0.1 0.15 0.2 5.1 716

Table 6: Simulations done and the parameters corresponding to them. Videos of the simulations are available on Youtube.

The manifold of the liquid at a time given is assumed to be the set of the variables from all the nodes
of the liquid. Positions, velocities and internal energies come from the known manifold of Newtonian
liquid but to add a principle of time-history there is also the information given by the stress.
To sum up, every simulation of a liquid can be represented with a data matrix where every column
correspond to a time step. The dimensions are:

• Blood: R23270×5101

• Butter: R9308×5101

• Honey: R157833×601

• Mayonnaise: R157833×601

• melted chocolate: R157833×601

• Water: R9308×5101

22



4 GENERIC structure

The thermodynamically consistent integrator that has been used in [1] is based on the GENERIC
structure, following the work in [2]. The next sections will explain how the integrator is elaborated.

4.1 GENERIC formalism
The manifold of a problem represents the true dimension of the problem. Concretely, a manifold
is a set of variables that entirely describe the behavior of a problem. For example a particle in a
Newtonian fluid is completely described by it’s position, velocity and internal energy, so the dimension
of a particle’s manifold can be 7. For N particles, the dimension would be D = 7N . Following the
geometry from figure 9, the corresponding number of particles of water would be N ≈ 1025.
Let’s Γt ∈ C 1(I ) be the manifold of a problem:

Γt = Γ(t) : I = [0, T ]→ S ⊂ RD (14)

The dynamic of the system is assumed to be given by:

d

dt
Γt = L(Γt)∇E(Γt) +M(Γt)∇S(Γt) (15)

In this formalism, L is the Poisson-matrix which represents the conservative part of the evolution and
M is the friction-matrix which represents the irreversible part of the evolution. It should follow then:
L(Γt).∇S(Γt) = 0 and M(Γt).∇E(Γt) = 0.
To ensure the conservation of energy in the system, L has to be skew-symmetric.
To ensure the second-law of thermodynamics, M has to be symmetric and semi-positive.
Finally with the structures of L and M , and the two previous degeneracy conditions, the first and
second principles of Thermodynamics are ensured:{

d
dtE(Γt) = 0
d
dtS(Γt) ≥ 0

4.2 GENERIC resolution
The discretisatoin in time of (15) gives the explicit scheme:

Γn+1 − Γn
∆t

= L(Γn)∇E(Γn) +M(Γn)∇S(Γn) (16)

With FEM methods, it is possible to get approximations for ∇E(Γn) and ∇S(Γn):{
∇E(Γn) ≈ An.Γn
∇S(Γn) ≈ Bn.Γn

So the numerical scheme (16) becomes:

Γn+1 − Γn
∆t

= L(Γn).An.Γn +M(Γn).Bn.Γn (17)

The next step here is to find the matrices L, A, M and B. With the access to Z, a set of (Γt)t∈IZ ,
we can then resolve (17) to get the values of L(Γt), A(Γt), M(Γt) and B(Γt) for t ∈ I Z :
Finding L(Γt), A(Γt), M(Γt) and B(Γt) for t ∈ I Z such that:

23



{
Γt+δt−Γt

δt = L(Γt).At.Γt +M(Γt).Bt.Γt,∀t ∈ I Z

L skew-symmetric, and M symmetric, semi-positive

It is possible to solve the problem with L(Γ) known (partial) or not (unpartial). It is also possible to
add the constraints L.B.Γ = 0 and M.A.Γ = 0 (problem constrained) or not (problem unconstrained).
Now with the set Z = {Γt, t ∈ I Z} it is possible to get an approximation of the values of L(Γ), A(Γ),
M(Γ) and B(Γ), ∀Γ ∈ S with interpolating methods. Giving a weight-matrix W the interpolation of
Ln, An, Mn and Bn are:

Lf
n =

∑
k∈IZ

Wn,kL(Γk) (18)

Af
n =

∑
k∈IZ

Wn,kA(Γk) (19)

M f
n =

∑
k∈IZ

Wn,kM(Γk) (20)

Bf
n =

∑
k∈IZ

Wn,kB(Γk) (21)

Knowing the interpolating function f, the numerical scheme (17) can be used again to get the values
of Γ̃t: {

Γ̃n+1−Γ̃n
∆t = Lf

n.A
f
n.Γ̃n +M f

n.B
f
n.Γ̃n

Γ̃0 = Γ0

(22)

The weight matrix Wn is determined by the neighborhood of the point Γ̃n and the topological space
defined.

4.3 GENERIC numerical resolution on Matlab
In my work, the problem (17) is partial and constrained.
To find the values of L, A, M and B in (17) knowing Z, for my work, I have assumed that the matrix
L was known (problem partial):

L =

[
0 1
−1 0

]
, in R2 (23)

L is skew-symmetric.
Then with the function fmincon in Matlab, the matrix A, B and M is determined solving:

argminf
A,B,M

, such that ∀t ∈ [t0, Tf ], c(A, t) = 0 and d(B, t) = 0 (24)

with: 
f(M,A,B, t0, Tf ) =

∑Tf
i=t0

1
N

√
||Γi−Γi−1

δt − L.A.Γi−1 −M.B.Γi−1||2

c(A, t) = M.At.Γt

d(B, t) = L.Bt.Γt

24



4.4 GENERIC complexity
As previously said, the manifold dimension is too high (D = 7N of a Newtonian fluid). This implies
that many parameters have to be actualised during the numerical resolution (22), the interpolating
function f is complex and the resolution is too time-consuming.
For those reasons, it is better to previously use reduction method (Υ) on Z and then use the GENERIC
structure on the new data Υ(Z). This method allows to decrease the dimension of the data (D Υ−→
M,M � D), to have easier interpolating function f and to handle real-time calculus. The choice of Υ
will be discussed in an next section of the report.

4.5 GENERIC correction
Following the work of [22], it is possible to match more experimental data with models.Assuming to
have a GENERIC model with L,∇E,M and ∇S known, we want to the model to match new data
obtained in ZΓexp .
Following the scheme (22), I will obtain a new set of values ZΓmod . Presumably, I don’t have ZΓexp =
ZΓmod . Yet I want to keep the values of L,∇E,M and ∇S because they are hypothetically correct for
the model. So I am going to add a correction term in the model in order to get:

Γexp = Γmod + Γcorr (25)

The associated set to correction is:

ZΓcorr = ZΓexp − ZΓmod

Since I still want that the correction data to follow the GENERIC structure, I can apply the GENERIC
resolution with ZΓcorr solving the partial/unpartial, constrained/unconstrained system:{

Γcorrt+δt−Γcorrt

δt = Lcorr(Γcorrt ).Acorrt .Γcorrt +M corr(Γcorrt ).Bcorrt .Γcorrt ,∀t ∈ I ZΓcorr

Lcorr skew-symmetric, and M corr symmetric, semi-positive

Then experimental data are following the new GENERIC structure:

d

dt
Γt = L(Γt)∇E(Γt) +M(Γt)∇S(Γt)

+ Lcorr(Γt)∇Ecorr(Γt) +M corr(Γt)∇Scorr(Γt)

Which is based on the model built before, so using L,∇E,M and ∇S. It means that once I have a
data-set from abaqus’ simulations, I can use the corrected model on a different liquid that the one
used in the simulations.

25



5 Reduction methods

In this section, I will explain some reduction model methods. In order to illustrate clearly their
efficiency, I have used every reduction model on a concrete example: reducing the Klein bottle (3D
objet) in a 2D space (dimension of its manifold). The shape of the Klein bottle is represented in the
figure 16.

Figure 16: 10000 points uniformly chosen of the Klein bottle, colored along the u parameter on the left and colored along
the v parameter on the right.

In my example, the Klein bottle is a non-oriented surface that can be implemented easily because
{(x, y, z)(u, v) : u, v ∈ [0, 2π[} is the Klein bottle. A point (x, y, z) is defined as showed in (26).



x(u, v) =
√

2(20u3−65πu2+50π2u−16π3) cos(v)(cos(u)(3 cos2(u)−1)−2 cos(2u))

80π3
√

8 cos2(2u)−cos(2u)(24 cos3(u)−8 cos(u)+15)+6 cos4(u)(1−3 sin2(u))+17
− 3 cos(u)−3

4

y(u, v) = − (20u3−65πu2+50π2u−16π3) sin(v)
60π3

z(u, v) = −
√

2(20u3−65πu2+50π2u−16π3) cos(v) sin(u)

15π3
√

8 cos2(2u)−cos(2u)(24 cos3(u)−8 cos(u)+15)+6 cos4(u)(1−3 sin2(u))+17

+ sin(u) cos2(u)+sin(u)
4 − sin(u) cos(u)

2

(26)

Giving the fact that the reduced space has the same dimension than the manifold space, a good
reduction model method on this example should be able in 2D to completely describe the shape of the
object as does the parameters u and v in (26).
I will use the notation Z ∈ Rn×p to represent the data-set that has to be embedded in a reduced space
(n is the number of points and p is the dimension of a point).

5.1 POD: Proper Orthogonal Decomposition
The POD aims to look for the eigenvalues λj and eigenvectors Vj of the matrix Q = ZT .Z ∈ Rn×n.
By sorting (λj , Vj)j∈1,...,n in the ascending order based on the value of λ. Then the new basis is:

Ξ = {u1, ..., uM}

Where uj = 1√
λj
Z.Vj

Given a new point z, its embedding (ž)in the reduced space is:

ž = Υ(z) =

M∑
j=1

(zT .uj)uj (27)

The embedded Klein bottle following this method is showed in figure 17. The geometric shape has not
really be changed by POD, it induces that points coming from two different parts of the surface are
mixed together.

26



Figure 17: Klein bottle after POD, colored along the u parameter on the left and along the v parameter on the right

5.2 LLE: Local Linear Embedding
The main idea is to keep the neighbours for each point in the embedded space. Choosing K, the
number of closest neighbours, the LLE tries to find W solution of:

W = ε(W ) =
∑n
i=1 |zi −

∑n
j=1Wijzj |2

Wij = 0 if zj isn’t in the K nearest neighbours of zi∑
jWij = 1,Wii = 0

(28)

Then, to find the new points Ξ = {ξ1, ..., ξn} solving:
Ξ = (

∑n
i=1 |ξi −

∑n
j=1Wijξj |2)∑

i ξi = 0

ξ.ξT = IM

(29)

Given a new point z, its embedding (ž)in the reduced space is:{
ž = Υ(z) =

∑K
j=1 αjξσ(j), σ(j) represents the K nearest neighbours

α = |z −
∑K
j=1 αjzj |2

(30)

The embedded Klein bottle following this method is showed in figure 18. The geometric shape is not
changed like with the POD even though the Klein bottle is less distorted here. But the problem that
points coming from two different parts of the surface are mixed together, still remain.

27



Figure 18: Klein bottle after LLE,colored along the u parameter on the left and the v parameter on the right

5.3 t-SNE: t-Distributed Stochastic Neighbor Embedding
The previous methods being linear, they are not adapted to non-linear behavior observed in fluid
mechanics. The two next methods show way better results and so, are more complex mathematically.
For the t-SNE [23], a conditional similarity is defined between each snapshot of the data-set, given a
distance matrix D it follows: 

p(i|j) =
exp(−

D2
ij

2σ2
i

)∑
k 6=i exp(−

D2
ik

2σ2
i

)

p(i|i) = 0

(31)

The similarity matrix is then:

Pi,j =
p(i|j) + p(j|i)

2n
(32)

The parameters σi is chosen in order to respect a good perplexity parameter of the data set:{
Perp(Pi) = 2H(Pi)

H(Pi) = −
∑
j p(j|i) log2 p(j|i)

(33)

Usually perplexity is fixed between 5 and 50. A conditional similarity is then defined for the new
points:

q(i|j) =
exp(−d(ξi, ξj)

2)∑
k 6=i exp(−d(ξi, ξk)2)

(34)

To find the new points Ξ = {ξ1, ..., ξn}, the algorithm minimizes the Kullbrack-Leiber:

C =
∑
i

KL(Pi||Qi) =
∑
i

∑
j

p(j|i) log(
p(j|i)

q(j|i)
) (35)

The minimization is done with a gradient descent of C based on:

δC

δξi
= 2

∑
j

(p(j|i) + p(i|j) − (q(j|i) + q(i|j)))(ξi − ξj) (36)

28



Given a new point z, its embedding (ž) in the reduced space is:

ž = Υ(z) =
ξ

∑
j=1 pj log(

pj
qj

)

pj =
exp(−

d(z,zj)2

2σ )∑
k exp(− d(z,zk)2

2σ )

qj =
exp(−

d(,ξj)2

2σ )∑
k exp(− d(,ξk)2

2σ )

H(z) = H(Pi)

(37)

The embedded Klein bottle following this method is showed in figure 19. The shape of the Klein bottle
has really changed, enough to don’t be recognized. However, through the colors, it is possible to see
that the reduction kept the neighbourhoods and so kept the information of the data-set. Clusters are
also present, meaning that the algorithm detected different behavior around the surface which will be
interesting if a cluster would correspond to a parameter known.

Figure 19: Klein bottle after t-SNE, colored along the u parameter on the left and the v parameter on the right

5.4 UMAP: Uniform Manifold Approximation and Projection
The UMAP method is a new model reduction method [5] that can directly compete with the results
of a t-SNE. It allows to conserve the geodesic distance in a data-set
For every point Xj in the ball centered in Xi, the geodesic distance between Xi and Xj is approximated
by:

dM (Xi, Xj) =
1

ri
dRn(Xi, Xj) (38)

Considering that every point Xi has k-nearest neighboors that are the points in the ball of center Xi

(giving ri), a parameter ρi can be defined for every point:

ρi = min(dM (xi, xij )|1 ≤ j ≤ k : dM (xi, xij ) > 0) (39)

and a parameter σi in sort that:

k∑
j=1

exp(−
max(0, dM (xi, xij )− ρi)

σi
) = log2(k) (40)

A weighted directed graph Ḡ = (V,E,w) can by then defined.Where the vertices V are the points
(Xi)1≤i≤N , the oriented edges E are {(xi, xij )|1 ≤ j ≤ k, 1 ≤ i ≤ N} and the weights w are w(xi, xij ) =

exp(−max(0,d(xi,xij )−ρi)
σi

) We note A the weight matrix.

29



A being non-symmetric, it means that the weight can not be, yet, interpreted as a distance. But the
symmetric matrix:

B = A+AT −A ◦AT (41)

Where ◦ is the Hadamard product, can be defined instead. Then using B as the weight matrix, a new
weighted non-oriented graph G = (V,E,wn) is defined.
Then in order to get the position of the points yi in the embedded space, each point position is
actualised by the cost function:

C((E,wn), (E,wd)) =
∑
e∈E

wn(e) log(
wn(e)

wd(e)
) + (1− wn(e)) log(

1− wn(e)

1− wd(e)
) (42)

Where wd(e) = exp(−max(0,dRd (xi,xij )−ρi)
σi

) is the weight in the embedded space of the edge e ∈ E.
The first part tends to respect the edges with high weights and the second one tends to associate a
low weight when an edge has a small weight in the manifold.
Given a new point z, its embedding (ž)in the reduced space is:

ž = argmin
ž∈Rd

C((Ez, wn), (Ez, wd))

w(z, xzj ) = exp(−max(0,dM (z,yzj )−ρz)

σz
)

σz |
∑k
j=1 exp(−max(0,dM (z,xzj )−ρz)

σz
) = log2(k)

ρz = min(dM (z, xzj )|1 ≤ j ≤ k : dM (z, xzj ) > 0)

(43)

Ez has the edges connected from z to its neighbours.
The embedded Klein bottle following this method is showed in figure 20. This is the best reduction for
the Klein bottle because there is no crossing-over of the points not like in the POD and the LLE, the
initial shape is conserved not like in the t-SNE. An other reason to use UMAP is that it runs quicker
than the t-SNE.

Figure 20: Klein bottle after UMAP, colored along the u parameter on the left and the v parameter on the right

5.5 Interpolation
In (18), (19), (20) and (21) I have defined the way to interpolate the matrix L, A, M and B based on
the values of them already known and a weight-matrix W . I am going to explain how to get W .

30



The weight-matrix W has to be found at each time-step, the weights depends of the current point Γ̃t
and its neighborhood.
Because I have used mainly the UMAP reduction-method, the weight-matrix corresponds to the weights
coming from that method:

W (Γ̃t, z) = exp(−max(0,dRd (Γ̃t,z)−ρΓ̃t
)

σΓ̃t

) if z is in the neighborhood of Γ̃t

W (Γ̃t, z) = 0 otherwise

σΓ̃t
|
∑
z exp(−max(0,dRd (Γ̃t,z)−ρΓ̃t

)

σΓ̃t

) = log2(N)

ρΓ̃t
= min(dRd(Γ̃t, z) : dRd(Γ̃t, z) > 0)

(44)

Where the neighborhood of a point corresponds to its N closest neighbors.
The number of neighbors N to choose can be different from the one used in the UMAP method.

5.6 From the embedded space to the initial space
Now with the GENERIC scheme and the interpolation method, it is possible obtain, starting from an
initial, new points associated with the weight-matrix used (Γ̃n,Wn)n.
The question now is knowing (Γ̃n,Wn)n, how can I find the corresponding points of (Γ̃n)n in the initial
space?
The fact is that of the UMAP projection is constructed in order to make sure that the weights from
(Wn)n are the same in the initial and embedded space. So I can assumed that a could approximation
of Γ̃n in the initial space is:

Γ̂n =
∑
k

Wk,nΓk (45)

31



6 Results

6.1 Reduction method applied to simulations
From the simulations obtained with Abaqus, I had to check if data could be projected in an embedded
space using one of the reduction methods detailed in the previous section.
I have decided to embed all the trajectories in 3D using t-SNE. Concretely because all the liquids
doesn’t have the same dimension of representation (different accuracy in the mesh), all data don’t
have the same manifold dimension: R157833 for chocolate, mayonnaise and honey, R23270 for blood,
R9308 for butter and water.
So in order to use a reduction method on all the liquid, I have decided to take for each liquid a manifold
a dimension R9308.
Finally starting from the initial space R55848×66024, I have obtained the projected trajectories in
R3×66024 showed in the figure 21.

Figure 21: Clustering of the different liquids using t-SNE. Every color correspond to a liquid, blue (water), butter
(yellow), blood (red), chocolate (dark brown), honey (brown) and mayonnaise (green).

In the figure 21, every color corresponds to a liquid: blue for water, yellow for butter, red for blood,
dark for chocolate, brown for honey and green for mayonnaise.

32



Figure 22: 2D embedded spaces of blood and butter using UMAP. Each color is a different trajectory (velocity). Arrows
point to the first point of each trajectory.

33



Figure 23: 2D embedded spaces of chocolate and honey using UMAP. Each color is a different trajectory (velocity).
Arrows point to the first point of each trajectory.

34



Figure 24: 2D embedded spaces of mayonnaise and water using UMAP. Each color is a different trajectory (velocity).
Arrows point to the first point of each trajectory.

35



It is remarkable to see that all the trajectories are separated by the t-SNE. Indeed using a binary tree
build on 75% data to find the liquid, cross-validated test on the 25% remaining showed to obtain the
right classification more than 99% of the time.
So this means that it is possible to classify a new trajectory to a liquid if the trajectory is close (initial
velocity) to an existing one. Knowing that, I have applied the GENERIC scheme on each liquids
separately.
Indeed for each liquid, I have used the UMAP reduction method to build for each liquid an embedded
space in 2D where to apply the GENERIC scheme. For each liquid, I have selected only 3 (out of 4)
trajectories to build the embedded space. To build the UMAP manifold, the connectivity parameter
is 10 and the number of neighbors is 15.
All those embedded space are represented in the figures 22, 23 and 24. For every liquid, the trajectories
are separated in the embedded space.

Liquids υ0(m/s) max(er2) max(E∞) max(Er∞) mean(er2) mean(E∞) mean(Er∞)

Blood 0.05 5,387.10−6 9,92.10−5 1,1681.10−3 1,712.10−6 8,983.10−6 1,324.10−4

Blood 0.10 7,202.10−8 2,497.10−4 3,308.10−3 3,928.10−8 3,501.10−5 5,099.10−4

Blood 0.20 1,266.10−7 4,906.10−4 6,486.10−3 7,604.10−8 6,886.10−5 9,389.10−4

Butter 0.05 3,495.10−7 8,566.10−5 4,181.10−3 2,143.10−7 3,478.10−6 1,775.10−4

Butter 0.10 9,552.10−8 1,65.10−4 7,896.10−3 5,013.10−8 5,89.10−6 2,962.10−4

Butter 0.20 4,672.10−7 3,236.10−4 1,521.10−2 1,638.10−7 1,106.10−5 5,301.10−4

Liquids υ0(m/s) max(er2) max(E∞) max(Er∞) mean(er2) mean(E∞) mean(Er∞)

Chocolate 0.25 2,623.10−8 4,937.10−4 6,372.10−3 1,405.10−8 1,832.10−5 2,477.10−4

Chocolate 0.50 2,5.10−8 9,704.10−4 1,097.10−2 1,099.10−8 7,243.10−5 8,785.10−4

Chocolate 0.75 1,177.10−8 1,198.10−3 1,354.10−2 4,837.10−9 1,797.10−4 1,78.10−3

Honey 0.25 4,612.10−9 4,445.10−4 6,332.10−3 2,063.10−9 1,407.10−5 1,961.10−4

Honey 0.50 2,944.10−8 8,858.10−4 1,252.10−2 1,799.10−8 2,93.10−5 3,989.10−4

Honey 0.75 3,689.10−9 1,316.10−3 1,839.10−2 1,397.10−9 4,665.10−5 6,204.10−4

Liquids υ0(m/s) max(er2) max(E∞) max(Er∞) mean(er2) mean(E∞) mean(Er∞)

Mayonnaise 0.25 5,52.10−9 4,209.10−4 5,863.10−3 2,872.10−9 3,71.10−6 5,205.10−5

Mayonnaise 0.50 3,233.10−8 8,91.10−4 1,177.10−2 1,837.10−8 1,099.10−5 1,491.10−4

Mayonnaise 0.90 6,461.10−9 1,403.10−3 1,629.10−2 2,866.10−9 2,583.10−5 3,201.10−4

Water 0.05 1,631.10−6 7,987.10−5 3,62.10−3 3,381.10−7 4,606.10−6 2,462.10−4

Water 0.15 5,899.10−8 2,561.10−4 9,849.10−3 3,014.10−8 1,482.10−5 6,955.10−4

Water 0.20 3,135.10−7 3,167.10−4 1,169.10−2 9,487.10−8 1,828.10−5 7,976.10−4

Table 7: Mean and maximum of er2,, Einf and Er∞ for each trajectory.

6.2 GENERIC numerical scheme
I have then build the GENERIC scheme on each trajectory and tested the reconstruction error of the
numerical scheme starting from every initial points. The interpolation is done each time with N = 5
neighbors.
To evaluate the different errors of reconstruction, I have define 3 values (46), (47) and (48).

er2 =
||Γ̃embt − Γembt ||2
||Γembt ||2

(46)

36



er2 represents the relative error in the reconstruction on the embedded manifold. Γembt is the embedded
manifold at the time t and Γ̃embt is its approximation using the GENERIC scheme.

E∞ = |h(Γ̃t)− h(Γt)| (47)

E∞ is the difference between the maximum height of the liquid at a time t h(Γt) and the one from its
approximation h(Γ̃t)

Er∞ =
|h(Γ̃t)− h(Γt)|

h(Γt)
(48)

Er∞ is the relative error assimilated at E∞.
In the figure 25, 26 and 27, there are the values of er2,, Einf and Er∞ and in the table 7, their mean
and maximum for each trajectory.

Figure 25: Values of the error er2 for every trajectory.

37



For the error of reconstruction in the embedded space, represented by er2, it is really small because it
is always smaller than 10−5 for every trajectory. So the GENERIC numerical scheme works very well
to reconstruct trajectories.
E∞ gives the information that the shape of the liquids is respected because the maximum height is
well respected. Indeed the height different is always smaller than 2mm and with the relative error Er∞,
it is always smaller than 2% which is a really low relative error.

Figure 26: Values of the error E∞ for every trajectory.

However at the current time, the GENERIC scheme is not able to build correctly a new trajectory from
scratch. Basically, because of the morphology of the embedded space and the interpolating method,
starting from a new point the new trajectory will either stay really located around the initial point
because it is too far from the other trajectories or it will completely follow a trajectory that already
exists.
The trajectories being separated in the embedded space, it is difficult to have an interpolating method

38



that will really use the information of each trajectory to build a new one.

Figure 27: Values of the error Er∞ for every trajectory.

39



7 Conclusions

Simulating liquids on Abaqus with the ALE-mesh is very difficult and can still show problems with
the incompressibility of the liquids. However if this problem does not occur, simulations of the liquids
show a realistic behavior. In that sense, simulating sloshing behavior is possible and realistic for very
viscous liquids using the Abaqus/Explicit toolbox with the ALE-mesh. A way to make sure of the
incompressibility of the liquid seems to be playing with the bulk viscosity parameter.
The new reduction-method UMAP shows incredible results to resume a very high and complex data-set
in a 2D space. Which allows visual interpretation of liquids behavior. UMAP also has the principle to
develop a topological space associated to the initial space. One way to improve even more the embedded
space would be to give the same order of magnitude to every physical parameter. For example the
internal energy does not have the same order of magnitude than the velocity which implies that in the
building of the topological space, that uses at some point the Euclidean distance, the variations in the
values of internal energy are less important than the one of velocity. So adding a scaling parameter to
each physical parameter could help improving the distinction of different behaviors.
The GENERIC numerical scheme showed great results when applied to 2D trajectories. The recon-
struction of the trajectories was very accurate, showing really small relative error in the reconstruction.
However, the way to interpolate does not work with building new trajectories because of the shape
of the trajectories in the embedded space. One way to be able to create new trajectories could be to
improve the UMAP algorithm as previously said and to add more data coming from other velocities.
In a way, to discretize more the data on the initial velocity. The aim of the work in progress is also to
be able to run the GENERIC numerical scheme in real-time, which is not true right now: it takes for
example 100 seconds to get 5 seconds of blood behavior. But this time can be improved by computing
a better way to find the neighbors in the embedded space. The function that I personally used came
from the UMAP package but the research could be done faster knowing the shape of the data. For
example, I think that giving a tree architecture to the research of neighbors could really improve the
time spent to locate the closest neighbors.
Another way to build the manifolds could be to use the statistical analysis done in the second section,
and so, to simulate liquids with density and viscosity according to the distributions given. This way
liquids are identified by their characteristics.

40



References

[1] Beatriz Moya et al. “Learning slosh dynamics by means of data”. In: Computational Mechanics
(2019).

[2] M. Grmela and H.C Oettinger. “General Equation for Non-Equilibrium Reversible-Irreversible
Coupling, GENERIC”. In: Phys. Rev. E. 56 6 (1997), pp. 6620–6632.

[3] J.J. Monaghan. “An introduction to SPH”. In: Computer Physics Communications 48 (1988),
pp. 89–96.

[4] Erwin Stein, René de Borst, and Thomas J.R. Hughes. Encyclopedia of computational mechanics.
John Wiler Sons, 2004.

[5] Leland McInnes, John Healy, and James Melville. “UMAP: Uniform Manifold Approximation
and Projection for Dimension Reduction”. In: (2018).

[6] U. Ruth Charrondiere, David Haytowitz, and Barbare Stadlmayr. FAO/INFOODS Density
Database. url: http://www.fao.org/3/ap815e/ap815e.pdf.

[7] Michael Smith. Approximate viscosities of some common liquids. url: https://www.michael-
smith-engineers.co.uk/mse/uploads/resources/useful-info/General-Info/Viscosities-
of-Common-Liquids.pdf.

[8] Charles Zaiontz. Kolmogorov-Smirnov Test for Normality. url: http://www.real-statistics.
com/tests-normality-and-symmetry/statistical-tests-normality-symmetry/kolmogorov-
smirnov-test/.

[9] Rey-Yie Fong. “A Comparison Study between ALE and SPH for Yacht Structure Design under
Slamming Impact Loads”. In: Aug. 2011.

[10] Geneviève Toussaint, Amal Bouamoul, and DRDC Valcartier. “Comparison of ALE and SPH
methods for simulating mine blast effects on structures”. In: Defence RD Canada - Valcartier
(2010). Technical report.

[11] Roberts et al. Heat and thermodynamics (Vol. 4). Interscience Publishers, 1954.

[12] Glenn Elert. The Physics Hypertextbook. url: https://physics.info/viscosity/.

[13] SVM. Viscosity of flower honey (blended). url: https://wiki.anton-paar.com/en/flower-
honey-blended/.

[14] ABAQUS Inc. Water sloshing in a pitching tank. url: http://130.149.89.49:2080/v6.9/
books/bmk/default.htm?startat=ch01s12ach89.html.

[15] Herschel et al. “Konsistenzmessungen von Gummi-Benzollösungen”. In: Kolloid Zeitschrift 39
(1926). DOI: 10.1007/BF01432034, pp. 291–300.

[16] P.Bottiglieri et al. “Rheological characterization of ketchup”. In: Journal of food quality 14 (1991).
DOI: 10.1111/j.1745-4557.1991.tb00089.x, pp. 497–512.

[17] Shewaferaw S. Shibeshi and William E. Collins. “The rheology of blood flow in a branched arterial
system”. In: National Institute of Health (2006).

[18] Dayane Izidoro et al. “Sensory evualation and rheological behavior of commercial mayonnaise”.
In: International Journal of Food Engineering 3 (2007). DOI: 10.2202/1556-3758.1094.

[19] Vojtech Kumbar et al. “Rheological behaviour of chocolate at different temperatures”. In: Slovak
journal of food sciences 12 (21 March 2018). DOI: 10.5219/876, pp. 123–128.

[20] Abaqus Analysis User’s Manual. ALE adaptative meshing. url: https://www.sharcnet.ca/
Software/Abaqus610/Documentation/docs/v6.10/books/usb/default.htm?startat=
pt04ch12s02aus81.html.

41

http://www.fao.org/3/ap815e/ap815e.pdf
https://www.michael-smith-engineers.co.uk/mse/uploads/resources/useful-info/General-Info/Viscosities-of-Common-Liquids.pdf
https://www.michael-smith-engineers.co.uk/mse/uploads/resources/useful-info/General-Info/Viscosities-of-Common-Liquids.pdf
https://www.michael-smith-engineers.co.uk/mse/uploads/resources/useful-info/General-Info/Viscosities-of-Common-Liquids.pdf
http://www.real-statistics.com/tests-normality-and-symmetry/statistical-tests-normality-symmetry/kolmogorov-smirnov-test/
http://www.real-statistics.com/tests-normality-and-symmetry/statistical-tests-normality-symmetry/kolmogorov-smirnov-test/
http://www.real-statistics.com/tests-normality-and-symmetry/statistical-tests-normality-symmetry/kolmogorov-smirnov-test/
https://physics.info/viscosity/
https://wiki.anton-paar.com/en/flower-honey-blended/
https://wiki.anton-paar.com/en/flower-honey-blended/
http://130.149.89.49:2080/v6.9/books/bmk/default.htm?startat=ch01s12ach89.html
http://130.149.89.49:2080/v6.9/books/bmk/default.htm?startat=ch01s12ach89.html
https://www.sharcnet.ca/Software/Abaqus610/Documentation/docs/v6.10/books/usb/default.htm?startat=pt04ch12s02aus81.html
https://www.sharcnet.ca/Software/Abaqus610/Documentation/docs/v6.10/books/usb/default.htm?startat=pt04ch12s02aus81.html
https://www.sharcnet.ca/Software/Abaqus610/Documentation/docs/v6.10/books/usb/default.htm?startat=pt04ch12s02aus81.html


[21] Abaqus Analysis User’s Manual. Hyperelastic behavior of rubberlike materials. url: https://
classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/usb/
default.htm?startat=pt05ch17s05abm07.html.

[22] David Gonzalez, Francisco Chinesta, and Elias Cueto. “Learning corrections for hyperelastic
models from data”. In: ().

[23] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using t-SNE”. In: Journal of
Machine Learning Research 9 (2008), pp. 2579–2605.

42

https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/usb/default.htm?startat=pt05ch17s05abm07.html
https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/usb/default.htm?startat=pt05ch17s05abm07.html
https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/usb/default.htm?startat=pt05ch17s05abm07.html


A Data-set of the common liquids

43



  
absolute viscosity Temperature 

Viscosity 
type 

density 

  mPA.s Pa.s log(Pa.s) °C K   kg/m3 

Acetate glue 1300 1,3 1,1E-01 20 293 T 1190 

Baby food 1400 1,4 1,5E-01 93 366 T   

Batter 29500 29,5 1,5E+00 30 303 T 550 

Beet sauce 1950 1,95 2,9E-01 76 349 T   

Biscuit cream premix 29200 29,2 1,5E+00 18 291 T   

Blood 3500 3,5 5,4E-01 37 310 T 1060 

Bone oil 48 0,048 -1,3E+00 54 327 N   

Brewers Yeast 368 0,368 -4,3E-01 18 291 T 1100 

Broth mix 430 0,43 -3,7E-01 18 291 T   

Butter fat 42 0,042 -1,4E+00 43 316 N 911 

Butter fat 20 0,02 -1,7E+00 65 338 N 911 

Butter deodorised 45 0,045 -1,3E+00 50 323 N 911 

Carob bean sauce 1500 1,5 1,8E-01 30 303 T   

Castor oil 580 0,58 -2,4E-01 27 300 N 961 

Castor oil 36 0,036 -1,4E+00 80 353 N 961 

Chinawood oil 300 0,3 -5,2E-01 21 294 N 937 

Chocolate 280 0,28 -5,5E-01 49 322 T 1325 

Citrus fruit pulp 600 0,6 -2,2E-01 20 293 T   

Coconut oil 55 0,055 -1,3E+00 24 297 N 924 

Coconut oil 30 0,03 -1,5E+00 38 311 N 924 

Cod oil 32 0,032 -1,5E+00 38 311 N 930 

Coffee liquor 30-40% 50 0,05 -1,3E+00 20 293 T 1130 

Corn oil 28 0,028 -1,6E+00 57 330 N 922 

Cottage cheese 30000 30 1,5E+00 18 291 T 1040 

Cotton seed oil 62 0,062 -1,2E+00 24 297 N 920 

Cotton seed oil 24 0,024 -1,6E+00 52 325 N 920 

Cocoa butter 50 0,05 -1,3E+00 60 333 N 919 

Cocoa butter 0,5 0,0005 -3,3E+00 100 373 N 919 

Condensed milk 60 0,06 -1,2E+00 45 318 N 1293 

Condensed milk 75% 
solid 2160 2,16 3,3E-01 20 293 T 1293 



Cream 30% fat 14 0,014 -1,9E+00 16 289 N 1012 

Cream 40% fat 48 0,048 -1,3E+00 16 289 N 1000 

Cream 50% fat 112 0,112 -9,5E-01 16 289 N 994 

Cream 50% fat 55 0,055 -1,3E+00 32 305 N 978 

Cresol crystals 10 0,01 -2,0E+00 18 291 T 1020 

Custard 1500 1,5 1,8E-01 85 358 T 1070 

Detergent 1470 1,47 1,7E-01 70 343 T 1400 

Diethylene 32 0,032 -1,5E+00 21 294 N 1120 

Edible oil 65 0,065 -1,2E+00 20 293 N 920 

Ethylene 18 0,018 -1,7E+00 21 294 N 1180 

Gelatine 37% solid 1190 1,19 7,6E-02 43 316 T 1270 

Glucose 6000 6 7,8E-01 25 298 T 1560 

Glycerine 100% 648 0,648 -1,9E-01 20 293 N 1260 

Glycerine 100% 176 0,176 -7,5E-01 38 311 N 1260 

Gravy slurry 110 0,11 -9,6E-01 80 353 T   

Hand cream 780 0,78 -1,1E-01 18 291 T 900 

Honey 14095 14,095 1,1E+00 20 293 N 1420 

Fruit juice 65 0,065 -1,2E+00 18 291 N 1060 

Isopropyl alcohol 1,9 0,0019 -2,7E+00 85 358 N 786 

Jam garnish 8440 8,44 9,3E-01 16 289 T   

Lacquer 25% solids 3000 3 4,8E-01 18 291 T 837 

Lard 62 0,062 -1,2E+00 38 311 N 919 

Lard oil 45 0,045 -1,3E+00 38 311 N 917 

Latex emulsion 200 0,2 -7,0E-01 24 297 T   

Latex emulsion 48 0,048 -1,3E+00 65 338 T   

Linseed oil raw 29 0,029 -1,5E+00 38 311 N 930 

Malt extract 80% 9500 9,5 9,8E-01 18 291 T 336 

Malt extract 3000 3 4,8E-01 60 333 T 336 

Mayonnaise 20000 20 1,3E+00 20 293 T 910 

Milk 2 0,002 -2,7E+00 18 291 N 1000 

Milk 1 0,001 -3,0E+00 52 325 N 1000 

Milk whey 48% sugar 1100 1,1 4,1E-02 40 313 T 1000 

Mincemeat 100000 100 2,0E+00 30 303 T 1020 

Mousse mix 1200 1,2 7,9E-02 5 278 T   



NaOH 20% 1 0,001 -3,0E+00 18 291 N 2130 

NaOH 30% 1 0,001 -3,0E+00 18 291 N 2130 

NaOH 40% 20 0,02 -1,7E+00 18 291 N 2130 

Olive oil 40 0,04 -1,4E+00 38 311 N 918 

Orange juice 30 brix 630 0,63 -2,0E-01 20 293 N 1014 

Orange juice 30 brix 91 0,091 -1,0E+00 80 353 N 1014 

Orange juice 50 brix 2410 2,41 3,8E-01 20 293 N 1014 

Orange juice 50 brix 330 0,33 -4,8E-01 80 353 N 1014 

Palm oil 43 0,043 -1,4E+00 38 311 N 915 

Parafin emulsion 3000 3 4,8E-01 18 291 T 800 

Peanut oil 38 0,038 -1,4E+00 38 311 N 910 

Pectin 300 0,3 -5,2E-01 38 311 N 700 

Pectin 345 0,345 -4,6E-01 27 300 N 700 

Polyester 3000 3 4,8E-01 30 303 T 1390 

Polypropylene 240000 240 2,4E+00 50 323 T 946 

Polyisobutylene 12500 12,5 1,1E+00 85 358 T 920 

Plastisol 28000 28 1,4E+00 18 291 T   

Printer ink 1000 1 0,0E+00 38 311 T 1064 

Printer ink 400 0,4 -4,0E-01 54 327 T 1058 

Process cheese 6500 6,5 8,1E-01 80 353 T 1100 

Process cheese 30000 30 1,5E+00 18 291 T 1100 

Propylene 52 0,052 -1,3E+00 21 294 N 1740 

Resin solution 880 0,88 -5,6E-02 24 297 T 1000 

Resin solution 975 0,975 -1,1E-02 21 294 T 1000 

Resin solution 7140 7,14 8,5E-01 18 291 T 1000 

Rice pudding 10000 10 1,0E+00 100 373 T 1069 

Salad cream 2000 2 3,0E-01 18 291 T 994 

Sauce apple 500 0,5 -3,0E-01 80 353 T   

Shampoos 3000 3 4,8E-01 36 309 T 960 

Sperm oil 24 0,024 -1,6E+00 38 311 N   

Soap arylan 3000 3 4,8E-01 36 309 T 932 

Soap solution 630 0,63 -2,0E-01 60 333 T 932 

Sorbitol 200 0,2 -7,0E-01 20 293 N 1490 

Soya bean oil 60 0,06 -1,2E+00 24 297 N 927 



 

Soya bean oil 12 0,012 -1,9E+00 80 353 N 927 

Soya bean slurry 10000 10 1,0E+00 90 363 T   

Sulphonic acid 125 0,125 -9,0E-01 30 303 T   

Tomato ketchup 1000 1 0,0E+00 30 303 T 1149 

Tomato paste 30% 195 0,195 -7,1E-01 18 291 T 1040 

Toothpaste 85000 85 1,9E+00 18 291 T 1330 

Tricetate dope 50000 50 1,7E+00 40 313 T 1290 

Triethylene 40 0,04 -1,4E+00 21 294 N 1100 

Turpentine 2 0,002 -2,7E+00 16 289 N 865 

Vinegar 15 0,015 -1,8E+00 20 293 N 1050 

Water 1,3 0,0013 -2,9E+00 18 291 N 983 

Wax 500 0,5 -3,0E-01 93 366 T 900 

Whale oil 30 0,03 -1,5E+00 38 311 N   

Whole egg 150 0,15 -8,2E-01 4,5 277,5 T 1031 

Yeast surry 20 0,02 -1,7E+00 18 291 T   

Yoghurt 152 0,152 -8,2E-01 40 313 T 1060 



B VUVISCOSITY subroutine

48



       subroutine vuviscosity ( 

C Read only - 

     *     nblock,  

     *     jElem, kIntPt, kLayer, kSecPt,  

     *     stepTime, totalTime, dt, cmname, 

     *     nstatev, nfieldv, nprops, 

     *     props, tempOld, tempNew, fieldOld, fieldNew, 

     *     stateOld, 

     *     shrRate, 

C Write only - 

     *     viscosity, 

     *     stateNew ) 

C 

C 

      dimension props(nprops),  

     *  tempOld(nblock), 

     *  fieldOld(nblock,nfieldv),  

     *  stateOld(nblock,nstatev),  

     *  shrRate(nblock),  

     *  tempNew(nblock), 

     *  fieldNew(nblock,nfieldv), 

     *  viscosity(nblock), 

     *  stateNew(nblock,nstatev) 

C 

      character*80 cmname 

C 

     parameter ( one = 1.d0 ) 

C 

C     Cross viscosity  

C 

      eta     = props(1) 

      rn      = props(2) 

      tau     = props(3) 

C 

      do k = 1, nblock 

          if ( shrRate(k) .eq. 0 ) then 

              viscosity(k) = tau 

          else  

              viscosity(k) = tau / shrRate(k) +  

     *        eta * (shrRate(k))**(rn-1) 

          end if 

      end do 

C      print*,'work',viscosity(1) 

C      write(*,*) 'work ', viscosity(1) 

C 

      return 

      end 


	Context of the internship
	Introduction to Fluid mechanics
	Characteristics of a fluid
	Common liquids

	Abaqus
	Meshes
	SPH: Smoothed Partial Hydrodynamics
	ALE: Arbitrary Lagrangian-Eulerian

	Building model
	Edit geometry
	Edit material
	Add viscoelastic properties
	Edit mesh
	Edit boundary conditions

	Simulations

	GENERIC structure
	GENERIC formalism
	GENERIC resolution
	GENERIC numerical resolution on Matlab
	GENERIC complexity
	GENERIC correction

	Reduction methods
	POD: Proper Orthogonal Decomposition
	LLE: Local Linear Embedding
	t-SNE: t-Distributed Stochastic Neighbor Embedding
	UMAP: Uniform Manifold Approximation and Projection
	Interpolation
	From the embedded space to the initial space

	Results
	Reduction method applied to simulations
	GENERIC numerical scheme

	Conclusions
	Data-set of the common liquids
	VUVISCOSITY subroutine

