Keywords: kIntPt, kLayer, kSecPt

Density and absolute viscosity of liquids in the data-set. ρ XY = cov(X,Y) σ X σ Y = -1.86%. . . 4 Boxplots of N (-0.54, 1.21 2) and the viscosity's logarithm distributions. 5 Comparison between the distribution functions for the values of density and its model. . 6 Histogram of density of 1000 simulated values, histogram of the viscosity's logarithm of 1000 simulated values and simulation of 1000 liquids with independent viscosity and density.

List of Tables

THE GENERIC FORMALISM

Generic provides a physically consistent structure of the dynamics to build the integrator from the evolution of energy and entropy: Degeneracy conditions ensure accomplishment of thermodynamics laws:

MODEL ORDER REDUCTION OF NONLINEAR DYNAMICS

TESTING RESULTS

Ground truth Simulation results

This work is the result of my third-year internship at the Instituto Universitario de Investigacion en Ingenieria de Aragon in the University of Zaragoza (Spain). My work follows the one from a PhD student that works on the problematic to solve real-time sloshing problems, from the detection of initial data with a camera to its rendering. Her first paper [START_REF] Moya | Learning slosh dynamics by means of data[END_REF] shows that a numerical scheme based on the GENERIC structure [START_REF] Grmela | General Equation for Non-Equilibrium Reversible-Irreversible Coupling, GENERIC[END_REF] is able to reproduce in real-time the sloshing behavior of water with data-driven fluid simulation. The data were obtained on Abaqus with the SPH method [START_REF] Monaghan | An introduction to SPH[END_REF]. A poster resuming her work is available in the previous page. My objectives were to enhance the simulations by adding more liquids, even non-Newtonian, and to change the method to simulate the data on Abaqus. Finally, I have been able to simulate liquids behavior with the ALE-mesh [START_REF] Stein | Encyclopedia of computational mechanics[END_REF] and to generalize the method to simulate non-Newtonian liquid behavior with it, to extract and convert the data obtained in those simulations to get the manifold of the data, to embed this manifold in a 2D space with a high fidelity of the structure of trajectory using the UMAP [START_REF] Mcinnes | UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction[END_REF] method and to compute the GENERIC numerical scheme on those trajectories to reconstruct them from the initial time step with high accuracy compared with the initial data.

Introduction to Fluid mechanics

Characteristics of a fluid

In Fluid mechanics, there are a lot of parameters that can be physically defined and found in equations. A list of those that will be used in the rest of this report are introduced here:

Common liquids

In this work, I am only interested in liquids that could be manipulated in a glass by a robot. Which means that I am interested in liquids such as water, melted chocolate, melted butter, blood, mayonnaise,... In this purpose, I have been looking for the usual parameters of common liquids (such as density, viscosity,...), and have built a data-set composed of 113 liquids that could be found in a glass. This data-set is available in appendix A. Most values of density and viscosity come from [START_REF] Charrondiere | FAO/INFOODS Density Database[END_REF] and [START_REF] Smith | Approximate viscosities of some common liquids[END_REF], other sources coming from internet.

The most important values here, are the density and the viscosity of a liquid, I have then inspected the distribution of those two parameters for the liquids in the data-set. The distribution of the density is represented in the figure 1 and the viscosity's one in the figure 2. I have also studied the assumption that density and viscosity are independent parameters or not. To be graphically convinced of that independence, each liquids is a point with density and viscosity as coordinate.

In the figure 3, there are those points represented and no correlation can be seen.

Concretely the correla-

tion coefficient ρ XY = cov(X,Y) σ X σ Y is approximately -1.86%.
The assumption of independent density and viscosity is taken for the rest of the report. I have also tried to approximate the distribution of density and viscosity in case it would be necessary to simulate them. For the viscosity, it has been observed in the figure 2 that its logarithm distribution was shaped like a Gaussian distribution. Table 1 gives it's first momenta, and, because the values of skewness and kurtosis are close to 0 and 3, the approximation may stand. Let's H 0 : The viscosity's logarithm distribution follows N (-0.54, 1.21 2), be the assumption here. Let's F (X) be the distribution function and F n (X) its approximation. The Kolmogrov-Smirnov test [START_REF] Zaiontz | Kolmogorov-Smirnov Test for Normality[END_REF] tells that if Modeling the density's distribution was a bit more complicated because the previous way to model was not accurate enough. But I managed to find a good approximation nonetheless: Let's note Φ µ,σ the distribution function of N (µ, σ 2). The model given to F associated with the density distribution follows:

D = max x |F n (x) -F (x)| < D n,α then F n (X) is a good approximation of F (X).
X → F -1 (U) = Φ -1 µ,σ (4U (1 -U))1 {U ≤0.1} + (A + (C -A). U -0.10 0.70 -0.10)1 {0.1<U <0.7} + (C + 1300 -Φ -1 µ,σ (4U (1 -U)))1 {U ≥0.7} With µ = 1000, σ = 284, A = Φ -1 µ,σ (0.36), C = Φ -1
µ,σ (0.84) and U ∼ U (0, 1). A comparison between the density's distribution function and its model is given in figure 5. Finally, if I simulate 1000 liquids with independent density and viscosity, I can obtain the following results showed in figure 6.

Abaqus

ABAQUS is a professional software for FEM (Finite Element Method) calculus. It has been developed by ABAQUS, Inc (Dassault Systèmes). In this work, I've used ABAQUS/CAE with the solver ABAQUS/Explicit which uses explicit schemes for integrating dynamic or quasi-static, non-linear problems.

Meshes

All FEM methods are based on the existence of a mesh with nodes where the variables remain to be actualised. ABAQUS can solve differently problems depending on the mesh chosen.

SPH: Smoothed Partial Hydrodynamics

This method comes from a work made in 1988 [START_REF] Monaghan | An introduction to SPH[END_REF], it has the ambition to assimilate elements as particles, and so, to actualise the variables of each element by an interpolation of the closest points. The method works as follow: The approximation of the value of f at a point x ∈ Ω is:

f (x) = Ω f (r)w(x -r, h)dr = Ω f (r) ρ(r) w(x -r, h)ρ(r)dr (1)
where w is a kernel function, that follows two rules:

• Ω w(x -r, h)dr = 1, ∀h • lim h→0 w(x -r, h) = δ(x -r)
Usually on ABAQUS, the kernel function is a cubic spline kernel. Its expression in 3D is:

w(q, h) = 1 πh 3 (1 - 3 2 q 2 (1 -q))1 {0≤q≤1} + 1 4πh 3 (2 -q) 3 1 {1≤q≤2} (2)
Where q = | x-r h |. SPH is a particle analysis meaning that we are looking at particles that all have characteristics such as a density ρ and a mass m. By subdividing Ω in N elementary volumes, it is possible to get a discrete representation of the previous interpolated function, for example with:

f (x) S = N k=1 f (r k) ρ k w(x -r k , h)m k (3)
(3) is the Riemann sum associated with (1), in which case the accuracy of the numerical approximation is:

| f (x) -f (x) S | ≤ ||∇g|| L ∞ (Ω) |Ω| 2 2N (4
)
Where g(r) = f (r)w(x -r, h).

By doing an Taylor series of (1) and using the properties of the cubic kernel 2, the accuracy of the kernel approximation is:

|f (x) -f (x) | = 1 2 H(f)(x) Ω (x -r) 2 w(x -r, h)dr + Θ(h 3) = Θ(h 2) (5)
Combining (4) and (5), the accuracy of the SPH is in Θ(1 N) + θ(h 2), or in Θ(1 N 2) + θ(h 2) with a better numerical approximation than (3):

|f (x) -f (x) S | ≤ |f (x) -f (x) | + | f (x) -f (x) S | = Θ(1 N) + Θ(h 2) (6)
Usually, if h is chosen constant for every particles, its value is h = 1 ρ 1 3 in 3D. For liquids, ρ 1000kg.m -3 so usually h 0.1. And for example, the number of particles N in [START_REF] Moya | Learning slosh dynamics by means of data[END_REF] is 2898.

ALE: Arbitrary Lagrangian-Eulerian

ALE method uses both Lagrangian and Eulerian descriptions in order to solve problems without assimilating elements as particles like in the SPH. ALE method is described in [START_REF] Stein | Encyclopedia of computational mechanics[END_REF]. Lagrangian description is good for following the shape of a material because it follows the physical points but that implies that there are possible errors coming if the mesh is too distorted around a position (which is easy to happen with liquids). Eulerian description is good against distortion because the mesh doesn't move through time but it simplifies too much the shape of the material (for example the shape of the free surface for a liquid).

The trick is then to use another configuration for actualising every variables. In figures 7 and 8 are showed the different configurations and the notations used to switch from one to another. Following the notations of the figure 7, the fact that ϕ = φ • ψ -1 applied to Navier-Stokes equations, enables to get the Navier-Stokes equations in χ:

         ∂ρ ∂t | χ + c.∇ρ = -ρ∇. υ ρ(∂ υ ∂ | χ + (c.∇) υ) = ∇.σ + ρ b ρ(∂E ∂t | χ + c.∇E) = ∇.(σ. υ) + υ.ρ b ρ(∂e ∂t | χ + c.∇e) = σ : (1 2 (∇ υ + ∇ υ T))
With c, the convective velocity. It is then possible to calculate the different variables of the nodes in χ.

Building model

Some studies ([START_REF] Fong | A Comparison Study between ALE and SPH for Yacht Structure Design under Slamming Impact Loads[END_REF] or [START_REF] Toussaint | Comparison of ALE and SPH methods for simulating mine blast effects on structures[END_REF]) showed that the ALE mesh would give more detailed and more accurate results than with the SPH method. This is why I have had to simulate sloshing problems using the ALE mesh.

The next sections will show how it is possible to implement a sloshing problem using an ALE mesh with ABAQUS/Explicit.

Edit geometry

Following the work of [START_REF] Moya | Learning slosh dynamics by means of data[END_REF], I designed the geometry of the liquid part as shown in figure 9.

To sketch that in ABAQUS, I have defined the liquid as a revolved solid. The section sketch is then a rectangle of height 7 cm and width 5 cm and the revolution along the vertical axis.

Even if physically there is a glass to play the role of the container, it can be not physically present in ABAQUS. Indeed I can simulate the container by using the boundary conditions. Creating the glass physically create a contact between the liquid and the glass but the contact showed to be wrong during simulation which is why the glass is implemented through boundary conditions. In the figure 10, water is represented in green with a physical glass material and in blue with boundary conditions instead with the same other properties. It is possible to see that with the glass, there is a bad shape of water on the free surface, close to the side surface. However, that problem does not show when the glass is implemented with the use of boundary conditions. For these reason, I implemented the container with the use of boundary conditions.

Figure 10: Screenshots of the meshes on the xy plan at t = 0.1s for water facing a velocity of υ = 0.05m/s. For the green mesh, a contact between a rigid body and the water is defined. For the blue mesh, I include the container the borders with boundary conditions.

Edit material

The liquid's material is made using 3 toolboxes: density, EOS (Equation Of State) and viscosity. The density is temperature independent and set as uniformly distributed through the material.

EOS determine the pressure (positive in compression) as a function of the density and the specific energy: p = f (ρ, e). It is used in the equation of conservation of energy :

ρ ∂e ∂t = (p -p bv) 1 ρ ∂ρ ∂t + S : ė + ρ q (7)
where p bv = ∇.U × K is the pressure induced by the bulk viscosity (K), S is the deviatoric part of σ, ė the one from and q is the heat rate.

Liquids Density (kg.m -3) Viscosity (P a.s) Newtonian? Blood [START_REF] Elert | The Physics Hypertextbook[END_REF] 1060 0.0035 No Butter [START_REF] Smith | Approximate viscosities of some common liquids[END_REF] 911 0.042 Yes Chocolate [START_REF] Smith | Approximate viscosities of some common liquids[END_REF] 1325 0.280 No Honey [START_REF] Svm | Viscosity of flower honey[END_REF] 1420 14 Yes Mayonnaise [START_REF] Smith | Approximate viscosities of some common liquids[END_REF] 910 20 No Water [START_REF]Water sloshing in a pitching tank[END_REF] 983 0.0013 Yes In this work, I have used the Mie-Grüneisen equations of state [START_REF] Roberts | Heat and thermodynamics[END_REF] which sets the pressure as a function of three parameters: p = f (c, Γ, s), which is available in ABAQUS in the EOS toolbox with the type USUP. I have decided to use the same parameters for every liquids: (c, Γ, s) = (1500m/s, 0, 0). In Abaqus/Explicit the viscosity toolbox can only define viscosity for Newtonian fluids, meaning that the viscosity η through the material is constant and is used as follow:

S = 2η. ė (8)
In table 2 there are the density and viscosity of some liquids that I have simulated on ABAQUS. The viscosity parameter correspond to the value of η in (8) even tough some of this liquids are not well approximated with a Newtonian hypothesis.

Add viscoelastic properties

     σ = E. S σ = η. ˙ D = S + D =⇒ σ + E η σ = E ˙ (9)
The problem of the Maxwell model is that it is well suited for viscoelastic solids but not for viscoelastic liquids which means that it is hard to find the couple (E,η) for liquids. Moreover there is no way to give the elastic coefficient E, instead it has to be a shear modulus (G) which is unknown for every liquids. With simulations, there is a possibility to attribute a shear modulus to a liquid based on the behavior that is simulated. For example, I tried with this method to find the shear modulus corresponding to chocolate and water. The results are shown in the table 3.

A model that is more accurate to simulate viscosity's behavior is the Herschel-Bulkley model [START_REF] Herschel | Konsistenzmessungen von Gummi-Benzollösungen[END_REF]: Liquids k (P a.s n) n τ 0 (P a) Ketchup [START_REF] Bottiglieri | Rheological characterization of ketchup[END_REF] 22.56 0.28 -Blood [START_REF] Shewaferaw | The rheology of blood flow in a branched arterial system[END_REF] 0.017 0.708 -Mayonnaise [START_REF] Izidoro | Sensory evualation and rheological behavior of commercial mayonnaise[END_REF] 45.40 0.495 98.18 melted chocolate [START_REF] Kumbar | Rheological behaviour of chocolate at different temperatures[END_REF] 5.764 0.6973 9.096 5. Because I am using Abaqus/Explicit the Herschel-Bulkley is not available in the interface from the viscosity toolbox (it is available with Abaqus/CFD). So I had to implement a subroutine to add this viscoelastic behavior to the material. The easiest subroutine to use turned out to be a VUVISCOSITY subroutine that allows to give the explicit relationship between the shearing stress (τ) and the shearing strain (γ) by changing the definition of η given in [START_REF] Zaiontz | Kolmogorov-Smirnov Test for Normality[END_REF] with:

τ (t) = k. γn (t) + τ 0 (10)
η(γ) = τ 0 .1 { γ=0} + (τ 0 γ + k γn-1).1 { γ>0} (11
)
The subroutine is written in Fortran and is available in the appendix B. In order to use it, the line corresponding for the viscosity in the inp file has to be switched with: *Viscosity, definition=User, Properties =3 η, n, τ 0 , and in order for ABAQUS to run the analyse, the abaqus' line command should be:

»abaqus job=inpfile interactive user=VUVISCOSITYsubroutine.f

To make sure that the subroutine works perfectly, I tested the subroutine on a Newtonian liquid that can be modeled by the viscosity toolbox as already introduced. In the figure 13, there are screenshots of water simulated with and without the subroutine with the same other parameters. It shows that the subroutine is working because the results are almost perfectly identical between the two ways to implement the viscosity.

Edit mesh

The mesh that I used is made with C3D8R elements (An 8-node linear brick, reduced integration, hourglass control). It is not possible to use C3D8 elements with the ALE mesh, even if using C3D8R implies to have hourglass effects (a pattern of "boom and bust"). Because of the geometry of the liquid, I chose to add a sweep control in order to minimize the mesh transition. The shape of the mesh is shown in figure 14. To use the ALE mesh, I had to create it in:

»Step »Other »ALE Adaptative Mesh Domain A lot of parameters can be used to control the ALE mesh, all described in [START_REF]Abaqus Analysis User's Manual[END_REF]. Because of the nature of the problem, I have used the ALE Adaptative Mesh Controls toolbox with the parameters showed in figure 15. The frequency of using re-meshing sweeps is every 1 iterations and the number of re-meshing sweeps is 5 per increment.

Edit boundary conditions

Still following the work that has been made in [START_REF] Moya | Learning slosh dynamics by means of data[END_REF], the simulation follows two steps:

• Step 1: The glass follows a straight line along an horizontal axis with a constant velocity for 0.1s

• Step 2: The glass stops moving, the liquid sloshes and the simulation stops when the liquid reach equilibrium.

I only considered velocities that were not too fast for the liquid, in the sense that the liquid would not be divided in several parts during the simulation.

Assuming that the surfaces of the liquid in contact physically with the glass would always remain in contact during the experiment, the boundary conditions can be applied directly to the surfaces in contact with the glass. It allows mainly, as already said before, to not use a contact interaction between the container and the liquid, and so to only have to implement the liquid and not the container. I have imposed then boundary conditions of type Velocity/Angular velocity. The vertical axis here is along the y coordinate. The translation of the glass is along the x coordinate.

For the external surface on the side, the boundary conditions are:

               V x = υ 0 in Step 1, 0 in Step 2. V z = 0 Ω x = 0 Ω y = 0 Ω z = 0 (12) 20
For the bottom surface, the boundary conditions are:

                   V x = υ 0 in Step 1, 0 in Step 2. V y = 0 V z = 0 Ω x = 0 Ω y = 0 Ω z = 0 (13)
To complete the implementation, I just needed to add a load force to have the gravity applied on the liquid. Here I assumed that g = (0, -9.81, 0) x, y, z .

Simulations

The work from [START_REF] Moya | Learning slosh dynamics by means of data[END_REF] had simulated water with the SPH method. In my work, I have simulated the 6 liquids introduced in table 6 using the ALE mesh. But it is easy to simulate a new liquid when an input file using the ALE mesh is given.

Concretely to simulate a new liquid, given a previous input file (.inp file), you need to change the viscosity parameters k, n and τ 0 from the Herschel-Bulkley model with the ones corresponding to the new liquid. You can change the time-increment, the initial velocity given to the liquid and the time of simulation. The ALE-mesh can be changed too by changing the frequency and the number of mesh sweeps per frequency. It is possible to simulate every liquid with the ALE mesh based on my computation, however with a high accuracy level, simulations can take a really long time to compute. For example, on my computer, 10 days are not enough to compute 10 seconds of water with 12141 nodes. So, because of time consumption, I have simulated the less viscous liquids with less mesh accuracy rather than high viscous fluid. As described in table 6, blood has then less nodes than high viscosity liquids (chocolate, honey and mayonnaise). Water and butter have also a height of 2cm (instead of 7cm). With those changes, all simulations can run within 24 hours. In table 6, the initial velocities were chosen depending on the viscosity of the liquid to make sure that the velocity was high enough to see sloshing with enough magnitude but not too high to don't have extreme deformations. Right now, using Abaqus/Explicit, there is no direct way to impose incompressibility to a material. This appears to become an issue when simulating low viscous liquids (water, butter and blood), because the liquids compress on themself. One way to change that outcome is to play with the bulk viscosity. However as explained in [START_REF]Hyperelastic behavior of rubberlike materials[END_REF], increasing the bulk viscosity parameter will make the liquid closer to incompressibility but excessively small time-increment will be needed to get the solution. So it is not sure that incompressibility can be solved this way. Videos of those simulations can be found on Youtube 1 .

To extract the data of those simulations and work on them later on, I have to extract variables from abaqus and to convert them to be readable on Matlab. For each nodes, I have extracted the values of those variables every 10 -3 s:

• position, in R 3

• velocity, in R 3

• the internal energy, in R

• the stress components, in R 6 The manifold of the liquid at a time given is assumed to be the set of the variables from all the nodes of the liquid. Positions, velocities and internal energies come from the known manifold of Newtonian liquid but to add a principle of time-history there is also the information given by the stress.

To sum up, every simulation of a liquid can be represented with a data matrix where every column correspond to a time step. The dimensions are:

• Blood: R 23270×5101

• Butter: R 9308×5101

• Honey: R 157833×601

• Mayonnaise: R 157833×601

• melted chocolate: R 157833×601

• Water: R 9308×5101

GENERIC structure

The thermodynamically consistent integrator that has been used in [START_REF] Moya | Learning slosh dynamics by means of data[END_REF] is based on the GENERIC structure, following the work in [START_REF] Grmela | General Equation for Non-Equilibrium Reversible-Irreversible Coupling, GENERIC[END_REF]. The next sections will explain how the integrator is elaborated.

GENERIC formalism

The manifold of a problem represents the true dimension of the problem. Concretely, a manifold is a set of variables that entirely describe the behavior of a problem. For example a particle in a Newtonian fluid is completely described by it's position, velocity and internal energy, so the dimension of a particle's manifold can be 7. For N particles, the dimension would be D = 7 N . Following the geometry from figure 9, the corresponding number of particles of water would be N ≈ 10 25 . Let's Γ t ∈ C 1 (I) be the manifold of a problem:

Γ t = Γ(t) : I = [0, T] → S ⊂ R D (14)
The dynamic of the system is assumed to be given by:

d dt Γ t = L(Γ t)∇E(Γ t) + M (Γ t)∇S(Γ t) (15)
In this formalism, L is the Poisson-matrix which represents the conservative part of the evolution and M is the friction-matrix which represents the irreversible part of the evolution. It should follow then: L(Γ t).∇S(Γ t) = 0 and M (Γ t).∇E(Γ t) = 0.

To ensure the conservation of energy in the system, L has to be skew-symmetric.

To ensure the second-law of thermodynamics, M has to be symmetric and semi-positive. Finally with the structures of L and M , and the two previous degeneracy conditions, the first and second principles of Thermodynamics are ensured:

d dt E(Γ t) = 0 d dt S(Γ t) ≥ 0

GENERIC resolution

The discretisatoin in time of [START_REF] Herschel | Konsistenzmessungen von Gummi-Benzollösungen[END_REF] gives the explicit scheme:

Γ n+1 -Γ n ∆t = L(Γ n)∇E(Γ n) + M (Γ n)∇S(Γ n) (16)
With FEM methods, it is possible to get approximations for ∇E(Γ n) and ∇S(Γ n):

∇E(Γ n) ≈ A n .Γ n ∇S(Γ n) ≈ B n .Γ n
So the numerical scheme (16) becomes:

Γ n+1 -Γ n ∆t = L(Γ n).A n .Γ n + M (Γ n).B n .Γ n (17
)
The next step here is to find the matrices L, A, M and B. With the access to Z, a set of (Γ t) t∈I Z , we can then resolve [START_REF] Shewaferaw | The rheology of blood flow in a branched arterial system[END_REF] to get the values of L(Γ t), A(Γ t), M (Γ t) and B(Γ t) for t ∈ I Z : Finding L(Γ t), A(Γ t), M (Γ t) and B(Γ t) for t ∈ I Z such that:

Γ t+δt -Γt δt = L(Γ t).A t .Γ t + M (Γ t).B t .Γ t ,
L f n = k∈I Z W n,k L(Γ k) (18)
A f n = k∈I Z W n,k A(Γ k) (19)
M f n = k∈I Z W n,k M (Γ k) (20)
B f n = k∈I Z W n,k B(Γ k) (21)
Knowing the interpolating function f, the numerical scheme (17) can be used again to get the values of Γt :

Γn+1-Γn ∆t = L f n .A f n . Γn + M f n .B f n . Γn Γ0 = Γ 0 (22)
The weight matrix W n is determined by the neighborhood of the point Γn and the topological space defined.

GENERIC numerical resolution on Matlab

In my work, the problem (17) is partial and constrained.

To find the values of L, A, M and B in (17) knowing Z, for my work, I have assumed that the matrix L was known (problem partial):

L = 0 1 -1 0 , in R 2 (23)
L is skew-symmetric.

Then with the function fmincon in Matlab, the matrix A, B and M is determined solving:

argminf A,B,M , such that ∀t ∈ [t 0 , T f], c(A, t) = 0 and d(B, t) = 0 (24) with:        f (M, A, B, t 0 , T f) = T f i=t0 1 N || Γi-Γi-1 δt -L.A.Γ i-1 -M.B.Γ i-1 || 2 c(A, t) = M.A t .Γ t d(B, t) = L.B t .Γ t

GENERIC complexity

As previously said, the manifold dimension is too high (D = 7 N of a Newtonian fluid). This implies that many parameters have to be actualised during the numerical resolution (22), the interpolating function f is complex and the resolution is too time-consuming.

For those reasons, it is better to previously use reduction method (Υ) on Z and then use the GENERIC structure on the new data Υ(Z). This method allows to decrease the dimension of the data (D Υ -→ M, M D), to have easier interpolating function f and to handle real-time calculus. The choice of Υ will be discussed in an next section of the report.

GENERIC correction

Following the work of [START_REF] Gonzalez | Learning corrections for hyperelastic models from data[END_REF], it is possible to match more experimental data with models.Assuming to have a GENERIC model with L, ∇E, M and ∇S known, we want to the model to match new data obtained in Z Γexp . Following the scheme (22), I will obtain a new set of values Z Γ mod . Presumably, I don't have Z Γexp = Z Γ mod . Yet I want to keep the values of L, ∇E, M and ∇S because they are hypothetically correct for the model. So I am going to add a correction term in the model in order to get:

Γ exp = Γ mod + Γ corr (25
)
The associated set to correction is:

Z Γcorr = Z Γexp -Z Γ mod
Since I still want that the correction data to follow the GENERIC structure, I can apply the GENERIC resolution with Z Γcorr solving the partial/unpartial, constrained/unconstrained system:

Γ corr t+δt -Γ corr t δt = L corr (Γ corr t).A corr t .Γ corr t + M corr (Γ corr t).B corr t .Γ corr t
, ∀t ∈ I ZΓ corr L corr skew-symmetric, and M corr symmetric, semi-positive Then experimental data are following the new GENERIC structure:

d dt Γ t = L(Γ t)∇E(Γ t) + M (Γ t)∇S(Γ t) + L corr (Γ t)∇E corr (Γ t) + M corr (Γ t)∇S corr (Γ t)
Which is based on the model built before, so using L, ∇E, M and ∇S. It means that once I have a data-set from abaqus' simulations, I can use the corrected model on a different liquid that the one used in the simulations.

Reduction methods

In this section, I will explain some reduction model methods. In order to illustrate clearly their efficiency, I have used every reduction model on a concrete example: reducing the Klein bottle (3D objet) in a 2D space (dimension of its manifold). The shape of the Klein bottle is represented in the figure 16. In my example, the Klein bottle is a non-oriented surface that can be implemented easily because

{(x, y, z)(u, v) : u, v ∈ [0, 2π[} is the Klein bottle. A point (x, y, z) is defined as showed in (26).              x(u, v) = √ 2(20u 3 -65πu 2 +50π 2 u-16π 3) cos(v)(cos(u)(3 cos 2 (u)-1)-2 cos(2u)) 80π 3 √ 8 cos 2 (2u)-cos(2u)(24 cos 3 (u)-8 cos(u)+15)+6 cos 4 (u)(1-3 sin 2 (u))+17 -3 cos(u)-3 4 y(u, v) = -(20u 3 -65πu 2 +50π 2 u-16π 3) sin(v) 60π 3 z(u, v) = - √ 2(20u 3 -65πu 2 +50π 2 u-16π 3) cos(v) sin(u) 15π 3 √
8 cos 2 (2u)-cos(2u)(24 cos 3 (u)-8 cos(u)+15)+6 cos 4 (u)(1-3 sin 2 (u))+17

+ sin(u) cos 2 (u)+sin(u)

4

sin(u) cos(u) 2 (26)

Giving the fact that the reduced space has the same dimension than the manifold space, a good reduction model method on this example should be able in 2D to completely describe the shape of the object as does the parameters u and v in (26). I will use the notation Z ∈ R n×p to represent the data-set that has to be embedded in a reduced space (n is the number of points and p is the dimension of a point).

POD: Proper Orthogonal Decomposition

The POD aims to look for the eigenvalues λ j and eigenvectors V j of the matrix Q = Z T .Z ∈ R n×n . By sorting (λ j , V j) j∈1,...,n in the ascending order based on the value of λ. Then the new basis is:

Ξ = {u 1 , ..., u M } Where u j = 1 √ λj Z.V j
Given a new point z, its embedding (ž)in the reduced space is:

ž = Υ(z) = M j=1 (z T .u j)u j (27
)
The embedded Klein bottle following this method is showed in figure 17. The geometric shape has not really be changed by POD, it induces that points coming from two different parts of the surface are mixed together.

LLE: Local Linear Embedding

The main idea is to keep the neighbours for each point in the embedded space. Choosing K, the number of closest neighbours, the LLE tries to find W solution of:

     W = (W) = n i=1 |z i - n j=1 W ij z j | 2 W ij = 0 if z j isn't in the K nearest neighbours of z i j W ij = 1, W ii = 0 (28)
Then, to find the new points Ξ = {ξ 1 , ..., ξ n } solving:

     Ξ = (n i=1 |ξ i - n j=1 W ij ξ j | 2) i ξ i = 0 ξ.ξ T = I M (29)
Given a new point z, its embedding (ž)in the reduced space is:

ž = Υ(z) = K j=1 α j ξ σ(j) , σ(j) represents the K nearest neighbours α = |z - K j=1 α j z j | 2 (30)
The embedded Klein bottle following this method is showed in figure 18. The geometric shape is not changed like with the POD even though the Klein bottle is less distorted here. But the problem that points coming from two different parts of the surface are mixed together, still remain.

t-SNE: t-Distributed Stochastic Neighbor Embedding

The previous methods being linear, they are not adapted to non-linear behavior observed in fluid mechanics. The two next methods show way better results and so, are more complex mathematically. For the t-SNE [START_REF] Van Der Maaten | Visualizing Data using t-SNE[END_REF], a conditional similarity is defined between each snapshot of the data-set, given a distance matrix D it follows:

       p (i|j) = exp(- D 2 ij 2σ 2 i) k =i exp(- D 2 ik 2σ 2 i) p (i|i) = 0 (31)
The similarity matrix is then:

P i,j = p (i|j) + p (j|i) 2n (32)
The parameters σ i is chosen in order to respect a good perplexity parameter of the data set:

P erp(P i) = 2 H(Pi) H(P i) = -j p (j|i) log 2 p (j|i) (33)
Usually perplexity is fixed between 5 and 50. A conditional similarity is then defined for the new points:

q (i|j) = exp(-d(ξ i , ξ j) 2) k =i exp(-d(ξ i , ξ k) 2) (34)
To find the new points Ξ = {ξ 1 , ..., ξ n }, the algorithm minimizes the Kullbrack-Leiber:

C = i KL(P i ||Q i) = i j p (j|i) log(p (j|i) q (j|i)) (35
)
The minimization is done with a gradient descent of C based on:

δC δξ i = 2 j (p (j|i) + p (i|j) -(q (j|i) + q (i|j)))(ξ i -ξ j) (36)
Given a new point z, its embedding (ž) in the reduced space is:

                 ž = Υ(z) = ξ j=1 p j log(pj qj) p j = exp(- d(z,z j) 2 2σ
) k exp(-

d(z,z k) 2 2σ
)

q j = exp(- d(,ξ j) 2 2σ
)

k exp(- d(,ξ k) 2 2σ
)

H(z) = H(P i) (37)
The embedded Klein bottle following this method is showed in figure 19. The shape of the Klein bottle has really changed, enough to don't be recognized. However, through the colors, it is possible to see that the reduction kept the neighbourhoods and so kept the information of the data-set. Clusters are also present, meaning that the algorithm detected different behavior around the surface which will be interesting if a cluster would correspond to a parameter known.

UMAP: Uniform Manifold Approximation and Projection

The UMAP method is a new model reduction method [START_REF] Mcinnes | UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction[END_REF] that can directly compete with the results of a t-SNE. It allows to conserve the geodesic distance in a data-set For every point X j in the ball centered in X i , the geodesic distance between X i and X j is approximated by:

d M (X i , X j) = 1 r i d R n (X i , X j) (38)
Considering that every point X i has k-nearest neighboors that are the points in the ball of center X i (giving r i), a parameter ρ i can be defined for every point:

ρ i = min(d M (x i , x ij)|1 ≤ j ≤ k : d M (x i , x ij) > 0) (39)
and a parameter σ i in sort that:

k j=1 exp(- max(0, d M (x i , x ij) -ρ i) σ i) = log 2 (k) (40)
A weighted directed graph Ḡ = (V, E, w) can by then defined.Where the vertices V are the points) We note A the weight matrix.

(X i) 1≤i≤N , the oriented edges E are {(x i , x ij)|1 ≤ j ≤ k, 1 ≤ i ≤ N }
A being non-symmetric, it means that the weight can not be, yet, interpreted as a distance. But the symmetric matrix:

B = A + A T -A • A T (41)
Where • is the Hadamard product, can be defined instead. Then using B as the weight matrix, a new weighted non-oriented graph G = (V, E, w n) is defined.

Then in order to get the position of the points y i in the embedded space, each point position is actualised by the cost function:

C((E, w n), (E, w d)) = e∈E w n (e) log(w n (e) w d (e)) + (1 -w n (e)) log(1 -w n (e) 1 -w d (e)) (42)
Where w d (e) = exp(-

max(0,d R d (xi,xi j)-ρi) σi
) is the weight in the embedded space of the edge e ∈ E. The first part tends to respect the edges with high weights and the second one tends to associate a low weight when an edge has a small weight in the manifold. Given a new point z, its embedding (ž)in the reduced space is:

             ž = argmin ž∈R d C((E z , w n), (E z , w d)) w(z, x zj) = exp(- max(0,d M (z,yz j)-ρz) σz) σ z | k j=1 exp(- max(0,d M (z,xz j)-ρz) σz) = log 2 (k) ρ z = min(d M (z, x zj)|1 ≤ j ≤ k : d M (z, x zj) > 0) (43)
E z has the edges connected from z to its neighbours. The embedded Klein bottle following this method is showed in figure 20. This is the best reduction for the Klein bottle because there is no crossing-over of the points not like in the POD and the LLE, the initial shape is conserved not like in the t-SNE. An other reason to use UMAP is that it runs quicker than the t-SNE.

Interpolation

In (18), (19), (20) and (21) I have defined the way to interpolate the matrix L, A, M and B based on the values of them already known and a weight-matrix W . I am going to explain how to get W .

The weight-matrix W has to be found at each time-step, the weights depends of the current point Γt and its neighborhood. Because I have used mainly the UMAP reduction-method, the weight-matrix corresponds to the weights coming from that method:

             W (Γt , z) = exp(- max(0,d R d (Γt,z)-ρΓ t) σΓ t) if z is in the neighborhood of Γt W (Γt , z) = 0 otherwise σ Γt | z exp(- max(0,d R d (Γt,z)-ρΓ t) σΓ t) = log 2 (N) ρ Γt = min(d R d (Γt , z) : d R d (Γt , z) > 0) (44)
Where the neighborhood of a point corresponds to its N closest neighbors.

The number of neighbors N to choose can be different from the one used in the UMAP method.

From the embedded space to the initial space

Now with the GENERIC scheme and the interpolation method, it is possible obtain, starting from an initial, new points associated with the weight-matrix used (Γn , W n) n .

The question now is knowing (Γn , W n) n , how can I find the corresponding points of (Γn) n in the initial space?

The fact is that of the UMAP projection is constructed in order to make sure that the weights from (W n) n are the same in the initial and embedded space. So I can assumed that a could approximation of Γn in the initial space is:

Γn = k W k,n Γ k (45)
6 Results

Reduction method applied to simulations

From the simulations obtained with Abaqus, I had to check if data could be projected in an embedded space using one of the reduction methods detailed in the previous section. I have decided to embed all the trajectories in 3D using t-SNE. Concretely because all the liquids doesn't have the same dimension of representation (different accuracy in the mesh), all data don't have the same manifold dimension: R 157833 for chocolate, mayonnaise and honey, R 23270 for blood, R 9308 for butter and water. So in order to use a reduction method on all the liquid, I have decided to take for each liquid a manifold a dimension R 9308 . Finally starting from the initial space R 55848×66024 , I have obtained the projected trajectories in R 3×66024 showed in the figure 21. In the figure 21, every color corresponds to a liquid: blue for water, yellow for butter, red for blood, dark for chocolate, brown for honey and green for mayonnaise. Arrows point to the first point of each trajectory.

GENERIC numerical scheme

I have then build the GENERIC scheme on each trajectory and tested the reconstruction error of the numerical scheme starting from every initial points. The interpolation is done each time with N = 5 neighbors.

To evaluate the different errors of reconstruction, I have define 3 values (46), (47) and (48). is the embedded manifold at the time t and Γemb t is its approximation using the GENERIC scheme.

E ∞ = |h(Γt) -h(Γ t)| (47
)
E ∞ is the difference between the maximum height of the liquid at a time t h(Γ t) and the one from its approximation h(Γt)

E r ∞ = |h(Γt) -h(Γ t)| h(Γ t) (48)
E r ∞ is the relative error assimilated at E ∞ . In the figure 25, 26 and 27, there are the values of e r 2 ,, E inf and E r ∞ and in the table 7, their mean and maximum for each trajectory. For the error of reconstruction in the embedded space, represented by e r 2 , it is really small because it is always smaller than 10 -5 for every trajectory. So the GENERIC numerical scheme works very well to reconstruct trajectories. E ∞ gives the information that the shape of the liquids is respected because the maximum height is well respected. Indeed the height different is always smaller than 2mm and with the relative error E r ∞ , it is always smaller than 2% which is a really low relative error. However at the current time, the GENERIC scheme is not able to build correctly a new trajectory from scratch. Basically, because of the morphology of the embedded space and the interpolating method, starting from a new point the new trajectory will either stay really located around the initial point because it is too far from the other trajectories or it will completely follow a trajectory that already exists. The trajectories being separated in the embedded space, it is difficult to have an interpolating method that will really use the information of each trajectory to build a new one.

Conclusions

Simulating liquids on Abaqus with the ALE-mesh is very difficult and can still show problems with the incompressibility of the liquids. However if this problem does not occur, simulations of the liquids show a realistic behavior. In that sense, simulating sloshing behavior is possible and realistic for very viscous liquids using the Abaqus/Explicit toolbox with the ALE-mesh. A way to make sure of the incompressibility of the liquid seems to be playing with the bulk viscosity parameter. The new reduction-method UMAP shows incredible results to resume a very high and complex data-set in a 2D space. Which allows visual interpretation of liquids behavior. UMAP also has the principle to develop a topological space associated to the initial space. One way to improve even more the embedded space would be to give the same order of magnitude to every physical parameter. For example the internal energy does not have the same order of magnitude than the velocity which implies that in the building of the topological space, that uses at some point the Euclidean distance, the variations in the values of internal energy are less important than the one of velocity. So adding a scaling parameter to each physical parameter could help improving the distinction of different behaviors. The GENERIC numerical scheme showed great results when applied to 2D trajectories. The reconstruction of the trajectories was very accurate, showing really small relative error in the reconstruction. However, the way to interpolate does not work with building new trajectories because of the shape of the trajectories in the embedded space. One way to be able to create new trajectories could be to improve the UMAP algorithm as previously said and to add more data coming from other velocities. In a way, to discretize more the data on the initial velocity. The aim of the work in progress is also to be able to run the GENERIC numerical scheme in real-time, which is not true right now: it takes for example 100 seconds to get 5 seconds of blood behavior. But this time can be improved by computing a better way to find the neighbors in the embedded space. The function that I personally used came from the UMAP package but the research could be done faster knowing the shape of the data. For example, I think that giving a tree architecture to the research of neighbors could really improve the time spent to locate the closest neighbors. Another way to build the manifolds could be to use the statistical analysis done in the second section, and so, to simulate liquids with density and viscosity according to the distributions given. This way liquids are identified by their characteristics.

absolute viscosity

1 1 .•

 1 First momenta of the viscosity's logarithm distribution. 2 Density and viscosity for blood, melted butter, melted chocolate, honey, mayonnaise and water when they are considered as Newtonian fluid. For each liquid, there is the information if the Newtonian assumption is accurate or not. 3 Shear modulus of chocolate and water corresponding to the Maxwell model 4 Examples of liquids following the Herschel-Bulkley model. Each column represents a category of Non-Newtonian behavior. 5 Rheological parameters for the Herschel-Bulkley model for ketchup, blood, mayonnaise and melted chocolate. 6 Simulations done and the parameters corresponding to them. Videos of the simulations are available on Youtube. 7 Mean and maximum of e r 2 ,, E inf and E r ∞ for each trajectory. DATA-DRIVEN LEARNING OF SLOSH DYNAMICS Beatriz Moya, David González, Icíar Alfaro, Francisco Chinesta, Elías Cueto @BeatrizMoyaG beam@unizar.es MOTIVATION • Goal: development of physically consistent integrator to learn fluid behavior from perception METHOD Obtain discretized data to construct the integrator 2. Find reduced order manifold from data 3. Build physically sound structure of the problem TEST ü A new trajectory was simulated ü The height reconstruction error remained under 7% ü Simulation of 1.7 seconds was performed in 1.64 seconds RESULTS Model built with non-linear methodologies • Real-time achieved • Accurate enough to develop computer vision applications FUTURE RESEARCH LINES • Widen data base to include Newtonian and Non Newtonian fluids • Test the integrator with information from the scene APPLICATION This technology is now under the spotlight of simulationbased control of robots.

•

 Proper orthogonal decomposition • Locally linear embedding • Topological Data Analysis BACKGROUND Models built from data usually employ deep leaning techniques, but they: Are not physically coherent Deviate from ground truth in long term simulations

•

 ρ: fluid density (kg/m 3) • -→ υ : velocity (m/s) • t: time (s) • p: pressure (N/m 2) • µ: viscosity (Pa.s) • e: internal energy (J) • K : thermal conductivity (W.m -1 .K -1) • θ: temperature (K) • σ: Cauchy stress tensor • : Strain tensor • -→ f : specific body force vector • c: sound speed (m/s)

Figure 1 :

 1 Figure 1: Density's histogram.

Figure 2 :

 2 Figure 2: Viscosity's histogram.

Figure 3 :

 3 Figure 3: Density and absolute viscosity of liquids in the data-set. ρ XY = cov(X,Y) σ X σ Y = -1.86%.

 Here we get: 0.1053 = D < D 198,0.02 = 0.1078 So Log-N (-0.54, 1.21 2) is a good approximation of the distribution of viscosity. A comparison of the boxplots of the viscosity's logarithm distribution and its model is showed in figure 4.

Figure 4 :

 4 Figure 4: Boxplots of N (-0.54, 1.21 2) and the viscosity's logarithm distributions.

Figure 5 :

 5 Figure 5: Comparison between the distribution functions for the values of density and its model.

Figure 6 :

 6 Figure 6: Histogram of density of 1000 simulated values, histogram of the viscosity's logarithm of 1000 simulated values and simulation of 1000 liquids with independent viscosity and density.

Figure 7 :

 7 Figure 7: R X material configuration (Lagrangian), Rκ spatial configuration (Eulerian), Rχ reference configuration (ALE).

Figure 8 :

 8 Figure 8: Representation of ALE mesh on the right as a mix between Lagrangian description on the left and Eulerian description in the middle.

Figure 9 :

 9 Figure 9: Geometry part that has to be implemented in ABAQUS.

Figure 11 :

 11 Figure 11: Maxwell model Most liquids from my data-set don't show Newtonian behavior, only 48.2% of them are considered to have a Newtonian behavior. So it is very interesting to be able to add some viscoelastic properties to the liquid material to be able to model well the behavior of the Non-Newtonian liquids. Using only the Abaqus/Explicit interface, the only way to have viscoelastic properties is to use a Maxwell model for the material. A Maxwell model is the association of a spring and a dash-point in series, as shown in the figure 11. For this model σ and follow this equations:

 LiquidsDensity (kg.m -3) Viscosity (P a.s) Shear modulus (P a)

Figure 12 :

 12 Figure 12: Relationship between τ and γ depending of the liquid's type.

(

 called Power law model if τ 0 = 0), depending on the values of k, n and τ 0 , there are different name given to the fluid behavior: • τ 0 > 0: Bingham fluid • n < 1: Shear thinning fluid • n > 1: Shear thickening fluid • n = 1 and τ 0 = 0: Newtonian fluid If k isn't constant through time (not in my case): • t → k (t) > 0: Rheopectic fluid • t → k (t) < 0: Thixotropic fluid Some example of common liquids are shown in table 4 and sort by their parameters for the Herschel-Bulkley model. The parameters of the Herschel-Bulkley model for the Non-Newtonian liquids from table 2 are given in table

Figure 13 :

 13 Figure 13: Screenshots from xy plan of the water facing a initial velocity υ = 0.10m/s. On the left column t = 0.1s and on the right column t = 0.25s. The first line correspond to water simulated via the abaqus viscosity toolbox, the second line correspond to water simulated with the use of the VUVISCOSITY subroutine.

Figure 14 :

 14 Figure 14: Screenshot from abaqus showing the mesh designed with C3D8R elements. Sweep control is used to minimize the mesh transition. The global seed is h ≈ 0.004.

Figure 15 :

 15 Figure 15: Screenshot from abaqus showing how to control the ALE adaptative mesh.

1

 https://youtu.be/8iUi5cn7Ups 21 Liquids velocities υ 0 (m/s) Time of simulation (s) Number of nodes Blood 0

 ∀t ∈ I Z L skew-symmetric, and M symmetric, semi-positive It is possible to solve the problem with L(Γ) known (partial) or not (unpartial). It is also possible to add the constraints L.B.Γ = 0 and M.A.Γ = 0 (problem constrained) or not (problem unconstrained). Now with the set Z = {Γ t , t ∈ I Z } it is possible to get an approximation of the values of L(Γ), A(Γ), M (Γ) and B(Γ), ∀Γ ∈ S with interpolating methods. Giving a weight-matrix W the interpolation of L n , A n , M n and B n are:

Figure 16 :

 16 Figure 16: 10000 points uniformly chosen of the Klein bottle, colored along the u parameter on the left and colored along the v parameter on the right.

Figure 17 :

 17 Figure 17: Klein bottle after POD, colored along the u parameter on the left and along the v parameter on the right

Figure 18 :

 18 Figure 18: Klein bottle after LLE,colored along the u parameter on the left and the v parameter on the right

Figure 19 :

 19 Figure 19: Klein bottle after t-SNE, colored along the u parameter on the left and the v parameter on the right

 and the weights w are w(x i , x ij) = exp(-max(0,d(xi,xi j)-ρi) σi

Figure 20 :

 20 Figure 20: Klein bottle after UMAP, colored along the u parameter on the left and the v parameter on the right

Figure 21 :

 21 Figure 21: Clustering of the different liquids using t-SNE. Every color correspond to a liquid, blue (water), butter (yellow), blood (red), chocolate (dark brown), honey (brown) and mayonnaise (green).

Figure 22 :

 22 Figure 22: 2D embedded spaces of blood and butter using UMAP. Each color is a different trajectory (velocity). Arrows point to the first point of each trajectory.

Figure 23 :

 23 Figure 23: 2D embedded spaces of chocolate and honey using UMAP. Each color is a different trajectory (velocity).Arrows point to the first point of each trajectory.

Figure 24 :

 24 Figure 24: 2D embedded spaces of mayonnaise and water using UMAP. Each color is a different trajectory (velocity).

2

 2 represents the relative error in the reconstruction on the embedded manifold. Γ emb t

Figure 25 :

 25 Figure 25: Values of the error e r

Figure 26 :

 26 Figure 26: Values of the error E∞ for every trajectory.

Figure 27 :

 27 Figure 27: Values of the error E r ∞ for every trajectory.

Table 1 :

 1 First momenta of the viscosity's logarithm distribution.

	Mean Standard deviation Skewness Kurtosis
	-0.54	1.21	0.183	2.64

Table 2 :

 2 Density and viscosity for blood, melted butter, melted chocolate, honey, mayonnaise and water when they are considered as Newtonian fluid. For each liquid, there is the information if the Newtonian assumption is accurate or not.

Table 3 :

 3 Shear modulus of chocolate and water corresponding to the Maxwell model

Table 4 :

 4 Examples of liquids following the Herschel-Bulkley model. Each column represents a category of Non-Newtonian behavior.

	Pseudoplastic	Newtonian	Dilatant	Bingham
	Ketchup	Water	Oobleck	Mayonnaise
	Whipped cream Mineral oil Quicksand	Toothpaste
	Blood	Gasoline	Silly putty	Sludge
	Paint	Alcohol		melted chocolate
	Nail polish	Honey		

Table 5 :

 5 Rheological parameters for the Herschel-Bulkley model for ketchup, blood, mayonnaise and melted chocolate.

Table 6 :

 6 Simulations done and the parameters corresponding to them. Videos of the simulations are available on Youtube.

,, E inf and E r ∞ for each trajectory.

for every trajectory.

It is remarkable to see that all the trajectories are separated by the t-SNE. Indeed using a binary tree build on 75% data to find the liquid, cross-validated test on the 25% remaining showed to obtain the right classification more than 99% of the time. So this means that it is possible to classify a new trajectory to a liquid if the trajectory is close (initial velocity) to an existing one. Knowing that, I have applied the GENERIC scheme on each liquids separately. Indeed for each liquid, I have used the UMAP reduction method to build for each liquid an embedded space in 2D where to apply the GENERIC scheme. For each liquid, I have selected only 3 (out of 4) trajectories to build the embedded space. To build the UMAP manifold, the connectivity parameter is 10 and the number of neighbors is 15. All those embedded space are represented in the figures 22, 23 and 24. For every liquid, the trajectories are separated in the embedded space.