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In recent years, the use of sensitivity kernels for tomographic purposes has been frequently
discussed in the literature. Sensitivity kernels of different observables �e.g., amplitude, travel-time,
and polarization for seismic waves� have been proposed, and relationships between adjoint
formulation, time-reversal theory, and sensitivity kernels have been developed. In the present study,
travel-time sensitivity kernels �TSKs� are derived for two source-receiver arrays in an acoustic
waveguide. More precisely, the TSKs are combined with a double time-delay beam-forming
algorithm performed on two source-receiver arrays to isolate and identify each eigenray of the
multipath propagation between a source-receiver pair in the acoustic waveguide. A relationship is
then obtained between TSKs and diffraction theory. It appears that the spatial shapes of TSKs are
equivalent to the gradients of the combined direction patterns of the source and receiver arrays. In
the finite-frequency regimes, the combination of TSKs and double beam-forming both simplifies the
calculation of TSK and increases the domain of validity for ray theory in shallow-water ocean
acoustic tomography. © 2009 Acoustical Society of America. �DOI: 10.1121/1.3158922�

PACS number�s�: 43.60.Fg, 43.60.Rw �WLS� Pages: 713–720
I. INTRODUCTION

The resolution limit of travel-time tomography has been
studied from various aspects.1–3 This investigation essen-
tially relies on the specific, maybe paradoxical, nature of
travel-times, as extracted from time-series recordings. Once
picked, travel-times lose the frequency information of the
time series. For example, in seismology, choosing times from
high-frequency impulsive seismograms or from broad-band
low-frequency seismograms will certainly have an impact on
the tomographic resolution. However, the frequency infor-
mation is not used in the travel-time tomography machinery
based on ray theory �for example, see Ref. 4�. Ad hoc pro-
cedures for introducing frequency information have been
designed5 with the so-called fat-ray concept, based on recon-
struction assumptions. The more physical concept of the
wave path, as related to the wave propagation properties, was
introduced by Woodward,6 which is closely related to
Fresnel tomography in optics.7 In recent years, this finite-
frequency influence has been systematically investigated for
the different observables �i.e., time, polarization, amplitude,
and anisotropy� in different studies, suggesting that higher
resolution images can be obtained from this improved de-
scription of wave propagation physics �see Ref. 8 for a gen-
eral review�.

a�Author to whom correspondence should be addressed. Electronic mail:

ion.iturbe@gipsa-lab.inpg.fr
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Based on single-scattering effects, sensitivity kernels
have been introduced and different computational techniques
have been devised from ray theory as paraxial theory9 or
exact ray theory10 to numerical tools.11 Different studies12

have questioned the differential techniques used for the con-
struction of these sensitivity kernels, with the emphasis on
the so-called banana-doughnut paradox: for travel-times, the
sensitivity kernel is zero on the ray connecting the source
and the receiver. Other studies13 have shown that the travel-
time tomographic problem with the specific density of sta-
tions and sources encountered in seismology prevents an im-
provement of resolution. Overcoming these limitations of
data quality requires a denser deployment of sources and
receivers, which can be expensive.

Similar to seismic studies, consideration of arrays of
sources and receivers is a classical approach in underwater
acoustics.14 Wave-propagation problems can lead to similar
features as in geophysics, and we would like to investigate
the effects of the finite size of the source and/or receiver
arrays in underwater tomographic reconstructions. The con-
cept of sensitivity kernels has been applied recently to this
field,15 and quite exciting theoretical and experimental inves-
tigations have led to fruitful achievements with links to time-
reversal theory,16,17 adjoint methods,11 and acoustic and seis-
mic imagings18 or medical imaging.19–21

In the present study, the relationships between travel-
time sensitivity kernel �TSK� reconstruction and diffraction

theory in the context of shallow underwater acoustics is de-

© 2009 Acoustical Society of America 7132�/713/8/$25.00



fined when the transfer function of the waveguide is recorded
between source and receiver arrays. We show that the spatial
shapes of TSKs are equivalent to the gradient of the com-
bined diffraction pattern of the arrays. This relationship is
exact when working with a point-to-point approach �using
only one source and one receiver�, and it becomes more
complex and approximate when TSKs are calculated be-
tween two source and receiver arrays.

In a shallow-water environment, array processing using
source and/or receiver arrays is necessary to improve the
separation of the different ray paths. One standard array pro-
cessing method is time-delay beam-forming on the receiver
array, to separate the ray paths according to their receiver
angles.22 Recently, Roux et al.23 proposed a more sophisti-
cated time-delay double beam-forming �DBF� algorithm,
based on spatial reciprocity, which takes advantage of both
receiver and source arrays. The DBF algorithm can be ap-
plied when the entire transfer matrix is measured between
each pair of source-receiver transducers. DBF consists of
transforming the three-dimensional �3D� data space from
source depth, receiver depth, and time into a new 3D space
that is related to ray propagation, described by the beam-
formed variables: source angle, receiver angle and time. As a
consequence, every eigenray of the multipath propagation
for a source-receiver pair is identified and isolated through
DBF according to the receiver and source angles.

In their very recent study, Roux et al.23 went one step
further. Every eigenray isolated through DBF processing be-
came free from any interference effects due to multipath
propagation. Furthermore, DBF processing provides array
gain and robustness, since every DBF eigenray arises from
the summation of a large number of time-delayed source-to-
receiver signals. Thus, both the amplitude and phase of the
DBF eigenray can be followed as a function of dynamic
ocean fluctuations, when, for example, internal waves locally
perturb the sound-speed profile �see Fig. 7 of Ref. 23�.

The stability and robustness of DBF processing can lead
to important consequences for future studies relating to
ocean acoustic tomography. To date, travel-time tomography
has mainly been performed from echo arrival peaking
through point-to-point measurements. Indeed, only the enve-
lope of the demodulated signal was a robust observable, re-
garding signal-to-noise ratio issues and rapidly changing
ocean fluctuations �e.g., gravity waves at the ocean surface�.
The use of source-receiver arrays now allows the travel-time
fluctuations to be measured as phase changes in the DBF
signal, providing travel-time measurements with greater ac-
curacy. Indeed, travel-time change measured through the
phase has an accuracy driven by the carrier frequency Fc of
the signal, while travel-time changes measured through the
envelope of the demodulated signal depend on the frequency
bandwidth �f �Fc.

Note, however, that the travel-time change measured
through the phase of an eigenray is not a measurement of
phase velocity, as classically defined as the phase speed
along the waveguide axis. For rays, the phase velocity along
the waveguide axis is c�z0� /cos��0�, where c�z0� is the depth-
dependent sound-speed profile at the source/receiver depth

z0, and �0 is the launch/receiver eigenray angle. In water, the
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bulk modulus shows nearly no frequency dependence, which
means that wave dispersion in the ocean comes only from
reverberation on interfaces and/or refraction due to sound-
speed gradients. As a consequence, and with water being
nondispersive, the group and phase velocities are the same
along the ray path of an eigenray. The measurement of
travel-time that changes through the phase of the DBF eigen-
ray is then just a more accurate observable for the measuring
of changes in the group velocity.

In the context of DBF, the sensitivity kernel is no longer
point-to-point but relies on all source-receiver time series.
The kernels are computed based on the concept that the pro-
cessed signal is a linear combination of the time-delayed
signals between all sources and receivers. Throughout this
study, we concentrate on the physics that connects TSKs and
Fresnel diffraction in the context of source-receiver arrays
and a multipath environment in which DBF is performed to
identify and isolate every eigenray. We show that TSKs as-
sociated with DBF result in increased spatial diversity of the
sensitivity kernels which improves the range of validity of
the ray theory for shallow-water acoustic tomography in the
low-frequency regime.

This report is divided into four sections. Following this
introduction �Sec. I�, in Sec. II, the relationship between the
TSK and the acoustic diffraction pattern is obtained for the
point-to-point case. In Sec. III, the discussion is extended to
source-receiver arrays through the DBF algorithm, which
provides identification of every eigenray in the waveguide.
The discussion continues in Sec. IV relating to the use of
DBF in the context of shallow-water ocean acoustic tomog-
raphy.

II. TSKs VERSUS DIFFRACTION

In this section, we investigate the links between TSKs
and acoustic diffraction patterns for point-to-point, source-
receiver configurations. Starting from the review of Skarsou-
lis et al.,15 who first introduced TSKs into ocean acoustic
tomography, we show here that in the far-field approxima-
tion, the TSK is the gradient of the diffraction pattern, cor-
rected by a spatial factor.

The TSK is a measure of the travel-time perturbation of
an acoustic path versus any spatial perturbation of the range-
dependent and depth-dependent sound-speed profile. The
pressure-field in the waveguide is expressed as the convolu-
tion of the source distribution over the source volume and
the Green’s function G�r ,rs ,��. Under the first Born ap-
proximation, the Green’s function perturbation �G has a lin-
ear relationship with the perturbation of the sound-speed dis-
tribution, �c, according to

�G�rr,rs,�� = − 2�2� � � G�r,rs,��G�rr,r,��
�c�r�
c3�r�

dV�r� .

�1�

The temporal expression of the pressure-field p�t� is written
as the inverse Fourier transform of the frequency-domain

pressure-field through

Iturbe et al.: Sensitivity kernels vs diffraction



p�t� =
1

2�
� G�rr,rs,��Ps���ej�td� , �2�

where Ps��� is the source spectrum. Then, a variation in the
pressure-field �p has a linear relation with the Green’s func-
tion perturbation:

�p�t� =
1

2�
� �G�rr,rs,��Ps���ej�td� . �3�

Equations �3� and �1� provide linear relationship between the
pressure-field perturbation and the sound-speed perturbation.

For estimation of the TSK, the perturbation of the travel-
time related to the perturbation of the pressure-field needs to
be considered. For acoustic propagation, Skarsoulis et al.15

proposed that the travel-time is defined as the peak of the
envelope of the demodulated or analytical signal. In the case
of strong signal-to-noise ratios, as discussed above, the
travel-time change is performed directly as the phase change
of the pressure-field. In theory, this phase change can be
measured at any time of the pressure-field. We chose to mea-
sure the travel-time change at the cycle peak of maximal
amplitude �i. In this case, the relationship between the travel-
time perturbation and the signal perturbation simplifies to

��i = −
�ṗi

p̈i

, �4�

where p̈i is the second-order derivative of the pressure-field p
at time �i, and �ṗi is the first-order derivative of the pressure-
field perturbation �p evaluated at time �i �Eq. �3��. Note that
as compared to Skarsoulis et al.,15 where they dealt with
analytic complex signals, here the p and �p defined in Eqs.
�2� and �3� are real quantities.

Combining Eqs. �1�–�4�, the travel-time perturbation ��i

is related to a perturbation of a sound-speed distribution �c
through the integral:

��i =� � � �c�r�Ki�r,rs,rr�dV�r� , �5�

where the expression Ki is the TSK. In Ref. 15, a general
formulation of Ki is given for the case of analytic signals.
Again, as we only deal with real signals, the TSK Ki simpli-
fies to

Ki�r,rs,rr� =
1

2�
� j�

p̈i

Q�r,rs,rr,��ej��id� , �6�

where Q is given according to15

Q�r,rs,rr,�� = G�r,rs,��G�rr,r,��
2�2Ps���

c3�r�
. �7�

In Fig. 1, the TSK results are illustrated for two different
geometries. The first was obtained through numerical simu-
lation. For a given ray path in the waveguide, the TSK is
built by computing Green’s functions using a parabolic equa-
tion code24 �Fig. 1�a��. The second geometry was obtained
through analytical Green’s functions in a free-space medium
where the receiver is the image of the actual receiver in the
waveguide with respect to the waveguide boundary condi-

tions �pressure release at the air-water interface and rigid
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bottom, Fig. 1�b��. Consequently, the travel path in the free-
space medium is the unfolded version of the actual travel
path in the waveguide. The source signal has a 2.5 kHz cen-
tral frequency and 4 kHz bandwidth. Interestingly, even if
the acoustic fields are different in the two configurations, the
two methods give similar TSK patterns away from the wave-
guide boundaries, where different echoes interfere �Fig.
1�c��.

The Green’s function we consider in this waveguide is
the sum of different eigenray contributions that can be sepa-
rated through the DBF analysis. Each ray can have a com-
plex trajectory �curved and/or broken lines�, which can in-
clude rebounds on the waveguide boundaries. As we have
been able to separate each ray from other neighboring rays,
we can compute the travel-time and amplitude considering
reflections at boundaries and/or any variations in speed. For
simplicity, we will only consider here a uniform sound-speed
and straight rays in the waveguide, although our study can
also be extended to refracted rays. As stated above, the group
and phase velocities along each eigenray are identical in this
shallow-water regime, which means that the free-space ap-
proach will provide similar results away from the waveguide
interfaces. Therefore, we proceeded with the free-space TSK
for our analysis, and we can illustrate the results with the
waveguide TSKs in some specific cases. Obviously, the com-
putational costs in a free-space medium, where a simple ana-
lytic expression for the pressure-field is available, are much
lower than in a waveguide where geometric dispersion has to
be taken into account through modes or rays.

The standard well-known shape of the TSK is seen in
Fig. 1, for the case of a uniform sound speed c. We observe
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FIG. 1. �a� TSK �s2 m−4� in a waveguide for a ray path selected between two
source-receiver arrays. �b� TSK for the equivalent ray path in free space
�note scale change on vertical axis with respect to �a��. �c� Cross-section of
the TSK perpendicular to the ray path along the lines in �a� and �b� at the
middle of the source-receiver range. Solid-line corresponds to �a�, and
circles correspond to �b�.
zero-sensitivity on the ray path that refers to the so-called
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banana-doughnut shape of the TSK. A negative sensitivity
zone is then seen, which is known as the first Fresnel zone.
Higher-order Fresnel zones follow when moving away from
the ray path.

On the other hand, the diffraction pattern between the
source and the receiver has a maximum on the ray path. Its
spatial derivative along a direction perpendicular to the ray is
therefore zero on the ray. One may wish to investigate the
link between this derivative and the TSK. Following the
Huygens–Fresnel principle and invoking reciprocity, the
acoustic diffraction pattern between a source and a receiver
observed from any point of the medium r is computed as a
product of both the Green’s functions at the receiver rr and
the source rs:

D�r,rs,rr,�� = G�r,rs,��G�r,rr,�� . �8�

Considering the Green’s function in a homogeneous free-
space medium:

G�r,r0,�� =
1

4�d�r,r0�
e−j�d�r,r0�/c, �9�

it follows that

D�r,rs,rr,�� = R�r,rs,rr�e−j���r,rs,rr�,

with

R�r,rs,rr� =
1

�4��2d�r,rs�d�r,rr�
,

and

��r,rs,rr� =
d�r,rs� + d�r,rr�

c
. �10�

Any change in r along the ray does not produce any phase
change in the diffraction pattern D �since � remains con-
stant�, and only produces small and smooth amplitude varia-
tions in the far field. On the contrary, a change in r along a
perpendicular direction to the ray path will affect the phase,
as investigated by Romanowicz and Snieder25 and Snieder
and Romanowicz26 when considering seismic velocity per-
turbations. The gradient of the diffraction D on the perpen-
dicular direction to the ray path is given by

�yD = �D · uy = ��R − j�R � ��e−j�� · uy , �11�

where the uy vector is the unitary vector along the
y-direction shown in Fig. 2. At large distance from the source
and receiver, �R can be ignored ��R��R��� and Eq. �11�

FIG. 2. Schematic of the source �s� and receiver �r� configuration in free
space with polar coordinates �r ,�� and the definition of the angles �RP and
�SP.
reduces to
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�yD = − j�Re−j�� � � · uy . �12�

Inside Eq. �12�, there are �1� the propagation terms R and �,
which are related to both of the source/diffractor and
receiver/diffractor propagations that determine the phase and
amplitude of D; �2� the oblique gradient as the �� ·uy term,
related to the local perturbations we are interested in. Con-
sidering the free-space Green’s function G, we can rewrite
Eq. �12� as

�yD = − j�G�r,rs,��G�r,rr,����� · uy� , �13�

Comparing Eqs. �7� and �13�, we can see that the source-
receiver diffraction pattern is proportional to the temporal
derivative of Q multiplied by a spatial factor, �y�, which is
analyzed below. Taking the reference point on the center of
the ray-path trajectory, � is written in polar coordinates �r ,��
as �see Fig. 2�

��r,rs,rr�

=
�r2 + d2 − 2rd cos�� − �� + �r2 + d2 − 2rd cos���

c
.

�14�

Taking into account that cos��−��=−cos��� and sin��
−��=sin���, the gradient of � in polar coordinates becomes

���r,rs,rr�

=�
r + d cos �

c�r2 + d2 + 2rd cos���
+

r − d cos �

c�r2 + d2 − 2rd cos���
− d sin �

c�r2 + d2 + 2rd cos���
+

d sin �

c�r2 + d2 − 2rd cos���
� .

�15�

Calculating the directional gradient in the y-direction, we
obtain

�y� = �� · uy� =
r sin �

c�r2 + d2 + 2rd cos���

+
r sin �

c�r2 + d2 − 2rd cos���
=

sin �SP + sin �RP

c
, �16�

where �SP and �RP are the source and receiver angles shown
in Fig. 2. Finally, substituting Eq. �16� into Eq. �13� for the
directional gradient of the diffraction pattern, and computing
the inverse Fourier transform, we obtain the complete ex-
pression of the gradient of the diffraction pattern in the time
domain as

�yD�r,rs,rr� = −
1

2�
� j�R�r,rs,rr�e−j���r,rs,rr�

�
sin �SP + sin �RP

c
Ps���ej��id� , �17�
which turns out to be
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�yD�r,rs,rr� = −
1

2�

sin �SP + sin �RP

c

�� j�G�r,rs,��G�r,rr,��Ps���ej��id� .

�18�

Similarly, combining Eqs. �6� and �7�, we can write the TSK
as

Ki�r,rs,rr� =
1

2�
� j�G�r,rs,��G�rr,r,��

2�2Ps���
p̈ic

3�r�
ej��id� .

�19�

Equations �18� and �19� are similar but present two major
differences. The first of these concerns the geometrical influ-
ence of the source/receiver position. Figure 3 shows the TSK
�solid-line�, the gradient of the diffraction pattern �dashed
line�, and the spatially corrected gradient of the diffraction
pattern ��yD�c / �sin �SP+sin �RP��, circle line� for a 2.5 kHz
central frequency signal with 1.25 and 4 kHz bandwidths,
respectively. Figure 3 is obtained at a 750 m range position
for a 1.5 km source-receiver range and 7.6° ray path. We can
see in Fig. 3�a� that the use of the spatial correcting factor
�sin �SP+sin �RP� /c allows a perfect fit between the TSK and
the gradient of the diffraction pattern far from the waveguide
interfaces. Note that this correction factor resembles the
obliquity factor used in Fourier optics to account for diffrac-
tion effects from extended apertures.27

The second difference is more difficult to assess. The
frequency contents of Eqs. �18� and �19� appear to be differ-
ent, although Fig. 3�a� shows us that this is not the case. The
frequency-dependent term 2�2Ps��� / p̈ic

3�r�� corresponds to
the square of the acoustic wave number �� /c�2 counter-
balanced by the acceleration of the pressure-field. The accel-
eration of the pressure-field also justifies the missing minus
term, as acceleration has an opposite phase with respect to
pressure. As an illustration, Fig. 3�b� shows the same com-
parison performed over a larger bandwidth. We can see that
the fit between Eqs. �18� and �19� is no longer perfect, since
the �2 present in the TSK becomes significant when the
bandwidth is large compared to the central frequency. We
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FIG. 3. ��a� and �b�� Point-to-point TSK �solid-line� versus diffraction pat-
tern gradient �dashed� and spatially corrected diffraction pattern gradient
�circle line�. The three plots have been normalized according to their
maxima. The source-receiver range is 1.5 km. The TSK was calculated at
750 m for a 7.6° acoustic ray for a 2.5 kHz central frequency pulse, and �a�
1250 Hz and �b� 4000 Hz frequency bandwidths.
also note that the use of a wider bandwidth eliminates the
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side lobes of the TSK, putting sensitivity in the first Fresnel
zone only. We will see below that the DBF processing leads
to the same interesting phenomenon.

The similarity between Eqs. �18� and �19� is quite gen-
eral and stays valid in more complicated waveguides with
range-dependent and depth-dependent sound-speed patterns,
as mentioned earlier. As long as we consider that the Green’s
function is a combination of well-identified separated eigen-
ray contributions, we can isolate travel-time and amplitude
for each eigenray connecting the source and the receiver �fol-
lowing Eqs. �9�–�13��, regardless of the path this ray has
taken.

In conclusion, the point-to-point TSK is nothing else but
the spatial derivative of the diffraction pattern that can be
expected from the single-scattering �Born� approximation.

III. TSK VERSUS DIFFRACTION WITH DBF

When using DBF processes to extract eigenrays between
two source-receiver arrays, the TSK reconstruction must take
into account the geometry of the source and receiver arrays.
More specifically, when using array processing, the mea-
sured travel-time does not correspond to the travel-time of a
single arrival at one receiver p�t� but corresponds to the
travel-time of a linear combination of the properly time-
delayed pressure-fields recorded between the source and re-
ceiver arrays. When performing the DBF analysis, the beam-
formed pressure-field is given by

pBF�t,�r,�s� = 	
r=1

Nr

	
s=1

Ns

aprs�t − Tr��r,zr� − Ts��s,zs�� , �20�

where prs�t� is the pressure-field between source s and re-
ceiver r, and ars is an amplitude shading window. �r and �s

are the observed receiver and launch angles, respectively,
and Tr and Ts are the delay corrections to the beam-form on
�r and �s. If the sound speed is uniform along the arrays, the
time-delay beam-forming is

T��,z� = �z − z0�
sin �

c
, �21�

where z−z0 is the distance between an array element at depth
z and the center of the array at depth z0.

The expression of an optimal delay correction for
source-receive arrays in a depth-dependent sound-speed pro-
file is given by the turning-point filter approach.22 Physically
speaking, the DBF consists of phasing a collection of signals
according to given launch and receive angles; these are then
averaged. After summation, the wave front associated with
the launch and receiver angles is preserved, since it is coher-
ently averaged, while the other field components are incoher-
ently averaged and disappear. In this part, we investigate the
spatial shape of the TSK when using DBF. As for the case of
point-to-point TSK, two linearized expressions are required
between �pBF and �c, and between ��BFi and �pBF, to define
the DBF-TSK.

As the DBF is a linear combination of pressure-fields
between different source/receivers, we have the following

expression:

Iturbe et al.: Sensitivity kernels vs diffraction 717



�pBF�t,�r,�s� = 	
r=1

Nr

	
s=1

Ns

ars�prs�t − Tr��r,zr� − Ts��s,zs�� .

�22�

The linear relationship between �p and �c �see Eqs. �3� and
�1�� implies a linear relationship between �pBF and �c. Simi-
larly, the relation between ��BFi and �pBF is given by Eq. �4�,
replacing p by pBF.

Thus, using Eqs. �1�, �3�, �4�, and �22�, we define the
linear relationship between the change in travel-time ��BFi

and the local perturbations of the sound-speed profile:

��BFi =� � � �c�r�KBFi�r,rs,rr�dV�r� , �23�

where the TSK is now:

KBFi�r,rs,rr� =
1

2�
� j�

p̈BFi

QBF�r,rs0,rr0,��ej��id� , �24�

with QBF as a linear combination of the point-to-point Qrs

expressed as

QBF�r,rs0,rr0,�� = 	
r=1

Nr

	
s=1

Ns

arsQrs�r,rs,rr,��e−j��Tr��r�+Ts��s��.

�25�

When using DBF, the diffraction pattern between the two
arrays is given by

DBF�r,rs0,rr0,�� = 	
r=1

Nr

	
s=1

Ns

arsD�r,rs,rr,��e−j��Tr��r�+Ts��s��.

�26�

If we take for D the expression in Eq. �10�, and then compute
the directional gradient of DBF perpendicular to the ray path
in the far-field approximation, we obtain the expression

�yDBF = − j�	
r=1

Nr

	
s=1

Ns

arsG�r,rs,��G�r,rr,��

�e−j��Tr��r�+Ts��s������r,rs,rr� · uy�� . �27�

The spatial factor ���r ,rs ,rr� ·uy� cannot be pulled out of
the sum because of its specific dependence on each source
and each receiver. So we cannot deduce the TSK from the
spatial derivative of the diffraction pattern by a spatial cor-
rection factor, as we did previously in the point-to-point case.
However, we can approximate this correction factor by the
constant ���r ,rs0

,rr0
� ·uy� at the central positions r0 and s0 of

the source-receiver arrays. Actually, ���r ,rs0
,rr0

� ·uy� also
corresponds to the mean value of the directional gradients.
Finally, we have the approximate relationship

KBFi�r,rs0,rr0� 
 � �yDBF�r,rs0,rr0,��
sin �S0P + sin �R0P

cPs���e−j��id� .

�28�

Figure 4 shows a comparison between KBFi and the righthand
term in Eq. �28�. As expected, the comparison degrades

when the size of the source-receiver arrays is increasing.
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However, we can see that the correction factor �sin �SP

+sin �RP� /c helps with a better approximation of the TSK
from �yDBF, even in the case of the 90	 length array. In
particular, we note that the directional gradient of the diffrac-
tion pattern has zero-sensitivity on the ray path, and that the
spatial correction factor removes this zero-sensitivity when
using arrays.

IV. ANALYSIS OF TSK USING DBF

The relationship between the TSK and the diffraction
pattern of the source-receiver arrays is interesting since it can
provide a simpler and faster way to calculate the TSK in
shallow-water waveguides. Indeed, calculating TSK after
DBF is a very time-consuming task, since it requires the
computing of an ensemble of TSKs between each source-
receiver pair, taken among the source-receiver arrays as re-
quired by Eqs. �24� and �25�. Equation �28� shows that the
TSK can be approximated from the product of the source and
receiver array diffraction patterns only. For example, in the
Fraunhofer approximation, the angle-dependent diffraction
pattern of an N-element linear array around angle �0 at an-
gular frequency � is given by

B��,�0,�� =
sin�Na��sin � − sin �0�/2c�
sin�a��sin � − sin �0�/2c�

, �29�

where a is the array pitch. In the far-field approximation, the
diffraction pattern DBF can be approximated by
Bs�� ,�s ,��Br�� ,�r ,��, where Bs and Br are the diffraction
patterns of the source and receiver arrays, respectively. Cal-
culating the TSK KBFi consists then in simply computing the
directional gradient of the DBF perpendicular to the ray path,
weighted by the appropriate spatial correction factor, as
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FIG. 4. �a� and �b� TSK versus the diffraction pattern gradient and spatially
corrected diffraction pattern gradient, using the DBF with different array
lengths. The three plots have been normalized according to their maxima.
The source-receiver range is 1.5 km. TSK is calculated at 750 m for a 7.6°
acoustic ray for a 2.5 kHz central frequency pulse and a 1250 Hz bandwidth.
From �a� to �d�, the source-receiver arrays are point to point, 30	 long, 60	
long, and 90	 long, respectively. The line codes are the same as in Fig. 3.
shown in Eq. �28�.
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Furthermore, Eq. �28� provides some physical insight in
the shape evolution of the TSK with respect to the source-
receiver array size. Two effects are revealed in Fig. 4. First,
the side lobes become smaller when using extended anten-
nas. This is an effect similar to the use of a larger frequency
bandwidth �see the similarity between the solid-line in Fig.
3�b� and the solid-line in Fig. 4�b��. Indeed, when integrating
Eq. �29� over a frequency bandwidth 
f , it appears that an
increase in 
f or array size Na leads to a similar decrease in
secondary side lobes in the diffraction pattern. The same ef-
fect was seen by Raghukumar et al.28 when analyzing the
sensitivity kernel of a time-reversal mirror: they observed
that the decrease in the sensitivity of the time-reversal focus
to a sound-speed perturbation is due to the interference be-
tween more acoustic paths provided by the use of a larger
array. The second effect is that the sensitivity on the ray path
becomes nonzero and even becomes maximal with large ap-
erture arrays �Fig. 4, solid-line�. This result is non-intuitive,
since it contradicts the well-known banana-doughnut shape
classically observed with point-to-point TSK on the ray path.
Indeed, as shown in Fig. 5�a�, the point-to-point TSK re-
mains zero on the ray path even at the high-frequency, large
bandwidth limit. It is only the combination of TSK with DBF
from source-receiver arrays that provides a non-zero-
sensitivity of travel-times on the ray path. Indeed, the point-
to-point zero-sensitivity on the ray path is a consequence of
the stationary phase theorem that is associated to the Fermat
principle that is no longer valid when the beam-forming pro-
cess is performed on the source-receiver arrays.

In ocean acoustic tomography, such behavior for TSK is
expected, assuming that the 3D TSK should be spatially av-
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FIG. 5. TSKs �s2 m−4� at 20 kHz central frequency with 30 kHz bandwidth.
�a� point to point; �b� with DBF over 200−	 length arrays. ��c� and �d��
Zoom in on the central part of the ray, as defined by the black square in �a�
and �b�: �c� point to point; �d� with 200−	 length arrays.
eraged on two-dimensional �2D� sound-speed fluctuations in
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the ocean. In this case, TSK sensitivity on the ray path is
obtained assuming a 2D TSK calculation for the sound-speed
perturbation in the ocean. In our case, the maximal travel-
time sensitivity on the ray path is due to the use of arrays on
both sides of the waveguide and does not depend of assump-
tions on the shape of the ocean spatial fluctuations.

Of note, the high sensitivity seen after the DBF on the
ray path is interesting from the point of view of ocean acous-
tic tomography. Indeed, in the limit of high-frequency, large
bandwidth, and large arrays, the TSK in an acoustic wave-
guide shows a uniform kernel, with a sensitivity that is
nearly limited to the ray path �Fig. 5�b��. This further vali-
dates the use of ray theory and source-receiver arrays for
shallow-water ocean acoustic tomography.

This last aspect of DBF and TSK leads to two interpre-
tations. It could be said that if only a few rays are available
in the waveguide, we may have more difficulties in locating
anomalies, as the ambiguity of the perturbation position will
now be on a broader zone. On the other hand, the uniform
pattern of TSK after DBF in the Fresnel zone appears to have
an advantage with respect to robustness. Indeed, sound-speed
mismatch is always an issue with real data and will have a
significant effect on the Fresnel zone oscillations seen on the
point-to-point TSK shown in Fig. 5�c�, while being negli-
gible on the smoothly varying TSK measured after DBF
�Fig. 5�d��.

V. CONCLUSIONS

In the present study, we have analyzed geometrically the
mapping between TSKs and diffraction patterns. More pre-
cisely, we have shown that the point-to-point TSK is equiva-
lent to the gradient of the diffraction pattern corrected by a
spatial factor. When the pressure-field is double beam-
formed on source-receiver arrays, we obtain an approximate
relationship between the TSK and the diffraction pattern be-
tween the two arrays. Finally, the DBF process significantly
modifies the spatial structure of TSK, in such a way that
ocean acoustic tomography could improve the robustness of
its performance when considering ray theory approximation.
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