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A Zonotopic-Based Watermarking Design to
Detect Replay Attacks

Carlos Trapiello and Vicenç Puig

   Abstract—This  paper  suggests  the  use  of  zonotopes  for  the
design of watermark signals. The proposed approach exploits the
recent  analogy  found  between  stochastic  and  zonotopic-based
estimators  to  propose  a  deterministic  counterpart  to  current
approaches that study the replay attack in the context of station-
ary  Gaussian  processes.  In  this  regard,  the  zonotopic  analogous
case where the control  loop is  closed based on the estimates of a
zonotopic  Kalman  filter  (ZKF)  is  analyzed.  This  formulation
allows to propose a new performance metric that is related to the
Frobenius  norm  of  the  prediction  zonotope.  Hence,  the  steady-
state  operation  of  the  system  can  be  related  with  the  size  of  the
minimal  Robust  Positive  Invariant  set  of  the  estimation  error.
Furthermore, analogous expressions concerning the impact that a
zonotopic/Gaussian watermark  signal  has  on  the  system  opera-
tion are  derived.  Finally,  a  novel  zonotopically  bounded  water-
mark  signal  that  ensures  the  attack  detection  by  causing  the
residual  vector  to  exit  the  healthy  residual  set  during  the  replay
phase of the attack is introduced. The proposed approach is illus-
trated in simulation using a quadruple-tank process.
    Index Terms— Optimal control, physical watermarking, replay att-
ack, zonotopes.
  

I. Introduction

DURING the last decade, the interest aroused by cyberse-
curity  aspects  of  networked control  systems (NCSs)  has

experienced an exponential growth, currently representing one
of the main trends in NCSs [1]. Some of the factors that sup-
port  this  increasing  interest  are:  the  potential  risks  to  human
lives as well as significant economic losses as a consequence
of  successful  attacks;  an  ever-growing  list  of  registered
attacks, including famous cases like the Stuxnet malware [2];
the  identification  of  possible  threats  and  vulnerabilities  on
NCSs  [3]–[5];  the  characterization  stealthy  attack  policies

which exploit  the  limitations  of  traditional  monitoring  algo-
rithms [6],  etc.  Consequently,  all  of  the  above has  motivated
an exhaustive  analysis  on  secure  control  and state  estimation
techniques for  the  case  where  a  malicious  adversary  is  capa-
ble of attacking either the physical components of the system
or the  communication  network  that  is  used  to  close  the  con-
trol loop [7], [8].

In particular, in the present paper the focus is on the detec-
tion  of  replay  attacks  from  a  model-based  perspective  (i.e.,
testing  the  compatibility  of  measurements  with  the  model  of
the  underlying  physical  process),  thus  working  under  the
premise that  classical  information  security  detection  tech-
niques,  like  timestamp,  can  be  bypassed  by  an  attacker.  On
this  subject,  note  that  an  effective  detection  is  required  for
deploying  replay  attack  resilient  control  schemes  [9],  [10].
Otherwise, regarding model-based detection techniques: in the
pioneering work [11], the authors not only model and analyze
the  effect  of  replay  attacks  in  the  framework  of  stationary
Gaussian  processes,  but  also  propose  the  injection  of  an
exogenous signal into the control loop in order to improve the
detectability of the attack. From this moment on, the design of
these  exogenous  signals,  which  are  denoted  with  the  term
physical watermarking [12], has been intensively studied until
becoming a well-adopted technique for the detection of replay
attacks [13].

Related Work: The watermarking approaches that have been
proposed  in  the  automatic  control  literature  can  be  broadly
classified depending on whether they are injected in the con-
trol  loop  in  an  additive  or  multiplicative  way.  On  the  one
hand, multiplicative watermarking schemes employ a bank of
filters, placed  on  the  plant  side  of  the  communications  net-
work, in order to watermark the sensor outputs, while the orig-
inal data are reconstructed by a watermarking remover placed
on  the  controller  side  [14],  [15].  These  schemes  allow  to
address  the  closed-loop  performance  degradation  induced  by
the  watermark  signal.  However,  multiplicative  schemes  may
lose their effectiveness if the attacker is able to replace the real
data before the addition of the watermark signal.

On  the  other  hand,  in  additive  watermarking  schemes  an
exogenous  signal  is  injected  from  the  controller  side  at  the
cost  of  inducing  some  closed-loop  performance  degradation.
In  this  regard,  in  [11],  [12],  an  additive  Gaussian  signal  is
injected in the control loop for increasing the attack detection
rate  of  a  statistical  detector.  A  similar  watermarking  scheme
has  been  also  analyzed  in  [16].  In  [17],  a  Gaussian  signal  is
injected in a combined algorithm that deals with online water-
marking design  and  unknown  system  parameters  identifica-
tion.  Furthermore,  in  [18], a  periodical  injection  of  a  Gaus-
sian  signal  is  proposed  for  detecting  discontinuous  replay
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attacks.  A  stochastic  game  approach  is  proposed  in  [19]  in
order  to  derive  an  optimal  control  policy  that  switches
between a control-cost optimal (but nonsecure) and watermar-
ked  (but  cost-suboptimal)  controllers.  Moreover,  in  [20],  a
dynamic  watermarking  method  is  proposed  for  detecting
replay attacks in linear-quadratic Gaussian (LQG) systems.

At  this  point,  it  must  be  highlighted  that  the  additive
schemes presented  above  have  addressed  the  physical  water-
marking design problem from a stochastic point of view and,
in particular,  within  the  context  of  stationary  Gaussian  pro-
cesses. Nevertheless, as remarked in [21], despite the charac-
terization of uncertainties through Gaussian probability distri-
butions is often well  suited to deal with measurement noises,
this description may fail to model disturbances that arise from
some of lack of knowledge about deterministic behaviors and
which may do not have any other stationary behavior than that
of  remaining  within  some  specified  bounds.  Hence,  in  the
remaining  of  the  paper  the  physical  watermarking  design
problem  will  be  addressed  from  a  set-based  (or  norm-
bounded)  paradigm  [22].  These  set-based  techniques  have
proven their effectiveness in fault diagnosis and tolerant con-
trol  schemes  [23].  Besides,  they  have  been  recently  used  in
order  to  achieve  a  secure  state  estimation  in  systems  under
bounded  attacks  [24],  [25]  and  to  characterize  the  replay
attack detectability using set invariance notions [26].

Approaching  the  system  monitoring  under  a  set-based
paradigm allows to infer in a deterministic way if the system
is  being  attacked  by  testing  online  whether  or  not  a  residual
signal belongs to a set coherent with the healthy operation of
the  system.  Nonetheless,  this  unambiguous  assessment  poses
two central challenges in the design of active attack detection
schemes:  i)  The  proposed  watermarking  scheme  should  be
able to force the residual signal out of its healthy residual set
whenever  the  system  is  under  attack  while  minimizing  the
performance loss induced in the system operation; ii) A coher-
ent metric to assess the performance degradation induced by a
bounded watermark signal should be developed.

In  order  to  address  the  latter  point,  zonotopic  sets  will  be
used mainly motivated by the results presented in [27], where
the  notion  of  covariation  matrix  of  a  zonotope  is  introduced
for  proposing  an  optimal  robust  state  observer.  Furthermore,
by minimizing the weighted Frobenius norm (F-norm) of the
prediction  zonotope,  analogous  expressions  are  obtained
regarding  the  optimal  design  of  a  zonotope-based  observer
and the  standard stochastic  Kalman filter  (uncertainties  mod-
eled  as  Gaussian  random  variables).  Consequently,  in  this
paper, the above analogy is further exploited by analyzing the
optimal  control  law that  minimizes  a  cost  function that  takes
into  account  the  weighted F -norm  of  the  bounding  zonotope
computed by a zonotopic Kalman filter (ZKF).

It must  be  pointed  out  that  optimal  control  has  been  thor-
oughly studied under different uncertainty paradigms, namely:
deterministic optimal control [28], where uncertainty can only
take  one  value; stochastic  optimal  control  [28]–[31],  where
uncertainty  is  defined  as  a  function  of  a  probability  space;
minimax control  [32]–[34],  where  uncertainty  is  confined
within a  given  set.  In  this  regard,  notice  that,  whereas  mini-
max  control  is  defined  in  a  worst  case  basis,  the  proposed
approach  is  based  on  the  bounding  zonotope F -norm  which,

for linear-quadratic control problems, returns expressions sim-
ilar to those obtained if the problem is formulated under Gaus-
sian uncertainties.  Consequently,  when it  comes to the active
attack detection  in  linear  systems,  through  this  novel  frame-
work  the  same  optimality  patterns  are  obtained  regardless  of
whether  the  detection  is  approached  under  a  set-based  or
stochastic  paradigm,  what  may  lead  to  future  detection
schemes  that  merge  the  mutually  exclusive  benefits  of  both
approaches [21].

Contributions: The contributions  of  this  paper  are  as  fol-
lows.  First,  a  linear-quadratic  regulator  (LQR) controller  that
operates  based  on  the  estimates  of  a  ZKF  is  proposed.  It  is
proven that  this  control  scheme  minimizes  a  new  cost  func-
tion that considers the weighted F-norm of the system states,
in  what  can  be  seen  as  the  zonotopic  counterpart  of  the
expected  value  of  a  quadratic  cost  function  in  an  LQG
scheme. Furthermore, for the infinite horizon control problem,
the Frobenius radius of the minimum robust positive invariant
set (mRPI) of the estimation error is given by the solution of
the Riccati algebraic equation.

Second,  the  new  zonotope-based  cost  function  is  used  to
evaluate  the  impact  that  a  zonotopically  bounded  watermark
signal has on the steady-state operation of the system. Analo-
gous  expressions  to  the  performance  loss  induced  by  an
exogenous Gaussian signal in an LQG system are obtained.

Third and  finally,  a  zonotopically  bounded  watermark  sig-
nal  that  minimizes  the  new  cost  function  is  proposed.  This
detection scheme injects a known signal in the system inputs,
while  filtering  its  effect  through  the  estimations  generated
using  the  output  data.  Since  the  replay  phase  of  the  attack
entails that the known signal is no longer observable, then the
estimation error generates a new residual signal that is desta-
bilized  whenever  the  output  data  are  being  replayed  back.
Some preliminary  results  have  been  presented  in  the  confer-
ence paper [35].

The remainder of the paper is organized as follows: Section
II  introduces  some  preliminary  concepts  whereas  Section  III
presents the problem statement. Then, in Section IV the opti-
mal finite/infinite  horizon  control  problem based  on  the  esti-
mates of a ZKF is analyzed. Section V analyzes the impact of
a  bounded  watermark  signal  on  the  previous  optimal  control
loop.  Besides,  in  Section  VI  a  new  guaranteed  replay  attack
detection scheme is  introduced  while  in  Section  VII  the  pro-
posed  results  are  validated  in  simulation  using  a  well-known
control  benchmark  based  on  a  four-tank  system.  Finally,  in
Section VIII the main conclusions are drawn.  

II. Notation, Basic Definitions and Properties

A. Notation
Rn

Rm×n m×n
N

In

≥,>,≤,< | · |

Tr[X]
∑

i Xii X ≻ 0 X ⪰ 0

The  following  notations  are  used  along  this  work.  and
denote  the n  and  dimensional  Euclidean  space,

respectively.  denotes  the  set  of  non-negative  integers.  The
identity matrix of dimension n is denoted by and 0 denotes
a null matrix whose dimensions can be deduced from the con-
text.  In  the  sequel,  the  symbols and  should  be
understood  elementwise.  The  trace  of  a  square  matrix X  is
denoted  by  = .  For  a  matrix X,  ( )
means  that X  is  a  positive  definite  (semi-definite)  matrix.



A,B,C x,yBesides,  given  the  matrices and  the  vectors  of
appropriate dimensions, then the following identities are satis-
fied:

Tr[A] = Tr[AT ], Tr[AyxT ] = xT Ay,

Tr[ABC] = Tr[BCA] = Tr[CAB]. (1)

B. Basic Definitions and Properties
S1 S2

S1⊕S2 = {s1+ s2 : s1 ∈ S1, s2 ∈ S2}
S ⊂ Rn L ∈ Rq×n LS = {Ls, s ∈ S}

The  Minkowski  sum  of  two  sets  and   is  defined  by
and  the  linear  image  of

the  set  by   is  .  Furthermore,
let us introduce a discrete-time linear time-invariant (LTI) sys-
tem of the form

xk+1 = Axk +Bwk (2)
xk ∈ Rn k ∈ N

wk ∈ Rnw

W⊂ Rnw

where  is the state vector at the sampling instant ,
and  is an unknown disturbance contained in the con-
vex and compact set that contains the origin. Addi-
tionally, A  and B  are matrices with adequate dimensions, and
A is assumed to be an asymptotically stable matrix, i.e., all its
eigenvalues are strictly inside the unit disk.

Ω ⊂ Rn

x0 ∈Ω
wk ∈W xk ∈Ω k > 0

AΩ⊕BW⊆Ω

Definition  1: The  set is  said  to  be robustly posi-
tively invariant (RPI) for the system (2), if for all  and
all  the solution is such that  for . Equiva-
lently, Ω is RPI if and only if .

Rn
Definition 2: The minimal RPI (mRPI) set of (2) is the RPI

set in  that is contained in every closed RPI set of (2).

W
The  mRPI  set  exists,  is  unique,  compact  and  contains  the

origin  of  the  state-space  if contains  the  origin  [36,  Sec.
IV].  Furthermore,  from  the  linearity  and  asymptotic  stability
of (2), it follows that the mRPI set is the limit set of all trajec-
tories  of  system  (2).  For  a  comprehensive  analysis  on  set
invariance the reader is referred to [36], [37].

⟨c,H⟩ ⊂ Rn

Bm = [−1,1]m
Definition 3: A zonotope  is the affine transform-

ation of a unitary hypercube :

⟨c,H⟩ = c⊕HBm = {c+Hz : z ∈ Bm}
c ∈ Rn H ∈ Rn×m

⟨c,H⟩ m/n
where is the center and the generators matrix.
The order of  is given by .

Property 1 (Zonotopic operations [27]): For zonotopes, the
following properties hold:

⟨p1,H1⟩⊕ ⟨p2,H2⟩ = ⟨p1+ p2, [H1,H2]⟩ (3a)

L⟨p,H⟩ = ⟨Lp,LH⟩ (3b)

⟨p,H⟩ ⊆ ⟨p,b(H)⟩ (3c)
p, p1, p2 ∈ Rn H ∈ Rn×m H1 ∈ Rn×m1 H2 ∈ Rn×m2

L ∈ Rl×n ⟨p,b(H)⟩
b(H) ∈ Rn×n

b(H)ii =
∑m

j=1 |Hi j|

where , , ,  and
.  Besides,  denotes  the  bounding  box  where

is  a  diagonal  matrix  whose  entries  are  given  by
.

↓q,W
⟨c,H⟩ ⊂ Rn c ∈ Rn H ∈ Rn×m

∥ · ∥W
H = [h1, . . . , h j, . . . , hm] ∥h j∥2W ≥ ∥h j+1∥2W

↓q,W (H) = [Ha,b(Hb)] ∈ Rn×q Ha = [h1, . . . ,hq−n]
Hb = [hq−n+1, . . . ,hm] ⟨c,H⟩ ⊆ ⟨c,↓q,W (H)⟩

Property 2 (Reduction operator  [38]): Given the zono-
tope  with   and  ,  sort  the  columns
of H  on  decreasing  weighted  norm ,  that  is,

 with . Then, by compu-
ting  with
and , it follows that .

FW

In addition,  in  the  present  paper  the  size  of  a  given  zono-
tope is assessed by means of its -radius defined below.

FW W ∈ Rn×nDefinition  4  ( -radius  [27]): Let  be  a  symm-

FW ⟨c,H⟩ ⊂ Rn

∥⟨c,H⟩∥F,W = ∥H∥F,W =
√

Tr[HT WH]

etric  positive  definite  (SPD)  matrix.  The  weighted  Frobenius
radius ( -radius) of the zonotope is the weighted
F-norm of H, i.e., .

FW W = In

∥H∥2F,W =
∑m

i=1 ∥hi∥2W FW

The F-radius of a zonotope equals the -radius for .
Note that, since , the -radius size crite-
rion  involves  the  norm of  all  the  generators  of  the  zonotope.
The Frobenius radius is  a  standard criterion for  assessing the
size of a zonotope [39]–[42].

Z = ⟨c,H⟩ P = HHT
Definition  5  (Covariation  matrix  [27]): The  covariation

matrix of the zonotope  is .
⟨c,H⟩

∥H∥2F = Tr[P]

Hence,  minimizing  the F -radius  of  a  zonotope  is
equivalent  to  minimizing  the  trace  of  its  covariation  matrix,
that is, .
  

III. System Overview

The  present  work  focuses  on  a  perturbed  system  that  is
remotely controlled through a state estimate control policy and
monitored by means of a residual generation/evaluation block.
In particular,  due to the unknown-but-bounded description of
the uncertainties,  a  ZKF is  used for  generating the  state  esti-
mate  required  for:  i)  Closing  the  control  loop;  ii)  Generating
the  residual  signal  and  a  residual  set  that  characterizes  the
healthy  operation  of  the  system.  Below,  the  system  under
study and the ZKF are detailed.  

A. System Description
Let us consider a discrete-time LTI perturbed system of the

form
 

xk+1 = Axk +Buk +Ewk (4a)

yk =Cxk +Fvk (4b)

xk ∈ Rnx uk ∈ Rnu

yk ∈ Rny

k = 0
x0 ∈ ⟨c0, H0⟩ c0 ∈ Rnx H0 ∈ Rnx×n0

where A, B, C, E and F are the state-space matrices with ade-
quate  dimensions, is  the  state  vector,  an
exogenous  input  signal  and the  output  vector.
Besides,  the  system  state  at is  assumed  to  satisfy

, for some  and .
k ∈ N

wk ∈ Rnw vk ∈ Rnv

In the sequel, it is considered that for all  process dis-
turbances  and sensor noise  satisfy

wk ∈ ⟨0, Inw⟩, vk ∈ ⟨0, Inv⟩. (5)
A,B (A,C)Assumption 1: The pairs ( ) and  are assumed to be

stabilizable and detectable, respectively.

Z = ⟨0,H⟩ H ∈ Rn×p

Z = H⟨0, Ip⟩

Remark  1: Notice that,  according  to  Definition  3,  a  zono-
tope ,  with ,  can  be  expressed  as

. Thus,  given any zero-centered zonotope,  a  uni-
tary  box  representation  like  (5)  can  be  obtained  through  a
coherent modification of matrices E and F.  

B. Zonotopic KF

x0 ∈ ⟨c0, H0⟩
ck

Hk

The system model (4) and the bounded uncertainties (5), are
used  in  order  to  generate  the  zonotope-based  state  estimator.
According  to  [27],  given  an  initial  state ,  then
recursively defining the center estimate and the generators
matrix  as

ck+1= (A−GkC)ck +Buk +Gkyk (6a)

Hk+1 = [(A−GkC)H̆k, E, −GkF] (6b)

H̆k =↓q,W (Hk) (6c)



xk ∈ ⟨ck, Hk⟩ k ≥ 0the state inclusion property  holds for all .
FW

⟨ck+1,Hk+1⟩ G∗k =
argminGk ∥Hk+1∥2F,W

Moreover, the optimal observer gain that minimizes the -
radius  of  the  prediction  zonotope ,  i.e., 

, is computed as [27]

G∗k = AK∗k = AP̆kCT (CP̆kCT +Qv)−1 (7)
Pk, P̆k, Qw ∈ Rnx×nx Qv ∈ Rny×nywhere  and are the covariation

matrices

Pk = HkHT
k , P̆k = H̆kH̆T

k , Qw = EET , Qv = FFT

Pkand matrix  satisfies

Pk+1 = AP̆kAT +Qw−AP̆kCT (CP̆kCT +Qv)−1CP̆kAT . (8)
Qv ≻ 0

(A,Qw)
FW

↓q,W

Hk = [Ha
k , Hb

k ]
H̆k =↓q,W (Hk) = [Ha

k , b(Hb
k )]

In  the  sequel,  it  is  considered  that and  that  the  pair
 is stabilizable. Notice that the weighted criterion in the

-radius is selected in order to be consistent with the reduc-
tion  operator  presented  in  Property  2.  In  this  regard,  if
the  generators  matrix  is  sorted  as  (in  such  a
way that ), then the difference in
the covariation matrices induced by the reduction operator can
be rewritten as

P̆k = Pk −Hb
k HbT

k +b(Hb
k )2. (9)

IV. Linear-Quadratic Zonotopic Control

In  this  section,  the  optimal  control  problem for  the  case  in
which the  feedback loop is  closed using the  estimates  gener-
ated by a ZKF is analyzed. Note that, under this paradigm, at
each time instant k the real state of the system is known to be
confined within a zonotope. In this regard, the following per-
formance criterion is introduced in order to assess the system
operation.

S ∈ Rn×n

x ∈ ⟨c,H⟩ ⊂ Rn

Definition  6  (Zonotopic  quadratic  performance): Given  an
SPD  matrix and  the  unknown  but  zonotopically
bounded vector , the performance of x is evalu-
ated according to

Q[xT S x] = cT S c+ ∥H∥2F,S = cT S c+Tr[S P] (10)

P = HHTwith .

x ∼ N(c,P)
Q[·]

It  must  be  highlighted  that  Definition  6  matches  the
expected value for a Gaussian random vector centered at c and
with  covariance P ,  i.e., . Furthermore,  from Defi-
nition 6, it is straightforward to see that the operator satis-
fies the following property.

x ∈ Rn y ∈ Rm x ∈ ⟨cx,Hx⟩ ⊂ Rn

y ∈ ⟨cy,Hy⟩ ⊂ Rm

Property  3  (Distributive  property): Given  the  variables
 and such  that  and

, then

Q[xT S xx+ yT S yy] = Q[xT S xx]+Q[yT S yy] (11)
S x S ywith  and  SPD matrices of appropriate dimensions.

Proof: The left-hand side of (11) can be rewritten as

Q
[ [

xT yT
]  S x 0

0 S y

  x

y

 ] = λ
with  x

y

 ∈ ⟨ cx

cy

 ,  Hx 0
0 Hy

⟩.

Therefore, from Definition 6, it follows:

λ =
[

cT
x cT

y

]  S x 0
0 S y

  cx

cy


+Tr
 S x 0

0 S y

  Hx 0
0 Hy

  HT
x 0

0 HT
y


= cT

x S xcx +Tr[S xPx]+ cT
y S ycy+Tr[S yPy]

= Q[xT S xx]+Q[yT S yy].

■
Below,  the  finite  and  infinite  horizon  control  problems

under the performance metric in Definition 6 are analyzed.  

A. Finite Horizon Control
xk

⟨ck, H̆k⟩ ⊇ ⟨ck,Hk⟩

{uk : k = 0, . . . ,N −1}

Consider  a  non-measurable  state  for  which  a  zonotopic
state  estimation  is  generated  by  means  of
the ZKF described in Section III-B. The finite horizon linear-
quadratic  control  is  posed  as  computing  the  inputs  sequence

 which  minimizes  the  following  cost
function:

J(N, x0,u) = Q
[N−1∑

k=0

(
xT

k Wxk +uT
k Uuk

)
+ xT

NW f xN
]

(12)

W f (A,W)
x0 ∈ ⟨c0,H0⟩

where W,  and U are  SPD  matrices,  the  pair  is
detectable and .

k1
(

xk1 ∈ ⟨ck1 , H̆k1⟩
)At  a  generic  instant for  which  the  state  satisfies
,  then  the  optimal cost-to-go  of  (12)  is  given

by the expression

Vk1 (xk1 ) = min
u∗k1
,..,u∗N−1

{
Q
[ N−1∑

k=k1

(
xT

k Wxk +uT
k Uuk

)
+ xT

NW f xN
]}
.

Moreover,  from  dynamic  programming  and  taking  into
account Property 3, it is known that

Vk(xk) =min
u∗k

{
Q[xT

k Wxk +uT
k Uuk]+Vk+1(xk+1)

∣∣∣X̂k

}
X̂k X̂k = {x0, . . . , xk}

xk ∈ ⟨ck, H̆k⟩ Vk+1(xk+1)|X̂k
k+1 X̂k

where represents  the  set  of  estimations ,
such  that ,  and  is  the cost-to-go
obtained at given the sequence . Based on this, the fol-
lowing theorem is presented.

Vk(xk)Theorem 1: At each time instant,  is given by

Vk(xk) = Q[cT
k S kck]+ sk (13)

S k skwith  and  defined by the backwards recursions

S k = AT S k+1A+W −AT S k+1B(BT S k+1B+U)−1BT S k+1A
(14a)

 

sk = sk+1+Tr[WP̆k +S k+1(G∗k(CP̆kCT +Qv)G∗Tk )] (14b)
S N =W f sN = Tr[W f P̆N]starting at  and .

Proof: See Appendix A. ■
Therefore,  according  to  the  development  presented  in

Appendix A, the control law that minimizes the cost function
(12) is the LQR controller

u∗k = −(BT S k+1B+U)−1BT S k+1Ack = −L∗kck (15)



which operates based on the center of the ZKF estimator.
In order differentiate (15) from the stochastic LQG control,

in the sequel the zonotopic version will  be denoted as linear-
quadratic  zonotopic  (LQZ)  control.  For  this  case,  from  (13)
and (14) it follows that the optimal value of the cost function
is:
 

J(N, x0,u) = V0(x0) = Q[cT
0 S 0c0]+ s0 (16)

Q[cT
0 S 0c0] = cT

0 S 0c0with  and

s0 =

N−1∑
k=0

(
Tr[WP̆k +S k+1(G∗k(CP̆kCT +Qv)G∗Tk )]

)
+Tr[W f P̆N].

P̆k = Pk

FW

At  this  point,  it  is  worth  noting  the  fact  that,  if  no  over-
approximation  is  introduced  during  the  horizon N  (i.e.,  if

), then (16) is equal to the cost function obtained in an
LQG system but  substituting  the  covariation  matrices  for  the
appropriate  covariance  matrix  of  the  Gaussian  variables.
Therefore, it can be concluded that an optimal control scheme
has the  same  impact  on  the  expected  value  of  the  state  vari-
ables when  the  uncertainties  are  modeled  as  Gaussian  vari-
ables,  that  on  the -radius  of  the  state  bounding  zonotope
under bounded uncertainties.

⟨0,Hk⟩ = ⟨0, [Ha
k , Hb

k ]⟩

⟨0, H̆k⟩ = ⟨0,↓q,W (Hk)⟩ = ⟨0, [Ha
k b(Hb

k )]⟩
q0 ∈ N+ q ≥ q0

FW

G∗k P̆k

⟨0, H̆k⟩ b(Hb
k )2−Hb

k HbT
k

P̆k −Pk = b(Hb
k )2−

Hb
k HbT

k

Remark  2: According  to  Theorem  11  in  [27], if  the  zono-
tope , whose columns have been sorted
in  decreasing  weighted  norm,  is  over-approximated  by

,  then  there  exists  a
value such that  by selecting it  can be ensured
that  the resulting  sequence  of  zonotopes  has  bounded -
radius. Nevertheless,  under  the  effect  of  the  reduction  opera-
tor,  the  gain and  covariation matrices may  not  con-
verge  to  some  fixed  values.  This  is  due  to  the  coupling
between: i)  The convergence of the over-approximated zono-
tope to a fixed structure, i.e., such that 
becomes constant;  ii)  The  evolution  of  the  covariation  recur-
sion (8) which depends on the relationship 

.

B. Infinite Horizon Control
Since  many  control  systems  operate  for  long  periods  of

time, the remainder of the paper will focus on a system whose
control law  is  obtained  by  solving  the  infinite  horizon  prob-
lem formulated as
 

J∞ = lim
N→∞

1
N
Q
[N−1∑

k=0

(
xT

k Wxk +uT
k Uuk

)]
(17)

xkwhere X and U are SDP matrices and the state is not mea-
surable. Because the infinite horizon problem does not depend
on the time to go (i.e., it is shift invariant), the following well-
known  time-invariant  controller  and  observer  gains  are
obtained:

(A,W)
Control: From Assumption 1, matrices W and U being SPD

and the detectability of , then the optimal infinite hori-
zon  controller  matches  the  steady-state  finite  horizon  control
given by the constant control gain

L∗ = (BT S∞B+U)−1BT S∞A

S∞where is the  unique  positive  definite  solution  of  the  dis-
crete Algebraic Riccati equation (DARE) [43]

S∞ = AT S∞A+W −AT S∞B(BT S∞B+U)−1BT S∞A (18)
A−BL∗such that the matrix  is asymptotically stable.

Qv
Qw = QT

w ⪰ 0 (A,Qw)
Estimation: From Assumption 1, matrix  being SPD and

 and  the  stabilizability  of  the  pair ,  then
the optimal infinite horizon observer gain is

G∗ = AP∞CT (CP∞CT +Qv)−1

P∞with being  the  unique  positive  definite  solution  of  the
DARE

P∞ = AP∞AT +Qw−AP∞CT (CP∞CT +Qv)−1CP∞AT (19)
A−G∗Csuch that the matrix  is asymptotically stable.

ek = xk − ck

G∗

Henceforth,  the  estimation  error  is  defined  as .
Thus, from the comparison of (4a) and (6a) for the fixed gain

,  it  follows  that  the  dynamics  of  the  estimation  error  are
governed by:

ek+1 = (A−G∗C)ek +Ewk −G∗Fvk (20)
ek+1 ∈ ⟨0,Hk+1⟩in such a way that  is satisfied for

Hk+1 = [(A−G∗C)Hk, E, −G∗F] (21)
e0 ∈ ⟨0,H0⟩and any initial . Besides, the asymptotic stability of

the closed-loop system (20) guarantees the convergence of its
trajectories towards  its  mRPI  set  denoted  as  Φ.  On  this  sub-
ject, the following theorem is introduced.

∥Φ∥2F = Tr[P∞]
Theorem 2: The F-radius of the mRPI set Φ of system (20)

is .
Proof: See Appendix B. ■

⟨0,Hss⟩
⟨0,Hss⟩ ⊇ Φ

Regarding  the  computation  of  the  mRPI  set,  it  is  well-
known that its exact computation can only be achieved under
the restrictive assumption that the system dynamics are nilpo-
tent [44]. Hence, in the sequel, the set Φ will be outer-approxi-
mated through an RPI set. In this regard, by recursively refin-
ing  an  outer  RPI  set,  Φ  can  be  approximated  with  arbitrary
precision at the price of increasing the complexity of the over-
approximating  set  [45],  [46].  The  computation  of  an  initial
zonotopic  RPI  set  is  discussed  in  Appendix  C.  Accordingly,
hereinafter it is considered that the system is monitored in the
steady-state  using a  reduced order  RPI zonotopic  set 
such that .

For the ideal scenario where the mRPI set Φ is used in order
to  bound  the  estimation  error  steady-state  value,  the  optimal
infinite horizon cost function is given by

J∞ = lim
N→∞

1
N
Q
[N−1∑

k=0

xT
k Wxk +uT

k Uuk
]

= Tr[WP∞+S∞(G∗(CP∞CT +Qv)G∗T )]. (22)
On  the  other  hand,  if  the  zonotopic  over-approximation  is

used instead, the cost function is

J̃∞ = Tr[WPss+S∞(G∗(CPssCT +Qv)G∗T )] (23)
Pss = HssHss,T , P∞with .  

V. Replay Attack Detectability

In  this  section,  the  case  where  a  malicious  attacker  can



access  the  communications  layer  and  record/replay  the  data
sent  through  the  sensors-to-controller  link  is  analyzed.  In
order  to  characterize  the  effect  of  the  attack,  the  following
time windows are defined:

KREC = {k ∈ N : k ∈ [k0, k0+ l−1]} l ∈ N
1) Record Window: Output data are assumed to be recorded

for ,  where  denotes
the size of the record window.

KREP =

{k ∈ N : k ∈ [k1, k1+ l−1]}
2) Replay  Window: Real  data  are  replaced  for

.

xk k ∈ KREP xa
k = xk

xr
k = xk+(k0−k1)

In the  sequel,  whenever  variables  from different  time  win-
dows are being compared, superscripts r and a will be used in
order  to  differentiate  that  a  system  variable  is  in  the  record
and in the replay phase, respectively. That is, for example, for
the  state  variable ,  for  all it  is  denoted ,
whereas .

k1

Remark 3: In the time windows defined above, it is implic-
itly assumed that the recorded sequence is only replayed once.
Nevertheless, due to the linearity of the systems under study,
the  same  analysis  holds  if  the  recorded  sequence  is  replayed
several times in a loop, just by shifting the initial time instant

 to match the start of each replayed sequence.

A. Anomaly Detector
The  system  operation  is  assessed  based  on  the  values

adopted by the residual signal

rk = yk −Cck =Cek +Fvk (24)
ek = xk − ck ∈ ⟨0,Hk⟩with .

k ≥ k∗ k∗ ∈ N
ek∗ ∈ ⟨0,Hss⟩

Assumption  2: The  system  is  in  stationary  operation  such
that ,  with being  a  finite  time  instant  for  which
the estimation error satisfies .

k ≥ k∗Therefore,  from  Assumption  2,  for  all the  residual
signal satisfies
 

rk ∈ RH

RH = ⟨cr,Hr⟩where the healthy residual set  is computed as

⟨cr,Hr⟩ =C⟨0,Hss⟩⊕F⟨0, Inv⟩ = ⟨0, [CHss, F]⟩.
Hence, the presence of anomalies is assessed according to{rk ∈ RH =⇒ Healthy operation,

otherwise =⇒ Something is wrong. (25)

k∗

⟨0,Hss⟩
ek ∈ ⟨0,Hss⟩ k ≥ k∗

Remark 4: Note that the stability of (20) guarantees the con-
vergence of its  trajectories towards Φ, and thus the existence
of the finite instant for which Assumption 2 is satisfied. In
addition,  from the invariance properties  of it  follows
that  for all .  

B. Attack Detectability

ūk

Fig. 1 shows  the  overall  control/attack/watermarking
scheme  under  consideration.  Regarding  the  control  scheme:
the  control  loop  is  closed  remotely  by  means  of  an  optimal
controller (Section IV) that operates based on the estimates of
a ZKF (Section III-B). The estimates of the ZKF are used by a
set-based anomaly detector (Section V-A). Additionally, Fig. 1
depicts  an  attacker  that  may  be  able  to  spoof  the  data  sent
through  the  sensors-to-controller  link  as  well  as  to  inject  an
exogenous signal into the system inputs. On the other hand,
the  blue  dashed  box  shows  the  interaction  of  an  additive
watermark signal (Section VI) with the control loop.

Taking into consideration the time windows defined above,
the residual signal during the replay phase of the attack is

ra
k = yr

k −Cca
k = yr

k −Ccr
k +C(cr

k − ca
k) = rr

k +C(cr
k − ca

k) (26)
rr

k ∈ RHwith  from Assumption 2.

cr
k

ca
k

u∗k = −L∗ck

Besides,  the  last  term  of  (26)  represents  the  difference
between the centers of the estimates (cf. (6a)) in the record 
and  replay phases.  Under  the  optimal  control  law

, the evolution of these centers is given by

ca
k+1 = (A−G∗C−BL∗)ca

k +G∗yr
k (27a)

cr
k+1 = (A−G∗C−BL∗)cr

k +G∗yr
k (27b)

ca
k1
= ck1 cr

k1
= ck0starting at  and .

k ∈ KREPConsequently, for , the attacked residuals are gov-
erned by the equation

ra
k = rr

k +C(A−G∗C−BL∗)k−k1 (cr
k1
− ca

k1
). (28)

In  particular,  we  focus  on  the  case  in  which  the  attack  is
undetectable for  an  unprotected  system  like  the  one  repre-
sented  in Fig. 1 . Then,  the  following  assumption  will  be  fol-
lowed.

k ∈ KREP

Assumption  3: The  attack  is  undetectable  by  the  passive
detector (25). That is, for all , the residual signal sat-
isfies
 

rr
k +C(A−G∗C−BL∗)k−k1 (cr

k1
− ca

k1
) ∈ RH .

ξk

ξk
ξk = ⟨0,Hξ⟩

uk = u∗k + ξk

Note  that  the  consideration  of  Assumption  3  motivates  the
injection  of  an  additive  watermark  signal in  the  system
inputs  to  detect  the  attack.  In  this  regard,  conversely  to  the
stochastic approaches  that  inject  an  exogenous  Gaussian  sig-
nal  [11],  in  what  follows  signal will  be  assumed  to  be
bounded  within  the  known  zonotope .  Accord-
ingly, the first step is to analyze the impact on the system per-
formance  that  entails  the  injection  of  the  suboptimal  signal

.

C. Performance  Loss  Induced  By  A  Zonotopically-Bounded
Watermark Signal

For the case where the optimal control law derived in Sec-

Plant
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generator

ξk

+ ξk

ξk

ξk

ξk

ck

yk

yk (yr
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   − 
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−
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k
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Fig. 1.     Overall scheme – Replay attack (red); Watermark generator (blue).
 



ξk ∈ ⟨0,Hξ⟩
tion  IV  is  extended  with  the  inclusion  of  the  additive  signal

, the following theorem can be established.
uk = −L∗kck + ξk

L∗k ξk ∈ ⟨0,Hξ⟩
Theorem 3: The injection of the control law ,

with  in (15) and , yields the optimal cost-to-go

V̄k(xk) = Q[cT
k S kck]+ s̄k

s̄kwhere  is described by the backward recursion

s̄k = s̄k+1+Tr[WP̆k +S k+1(G∗k(CP̆kCT +Qv)G∗Tk )]

+Tr[(U +BT S k+1B)Pξ]

s̄N = Tr[W f P̆N] S k

Pξ = HξHT
ξ

starting at , with defined in (14a) and with
.

ξk ∈ ⟨0,Hξ⟩
uk = u∗k + ξk ∈ ⟨u

∗
k,Hξ⟩

Proof: The  addition  of  the  exogenous  signal 
implies  that  input  signal  satisfies .
Therefore,  the  proof  is  obtained  by  following  the  same steps
as  for  Theorem  1  but  taking  into  consideration  that  for  this
case:

Q[uT
k Uuk] = Q[(u∗k + ξk)T U(u∗k + ξk)] = u∗Tk Uu∗k +Tr[UPξ]

Pξ = HξHT
ξwith , and that the center of the state-estimator (6a)

now satisfies

ck+1 ∈ ⟨(Ack +Bu∗k), [G∗kCHk, G∗kF, BHξ]⟩. ■

Jwm
∞

According  to  Theorem  3,  since  the  solution  of  the  infinite
horizon control problem is given by the limit of the finite hori-
zon  solution,  the  new  performance  loss  obtained  with  the
inclusion  of  the  bounded  watermarking  signal can  be
assessed as

Jwm
∞ = Tr[WP∞+S∞(G∗(CP∞CT +Qv)G∗T ]

+Tr[(U +BT S∞B)Pξ]

= J∞+Tr[(U +BT S∞B)Pξ]

= J∞+∆J . (29)
It must  be  highlighted  that  the  extra  term in  the  cost  func-

tion

∆J = Tr[(U +BT S∞B)Pξ] = ∥Hξ∥2F,Wξ (30)

Wξ = U +BT S∞B

ξk ∼ N(0,Pξ)

with ,  matches  the  performance  loss  that
induces  the  injection  of  a  random  Gaussian  variable

 in an LQG control scheme [11]. That is, there is
a parallelism  in  the  effect  that  causes  in  the  system  perfor-
mance to address the watermarking design by means of inject-
ing  an  exogenous  Gaussian  signal  or  through  its  zonotopic
counterpart.

x ∈ ⟨0,H⟩
Sx Sx ⊆ ⟨0,H⟩

x′ ∼ N(0,Q)
Q = HHT

⟨0,H⟩
x′

Remark 5: Notice that the analogy discussed above is based
on  the  parallelism  between  a  zonotopically-bounded  random
variable (i.e., for an unspecified probability density
function  the  support of  x  satisfies   (cf.  [21]))
and  a  Gaussian  random  variable  whose  covari-
ance matrix satisfies . Nevertheless, an explicit rela-
tionship  between  the  bounding  zonotope of  x  and  the
confidence ellipsoids of  (which has an unbounded support)
is  not  possible  due  to  the  fact  that  multiple  zonotopes  share
the  same  covariation  matrix.  Therefore,  the  selection  of  one
uncertainty characterization over the other should be based on

its  capability  to  reliably  describe  the  uncertain  data  at  the
modeling stage.  

VI. Zonotopically Bounded Watermark Signal Design

ra
k < RH

This section deals with the design of a watermark signal that
can adopt any value within a given zonotope. Working under
a set-based paradigm, this watermark signal must be designed
in such a way that it guarantees the attack detection (i.e., such
that enforces ). To that end, the proposed scheme takes
advantage of the fact  that  the observability of a signal that  is
known by the  defender  is  lost  during the  replay phase  of  the
attack. Hence, this fact is used in order to destabilize the esti-
mation  error  of  such  known  signal,  for  which,  a  zonotopic
observer provides explicit bounds.

In order  to  implement  the  scheme described  in  the  preced-
ing  paragraph,  the  closed-loop  dynamics  of  the  system  are
gathered in the model

x̄k+1 = Āx̄k + B̄ξk + Ēw̄k

yk = C̄ x̄k +Fvk (31)
x̄k = [xT

k , eT
k ]T w̄k = [wT

k , vT
k ]Twith , , the new system matrices

Ā =
 A−BL∗ BL∗

0 A−G∗C

 , B̄ =
 B

0


Ē =
 E 0

E −G∗F

 , C̄ =
[

C 0
]

x̄0 = [xT
0 , eT

0 ]T ∈ ⟨c̄0, H̄0⟩and the initial conditions  where

c̄0 =

 c0

0

 , H̄0 =

 H0 0
0 H0

 .
ξk ∈ RnuHenceforth,  the watermark signal is  defined as the

difference

ξk = ψ− cψk (32)

ψ ∈ Rnu

ψ , 0 cψk ∈ R
nu

where, is  a  nonzero  constant  vector  set  by  the
defender  (i.e., ),  and  is the  center  of  a  zono-
topic observer that will be introduced later.

Let the constant vector ψ be rewritten as

ψ = Mψ− (M− Inu )ψ (33)
M ∈ Rnu×nufor any given matrix which has been included as a

tuning parameter. Thus, the injection of the exogenous signal
(32) in the closed-loop system (31), can be written as x̄k+1

ψ

 =  Ā B̄

0 M

  x̄k

ψ

−  B̄cψk
(M− Inu )ψ

+  Ē

0

 w̄k

(34a)

yk =
[

C̄ 0
]  x̄k

ψ

+Fvk (34b)

 x̄0

ψ

 ∈ ⟨ c̄0

cψ0

 ,  H̄0

0

⟩ , cψ0 = ψ. (34c)

A. Design of an Extended State Estimator

Ḡk ∈ R(2nx+nu)×ny

In order to design a new observer for estimating the value of
ψ,  the  time-varying  matrix  is  introduced  in



(34a) yielding the equivalent system x̄k+1

ψ

 =  Ā B̄

0 M

  x̄k

ψ

−  B̄cψk
(M− Inu )ψ

+  Ē

0

 w̄k

+ Ḡk(yk −
[

C̄ 0
]  x̄k

ψ

−Fvk).
(35)

At this point, the following notation is introduced:

x̃k =

 x̄k

ψ

 , c̃k =

 c̄k

cψk

 , H̃0 =

 H̄0

0

 (36)

x̃0 ∈ ⟨c̃0, H̃0⟩in such a way that, at the initial time instant, .
Theorem 4: Given the system (34a) and (34b) with the ini-

tial  conditions  satisfying  the  inclusion  (34c).  By  recursively
defining the center and the generators matrix

c̃k+1 = (Â− ḠkC̃)c̃k − M̃ψ+ Ḡkyk (37a)

H̃k+1 =
[
(Ã− ḠkC̃)H̄k, Ẽ,−ḠkF

]
(37b)

with matrices

Â =
 Ā 0

0 M

 , Ã =
 Ā B̄

0 M

 , C̃ =
[

C̄ 0
]

Ẽ =
 Ē

0

 , M̃ =
 0

M− Inu

 (38)

x̃k ∈ ⟨c̃k, H̃k⟩ k ≥ 0then the inclusion property  holds for all .

k = 0
Proof: Assuming  that  the  inclusion  is  satisfied  at  time k,

which according to (34c) is true for , then using (35) and
the notation introduced in (36), it follows that:

x̃k ∈ ⟨c̃k, H̃k⟩ =⇒ x̃k+1 ∈ ⟨c̃k+1, H̃k+1⟩
where

⟨c̃k+1, H̃k+1⟩ =
 Ā B̄

0 M

 ⟨c̃k, H̃k⟩⊕
 0 −B̄

0 0

 ⟨c̃k,0⟩

⊕
 0

M− Inu

 ⟨ψ,0⟩⊕  Ē

0

 ⟨0, Inw+nv⟩

⊕Ḡk⟨yk,0⟩⊕−Ḡk
[

C̄ 0
]
⟨c̃k, H̃k⟩

⊕− ḠkF⟨0, Inv⟩.

k+1

Therefore, using (3) and defining the set of matrices in (38),
the  expressions  for  the  center  (37a)  and  generators  matrix
(37b) are retrieved, and thus the inclusion property is satisfied
at . This gives the proof by induction. ■

Accordingly, from Theorem 4 it follows that:

x̃k ∈ ⟨c̃k, H̃k⟩ =⇒ x̃k − c̃k ∈ ⟨0, H̃k⟩
N = [0 Inu ] ∈

Rnu×(2nx+nu)
and,  as  a  result,  if  the  projection  matrix 

 is defined, then the watermarking signal (32) sat-
isfies

ξk = N(x̃k − c̃k) ∈ N⟨0, H̃k⟩ = ⟨0,NH̃k⟩. (39)
ḠkAdditionally,  with  regard to  the  design of  a  matrix that

minimizes the performance loss induced by the signal (39) (cf.
Section V-C), the following theorem is introduced.

Wξ
H̃k+1 ∆J =

Theorem  5: Given  an  SPD  matrix and  the  generators
matrix as  in  (37b).  Then,  the  additional  term 

∥NH̃k+1∥2F,Wξ ξk

Ḡ∗k = ÃP̃kC̃T (C̃P̃kC̃T+Qv)−1

P̃k = H̃kH̃T
k

induced  by  the  injection  of  signal is mini-
mized  for  the  observer  matrix ,
with N being the projection matrix in (39) and .

Proof: From Definition 4 it follows that:

∥⟨NH̃k+1⟩∥2F,Wξ = Tr[H̃T
k+1W̃H̃k+1]

W̃with matrix  defined as

W̃ = NT WξN =
 0 0

0 Wξ

 .
Tr[H̃T

k+1W̃H̃k+1] Ḡk

G̃∗k = arg minG̃ Tr[H̃T
k+1W̃H̃k+1]

Hence, since is convex with respect to ,
following the same steps as in the proof of Theorem 5 in [27],
it  follows  that  the  matrices 
must satisfy the equation:

W̃Ḡ∗k = W̃ÃP̃kC̃T (C̃P̃kC̃T +Qv)−1. (40)
W̃

Ḡ∗k = ÃP̃kC̃T (C̃P̃kC̃T +Qv)−1
Then, by taking into consideration that is symmetric pos-

itive  semi-definite,  is one  solu-
tion that satisfies (40). ■  

B.  Watermarked System Stability

Ḡ∗

ξk

Analogously to Section IV-B, in the sequel the fixed steady-
state observer gain is considered. Next, the stability of the
closed-loop system (31) subject  to the injection of the water-
mark signal is analyzed. To that end, through the compari-
son of (34a) with (37a), it can be seen that the estimation error
produced by the new observer is governed by the dynamics

ẽk+1 = (Ã− Ḡ∗C̃)ẽk + Ẽw̄k − Ḡ∗Fvk (41)

ẽk = [(x̄k − c̄k)T (ψ− cψk )T ]Twith .
Consequently,  if  the  evolution  of  the  closed-loop  system

(31) and the new estimation error (41) are combined in a sin-
gle dynamical system, this has the form x̄k+1

ẽk+1

 =  Ā B̄N

0 Ã− Ḡ∗C̃

  x̄k

ẽk

+  Ē

Ẽ

 w̄k +

 0
−Ḡ∗F

vk

(42)

Ā
Ã− Ḡ∗C̃

with an upper triangular state transition matrix. Therefore, the
stability  of  the  watermarked  system  (42)  is  related  with  the
eigenvalues of (which is associated to an asymptotically sta-
ble system), and the eigenvalues of .

Ḡ∗

Ã− Ḡ∗C̃
(Ã,C̃)

Note  that  the  design  of  an  observer  gain  such  that
 is  asymptotically stable depends on the detectability

of the pair . In this regard, the following mild sufficient
condition can be stated.

(Ã,C̃) B̄
B̄(:,i)

Proposition 1: A sufficient condition for the detectability of
the pair ,  is that there is a column of matrix , denoted
as , that satisfies

rank
(
C̄[B̄(:,i), ĀB̄(:,i), . . . , Ā2nx−2B̄(:,i)]

) ≥ 1

2nx Āwhere  is the dimension of the square matrix .
Ã

Ā

ξk
B̄

Proof: Given  a  matrix defined  in  (38),  then  from  the
asymptotic  stability  of it  follows that  it  is  only  required  to
guarantee  the  observability  of  the  modes  associated  with
matrix M .  To  that  end,  consider  that  the  signal is intro-
duced  only  through  the i -th  column  of  matrix denoted  as



B̄(:,i) O(Ã,C̃). Then, the observability matrix  has the structure

O(Ã,C̃) =
 O(Ā,C̄) O12

C̄Ānx O22

 ∈ Rny(2nx+1)×(2nx+1)

with

O22 = C̄Ā2nx−1B̄(:,i)+ C̄
2nx−1∑

j=1

Ā2nx−1− jB̄(:,i)M j ∈ Rny .

rank
(
C̄[B̄(:,i), ĀB̄(:,i), . . . , Ā2nx−2B̄(:,i)]

) ≥ 1
O22

O2 2nx
(Ã,C̃)

Hence,  if ,  then
the term  can be modified by means of the parameters M,
thus allowing to impose the independence of  the last  column
of from the first columns. Therefore, the mode associ-
ated with matrix M is observable, and thus detectable. ■

Qv

Ã
Ā

Note  that,  from  [43,  Theorem  10.3],  with  SPD  and
matrix whose eigenvalues depend on the asymptotically sta-
ble matrix (eigenvalues strictly inside the unit disk) and the
arbitrary  matrix M ,  then  Proposition  1  provides  a  sufficient
condition  for  the  applicability  of  the  proposed  watermarking
method.  

C. Attack Detection

⟨0, H̃ss⟩ ⊇ Ψ

Ḡ∗

∥Ψ∥2F = Tr[PΨ∞] PΨ∞

Here the  detectability  of  the  replay  attack  under  the  pro-
posed watermark signal is analyzed. To that end, let Ψ denote
the  mRPI  set  for  the  estimation  error  generated  by  the
extended  observer  (41),  and  let denote  an  RPI
zonotopic outer-approximation of Ψ. Furthermore, note that, if
the matrix is designed according to Theorem 5, then from
Theorem 2 it follows that ,  with being the
solution of the corresponding DARE.

ξk

Besides, taking advantage of the fact that the constant vec-
tor ψ is  known by  the  defender,  the  watermark  signal can
also  be  used  in  order  to  assess  the  system  operation.  Hence,
the following can be stated for the steady-state:ξk ∈ ⟨0,NH̃ss⟩ =⇒ Healthy operation,

otherwise =⇒ Something is wrong.
(43)

ξak

The blue dashed box in Fig. 1 shows the structure of water-
marking  scheme  and  its  interaction  with  the  original  control
loop. Furthermore,  following  the  notation  presented  in  Sec-
tion  V,  during  the  replay  phase  of  the  attack  the  watermark
signal  can be written as

ξak = ψ− cψ,ak = ψ− cψ,rk + (cψ,rk − cψ,ak ) = ξrk + (cψ,rk − cψ,ak ) (44)

cψ,rk cψ,ak

ξrk

where  and are the center of the estimation of ψ  dur-
ing  the  record  and  replay  phases,  respectively.  Whereas,
extending  steady-state  condition  introduced  in  Assumption  2
to the extended estimation error (41), the signal  satisfies

ξrk = ψ− cψ,rk ∈ ⟨0,NH̃ss⟩, ∀k ∈ KREP. (45)

ξk

The following proposition shows that  the watermark signal
 can be tuned to detect replay attacks.

ξak ⟨0,NH̃ss⟩

Proposition 2: If any of the eigenvalues of matrix M in (33)
is strictly outside the unit disk, then the watermark signal dur-
ing the replay phase  will ultimately exit the set .

ξak cψ,rk − cψ,ak
cψ,rk − cψ,ak = N(c̃r

k − c̃a
k)

Proof: From  (44),  and  taking  into  consideration  (45),  the
signal  depends  on  the  difference ,  which  can  be
rewritten as .

On the other hand, the center of the estimator (37a) during
the record and replay phases evolves as

c̃r
k+1 =(Â− Ḡ∗C̃)c̃r

k − M̃ψ+ Ḡ∗yr
k (46a)

c̃a
k+1 =(Â− Ḡ∗C̃)c̃a

k − M̃ψ+ Ḡ∗yr
k (46b)

c̃r
k1
= [c̄T

k0
cψ,Tk0

]T c̃a
k1
= [c̄T

k1
cψ,Tk1

]Tstarting at  and .
Â Ḡ∗Recalling  matrix in  (38)  and splitting  the  matrix  into

the blocks

Â =
 Ā 0

0 M

 , Ḡ∗ =
 Ḡ1

Ḡ2


then  from  the  comparison  of  (46a)  and  (46b)  it  follows  that
the center difference between phases evolves according to: c̄r

k+1− c̄a
k+1

cψ,rk+1− cψ,ak+1

 =  Ā− Ḡ1C̄ 0
−Ḡ2C̄ M

  c̄r
k − c̄a

k

cψ,rk − cψ,ak

 . (47)

cψ,rk − cψ,ak ξak
⟨0,NH̃ss⟩

Therefore, since the state matrix of (47) is lower-triangular,
if matrix M has any eigenvalue outside the unit disk, then the
dynamics  of are  unstable,  thus  forcing  that  will
ultimately come out of the healthy set . ■

ξak

Remark 6: In the moment that the attack is detected, the sig-
nal  should stop  being  injected  so  as  not  to  affect  the  sys-
tem with its exponential growth.  

VII. Numerical Example

The  quadruple-tank  system  [47] is  a  well-known  bench-
mark used to evaluate control  and supervision strategies,  and
it is  also  employed  to  evaluate  cyber-attack  detection  tech-
niques  in  [5],  [7].  The  nonlinear  dynamics  of  the  system are
described as follows:

dh1

dt
= − a1

A1

√
2gh1+

a3

A1

√
2gh3+

γ1k1

A1
v1+ e1w1

dh2

dt
= − a2

A2

√
2gh2+

a4

A2

√
2gh4+

γ2k2

A2
v2+ e1w1+ e2w2

dh3

dt
= − a3

A3

√
2gh3+

(1−γ2)k2

A3
v2+ e1w1+ e3w3

dh4

dt
= − a4

A4

√
2gh4+

(1−γ1)k1

A4
v1+ e1w1+ e4w4

y1 = kch1+ f1v1, y2 = kch2+ f2v2
(48)

v j j ∈ 1,2 k jv j
hi ∈ [0,20]

Ai
ai

γ j ∈ [0,1]

Ts = 1

∆hk,i = hk,i−ho
k,i ∆vk,i = vk,i− vo

k,i

where , for , is the control input such that is the
j-th input flow rate, cm denotes the water level of
the i-th tank, denotes the cross-section area of the i-th tank,

denotes the cross-section area of the i-th outlet hole, g is the
gravity  acceleration,  and  is  the  position  of  the j-th
valve.  The  values  of  these parameters  are  given  in Table I.
The model (48) is  linearized around the operating point  indi-
cated by means of the superscript o  using Euler discretization
with a sampling time s. A linear discrete-time model as
(4) can be obtained, describing the dynamics of the variations

 and , such that



xk =


∆hk,1

∆hk,2

∆hk,3

∆hk,4

 , uk =

 ∆vk,1

∆vk,2

 , yk =

 ∆yk,1

∆yk,2



A =


− 1

T1
0 A3

A1T3
0

0 − 1
T2

0 A4
A2T2

0 0 − 1
T3

0

0 0 0 − 1
T4

 , Ti =
Ai
ai

√
2ho

i
g

B =



γo
1ko

1
A1

0

0
γo

2ko
2

A2

0
(
1−γo

2

)
ko

2
A3(

1−γo
1

)
ko

1
A4

0


, E =


e1 0 0 0
e1 e2 0 0
e1 0 e3 0
e1 0 0 e4


C = [kcI2 0] , F =

 f1 0
0 f2

 .
wk vk

wk ∈ ⟨0, I4⟩
vk ∈ ⟨0, I2⟩ k ∈ N

W = 10 · I4 Q = I2

In addition, it has been considered that system disturbances
 and  measurement  noise  are uniformly  distributed  ran-

dom variables  bounded  within  the  zonotopes  and
,  for  all .  The  process  is  controlled  by  means

of  an  optimal  LQR  controller  designed  for  the  weighting
matrices  and . The fixed steady-state gain of
the controller is

L∗ =
 2.2171 0.0004 0.1650 0.0744
−0.0016 2.4915 1.0060 0.4850

 .
Qw = EET Qv = FFT

Besides, by taking into consideration the covariation matri-
ces  and  ,  the  obtained  steady-state  gain
of the ZKF is

G∗ =
 0.5106 0.1399 0.5472 0.1060

1.2686 1.6852 1.1097 1.6209

T .

A−G∗C−BL∗ {−0.1739,0.4005,0.9513±0.0278i}
At this point, it must be highlighted that the eigenvalues of

matrix  are ,
that is, it is asymptotically stable, and thus there is no guaran-
tee  that  the  replay  attack  can  be  detected  (cf.  (28)).  In  other
words, in  the  remainder  of  this  section,  Assumption  3  con-
cerning the attack undetectability prevails thus motivating the
injection of a watermark signal in the control loop.  

A. Performance Assessment
ek = xk − ck

∥Φ∥F =
√

Tr[P∞] = 0.1393
P∞

J∞ = 0.9275

Concerning  the  estimation  error ,  from  Theo
rem 2 it  follows that  the size  of  its  mRPI set  Φ can be com-
puted directly by solving the corresponding DARE. By doing
so,  the  obtained  F-radius  is ,  with

 being the  unique positive  definite  solution of  the  DARE.
Consequently,  if  the  mRPI  set  Φ  could  be  used  in  order  to
bound the estimation error in the steady-state, applying (22) it
follows  that  the  optimal  infinite  horizon  cost  function  that
could be obtained would be .

Zss
0 = ⟨0,H

ss
0 ⟩

Due to the difficulties of computing an exact representation
of the Φ, different RPI outer-approximations of such mRPI set
will  be  computed  below.  In  this  regard,  an  initial  low  order
RPI  zonotopic  set is  computed  as  detailed  in
Appendix C. The obtained set is a parallelotope, that is, a first
order zonotope, with the following generators matrix:

Hss
0 =


0.0894 0.0256 −0.3773 0.3080
0.0928 −0.0238 0.0413 −0.0335
0.0898 −0.2360 −0.9798 −0.0529
0.0935 −0.5073 0.1513 −0.0000

 .
Zss

0The  initial  RPI  set  is now  forward  propagated  obtain-
ing successively tighter RPI over-approximations of the mRPI
set Φ. In this regard, Table II(a) shows the zonotope order and
the F-radius of the over-approximations obtained for different
iteration values. Besides, the value of the cost function for the
infinite horizon problem is also shown.

∥Φ∥F = 0.1393

After analyzing the data shown in Table II(a), it can be seen
how the F-radius of the successive over-approximations con-
verges  to  the  previously  computed  value
(shown  in  red).  However,  this  is  achieved  at  the  cost  of
increasing  the  complexity  of  the  zonotope  as  reflected  in  the
second column. Note that, the bad performance index obtained
with the initial  set motivates its further propagation in search
of  sets  whose F -radius,  and  hence  the  imposed  performance
loss is closer to the optimal value.

rk ∈ RH
i

RH
i =CZss

i ⊕FV = ⟨0, [CHss
i , F]⟩

Furthermore, it must be highlighted that the computation of
the  sets  shown  in Table II(a)  is  done  offline.  Then,  the  only
online computation is the evaluation of the condition ,
with .  Testing  whether  or
not a point belongs to a zonotopic set can be efficiently done
by solving a constraint satisfaction problem.  

B. Watermark Signal Design
In order to design a watermark signal like the one presented

in  Section  VI,  the  tuning  matrix M  must  be  defined.  In  this
regard, the following matrix M is introduced:

M =
 1.05 0

0 1.05



TABLE I
Quadruple Tank Process Parameters

Parameter Value Unit

A1 = A3 28 cm2

A2 = A4 32 cm2

a1 = a3 0.071 cm2

a2 = a4 0.05 cm2

kc 0.5 V/cm
g 981 cm/s2(

ho
1,h

o
2

)
(12.4,12.7) cm(

ho
3,h

o
4

)
(1.8,1.4) cm(

vo
1,v

o
2

)
(3,3) V(

ko
1 ,k

o
2

)
(3.33,3.35) cm3/V s(

γo
1 ,γ

o
2

)
(0.7,0.6) −

e1 0.05 −
e2 0.01 −

e3 = e4 0.02 −
f1 0.03 −
f2 0.01 −



Ḡ∗

so as to meet Proposition 2. Then, following the development
presented in Section VI, the optimal steady-state value of the
gain  of the new observer is:

Ḡ∗ =
[

Ḡa Ḡb
]T

Ḡa =

 0.6203 0.1388 0.1039 0.0202 0.1204
1.2684 1.8383 1.8712 −0.238 0.0427


Ḡb =

 0.0037 0.1951 −0.014 0.8998 −0.130
0.1566 −0.030 0.1739 0.2774 4.1170

 .
∥Ψ∥F =

√
Tr[PΨ∞] = 0.4929 PΨ∞

N = [02×8, I2]

Pξ = NPΨ∞NT

Concerning  the  new  estimation  error,  the F -radius  of  its
mRPI set Ψ is , with being the
unique positive definite solution of the corresponding DARE.
Hence,  by  defining  the  projection  matrix  and
following the developments presented in Section V-C, the per-
formance loss induced by a watermark signal confined within
a zonotope with covariance  is given by

∆J = Tr
[
(U +BT S∞B)Pξ

]
= 0.2223.

Z̃ss
0 = ⟨0, H̃

ss
0 ⟩

Z̃ss
i = ⟨0, H̃ss

i ⟩ ξk

⟨0,NH̃ss
i ⟩

Next, similarly to Section VII-A several RPI outer-approxi-
mations to Ψ are computed starting from an initial first order
zonotope .  In  this  regard, Table II(b)  presents
the  zonotope  order  and  the F -radius  of  the  over-approxima-
tions  obtained  for  different  iteration  values.  Note  that  given
the set RPI set , the healthy watermark signal 
is  guaranteed  to  converge  within and,  once  it  is
inside,  it  will  only  exit  that  set  in  case  the  system  in  under
attack. Consequently,  the fourth column of Table II(b) shows

∆J
ξk ∈ ⟨0,NH̃ss

i ⟩
Pξ = NH̃ss

i H̃ss,T
i NT

for each iteration the performance loss  induced by a water-
mark  signal  constrained  to and  thus  with  the
covariation matrix .
  

C. Attack Simulation
A replay attack has been simulated with the time windows

KREC = [300, 500], KREC = [700, 900].

Zss
20

Z̃ss
50

k = 700

k = 737 ξak ∈ NZ̃ss
50

Furthermore,  the  selected  RPI  over-approximation  for  the
ZKF  is  while for  the  state  estimator  used  in  the  water-
marking  generation  the  selected  RPI  over-approximation  is

.  The  temporal  evolution  of  the  watermark  signal  during
the  attack  scenario  is  represented  in Fig. 2 .  In  this  figure,  it
can be seen how after the start of the replay phase at ,
the  watermark  signal  starts  growing  exponentially  until  the
time  instant ,  when  the  condition is  no
longer satisfied  and  thus  the  attack  is  detected.  The  water-
mark signal stops being injected after the attack is detected.

2
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−1
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1

0
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Detection
Start of replay

Watermark signal
Record phase

Fig. 2.     Temporal evolution of the watermark signal.

k = 737

On  the  other  hand, Fig. 3 shows  the  effect  caused  on  the
system outputs by the injection of the watermark signal. It can
be seen how the performance of the system is hardly degraded
before  the  replay  phase  and  how after  the  start  of  this  phase
the  effect  of  the  increasing  watermark  signal  becomes  more
evident. It should be highlighted that since the control loop is
affected by the data replay, the stability of the plant after the
attack  detection,  at ,  is  due  solely  to  the  fact  that  the
open-loop system is stable.
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Fig. 3.     Temporal evolution of the system outputs.

tmThe mean times ( ) required in the simulations to monitor
the operation of the system online are1

TABLE II
Zonotopic RPI Approximations of the mRPI Set

(a) State estimation

Iteration Order F-radius J̃∞
Hss

1 1 1.2544 19.5451
Hss

5 7 0.8034 7.7927
Hss

10 14.5 0.4994 3.3956
Hss

20 29.5 0.2368 1.3144
Hss

30 44.5 0.1610 0.9958
Hss

50 74.5 0.1405 0.9307
Hss

75 112 0.1394 0.9276
Hss

100 149.5 0.1393 0.9275

Φ∞ ∞ 0.1393 0.9275

(b) Watermark signal

Iteration Order F-radius ∆J̃

H̃ss
1 1 10.9688 127.7466

H̃ss
5 4.2 9.0130 86.0918

H̃ss
10 8.2 7.1512 54.0752

H̃ss
20 16.2 4.5690 22.0604

H̃ss
30 24.2 2.9530 9.2396

H̃ss
50 40.2 1.2805 1.7299

H̃ss
75 60.2 0.6131 0.3662

H̃ss
100 80.2 0.5059 0.2361

Ψ∞ ∞ 0.4929 0.2223

1 Laptop (Intel i7 1.8 GHz, 16 GB RAM) running Windows 10; optimization
using Cplex 12.8 [48].



ξk ∈ NZ̃ss
50 = ⟨0,NH̃ss

50⟩ tm = 8.91) Evaluation of :  ms.
rk ∈ RH = ⟨0, [CHss

20, F]⟩ tm = 6.32) Evaluation of :  ms.
Ts = 1and thus well below the s sampling time of the discrete-

time LTI model of the quadruple-tank process.

∆Jopt ∆J
Z̃ss

50

Finally, Fig. 4  compares  the  optimal  performance  loss
,  the  performance  loss  induced  by  the  RPI  approxi-

mation and  the  mean  detection  time  for  two  different
matrix M parametrizations

M1 =

 m 0
0 m

 (Fig. 4(a)), M2 =

 m 0
0 0.5

 (Fig. 4(b))

m ∈ [1.05, 1.5]and the values of m varying in the interval . In
this  case,  the  mean  detection  time  was  obtained  running  50
simulations  for  each  value  of  the  parameter m . The  simula-
tions  show  the  existing  trade-off  between  performance-loss
and detection speed as a function of the maximum value (λmax)
of the eigenvalues of matrix M.
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Fig. 4.     Performance loss vs mean detection time.

VIII. Conclusions

This  paper  has  investigated  the  use  of  zonotopes  for  the
design  of  watermark  signals.  The  proposed  approach  has
exploited  the  recent  analogy  found  between  stochastic  and
deterministic fields in the context of optimal state estimation,
and extended it to optimal control. By means of this analogy,
the  system  performance  can  be  assessed  and  its  steady-state
operation may be related with the size of the mPRI set of the
estimation  error.  Furthermore,  similar  expressions  regarding
the impact  of  a  Gaussian  watermark  signal  on  the  perfor-
mance  of  an  LQG  system  and  the  impact  of  a  zonotopically
bounded  signal  on  the  weighted F -norm  of  the  states  have
been  obtained.  These  analogous  optimal  patterns,  motivate
further  studies  in  the  attack  detection  for  systems  which  are
simultaneously subject to bounded disturbances and Gaussian
noise,  thus  merging  the  usually  mutually  exclusive  benefits
granted  by  set-based  techniques  and  stochastic  techniques.

Moreover,  some  unresolved  issues,  like  the  effect  of  the
reduction operator  in  the  convergence  of  the  Riccati  differ-
ence  equations,  appear  as  appealing  problems  that  clearly
deserve  an  in-depth  study.  Other  future  research  directions
include:  the  extension  of  the  zonotopic  framework  to  more
complex attack policies like, for example, stealthy attacks; the
consideration of input and state constraints;  the adaptation of
the watermarking  method  to  distributed  monitoring  architec-
tures,  thus  addressing  the  scalability  to  large-scale  systems;
and the consideration of continuous time systems.  

Appendix A
Proof of Theorem 1

xN ∈ ⟨cN , H̆N⟩ cN = ⟨cN ,0⟩
cT

NW f cN = Q[cT
NW f cN]

Backward  induction  will  be  used  to  prove  (13).  Given
, since its center can be rewritten as ,

from  Definition  6  it  follows  that .
Accordingly, the expression:

VN(xN) = Q[xT
NW f xN] = cT

NW f cN +Tr[W f P̆N]

satisfies (13).
Vk+1(xk+1)Therefore,  if satisfies  (13),  then,  using  Prop

erty 3, at a generic time instant

Vk(xk)=min
u∗k

{
Q[xT

k Wxk]+Q[uT
k Uuk]+Q[cT

k+1S k+1ck+1]+ sk+1

}
xk ∈ ⟨ck, H̆k⟩ uk ∈ ⟨uk,0⟩with  and .

Furthermore, from the output equation (4b), it follows that:

yk ∈C⟨ck, H̆k⟩⊕F⟨0, Inv⟩ = ⟨Cck, [CH̆k, F]⟩
hence,  by  recalling  that  the  equation  of  the  zonotope  center
(6a) generated by the ZKF is

ck+1 = (A−G∗kC)ck +Buk +G∗kyk

then the prediction zonotope center satisfies

ck+1 ∈ ⟨(Ack +Buk), [G∗kCH̆k, G∗kF]⟩.
Therefore, from Definition 6, the following expressions are

obtained:

Q[xT
k Wxk] = cT

k Wck +Tr[WP̆k]

Q[uT
k Uuk] = uT

k Uuk

Q[cT
k+1S k+1ck+1] = (Ack +Buk)T S k+1(Ack +Buk)

+Tr[S k+1(G∗k(CP̆kCT +Qv)G∗Tk )]

P̆k = H̆kH̆T
k H̆k =↓q,W (Hk) Qv = FFTwith ,  and .

Using  the  expressions  above,  the cost-to-go  can be  rewrit-
ten as

Vk(xk) = min
u∗k

{
u∗Tk (BT S k+1B+U)u∗k +2u∗Tk BT S k+1Ack

+ cT
k (W +AT S k+1A)ck +Tr[WP̆k]

+Tr[S k+1(G∗k(CP̆kCT +Qv)G∗Tk )]+ sk+1

}
u∗k Vk(xk)and thus the optimal  that minimizes  is

u∗k = −(BT S k+1B+U)−1BT S k+1Ack.

Vk(xk)Consequently,  results in



Vk(xk) = cT
k
(
W +AT S k+1A

)
ck

− cT
k
(
AT S k+1B(BT S k+1B+U)−1BT S k+1A

)
ck

+Tr[WP̆k +S k+1(G∗k(CP̆kCT +Qv)G∗Tk )]+ sk+1

= cT
k S kck + sk.

xk ∈ ⟨ck, H̆k⟩
ck = ⟨ck,0⟩ cT

k S kck = Q[cT
k S kck]

Since at the given time instant , then the center
satisfies and thus , which con-
cludes the proof. ■  

Appendix B
Proof of Theorem 2

The system (20) can be rewritten as

ek+1 = Ǎek + B̌w̌k (49)
w̌T

k = [wT
k , vT

k ] ∈ W̌with  and

Ǎ = A−G∗C, B̌ = [E, −G∗F]

W̌ =
⟨ 0

0

 ,  Inw 0
0 Inv

⟩ .
W̌ ⊕k

i=0 ǍiB̌W̌ =
⟨0, Ȟk+1⟩ = ⟨0, [Ǎk B̌, Ǎk−1B̌, . . . , B̂]⟩

P̌k+1 = Ȟk+1ȞT
k+1 =

∑k
i=0 ǍiB̌B̌T ǍTi.

Besides, since is a zonotopic set, and making use of (3),
the  following  zonotope  can  be  introduced 

,  whose covariation matr-
ix is given by 

Φ =
⊕∞

i=0 ǍiB̌W̌ PΦ =
limk→∞ Pk+1 =

∑∞
i=0 ǍiB̌B̌T ǍTi

Ǎ
PΦ = ǍPΦǍT + B̌B̌T

Therefore, given the asymptotically stable system (49), from
[36, Section 4] it is known that its mRPI set exists, its unique
and  it  is  defined  as .  Accordingly, 

is  the  covariation matrix  of  Φ,
which, since is asymptotically stable, is the unique solution
of Lyapunov equation  [49].

G∗ = AP∞CT (CP∞CT +Qv)−1

P∞
P∞ = ǍP∞ǍT + B̌B̌T

PΦ = P∞ ∥Φ∥2F = Tr[PΦ] =
Tr[P∞]

On the other hand, selecting ,
matrix is  the  unique  positive  definite  solution  of  (19),
which  can  be  rewritten  in  the  form .
Hence,  it  follows  that ,  and  thus  

. ■
Appendix C

Computing an Initial Zonotopic RPI Set

W = ⟨0, Inw⟩

Below,  it  is  presented  the  procedure  followed  in  order  to
compute a zonotopic RPI set for a perturbed discrete-time LTI
system like  (2)  with  the  disturbance  set . When-
ever is possible, the so-called Ultimate Bound (UB) method is
used for computing a low-order initial RPI set.  Under certain
conditions  on  the  closed-loop  matrix A ,  the  UB  allows  to
directly  compute  a  first-order  zonotopic  RPI  set.  In  this
regard, the following lemma presented in [50] is introduced.

V ∈ Cnx×nx Λ = |V−1AV |
Lemma  1: Suppose  an  invertible  (complex)  transformation

exists  such  that  the  matrix is  strictly
stable. Then, the set

S = {x ∈ Rnx : |V−1x| ≤ (Inx −Λ)−1|V−1B|1nw } (50)
wk ∈ ⟨0, Inw⟩,∀k ∈ Nis an invariant set for (2) with .

S

V ∈ Rnx×nx

Λ = V−1AV

From (50), it  follows that the resulting set is a parallelo-
tope,  and  thus  a  first-order  zonotope,  if V is  a  real  matrix

. Note that if matrix A has real eigenvalues, by per-
forming the Jordan decomposition , then matrix V
presents real entries. On the other hand, if A presents complex

λi, j = a±bi

V̄

conjugate  pairs  of  eigenvalues that  satisfy  (51),
then the following steps can be performed in order to obtain a
matrix  that satisfies Lemma 1.

Λ = V−1AV

x± yi

λi, j = a±bi

1) Compute Jordan decomposition , such that Λ
is an upper triangular matrix with the eigenvalues of A in the
main diagonal, and V presents complex pair of columns 
associated which each pair of complex conjugate eigenvalues

.
x± yi

x,y

V̄ Λ̄ = V̄−1AV̄

2) Substitute  each  pair  of  complex  columns by  the
pair of real vectors ( ) that span the corresponding 2-dimen-
sional invariant subspace of A [51]. This generates a new non-
singular matrix  such that .

Λ̄

λr Bi
λi, j = a±bi

Note  that  matrix results  in  an  upper  triangular  matrix
whose elements in the main diagonal are the real eigenvalues

 of A  or 2-by-2 block matrices  associated with the com-
plex conjugate pairs  with the form

Bi =

 a b

−b a

 .
|Λ̄|

|λ(|Λ̄|)| < 1
λr |λr | < 1

|λ(|Bi|)| < 1 λ(|Bi|)1,2 = |a| ± |b| V̄
|λ(|Λ̄|)| < 1 S

Lemma  1  requires  that  the  eigenvalues  of  satisfy
.  From the asymptotic  stability  of A  it  follows that

the  real  eigenvalues already  satisfy  that .  On  the
other  hand,  for  the  complex  eigenvalues  it  must  be  satisfied

,  with .  Therefore, is  a  real
matrix  satisfying ,  and  thus is  a  zonotopic  RPI
set, for those complex eigenvalues that satisfy

||a| − |b|| ≤ ||a|+ |b|| = |a|+ |b| < 1. (51)
Finally,  the  parallelotope  (50),  can  be  easily  transformed

into  a  first-order  zonotope  in  generator  representation  by
means of the relationships presented in [52].
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