
HAL Id: hal-04027822
https://hal.science/hal-04027822

Submitted on 14 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Task design for Klein’s second discontinuity
Carl Winsløw, Rongrong Huo

To cite this version:
Carl Winsløw, Rongrong Huo. Task design for Klein’s second discontinuity. Fourth conference of
the International Network for Didactic Research in University Mathematics, Leibnitz Universität
(Hanover), Oct 2022, Hannover, Germany. �hal-04027822�

https://hal.science/hal-04027822
https://hal.archives-ouvertes.fr


  

Task design for Klein’s second discontinuity 

Carl Winsløw1 and Rongrong Huo1,  

1University of Copenhagen, IND, Faculty of Science, Denmark, winslow@ind.ku.dk 

Since the 19th century, studies of mathematics at university have been a main 

component of the usual preparation for teaching at secondary level. Already around 

1900, Klein pointed out that specific measures are needed to ensure that the university 

mathematical preparation becomes useful to the teacher, and he insisted that 

universities themselves must take responsibility for these measures. In this paper, we 

discuss this problem, as it presents itself in 2022, and we present and exemplify some 

principles of task design which are intended to support students’ mobilisation of 

university mathematical knowledge in relation to specific mathematical challenges for 

high school teachers. 
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THE PROBLEM 

The gap between university mathematics and secondary school mathematics has 

widened considerably in the 20th century. At the same time, the two institutions and 

their mathematical disciplines are not monolithic. At universities, mathematics has 

developed into several related, yet quite different disciplines of teaching and research, 

including the various domains of “pure mathematics” but also other disciplinary 

branchings referred to by labels such as applied mathematics, data science, computer 

science, statistics and even parts of engineering, finance and other profession oriented 

sciences. All of these are to some extent “references” for secondary school level 

mathematics: particularly at the upper secondary level (with students aged 15-16 

onwards), various “streams” are present in most countries, which not only offer more 

or less mathematics, but also mathematics which can be more or less closely related to 

the university level forms of mathematics. This complicates both of the transition 

problems, described by Klein as the “double discontinuity” (Klein, 1908/2016; 

Winsløw & Grønbæk, 2014). One cannot simply talk of one “school mathematics” and 

of one “university mathematics”.   

Here we will consider only the second discontinuity, between university studies of 

mathematics (in some form) and teaching secondary level mathematics (in some form). 

It arises for university students as they prepare to become secondary level teachers. In 

most countries, this involves some mixture of university mathematics studies (some 

are in fact designed for teachers while some are not) where in general the second 

discontinuity must be considered. We do not consider generic educational components 

here, but only those parts that are directly aimed at adapting the future teachers’ 

mathematical knowledge to presumed needs for teaching at the secondary level, with 

its variation and the rest of the students’ university mathematical preparation in mind. 

Even in European countries, the organization of teacher education programmes – and 

in particular, the part we focus on here – varies considerably. It can be considered as a 
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bridging problem, where the continents to be bridged are two curricula: the mandatory 

programme of mathematics units studied at university (excluding the profession 

oriented part), and the secondary curricula in which the student will be teaching. In 

many countries (such as France and Denmark), there is a “consecutive” organization 

where the professional part comes last; in other countries, like Germany, a more 

“parallel” organization can be found. 

We will now further delimit our problem, considering with Watson and Ohtani (2015, 

p. 3) that “the detail and content of tasks have a significant effect on learning; from a 

cultural perspective, tasks shape the learners’ experience of the subject and their 

understanding of the nature of mathematical activity; from a practical perspective, tasks 

are the bedrock of classroom life”. This leads us to the following general problem: 

What are possible principles for designing tasks which, within a consecutive model, 

allow future teachers to adapt their mathematical background to the professional tasks 

of teaching mathematics at secondary level? In particular, how do these principles 

relate to mathematical tasks worked on by the future teachers at university, and by 

students in the schools where they prepares to teach? 

We note that similar questions were studied by Bauer (2013) within the parallel model 

found in Germany.  Naturally, the answers proposed here cannot exhaust the full range 

of relevant principles for task design related to courses in the consecutive model, but 

the focus on “adapting their mathematical background” will nevertheless allow us to 

propose a reasonably complete set of principles. Our discussion, at the end of the paper, 

will focus on the extent to which the proposed principles may be adapted or even 

extended to other similar, but different contexts. However, even before that, we need 

to furnish a more precise framework for the above problem, and then present our 

context, principles, and some examples of their use. 

THEORETICAL FRAMEWORK AND RESEARCH QUESTION 

We adopt, from the anthropological theory of the didactic (ATD), the notion of 

institution, which, are roughly speaking, social systems. This wide and unclear 

definition can be made more precise (see e.g., Chevallard, 2019, p. 92): human beings 

occupy, throughout their lives, various positions p in different institutions I, and for 

each of these positions, certain relationships, denoted RI(p,O) are required to certain 

objects O (O can be, for instance, knowledge objects, physical entities etc.). One can 

even define the elusive notion of institution as being a configuration of positions, each 

defined by a set of such relationships which occupants of the position is required to 

have in order to occupy p within I. For instance, to be a teacher t in a school institution 

S, it is required to hold certain relationships to a number of didactical tasks, to hold 

certain degrees etc. – these tasks, degrees and so on all being objects whose existence 

for S is confirmed by the relationships held by (some) positions in S.   

Institutions may come in types such as schools and universities. Institutions may also, 

at least apparently “share” objects, for instance in the sense that they label certain 

objects in the same way. Yet, what is labelled, for instance, “real numbers” and 



  

“algebra” may not only differ from institution to institution, but even from position to 

position within these.  

The second discontinuity has been modelled, within this framework, by Winsløw 

(2013) as pertaining to passages of the type  

RU(σ,ω) → RS(t ,O) 

where U is the university institution, σ is a student in U, ω is a (mathematical) 

knowledge object  to which σ is required to hold the relationship RU(σ,ω); and S is a 

school institution, t is a mathematics teacher in S, and O is an object to which t is 

required to hold the relationship RS(t,O). For the passage to be meaningful, it is 

naturally expected that RU(σ,ω) is of some relevance to RS(t ,O), so that the latter could 

be supported by the former, presumably with some further development. If this 

development occurs, at least in part, already within the university institution, we can 

rewrite the above passage as 

RU(σ,ω) → RU(σ,O) ≅ RS(t,O) 

where RU(σ ,O) ≅ RS(t,O) indicates an approximate similarity of the relationship 

obtained by σ within U and the relationship to be held by t within S. If working with a 

task of type T can achieve the passage RU(σ,ω) → RU(σ,O), at least in part, we write 

RU(σ,ω) 
𝑇
→ RU(σ,O) 

In this paper, we now consider the following research question:  

Given a relationship RS(t,O) required to occupy t in S, how could some T be designed 

so that σ could develop RU(σ ,O), with  RU(σ,O) ≅ RS(t,O), based on some RU(σ,ω)? In 

other words, what principles can be formulated for the design of T ? 

Here, we present and explore four principles which have progressively been identified 

in the course of more than a decade of task design in the context described in the next 

section. The principles each focus on O at one of the praxeological levels  (type of task, 

technique, technology and theory – for definitions of these ATD notions, see e.g., 

Chevallard, 2019, pp. 91-92). 

P1. In case O is a mathematical type of task taught in S, T is simply a task of which 

is somewhat more demanding – but otherwise similar – to O, with the additional 

demands being satisfied by drawing on some RU(σ,ω). 
P2. With O as in P1, T requires σ to pose a task of type O, based on some RU(σ,ω) 

which may also lead to a more theoretical or structured relation RU(σ,O). 

P3. If O is one or more mathematical techniques (authentic or imaginary, correct or 

erroneous), which 𝑡 should be able to foresee and assess, then T could ask σ to 

foresee or assess O while drawing on some ω; 

P4. If O is a segment of mathematical technology or theory, which 𝑡 should teach or 

otherwise know, then T could demand that σ establishes whether O is 

mathematically consistent with ω – for instance, can be proved based on ω. 



  

Klein’s discontinuities focus on the future teachers’ relation to (school) mathematical 

objects. Klein points out that it is potentially useful for future teachers to establish such 

relations RU(σ,O) from the “higher standpoint” of university mathematics (an element 

of which we denote here by ω); but that doing so requires deliberate support measures 

within U, here conceived as engaging σ in work with carefully designed tasks T. The 

above principles then distinguish, but do not exhaust, important cases for the 

construction of T, as we will show through examples.  

To prevent misconceptions, we also underline that the research question – and therefore 

the list – does not pretend to cover all task design that may be relevant to mathematics 

teacher education. Indeed, future teachers also need to develop didactical knowledge 

(both practical and theoretical) that cannot be directly supported by elements of “pure” 

mathematics as learned in standard university courses.  

We will now outline the concrete context in which the four principles have emerged, 

and then present and analyse some examples of concrete T designed with them. 

CONTEXT 

The principles P1-P4 have progressively been made explicit in the theoretical terms 

given above, as they were developed and used within a concrete context by the first 

author (since about 2009). This context is a course, called “Mathematics for the 

teaching context” (UvMat), offered at the University of Copenhagen to students who 

do a minor in mathematics in view of becoming high school teachers.  

We now outline what RU(σ,ω), and in particular ω, could be in this context (for minor 

students σ). Before UvMat, σ has taken at least 1.25 years’ credit of mathematics 

courses, covering: one- and multi-variable calculus, linear algebra (including axiomatic 

vector space theory), ordinary differential equations, abstract algebra (rings, fields and 

groups), differential geometry, discrete mathematics, statistics and probability, and 

analysis up to Fourier and metric space theory. The calculus part involves some level 

of computer algebra use.  

We note that the mathematics courses drawn on are basic courses in the bachelor 

programme on pure mathematics. They focus primarily on theory development, and 

students are required to solve relatively theoretical tasks (except for the calculus part) 

involving deductive reasoning. Virtually no examples are studied of how the theory 

applies to solve practical problems outside of pure mathematics. 

What, by contrast, could RS(t,O) – and in particular O – be? Danish high school 

mathematics has several levels and variations, but the core could be described as a 

study of concrete one variable functions and models based on such, up to practical uses 

of differential and integral calculus. Other mandatory domains are probability, statistics 

and geometry. Students’ grades in mathematics depend largely on their ability to solve 

standard tasks, with or without the use of computer algebra systems. Deductive 

reasoning still appears, but recent curricula give reinforced attention to modelling and 



  

interactions with other high school disciplines, and to mathematical inquiry. Also, the 

use of computer tools – especially computer algebra systems – is strongly emphasised.  

A bridge needs solid bases on both sides. It is not an aim for UvMat to connect all of 

the mathematical background of students to all of the high school mathematics they 

will have to deal with as teachers, but each task in UvMat must have solid connections 

to both, and in particular focus on important aspects of high school mathematics. 

EXAMPLES AND ANALYSIS OF TASKS DESIGNED FROM P1-P4 

In the following, the tasks we present come from the final exam in the course; former 

exam items (from an inventory of well over 100) are also used as exercises in the 

course. The students are informed, though, that exam items are never mere variations 

of former exam items; they always require the student to create new connections 

between course contents and university mathematics, and the high school object 

involved. Thus, the continuous development of such tasks form a central challenge of 

running UvMat. As exam tasks need to be relatively simple, the course also involves 

more involved assignments (see Huo, to appear, for an in-depth analysis of an 

example). 

P1: Solving “advanced variations” of school mathematical tasks 

Mathematics teachers naturally need to be able solve the tasks given to students, and 

some of the items worked on in UvMat are merely advanced variants of high school 

tasks (often involving non-trivial construction of a mathematical model, e.g. for a 

probability item). Here is an example: 

Britta participates in a multiple choice test with n questions. For every question, one can 

choose among 3 possible answers, of which only one is correct. Passing the test requires 

that one chooses correct answers for at least half of the questions. Britta knows nothing of 

the subject and answers randomly. 

a) If there are 10 questions, what is the probability that Britta passes the exam? 

b) If the test is to be made, so that students like Britta has less than a 5% chance to pass, 

how big must n then be? Explain your answer. 

(Exam June 2019, exercise 5) 

Question a) is a standard application of the binomial distribution and, as such, is simply 

a high school level task. It merely prepares the second question b), which is technically 

harder, as the parameter n is unknown, rather than given. Students use tools to compute 

values of the binomial distribution function corresponding to given values of the 

parameters n and p (the latter being 
1

3
 here). Another difficulty is that the meaning of 

“at least half” depends on whether 𝑛 is even or odd. Many students will solve b) by 

computing, for increasing values of 𝑛 , the binomial distribution function 𝐹𝑛,1/3 at 

something like 𝑛/2. Since 𝐹𝑛,1/3 is only defined on {0,1, … , 𝑛},  many students simply 

look for the first even n where  𝐹𝑛,1/3 (𝑛/2) > 0.95, which in this case is 30. However, 



  

the correct answer is, in fact, just 23 (we leave it to the readers to work out the details, 

using some software able to do compute binomial distributions).   

To understand the kinds of ω elements to be drawn on here, we note that b) is quite 

similar to “inverse problems” related to probability distributions. The students have 

indeed encountered such problems in connection with subjects like confidence 

intervals, treated both in this course (from a high school perspective) and in the 

predecessor courses on statistics (at a technically more advanced level). Thus, solving 

b) certainly draws on very specific theoretical and technical elements ω, in addition to 

familiarity with a certain computer algebra system (Maple), which they have developed 

both in UvMat and in some of the prerequisite bachelor courses. This also illustrates 

that a variety of RU(σ,ω) – even with ω being rather far from the school mathematical 

type of task O – could be relevant to such “extended” tasks of type O.  

P2: Posing school mathematical tasks 

Some of the mathematical tasks, which teachers need to solve regularly, are related to 

preparing tasks for their students – either by selection or construction. Here, more 

advanced mathematical work than merely solving tasks  can be involved. The 

following UvMat item is an attempt to generate such a more advanced perspective: 

We say that a quadratic equation is nice if it is of form 𝑥2 + 𝑏𝑥 + 𝑐 = 0 where 𝑏 and 𝑐 are 

integers.  

a) If you are given two integers 𝑚 and 𝑛, how can you construct a nice quadratic equation 

with 𝑚 and 𝑛 as solutions? Explain a method and give an example of how it works. 

b) Can you construct a nice quadratic equation that has both a rational and an irrational 

solution? Explain. 

(Exam August 2019, exercise 2) 

The mathematical elements from university mathematics which need to be drawn on 

here, can be summarized as: knowing how to use a formal, ad hoc definition (“nice 

quadratic”) without confounding the definition with an everyday conception of “nice”; 

a result about polynomials (“𝑎 is a root of 𝑝(𝑥) if and only if 𝑥 − 𝑎 is a factor in 𝑝(𝑥)”; 

and some experience with reasoning about irrational numbers. The latter may sound a 

bit vague, but in fact, b) can be solved in many ways – the most complicated probably 

being to use the quadratic formula. A better way is to use an observation easily made 

from a), namely that the product of the solutions is 𝑐 , while this product will be 

irrational in the case described in b). Thus, very simple facts about polynomials and 

irrational numbers – not currently taught in high school, but certainly encountered at 

university – are activated here, to address what is clearly a relevant mathematical task 

for high school teachers, given that quadratic equations are taught and used there. We 

note that the kind of RU(σ,O) built here is typically more theoretical and less technical 

than what is aimed at in P1, corresponding to mobilizing more theoretical parts of ω. 



  

P3: Assessing or imagining student techniques 

Logarithm functions and their use form part of the core content in high school 

mathematics. Part of the difficulty is the “indirect” definition they are usually given, as 

inverse functions of exponential functions (cf. also P4 below). On the other hand, this 

theoretical definition is important in many frequent practices, such as solving equations 

involving exponents. The following item directly attacks such situation: 

Peter and Lise have to decide whether the equation ln 𝑦2 = 𝑒−𝑥 defines a function (with 𝑦 

as a function of 𝑥). Peter says: “Yes, for the equation can be rewritten as 2 ln 𝑦 = 𝑒−𝑥, so 

𝑦 = exp (
1

2
𝑒−𝑥).” Lise says: “No, for the equation can be rewritten as 𝑦2 = exp (𝑒−𝑥), so 

for each 𝑥-value there are two 𝑦-values”. 

a) Who is right? Give a detailed explanation of the correct answer. 

b) One of the two answers is false. Explain where the error arises. 

(Exam June 2014, exercise 3) 

We first note that this exercise involves a school mathematical task (“does the equation 

ln 𝑦2 = 𝑒−𝑥 define a function…”) but the tasks given to the university students in the 

above item is at another level: consider some (imaginary) student solutions, decide 

whether they are correct, and explain why. In fact, it is a crucial teacher task to relate 

to students’ mathematical work and provide feedback; items formed in this manner are 

therefore found occasionally (such in about 1 in 10 of the exercises proposed) 

throughout the course. As for the mathematical contents, students will know the 

identity ln 𝑥𝑎 = 𝑎 ln 𝑥  but may not have thought about that it is only valid, and 

meaningful, for positive values of 𝑥. In the exercise, Peter makes a mistake in his first 

“rewriting” of the equation, since the given equation is also meaningful for negative 𝑦, 

while the second is not.  

The university knowledge, which the students could apply to solve this item, is not 

very advanced. They have certainly worked with more formal (set-theoretical) 

definitions of functions than what is seen in high school, but the informal definition 

(“to each value of 𝑥 there must correspond exactly one 𝑦”) suffices to realize that Lise 

is right, and then look for an error in Peter’s rewritings. That identities such as 

ln 𝑥𝑎 = 𝑎 ln 𝑥  may have restricted validity (beyond what makes the expressions 

meaningful) is also something which university studies could increase students’ 

awareness of. In particular, unlike in high school, they would often see qualifications 

like “for all 𝑎 ∈ ℝ, 𝑥 > 0”, following an identity. So we can say that, in addition to the 

explicit treatment (in the UvMat course) of logarithms, the theoretical notion of 

function, and the logical subtleties related to equation solving (in particular, 

implications), the main university mathematical element (ω) to invest in this task is a 

more developed practice of applying identities only were they are valid. This specific 

RU(σ,ω) turns out, in practice, not to be sufficiently developed for many students. 

Indeed, as observed by Winsløw et al. (2014), working with tasks designed to facilitate 

some passage RU(σ,ω) → RU(σ,O often involves “repairing” dysfunctional RU(σ,ω). 



  

P4: Making new theoretical connections 

A great deal of the work in UvMat – perhaps as much as half – concerns theoretical 

aspects of high school mathematics, like proofs of results or constructions which 

appear more informally in high school, such as the general meaning (and construction) 

of 𝑥𝑦  for 𝑥 > 0, 𝑦 ∈ ℝ; see Winsløw et al., 2014, pp. 77-79). The strong focus on 

theory is in part a consequence of the aim to draw on university elements ω (where 

RU(σ,ω) is often very limited when it comes to students’ practical experience with the 

praxis level of ω. The general familiarity that students have gained with formal theory 

is frequently an asset they need to draw on, as they solve tasks based on P4. 

Our last example relates to work carried out in the course with the theory behind linear 

regression. In high school mathematics, it is mainly taught as a practice carried out 

with some tool like excel, along with informal explanations that this provides “the best 

linear model” for a given 2d data set. In the course we revisit proofs which the students 

may have seen in statistics courses, along with more elementary approaches (see 

Winsløw et al., 2014, pp. 79-81). The following item links the theoretical problem of 

“minimizing least squares” to one-dimensional optimization as taught in high school: 

A simplified form of linear regression results from requiring that the regression line passes 

through the point (0,0), so that the equation of the line is of form 𝑦 = 𝑎𝑥 where 𝑎 is a 

constant. 

a) Derive a formula for 𝑎 corresponding to a data set (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛), by determining 

𝑎 such that the sum 𝑆(𝑎) = ∑ (𝑦𝑘 − 𝑎𝑥𝑘)2𝑛
𝑘=1  is minimized. 

b) Explain how this formula can be used to determine the resistance 𝑅 in an electrical 

circuit, based on corresponding values of the current 𝐼 and the voltage 𝑈, knowing that 

Ohm’s law says that 𝑈 = 𝑅𝐼. 

(Exam January 2012, exercise 5) 

It is a fact that optimization of two variable functions is not usually taught in Danish 

high school, and that alternative approaches to linear regression (as taught in UvMat) 

are also somewhat beyond what most high school classes would meet, or be able to 

cope with. While a) and b) rely in principle only on high school mathematics, the 

theoretical nature of the questions – and the requirements in terms of symbolic 

computation – certainly draws on RU(σ,ω) with ω involving both practical and 

theoretical elements that are not strictly related to linear regression, but nevertheless 

supposed to be developed or strengthened at university.  

The last question is not technically demanding (one should explain translate the 

formula from a) to give an estimate for 𝑅 in terms of a set of measurements (𝐼𝑘, 𝑈𝑘) of 

current and voltage). Nevertheless, it is important for mathematics teachers at high 

school to know and integrate models from neighbouring disciplines in their teaching, 

not least when it comes to statistics topics like the present one. Question b) requires 

one to make a connection between a simple model from physics and the mathematical 

result developed in a). 



  

DISCUSSION AND CONCLUSIONS 

To what extent can the principles and examples above be of interest outside of the 

context in which they arose? To most university teachers and researchers interested in 

the general problem we described in the introduction, the principles (derived from an 

ATD model of the problem) would remain arid speculations without the examples. Yet, 

it is fully possible that many of the same scholars would also not see the relevance of 

the examples for contexts familiar to them. Indeed, they are more or less arbitrary cases 

of efforts to link certain objects O and ω  which occur in Danish high school 

mathematics and in the first two years of undergraduate mathematics at the University 

of Copenhagen. Most probably, many of these objects could in themselves be found in 

equivalent contexts elsewhere, but the emphasis on theoretical and technical aspects of 

them, reflected in the examples, could still be felt to be less relevant there. For instance, 

a recent study by Bosch et al. (2021) of external didactical transpositions in university 

mathematics suggests that in North America, the first years of undergraduate studies 

are often much more focused on technical aspects of calculus. This might mean that 

integrating such technical aspects would be seen as much more important than what is 

reflected by the examples given here, while the emphasis on proof (reflected by P4) 

would be considered less helpful. Similarly, for contexts in which probability 

distributions or linear regression do not feature centrally in the secondary curriculum, 

the example given for P1 and P4 would appear irrelevant.  

Thus, to go beyond those examples of T – that certainly depend on the specific context  

– we really need to hold on to principles such as P1-P4. They can constitute a 

framework which could be adapted to such more or less different contexts: engaging 

students in work with O (centrally occurring in secondary mathematics) that is 

characterised by a focus on different praxeological levels of relevant to future teachers 

on the one side, and on drawing on similar levels of some central objects ω in students’ 

university mathematical background.  

But this conclusion merits other reservations. Applying the four principles take a 

certain inventory of O and ω as given conditions, and the potential as well as the 

feasibility of linking them as a working hypothesis (following Klein, 1908/2016). At 

least two major questions are left open by this: the question of external didactical 

transposition, both at university and in secondary school, resulting in the given O and 

ω; and the actual importance of the potential for the subsequent professional practice 

of t (a position which is somehow put aside by the non-examined “similarity” RU(σ,O) 

≅ RS(t,O)). The first major question contains in fact two separate aspects: the 

possibility of inadequacy (or at least needs for development) of secondary 

mathematics, and the problem of determining the adequate mathematical basis to be 

developed at university, and the extent to which this should consist in teaching 

conceived for more general publics than future teachers. The last question has been 

examined in more detail by Winsløw (to appear), linking it to recent quantitative 

studies of correlation between teachers’ university mathematical background and the 

quality of their performance as secondary teachers. This kind of research may also have 



  

bearings on the second major question, as it involves identifying structural similarities 

of teacher education programmes that produce, according to such quantitative studies, 

teachers with high performance (measured by learning gains of the teachers’ students, 

or by measures of teacher knowledge that correlate with high teaching performance). 

Among these similarities are, in fact, a combination of certain standard undergraduate 

mathematics units and units focusing on teachers’ knowledge of central secondary 

mathematics. But we still need more direct and theoretically precise ways to investigate 

how students’ participation in such courses affects their later performance as teachers, 

and in particular how principles for task design may contribute to enhanced effects. 
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