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Abstract

Context Identifying clusters (i.e., subgroups) of patients from the analysis of medico-administrative

databases is particularly important to better understand disease heterogeneity. However, these

databases contain different types of longitudinal variables which are measured over different follow-up

periods, generating truncated data. It is therefore fundamental to develop clustering approaches that

can handle this type of data.

Objective We propose here cluster-tracking approaches to identify clusters of patients from trun-

cated longitudinal data contained in medico-administrative databases.

Material and Methods We first cluster patients at each age. We then track the identified clusters

over ages to construct cluster-trajectories. We compared our novel approaches with three classical

longitudinal clustering approaches by calculating the silhouette score. As a use-case, we analyzed an-

tithrombotic drugs used from 2008 to 2018 contained in the Échantillon Généraliste des Bénéficiaires

(EGB), a French national cohort.

Results Our cluster-tracking approaches allow us to identify several cluster-trajectories with clinical

significance without any imputation of data. The comparison of the silhouette scores obtained with

the different approaches highlights the better performances of the cluster-tracking approaches.

Conclusion The cluster-tracking approaches are a novel and efficient alternative to identify patient

clusters from medico-administrative databases by taking into account their specificities.

Keywords: longitudinal clustering, cluster tracking, medico-administrative databases, patient networks

1 Introduction

The reuse of medico-administrative databases is nowadays extremely popular. Such databases are in-

deed increasingly available for epidemiological, clinical and healthcare research to study a large range of

∗These authors contributed equally to this work.
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health-related issues [1]. However, medico-administrative databases are complex and appropriate analysis

methods are required [2]. First, each patient is described through a large number of variables. Analysis

methods able to deal with high dimensional data are hence needed. Second, these variables are of a dif-

ferent nature (e.g., drug reimbursements, diagnoses, hospitalizations), and the methods need to consider

heterogeneity. Finally, the variables vary over time and are measured over different follow-up periods,

thereby generating truncated data when focusing on a given stage of life or disease. This time dimension

is very difficult to apprehend and, overall, only few methods can deal with high dimensional truncated

longitudinal data.

Among the various objectives targeted by the reuse of medico-administrative databases, the identifi-

cation of clusters (i.e., subgroups) of patients is particularly significant. Indeed, given the complexity and

the heterogeneity of human diseases, we have to move from a “one size fits all” paradigm towards a more

personalized care and a better understanding of disease heterogeneity [3, 4]. In general, clusters of patients

related to a given disease are identified using the coded diagnoses. However, in medico-administrative

databases, the diagnoses are often missing due to truncated patient history. For example, if a patient

had an infarction twenty years ago, the hospital stay related to this event will not be available in the

database but the patient will still have treatments for secondary prevention of cardiovascular diseases.

Patient history could hence be inferred from their current treatments.

To the best of our knowledge, three categories of approaches are available to cluster patients us-

ing longitudinal data. These longitudinal clustering approaches are raw-data-based, feature-based and

model-based [5]. In raw-data-based approaches, classical (non-longitudinal) clustering algorithms, such as

Kmeans, adapt their similarity measure to be applied to the raw longitudinal data. For instance, Kmeans

adapted to raw longitudinal data has been used to identify clusters of children based on inattention and

hyperactivity during elementary school [6], or to assess the relationships between fibrosis and bioclinical

parameters [7]. In feature-based approaches, features are first extracted from the raw longitudinal data.

These extracted features are then used as input for classical (non-longitudinal) clustering algorithms. For

instance, Wang, Smith, and Hyndman extracted several features from longitudinal data in three (non-

clinical) benchmark datasets [8]. They then used the extracted features as input in hierarchical clustering

and in an unsupervised neural network algorithm. Although only a small number of features are used

for the clustering, the identified clusters are similar to the clusters identified using all the data. Finally,

model-based approaches assume that the raw longitudinal data are generated by a mixture of models

and intend to extract the parameters of these models. Model-based approaches are, to the best of our

knowledge, the most frequently used in biomedical research. The two prevailing model-based approaches

are Growth Mixture Modeling (GMM) and Latent Class Growth Analysis (LCGA) [9]. These methods

identify clusters of patients based on the common evolution of their longitudinal variables over time.

GMM allows small variations around this common evolution between patients within cluster whereas

LCGA assumes no variation [10]. Mora et al. applied GMM to identify clusters of women according to

the magnitude and timing of depressive symptomatology from pregnancy to two years postpartum [11].

Colder et al. also used GMM to identify clusters of adolescents based on their smoking behavior over four

years [12]. LGCA was used by Downie et al. to identify clusters of patients with acute low back pain

from pain scores over twelve weeks [13] and by Landa et al. to identify clusters of babies at high risk for

autism based on their language, motor and nonverbal cognitive functioning from 6 to 36 months [14].

However, raw-data-based, feature-based and model-based longitudinal clustering approaches have
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some limitations. For instance, truncated data are not handled. Patients with truncated data must be

removed or their data must be imputed. In the context of medico-administrative databases, truncated

data are an inescapable issue, as patients are followed-up over a fixed period. In addition, the number

of clusters must be specified a priori. To determine the optimal number of clusters, criteria are usually

used to assess the quality of the clustering [15]. These criteria include for instance the silhouette score

[16] [17] or the Davies-Bouldin criterion [18] [19]. However, the optimal number of clusters might differ

depending on the criterion chosen [20]. Another limitation specific to the model-based approaches is that

the majority of the studies focus on only one longitudinal variable. The joint analysis of two or three

longitudinal variables is possible ([21], [22], [23], [24]), but becomes computationally challenging for more

than three variables. Finally, in all three categories of approaches, each patient is assigned to only one

cluster over the entire time period.

An alternative strategy for clustering patients from longitudinal data could be cluster tracking. Cluster

tracking is an approach mainly used in the field of social network analysis [25]. It is a two-step strategy.

In the first step, the clusters are identified at each time point. In the second step, the clusters are matched

between the different time points to allow their tracking along the timeline. Clusters are identified at

each time point using non-longitudinal clustering algorithms [26, 27].

Different methods can be used to identify clusters including methods such as Kmeans or network

clustering algorithms. For instance, Li et al. constructed a patient network based on clinical similarity

and performed a clustering approach in order to identify subtypes of type 2 diabetes [28]. Wang et al.

constructed patient networks from omics data and identified clusters of cancer patients with different

survival profiles [29]. Patient networks have the advantage of preserving privacy because the interactions

between patients are considered rather than absolute data [30]. In addition, a large number of algorithms

exist for clustering networks [31]. However, to our knowledge, current network-based approaches to

identify patient clusters do not consider longitudinal data.

We propose here novel cluster-tracking approaches to identify patient clusters and trajectories from

longitudinal data contained in medico-administrative databases. Our approaches starts by identifying

clusters of patients at each time step. Patient clusters are identified using two clustering strategies:

Kmeans directly applied to the raw data or the Markov Cluster algorithm (MCL) applied to patient

networks constructed from raw data. We then track the clusters identified at the different time steps based

on their sharing of patients. As a use-case, we analyzed drug reimbursements contained in the national

cohort managed by the French health insurance, called the Échantillon Généraliste des Bénéficiaires

(EGB). Our aim was to identify clusters of patients that could be related to given diseases using only

drug reimbursements and in the absence of any coded diagnoses. We identified different trajectories of

patient clusters with clinical interest. Finally, we compared these cluster-tracking approaches with three

existing types of longitudinal clustering approaches, by calculating a modified silhouette score. The best

modified silhouette scores were obtained with the two cluster-tracking approaches.

2 Material and methods

2.1 Cluster-tracking approach

We propose novel approaches for clustering patients from longitudinal data extracted from medico-

administrative databases. These approaches start by identifying clusters of patients at each time step.
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To this goal, we used two different clustering strategies: the Markov Cluster algorithm (MCL) applied

to patient networks built from raw data and Kmeans applied directly on raw data. Clusters are then

tracked over time steps to define cluster-trajectories.

2.1.1 Identifying clusters of patients from patient networks

The first clustering strategy used to identify clusters of patients relies on the construction of patient

networks. We started by constructing a patient network for each time step. We then applied the MCL

clustering algorithm on each network.

Constructing patient networks A patient network is a graph G = (V,E) with V patient nodes and

E edges representing interactions between patient nodes. We built a network for each time step. Each

network is constructed using a similarity matrix Mi = [mp1,p2
]n where n is the number of patients, i is

the time step and mp1,p2
is the similarity between patients p1 and p2 at the time step i. This similarity

matrix is symmetrical, with mp1,p2
= mp2,p1

.

The similarity between patients at time step i can be computed using different similarity measures. We

tested four different similarity measures: the Cosine similarity, the opposite of the normalized Euclidean

distance, the Jaccard index and the generalized Jaccard index (Supplementary section S1).

The similarity matrices built for each time step are then filtered according to a threshold t. The goal

of the filtering step is to obtain networks with a reduced number of edges [32]. The filtered matrices are

next used to build patient networks. We tested different thresholds. For each threshold t, the filtered

matrix M t
i is obtained as follows:

M t
i =

mp1,p2 if mp1,p2 ≥ t

0 otherwise,
(1)

where a null value indicates that patients p1 and p2 have a similarity value below the threshold t and will

thereby not be connected in the patient network. From each similarity matrix M t
i , the associated patient

network can be constructed. An edge between patients P1 and P2 is weighted by the value mp1,p2 of the

matrix.

Reducing the number of edges may lead to disconnected nodes. Therefore, we selected the threshold

t in the similarity matrices which allowed us to obtain the minimum number of isolated patient nodes in

any network (Supplementary section S2).

Clustering patient networks We applied the Markov Cluster algorithm (MCL) [33] on the largest

connected component of the patient networks. The MCL algorithm uses random walks to simulate flows

on the network. The flows allow to distinguish network areas where nodes are strongly connected, which

correspond to the clusters. We used the version 0.0.6.dev0 of the “markov-clustering” Python package

with the default parameters.

2.1.2 Identifying clusters of patients from raw data

We described in the previous section a clustering strategy based on patient networks. We also used

Kmeans as a second clustering strategy [34]. Kmeans is applied directly on raw data, for each time step.
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In Kmeans, the number of clusters must be specified a priori. We determined the optimal number of

clusters per time step by calculating the silhouette score [35]. The silhouette score assesses the clustering

quality by computing the separation distance between the obtained clusters.

Let us define

ai(p) =
1

|Ci
p| − 1

∑
j∈Ci

p,j 6=p

d(p, j), (2)

the mean distance of patient p to their cluster Ci
p at time step i, with |Ci

p| the number of patients in Ci
p

and d(p, j) the Euclidean distance between patients p and j belonging to Ci
p, and let

bi(p) = min
Ci

z 6=Ci
p

1

|Ci
z|

∑
z∈Ci

z

d(p, z), (3)

be the mean distance of a patient p to their neighboring cluster Ci
z at time step i, with |Ci

z| the number of

patients in Ci
z and d(p, z) the Euclidean distance between the patient p belonging to Ci

p and the patient

z belonging to Ci
z.

We start by calculating the silhouette score for each patient at time step i as follows:

si(p) =
bi(p)− ai(p)

max(ai(p), bi(p))
, (4)

The silhouette score at a given time step i over all the patients is obtained as follows:

Si =
1

Ki

Ki∑
k=1

1

|Ck|
∑
p∈Ck

si(p), (5)

with Ki the number of clusters at time step i, |Ck| the number of patients in the cluster Ck.

The silhouette score varies between -1 and 1. Values close to 1 indicate that the clusters are well-separated.

Values close to 0 indicate overlapping clusters. Negative values indicate that the clusters are worse than

random.

2.1.3 Tracking the clusters over time steps

In the previous step, we identified sets of clusters per time step either from patient networks with MCL

or from raw data with Kmeans. We then intend to follow the clusters over the different time steps. Let

Ci and Ci+1 be two sets of clusters identified at 2 consecutive time steps, i and i + 1. We computed

the intersection (i.e., the number of common patients) between every pair of clusters (c, c′) obtained at

2 consecutive time steps:

Qi(c, c′) = |c ∩ c′| ∀i, (6)

with c ∈ Ci and c′ ∈ Ci+1.

Next, for each cluster c ∈ Ci, we identified the cluster from the set of clusters Ci+1 having the greatest

number of common patients as follows:

T i
c = argmax

c′
Qi(c, c′). (7)
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Please note that if, for the cluster c, there is more than one cluster match in T i
c (i.e., if there is more than

one cluster with the same maximum number of common patients), all the clusters are included in T i
c .

We visualized the tracking of clusters with an alluvial plot, in which the blocks represent the clusters

and the stream fields between the blocks represent the number of common patients. The height of the

blocks and the thickness of the stream fields are proportional to the number of patients.

2.1.4 Identifying cluster-trajectories

We identified in the previous section sets of successive clusters. We called the sets of successive clusters

cluster-trajectories. Patients in the same cluster-trajectory are considered to follow the same evolution

over time for the longitudinal variables of interest.

The cluster-trajectories are visualized using a flowchart composed of blocks representing the clusters.

The arrow thickness between the blocks represents the number of common patients. All clusters identified

are described using the meta-information available for the patients.

2.2 Longitudinal clustering approaches

We compared the performance of the cluster-tracking approaches proposed in this work to existing state-

of-the-art approaches dedicated to clustering patients using longitudinal data. The three categories of

state-of-the-art longitudinal clustering approaches are raw-data-based, feature-based and model-based

approaches [5, 36]. We selected three specific methods, each representative of a category of approach. All

longitudinal clusters identified with these methods are described using the meta-information available for

the patients.

2.2.1 Raw-data-based approach

Raw-data-based approaches work directly with longitudinal raw data [5, 36]. We selected Kml3d, an R

package providing an implementation of Kmeans specifically designed for longitudinal data [37]. This

package takes as input a 3-dimensional matrix M(n, i, y) with n the patients, i the time step and y the

set of variables characterizing the patients. The algorithm calculates the Euclidean distance between all

patients (in n-dimensional space). Patients with the smallest distance are grouped in the same cluster.

Importantly, the number of cluster needs to be defined a priori.

Kml3d cannot handle truncated data but allows imputation using different methods. We used the copy

mean method (default), which imputes data using a linear interpolation and adds a variation to adapt

the shape of the interpolation to the shape of the mean of the other values [38]. Patients are removed

from the analysis when their number of truncated data are greater than |I| − 2, with I the set of time

steps.

2.2.2 Feature-based approach

Raw data usually have a high dimension. The goal of the feature-based approaches is to reduce the

dimensions by extracting several features characterizing the longitudinal data [5, 36]. These features can

then be used as input in classic (non-longitudinal) clustering algorithms, such as Kmeans or hierarchical

clustering. We extracted the most common features: mean, standard deviation, kurtosis and skewness

[39]. The kurtosis and the skewness describe the shape of the distribution of longitudinal data. We
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therefore obtained four features per patient and per longitudinal variable. These features were used as

input in Kmeans.

2.2.3 Model-based approach

In model-based approaches, each longitudinal variable is characterized by a model or a mixture of models

[5, 36]. We applied Growth Mixture Modeling (GMM), which assumes that a model with a given mean and

shape is associated with each cluster [10]. Let yp be a longitudinal variable of the patient p composed of j

repeated observations and K the number of clusters, distributed with probabilities πk with k = 1, ...,K,

πk ∈ [0, 1] and
∑

k πk = 1. A growth mixture modeling is defined as follows:

yp,j|k = βk
0p + βk

1p · ij + εkpj , (8)

with ij the time step at the jth observation of the variable y, εkpj the time-specific residual errors, and

(βk
0p, β1p) the patient-specific coefficients.

In GMM, analyzing several variables simultaneously is computationally challenging. GMM can be

applied separately for each variable, but this assumes that all longitudinal variables are independent from

each other. We hence decided to use an aggregated variable Yp = [
∑

vi∈V i
p
vi ∀i ∈ Ip], with Ip the set of

time steps of the patient p and V i
p the set of longitudinal variables of the patient p at time step i. This

aggregated variable allows us to apply a single GMM.

GMM calculates for every patient their posterior probability of belonging to each cluster using this

aggregated variable as input. The cluster assigned to each patient is the one with the greatest posterior

probability.

2.2.4 Determining the optimal number of clusters

In the raw-data-based, the feature-based and the model-based approaches, the number of clusters must

be specified as a parameter a priori. In order to determine the optimal number of clusters, we calculated

several classic clustering quality criteria (Supplementary section S3). In the raw-data-based and the

feature-based approaches, we calculated the Calinski-Harabasz criterion [40], the Kryszczuk variant of

Calinski-Harabasz criterion [41], the Genolini variant of Calinski-Harabasz criterion [37], the opposite of

Ray-Turi criterion [42] and the opposite of Davies-Bouldin criterion [43]. In the model-based approach,

we calculated the Akaike Information Criterion (AIC) [44] and the Bayesian Information Criterion (BIC)

[45]. Furthermore, for all the approaches, we calculated a modified silhouette score as follows:

S =
1

|I|
∑
i∈I

Si, (9)

with Si the silhouette score at the time step i (equation 5) and I the set of time steps. In this modified

silhouette score, we calculated the silhouette score Si at each time step rather than over the entire period.

This avoids imputing truncated data.
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2.3 Choice of the metric to compare the performances of the different ap-

proaches

In the cluster-tracking approaches, we used two clustering strategies: one based on network (section

2.1.1) and one based on raw data (section 2.1.2). In order to compare the clustering quality of these two

clustering strategies, we calculated the modified silhouette score (equation 9). We also calculated this

modified silhouette score in the three longitudinal-clustering approaches. This allowed us to compare the

clustering quality of the different approaches.

We estimated the 95% confidence interval of the modified silhouette score using the percentile boot-

strap method [46]. We generated 100 bootstrap samples by resampling with replacement patients present

in the population of interest. In each bootstrap sample, we applied the different approaches and we

calculated the modified silhouette score. We obtained the confidence interval by taking the 2.5th and the

97.5th percentile of the distribution of the modified silhouette scores.

2.4 Use-case: the Echantillon Généraliste des Bénéficiaires

We used longitudinal health data from the Echantillon Généraliste des Bénéficiaires (EGB), a French

medico-administrative database. The EGB is a random sample from the French health insurance database

[47]. It is representative of the French population and contains approximately 660,000 individuals fol-

lowed over a period of 11 years. This study has been declared to INSERM (Institut National de la

Santé et de la Recherche Médicale, https://www.inserm.fr/). The information provided to individ-

uals in EGB on the possible reuse of their data and the procedures for exercising their rights comply

with the legislative and regulatory provisions applicable to the processing of personal data in the SNDS

(Système National des Données de Santé, https://www.snds.gouv.fr/SNDS/Accueil). According to

French regulation, individuals in SNDS database are informed of the reuse of their data for research

and can opposed to this reuse as defined by Articles 92 to 95 of Decree No. 2005-1309 of 20 Oc-

tober 2005 (https://www.legifrance.gouv.fr/loda/article_lc/LEGIARTI000037300884/). As re-

quired from French regulation, EGB data can be reuse for research projects from authorized persons once

the research project is declared to their institution (INSERM).

Among others, EGB contains drug reimbursements, which are longitudinal high dimensional data that

can be used to identify subgroups of patients (Figure 1). We extracted data on drugs reimbursements

between 2008 and 2018. For each patient, the date of reimbursement, the Anatomical Therapeutic

Chemical (ATC) class and the name of the reimbursed drugs are indicated (see example Table 1). The

ATC class is an international classification of drugs established by the World Health Organization (WHO)

[48]. We only considered reimbursement of drugs belonging to the ATC class of antithrombotic agents

(i.e., B01). We obtained 164,942 patients with such reimbursements. We further selected patients aged

60 to 70 and having had at least one drug reimbursement for two or more consecutive months. Our goal

was to focus only on patients with sustained reimbursements. Our final dataset is composed of 30,111

different patients and 19 different drugs. There is a majority of men in this population, with a sex ratio

(men/women) of 0.61. This is consistent with the fact that cardiovascular diseases, which accounts for

the majority of antithrombotic use, is more common in men.

We also extracted data on long-term illnesses (i.e., illnesses that last at least 6 months) from the EGB.

23,063 patients out of the 30,111 patients studied experienced at least 1 long-term illness between 60 and
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Figure 1: Extraction of longitudinal data from the EGB, considered as a use-case in this study
From the EGB medico-administrative database, we extracted antithrombotic drugs reimbursed for at least two

consecutive months from 2008 to 2018 in patients ages 60 to 70. We therefore keep here only patients with sustained
reimbursements. n: number of patients, B01: antithrombotic agents

70 years old. These long-term illnesses represent 865 distinct diseases. Each disease is coded with the

10th revision of the international statistical classification of diseases and related health problems (ICD-10

code).

Patient ID Reimbursement date ATC class Drug name
P1 01/04/2008 M01 Ibuprofen
P1 01/12/2015 B01 Aspirin
P2 01/02/2010 N02 Tramadol
P3 01/05/2016 B01 Clopidogrel

Table 1: Example of drug reimbursements contained in the EGB
M01: Anti-inflammatory and antirheumatic products, B01: antithrombotic agents, N02: Analgesics

We decided to choose the age of the patient as time steps. Indeed, we did not have information

about patients’ thrombotic events nor about the initial intake of antithrombotic drugs. Choosing age as

time steps is also consistent with the fact that the antithrombotic use strongly hinges on age. We hence

calculated, for each patient, the number reimbursements for each drug at a given age (see example Table

2). We therefore obtained a table per patient age. Focusing on patients aged 60 to 70 years old, we

obtained a total of 11 tables.

Importantly, we observed three types of truncated data (Figure 2).

In France, no more than one month’s treatment can be dispensed. We therefore considered that the

number of reimbursement for a drug is a good proxy for annual drug use. In the following, we suppose

that when patients have reimbursements for a drug, they are exposed to that drug.

We also applied our approaches to cluster patients with primary sclerosing cholangitis contain in
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pbcseq, a public database (Supplementary section S8). This database is a clinical trial including, among

another, laboratory measurements.

Patient ID B01 1 B01 2 B01 3
P1 0 10 5
P2 1 8 4
P3 2 6 3

Table 2: Example of total number of reimbursements that three patients aged 60 years received for
three drugs

B01 1, B01 2 and B01 3 are three different drugs belonging to the ATC class B01, the antithrombotic agents

Figure 2: Example of patient follow-up in the EGB
P1 has no truncated data because they were 60 years old in 2008 and therefore they have data for the entire period. P2

has truncated data because they were 60 years old after 2008 and therefore they have no data before then. P3 has
truncated data because they were 70 years old before 2018 and therefore they have no data after that. P4 has two types of

truncated data because they were 60 years old after 2008 and died before 2018.

3 Results

3.1 Cluster-tracking approaches allow identifying and tracking patient clus-

ters over ages to identify cluster-trajectories

We first apply two different clustering strategies to identify clusters of patients at each age. The first

clustering strategy is applied to patient networks (Material and methods 2.1.1). The second clustering

strategy is directly applied to raw data (Material and methods 2.1.2). The clusters are then tracked over

ages to define cluster-trajectories.

3.1.1 Identifying cluster-trajectories with the cluster-tracking approach based on networks

The first clustering strategy used in the cluster-tracking approach relies on the construction of patient

networks (Material and methods 2.1.1). Patient networks are constructed using similarity matrices. Dif-

ferent measures can be computed to calculate similarities between patients and construct the similarity

matrices (Supplementary section S1). We selected the Cosine similarity because it has the greatest vari-

ance. Using this Cosine similarity, we constructed 11 similarity matrices. In each matrix, the similarities

are computed between all patients of a given age (from 60 to 70 years old). For example, the 60-year-old
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matrix is constructed by computing the similarities between all patients aged 60 between 2008 and 2018.

Patient networks are then constructed by applying a threshold on the similarity matrices. Patients asso-

ciated with a similarity higher than the threshold will be linked by an edge in the patient network. We

tested different Cosine similarity thresholds and selected a threshold of 0.8. This threshold was chosen

as the best trade-off to minimize the number of isolated patients while reducing the number of edges

(Supplementary section S2). We obtained 11 patient networks (one by age, see Table 3 and Figure 3 for

the network of patients aged 60 years old).

Figure 3: 60-year-old patients network
In this network, nodes represent all patients aged 60 between 2008 and 2018 and edges represent the interactions between

those patients having a Cosine similarity of at least 0.8. The length of edges is inversely proportional to the Cosine
similarity. Nodes of the same color belong to one of the 127 clusters identified with the Markov Cluster algorithm.

We then applied the Markov Cluster algorithm (MCL) to identify clusters of patients (Material and

methods 2.1.1). The MCL algorithm is applied systematically on all the 11 patient networks, revealing

different numbers of clusters per network (Table 3). For example, in the patient network constructed at

60 years old, 127 clusters are identified (Figure 3).

We next computed the number of common patients between clusters identified at consecutive ages

(Material and methods 2.1.3). This allows tracking the evolution of the clusters over consecutive ages

(Figure 4) and identifying cluster-trajectories. We identified 12 cluster-trajectories composed of clusters

with at least 100 patients (Supplementary section S4). We described the clusters that compose these

trajectories with the number of patients, the sex ratio, the two most frequently reimbursed drugs and

the two most frequent long-term illnesses. Most of the 12 identified trajectories are composed of clusters

with a majority of men. This is explained by the presence of a majority of men in our study population

(i.e., 30,111 patients). Indeed, the sex ratio of this population is 0.61.

We next focused on the 3 cluster-trajectories (A,B and C) with the largest number of patients (Figure
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5 and Supplementary section S4). The trajectory A is the one with the largest number of patients. By

analyzing clusters at all ages of this trajectory, we observed that all patients used aspirin. Furthermore,

more than half of the patients present in any cluster of the trajectory A are also present in the following

cluster. For instance, among the 4238 patients of the cluster 60.1 identified at age 60, 3 209 (i.e., 76 %) are

present in the cluster 61.1 of age 61. Thus, for the majority of the patients, aspirin is used for at least two

consecutive years. In addition, at 63 and 64 years old, two clusters are observed in the trajectory A. The

first cluster (63.1 and 64.1) is associated with aspirin use only and the second cluster (63.14 and 64.11)

is associated with enoxaparin use in addition to aspirin. These two clusters merge into the same cluster

at the following age (64.1 and 65.1) in which only aspirin is used. This implies that, when enoxaparin is

used in addition to aspirin, the majority of the patients switch to aspirin-only use the following year. The

most frequent long-term illnesses observed in clusters that compose this trajectory is diabetes (ICD-10

code E11). This diagnosis is also observed in all the 12 trajectories identified. The other long-term illness

observed in the trajectory A is chronic ischemic heart disease (ICD-10 code I25).

The trajectory B is composed of clusters in which clopidogrel, an antiplatelet drug, is used by all

patients. Two clusters are systematically observed at each age. For example at age 60, in the first

cluster 60.2, clopidogrel is the only drug used. In the second cluster 60.8, aspirin is used in addition to

clopidogrel. These two clusters merge into the same cluster 61.2 at the following age in which clopidogrel

is the only drug used. Hence, we can observe that when aspirin is used in addition to clopidogrel, the

majority of the patients switch to clopidogrel-only use the following year. The most frequent long-term

illness in addition to diabetes is peripheral arterial disease (ICD-10 code I702).

The trajectory C is composed of clusters of patients who use fluindione; about 12 % of the patients

also use enoxaparin. More than half of the patients present in any cluster of the trajectory C are also

present in a cluster of the following year. For instance, among the 679 patients present in the cluster 60.3

identified at age 60, 503 (i.e., 74 %) are present in the cluster 61.3 identified at the age 61. Thus, we can

conclude that, for the majority of the patients, fluindione is used for at least two consecutive years. The

most frequent long-term illness in this trajectory is atrial fibrillation (ICD-10 code I48).

The same interpretations were carried out for the 9 remaining cluster-trajectories (Supplementary

section S4). In each cluster that compose these trajectories, we always observe a drug used by all

patients (i.e., predominant drug). Most of the time, more than half of the patients present in the clusters

of these trajectories are also present in the following-age clusters. Thus, the predominant drugs are

usually used for at least two consecutive years. However, this is not the case in the cluster-trajectory

D. In this trajectory, two types of clusters are usually observed at each age. The first cluster contains

patients who all used enoxaparin and the second cluster contains patients who all used tinzaparin. These

two clusters systematically merge into the cluster 0 at the following age (e.g., cluster 61.0 at age 60).

The cluster 0 is composed of patients with no antithrombotic use. Thus, the majority of patients with

enoxaparin or tinzaparin use in this trajectory no longer use antithrombotics at the following year. This

cluster-trajectory D is also the only one with clusters composed of a majority of women (i.e., sex ratio

about 0.40). Associated comorbidities are scarce, with the most frequent long-term illnesses being cancers

(ICD-10 codes C50, C34, C18).
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Age Number of nodes Number of edges (107) Number of clusters
60 8268 1.25 127
61 8884 1.46 144
62 9555 1.70 162
63 10042 1.87 149
64 10466 2.03 168
65 10761 2.15 165
66 11097 2.27 150
67 11392 2.37 168
68 11492 2.43 207
69 11664 2.45 205
70 11687 2.48 220

Table 3: Number of nodes, edges and clusters in 60 to 70 years old patient networks

3.1.2 Identifying cluster-trajectories with the cluster-tracking approach based on raw data

In the previous section (3.1.1), we identified cluster-trajectories using a network-based cluster-tracking

approach. We also implemented a cluster-tracking approach using Kmeans applied to raw data (Material

and methods 2.1.2). In this second strategy, we applied a Kmeans per patient age, from 60 to 70 years

old.

In Kmeans, the number of clusters must be specified a priori. We calculated the silhouette score and

identified an optimal number of clusters at each patient age (Supplementary section S5). The optimal

number of clusters was between 6 and 8. We then tracked the clusters identified by Kmeans over ages

(Material and methods 2.1.3). We identified 9 cluster-trajectories composed of clusters with at least 100

patients (Supplementary section S6). We described these trajectories with the number of patients, the

sex ratio, the two most frequently reimbursed drugs and the two most frequent long-term illnesses. We

observed that all trajectories are composed of a majority of men. This is explained by the presence of a

majority of men in our study population (i.e., 30,111 patients).

For the sake of simplicity, we next focused on three cluster-trajectories (A,B and C). We represented

them from 60 to 65 years old (Figure 6). The trajectory A is the one with the largest number of patients.

Aspirin is used by all patients in the clusters that compose this trajectory. In all the clusters of the

trajectory B, clopidogrel is used by all patients. In all the clusters of the trajectory C, fluindione is used

by all patients and enoxaparin is used by about 12 % of patients. In addition, more than half of the

patients present in any cluster of these three trajectories are also present in the following-age clusters.

Thus, we can conclude that, for the majority of the patients, aspirin, clopidogrel and fluindione are used

for at least two consecutive years in the trajectories A, B, and C, respectively. As in the network-based

cluster-tracking approach, diabetes (ICD-10 code E11) is one of the most frequent long-term illnesses

observed in clusters of all identified trajectories. The other long-term illness observed in the trajectory A

is chronic ischemic heart disease (ICD-10 code I25). In trajectory B, the most frequent long-term illness

in addition to diabetes in the clusters of age 60 (60.4) and 61 (61.3) is peripheral arterial disease (ICD-10

code I702). In the clusters identified from 62 years old, the most frequent long-term illness is chronic

ischemic heart disease (ICD-10 code I25) In trajectory C, the most frequent long-term illness is atrial

fibrillation (ICD-10 code I48).

These same descriptions were carried out for the 6 other cluster-trajectories (Supplementary section
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Figure 4: Tracking of clusters identified from patient networks
The alluvial plot represents the tracking of the clusters identified from 60 to 65 years old. The clusters were identified at

each age based on patient networks with the MCL algorithm. At each age, the color blocks represent the different clusters
of patients. Stream fields between blocks represent the number of common patients between clusters of consecutive ages.
The height of the blocks and the thickness of the stream fields are proportional to the number of patients. At each age,

only the clusters containing more than 500 patients are represented (corresponding to blocks 1 to 3). The blocks 0
correspond to the clusters of patients with no antithrombotic use. The three blocks TT1 (Truncated Type 1), TT2

(Truncated Type 2) and TT3 (Truncated Type 3) are the clusters of patients with truncated data. TT1 contains patients
aged 70 before 2018; TT2 contains patients aged 60 after 2008 and TT3 contains patients who have died before 2018

(Figure 2).

S6). In each cluster that compose these trajectories, we always observe a predominant drug used by all

patients. Hence, we can conclude that the predominant drug is used for at least two consecutive years.

This is not the case in the cluster-trajectories D and F. In the trajectory D, several clusters merge into the

cluster 0 (e.g., cluster 61.0 at age 60), which is composed of patients with no antithrombotic use. Thus,

most of the patients in this trajectory no longer use antithrombotics at the following year. Contrarily

to what we previously observed in the network-based cluster-tracking approach, this trajectory D is not

composed of a majority of women (i.e., sex ratio about 0.53). In the trajectory F, combinations (i.e.,

combination of two platelet aggregation inhibitors) are used to all patients in clusters identified from 61

to 67 years old. Then aspirin is used by about 60% of patients in clusters identified from 68 years old.
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Figure 5: Subset of patient cluster-trajectories identified with the cluster-tracking approach based on
network

We represented 3 cluster-trajectories (A,B and C) out of the 12 identified. We represented them from 60 to 65 years old.
In these 3 cluster-trajectories, each block represents a cluster. Each cluster is named as follows: “x.y”, with x the age at
which it was identified and y its cluster number in the alluvial plot (Figure 4). The clusters are characterized by the two

most frequently reimbursed drugs (name, percentage of patients receiving the drug), the two most frequent long-term
illnesses (ICD-10 code, percentage of patients), the sex ratio (SR) and the total number of patients (n). The number
under arrows is the number of common patients between the two blocks. The arrow thickness is proportional to this

number. Combinations: combination of two platelet aggregation inhibitors. ICD-10 code E11: type 2 diabetes mellitus,
I25: chronic ischemic heart disease, I10: essential primary hypertension, I702: atherosclerosis of arteries of extremities,

I48: atrial fibrillation.

3.2 Comparing the two clustering strategies used in the cluster-tracking ap-

proaches

We identified the cluster-trajectories with the cluster-tracking approaches using two different clustering

strategies: one based on the construction of patient networks by applying the MCL algorithm and one

based on raw data by applying Kmeans. We aimed to compare the performances of these two clustering

strategies.

We observed that the trajectories A in the two cluster-tracking approaches are composed of clusters

having a similar description (Supplementary sections S4 and S6). Indeed, aspirin is used by all the patients

and the two most frequent long-term illnesses are the same in all the clusters. We also observed a similar

description between the clusters of the trajectories C and E of the two cluster-tracking approaches. The

clusters of the two trajectories G also have a similar description, but the two trajectories do not begin
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at the same age. The first cluster is identified at 60 years old with the network-based cluster-tracking

approach and at 64 years old with the raw-data-based cluster-tracking approach. The two trajectories

H also begin at different ages. In both cases, the cluster-trajectories identified with the network-based

cluster-tracking approach start at earlier ages than the cluster-trajectories identified with the raw-data-

based cluster-tracking approach.

We calculated the modified silhouette score (S) and its 95% confidence interval to assess clustering

quality in the two cluster-tracking approaches (Material and methods 2.3). We obtained S = 0.50 ([0.46

; 0.55]) with the network-based cluster-tracking approach and S = 0.57 ([0.53 ; 0.58]) with the raw-data-

based cluster-tracking approach (Table 4 B.). A priori, the cluster-tracking approach seems to be more

efficient using a raw-data-based than a network-based strategy. But we can observe that the confidence

intervals of the modified silhouette scores obtained with the network-based and raw-based clustering

approaches overlap.

Figure 6: Subset of patient cluster-trajectories identified with the raw-data-based cluster-tracking
approach

We represented 3 cluster-trajectories out (A,B and C) of the 9 identified. We represented them from 60 to 65 years old. In
these 3 trajectories, each block represents a cluster. Each cluster is named as follows: “x.y”, with x the age at which it
was identified and y the number of the cluster. The clusters are characterized by the two most frequently reimbursed

drugs (name, percentage of patients), the two most frequent long-term illnesses (ICD-10 code, percentage of patients), the
sex ratio (SR) and the number of patients (n). The number under arrows is the number of patients in common between

the two blocks. The arrow thickness is proportional to this number. ICD-10 code E11: type 2 diabetes mellitus, I25:
chronic ischemic heart disease, I702: atherosclerosis of arteries of extremities, I48: atrial fibrillation.

3.3 Comparing the cluster-tracking approach with the longitudinal-clustering

approaches

We compared the performance of the cluster-tracking approaches based on network and raw-data with

three methods representative of the three types of longitudinal clustering approaches, namely raw-data-

based, feature-based and model-based approaches (Material and methods 2.2). We used the same longi-
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tudinal data extracted from EGB in patients aged from 60 to 70 years old in all the approaches.

3.3.1 Choosing the optimal number of clusters

In the three longitudinal-clustering approaches, the number of clusters need to be specified a priori. In

order to select an optimal number of clusters, we calculated several classic clustering quality criteria

(Material and methods 2.2.4). These criteria however do not point to clear optimums (Supplementary

section S3). Hence, we next tried to use the modified silhouette score. We also failed to find a clear

optimum with this approach. Indeed, the greatest silhouette scores (i.e., global maximum) was obtained

for the smallest number of clusters (Supplementary section S3). We therefore decided to specify the

number of clusters as 12 clusters. This number corresponds to the number of cluster-trajectories identified

with the network-based cluster-tracking approach.

3.3.2 Identifying clusters with the raw-data-based longitudinal-clustering approach

We applied Kml3d [37], the selected raw-data-based longitudinal clustering approach (Material and meth-

ods 2.2.1) to the longitudinal data extracted from the EGB. First, 1737 patients are removed by the

Kml3d algorithm because they have more than 9 truncated data (which is the limit with 11 different

ages). We applied the Kml3d algorithm with 12 clusters as parameter and we described all the identified

longitudinal-clusters with the number of patients, the sex ratio, the two most frequently reimbursed drugs

and the two most frequent long-term illnesses.

Among the 12 longitudinal-clusters identified by Kml3d, 10 are composed of at least 100 patients

(Table 4 A.). At least one of the two most frequently reimbursed drugs is used by more than 60 % of

patients. For instance, aspirin, clopidogrel, combinations, warfarin and ticlopidine are used by all patients

in longitudinal-clusters B, C, F, H and L, respectively. Each longitudinal-cluster identified is therefore

characterized by a drug that is predominantly used by patients. More than 20 % of patients have diabetes

(ICD-10 code E11) in all the longitudinal-clusters except in the longitudinal-cluster G. Atrial fibrillation

(ICD-10 code I48) is one of the two most frequent long-term illnesses in longitudinal-clusters D, E, H, I

and K. In these clusters, at least 70 % of patients use vitamin K antagonist (such as fluindione, warfarin

or acenocoumarol) or non-vitamin K antagonist oral anticoagulants (such as rivaroxaban or apixaban).

Chronic ischemic heart disease (ICD-10 code I25) is always observed in the longitudinal-clusters when

aspirin is one of the two most frequently reimbursed drugs.

Our goal is to compare the 12 longitudinal-clusters obtained with the raw-data-based longitudinal clus-

tering approach with the cluster-trajectories identified with the cluster-tracking approaches. At least one

of the two most frequently reimbursed drugs is used by more than 60 % of patients in all the clusters that

compose the cluster-trajectories (Supplementary sections S4 and S6) and in all the longitudinal-clusters

(Table 4 A.). This is not the case in the raw-data-based-cluster-trajectory D where aspirin is used by

about 38 % of patients and enoxaparin is used by about 16 % of patients. Therefore, the majority of

cluster-trajectories and longitudinal-clusters are characterized by a predominantly used drug. These tra-

jectories and longitudinal-clusters are composed of a majority of men except in the network-based-cluster-

trajectory D where the sex ratio is about 0.40. Breast cancer (ICD-10 code C50) is usually one of the

two most frequent long-term illnesses in the clusters that compose the network-based-cluster-trajectory

D. Several cluster-trajectories and longitudinal-clusters have a common drug description. For instance,

aspirin and enoxaparin are both used in the longitudinal-cluster B and in the two cluster-trajectories A of
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the cluster-tracking approaches. The two most frequent long-term illnesses are also the same. Conversely,

the raw-data-based longitudinal clustering approach is the only one to have identified three longitudinal-

clusters characterized by use of ticagrelor-aspirin, prasugrel-aspirin and ticlopidine-aspirin (G, J and L

respectively in Table 4 A.). Similarly, the network-based cluster-tracking approach is the only one to

have identified cluster-trajectories characterized by use of enoxaparin-tinzaparin, aspirin-fluindione and

dabigatran-enoxaparin (D, J and L respectively in Supplementary section S4). Therefore, additional

information are given with the raw-data-based longitudinal clustering approach and the network-based

cluster-tracking approach compared to the raw-data-based cluster-tracking approach.

Furthermore, we calculated the modified silhouette score (S) in the raw-data-based longitudinal clus-

tering approach and in the cluster-tracking approaches to compare the clustering quality (Material and

methods 2.3). We obtained S = 0.27 for the raw-data-based longitudinal clustering approach, S = 0.50

for the network-based cluster-tracking approach and S = 0.57 for the raw-data-based cluster-tracking

approach (Table 4 B.). The 95% confidence intervals of the two strategies of cluster-tracking approach

overlap (Table 4 B.). Overall, we obtained a better clustering quality with the cluster-tracking approaches

compared to the raw-data-based longitudinal clustering approach.

3.3.3 Identifying clusters with the feature-based longitudinal-clustering approach

We extracted 4 standard features from the the antithrombotic drug use contained in the EGB: the

mean, the standard deviation, the kurtosis and the skewness (Material and methods 2.2.2). We therefore

obtained a total of 76 features per patient (i.e., 4 features extracted over the 19 antithrombotic drugs).

We then used these features as input in Kmeans. Here, the Kmeans clustering is applied over all the ages

jointly. As for the raw-data-based longitudinal clustering approach, we applied the Kmeans clustering

selecting 12 clusters as parameter. We described the identified longitudinal-clusters with the number of

patients, the sex ratio, the two most frequently reimbursed drugs and the two most frequent long-term

illnesses.

The 12 longitudinal-clusters identified with the feature-based longitudinal clustering approach are all

composed of at least 100 patients (Table 4 A.). One of the two most used drugs is always used by all

patients except in the cluster B. In this cluster, aspirin is used by 41 % of the patients and enoxaparin is

used by 28 % of the patients. The majority of the identified longitudinal-clusters is therefore characterized

by a predominantly used drug. At least 15 % of patients have diabetes (ICD-10 code E11) in all the

clusters. Chronic ischemic heart disease (ICD-10 code I25) is always observed in the clusters where

aspirin is one of the two most frequently reimbursed drugs.

We compared the 12 longitudinal-clusters obtained in the feature-based longitudinal clustering ap-

proach with the cluster-trajectories identified in the cluster-tracking approaches (Supplementary sections

S4 and S6). We observe that the longitudinal-clusters A and D have a common drug and long-term illness

description (Table 4 A.). Indeed, aspirin and enoxaparin are both used by a similar proportion of patients

and the two most frequent long-term illnesses are the same (i.e., ICD-10 codes E11 and I25). This type of

redundant information is not observed in the cluster-trajectories identified with the two cluster-tracking

approaches.

We then calculated the modified silhouette score (S) in the feature-based longitudinal clustering

approach to compare the clustering quality with the other clustering approaches (Material and methods

2.3). We obtained S = 0.20 for the feature-based longitudinal clustering approach (Table 4 B.). This
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score indicates that patients are less well assigned in clusters with the feature-based longitudinal clustering

approach than with the cluster-tracking approach and with the raw-data-based longitudinal clustering

approach. The clustering quality is therefore better with the cluster-tracking approaches.

3.3.4 Identifying clusters with the model-based longitudinal-clustering approach

The model-based approach that we applied to the antithrombotic drug use is GMM (Material and methods

2.2.3). We used an aggregated variable with this algorithm because the simultaneous analysis of several

variables is computationally challenging [49]. This aggregated variable is calculated, for each patient,

as the total number of drugs used at a given age. As before, we applied GMM selecting 12 clusters as

parameter. We described the identified longitudinal-clusters with the number of patients, the sex ratio,

the two most frequently reimbursed drugs and the two most frequent long-term illnesses.

The GMM algorithm assigns patients to the cluster for which they have the greatest posterior prob-

ability of belonging. Although we chose 12 clusters as parameter, none of the patients had a greatest

posterior probability of belonging to three out of the 12 selected clusters. Therefore, only 9 longitudinal-

clusters were identified.

The longitudinal-clusters A to G are composed of more than 100 patients (Table 4 A.). The two

remaining clusters are composed of less than 20 patients. In the 9 longitudinal-clusters, we observed that

aspirin is used by more than 50 % of patients. All these longitudinal-clusters are therefore characterized

by the same predominantly used drug. Diabetes (ICD-10 code E11) is always one of the two most frequent

long-term illnesses except in longitudinal-cluster I. The longitudinal-cluster I is very small with only two

patients. One of the patients has prostate cancer (ICD-10 code C61) and the other has fibrosis and

cirrhosis of liver (ICD-10 code K74).

We compared the 9 longitudinal-clusters with the cluster-trajectories identified with the cluster-

tracking approaches (Supplementary sections S4 and S6). The longitudinal-clusters are highly differ-

ent compared to the cluster-trajectories. Indeed, aspirin is used by a majority of patients in all these

longitudinal-clusters, which is not the case in the cluster-trajectories. Furthermore, the diversity of the

two most frequently reimbursed drugs is lower in the longitudinal-clusters since only aspirin, clopidogrel,

enoxaparin, fluindione or fondaparinux are observed. In the cluster-trajectories, other drugs such as war-

farin, combinations or rivaroxaban are additionally observed. The model-based longitudinal clustering

approach therefore identified longitudinal-clusters where patients are more heterogeneous compared to

the cluster-tracking approach.

We then calculated the modified silhouette score (S) in the model-based longitudinal clustering ap-

proach to compare the clustering quality with the other clustering approaches (Material and methods

2.3). We obtained S = −0.33 for the model-based longitudinal clustering approach (Table 4 B.). This

negative score indicates that the clusters are worse than random. The model-based longitudinal cluster-

ing approach therefore fails to identify patient clusters. Among all the analyzed approaches, the best

clustering quality is obtained with the cluster-tracking approaches.
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A.

Raw-data-based longitudinal-clustering Feature-based longitudinal-clustering Model-based longitudinal-clustering

n SR Top 2 drugs (%) Top 2 diseases (%) n SR Top 2 drugs (%) Top 2 diseases (%) n SR Top 2 drugs (%) Top 2 diseases (%)

A 12550 0.53 Aspirin (65) E11 (23) 11510 0.62 Aspirin (100) E11 (32) 14461 0.65 Aspirin (76) E11 (28)
Enoxaparin (22) I25 (7) Enoxaparin (11) I25 (17) Clopidogrel (27) I25 (18)

B 8665 0.64 Aspirin (100) E11 (32) 7484 0.51 Aspirin (41) E11 (17) 6822 0.50 Aspirin (52) E11 (19)
Enoxaparin (15) I25 (21) Enoxaparin (28) I48 (6) Enoxaparin (23) I10 (6)

C 2937 0.75 Clopidogrel (100) E11 (29) 2827 0.73 Clopidogrel (100) E11 (27) 2481 0.77 Aspirin (92) I25 (44)
Aspirin (60) I25 (28) Aspirin (44) I25 (24) Clopidogrel (66) E11 (29)

D 1794 0.65 Fluindione (99) I48 (24) 2460 0.62 Aspirin (100) E11 (31) 2198 0.59 Aspirin (74) E11 (29)
Enoxaparin (43) E11 (22) Enoxaparin (20) I25 (15) Enoxaparin (18) I10 (10)

E 1013 0.65 Rivaroxaban (70) I48 (37) 2050 0.60 Fluindione (100) I48 (24) 2033 0.55 Aspirin (70) E11 (25)
Aspirin (41) E11 (23) Enoxaparin (38) E11 (19) Fluindione (17) I10 (8)

F 402 0.81 Combinations (100) I25 (45) 1114 0.74 Clopidogrel (100) I25 (41) 1296 0.61 Aspirin (82) E11 (30)
Aspirin (79) E11 (28) Aspirin (89) E11 (30) Enoxaparin (22) I25 (13)

G 345 0.77 Ticagrelor (98) I25 (46) 615 0.77 Aspirin (100) I25 (37) 803 0.58 Aspirin (78) E11 (31)
Aspirin (97) I21 (33) Clopidogrel (100) E11 (31) Fluindione (18) I10 (12)

H 243 0.62 Warfarin (100) E11 (23) 576 0.62 Rivaroxaban (100) I48 (32) 15 0.80 Aspirin (100) I25 (67)
Enoxaparin (46) I48 (19) Aspirin (16) E11 (16) Clopidogrel (87) E11 (13)

I 233 0.64 Acenocoumarol (99) E11 (23) 509 0.80 Combinations (100) I25 (51) 2 1.00 Aspirin (100) C61 (50)
Enoxaparin (42) I48 (18) Aspirin (97) E11 (33) Fondaparinux (50) K74 (50)

J 106 0.82 Prasugrel (96) I25 (62) 454 0.70 Fluindione (100) E11 (28)
Aspirin (93) E11 (28) Aspirin (96) I48 (22)

K 73 0.66 Apixaban (82) I48 (30) 410 0.63 Rivaroxaban (100) I48 (34)
Aspirin (33) E11 (18) Aspirin (60) E11 (23)

L 13 0.85 Ticlopidine (100) E11 (23) 102 0.62 Warfarin (100) E11 (26)
Aspirin (54) C34 (15) Aspirin (61) I25 (17)

B.

Network-based cluster-tracking Raw-data-based cluster-tracking Raw-data-based longitudinal-clustering Feature-based longitudinal-clustering Model-based longitudinal-clustering

0.50 0.57 0.27 0.20 -0.33
[0.46 ; 0.55] [0.53 ; 0.58] [-0.02 ; 0.20] [-0.26 ; 0.01]

Table 4: Longitudinal-clusters identified with the three longitudinal clustering approaches and
comparison with the cluster-tracking approaches

A. n: number of patients, SR: sex ratio (percentage of men), Top 2 drugs: the two most frequently reimbursed drugs with
the percentage of patients, Top 2 diseases: the two most frequent long-term illnesses (ICD-10 code) with the percentage of
patients. In all approaches, the identified longitudinal-clusters are ranked from the largest to the smallest. Combinations:
combination of two platelet aggregation inhibitors. ICD-10 codes C34: malignant neoplasm of bronchus and lung, C50:

malignant neoplasm of breast, C61: malignant neoplasm of prostate, E11: type 2 diabetes mellitus, I10: essential primary
hypertension, I21: acute myocardial infarction, I25: chronic ischemic heart disease, I702: atherosclerosis of arteries of

extremities, I48: atrial fibrillation, K74: fibrosis and cirrhosis of liver.
B. silhouette scores calculated in the different approaches and their 95% confidence intervals.

4 Discussion

We proposed here novel approaches based on cluster-tracking, with the objective of clustering patients us-

ing longitudinal data extracted from medico-administrative databases. We applied these new approaches

to the analysis of antithrombotic drugs extracted from the Echantillon Généraliste des Bénéficiaires

(EGB). We extracted the data from 2008 to 2018 and focused on patients aged from 60 to 70 years old.

We aimed to identify clusters of patients that could be related to given diseases using only drug reimburse-

ments and in the absence of any coded diagnoses. We showed that cluster-tracking approaches are efficient

to identify patient trajectories from medico-administrative databases. They are able to consider the lon-

gitudinal, multidimensional and truncated nature of data. We were able to identify clusters of patients
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related to given diseases based only on drug reimbursements. We compared these new cluster-tracking

approaches with three classical longitudinal clustering approaches using a modified silhouette score. We

showed that the cluster-tracking approaches had a higher performance than the classical approaches.

We here applied all the approaches using age as time steps. However, it is to note that different data

types can be used as input of our approaches. Depending on those input data, different time steps can be

chosen. For example, we applied our two cluster-tracking approaches to the pbcseq database [50] using

patient visits as time steps. This allowed us to cluster patients with primary sclerosing cholangitis based

on their laboratory measurements (Supplementary section S8).

We identified 12 and 9 cluster-trajectories with the network-based and raw-data-based cluster-tracking

approaches, respectively. We described the clusters that compose the cluster-trajectories with their num-

ber of patients, sex ratio, the two most frequently reimbursed drugs and the two most frequent long-term

illnesses. Of note, for both approaches, the top three largest cluster-trajectories had similar charac-

teristics. The trajectories with the highest number of patients identified with the two cluster-tracking

approaches (trajectories A) are composed of patients with aspirin use and chronic ischemic heart disease.

Antithrombotic therapy is a key part of secondary prevention in patients with chronic ischemic heart

disease and patients with this illness are considered for long-term aspirin treatment [51]. The trajec-

tories B identified with the two cluster-tracking approaches are composed of patients with clopidogrel

use and coded arteriopathies as long-term illnesses (i.e., peripheral arterial disease and chronic ischemic

heart disease). This is in accordance with clopidogrel being the preferred antiplatelet drug indicated in

patients with arteriopathies that are symptomatic or have undergone revascularization [52]. The trajec-

tory B identified with the network-based cluster-tracking approach also shows patients using aspirin with

clopidogrel and switching to the use of clopidogrel-only the following year. This is in accordance with the

fact that after myocardial infarction and percutaneous coronary intervention, a switch to mono-therapy

is recommended after one year of dual antiplatelet [53]. The two trajectories C, the third largest trajec-

tories identified with the two cluster-tracking approaches, are composed of patients with fluindione use

and coded atrial fibrillation. Fluindione, which is a vitamin K antagonist, has been shown to strongly

reduce stroke in patients with atrial fibrillation [54]. Furthermore, in the trajectory C identified by the

network-based cluster-tracking approach, we observed a switch of drugs from age 67. Recently, non-

vitamin K antagonist oral anticoagulants (e.g., apixaban and rivaroxaban) have been recommended in

replacement of vitamin K antagonists [55]. Because non-vitamin K antagonist oral anticoagulants are

more convenient to use, the switch of drugs observed from age 67 with the network-based cluster-tracking

approach is consistent. The two identified trajectories D are composed of patients using low molecular

weight heparin (i.e., enoxaparin or tinzaparin) over a short period of time. Indeed, these patients do not

use antithrombotics the following year. We hypothesize that these trajectories captured patients having

an acute venous thromboembolism event. However, the trajectory D identified with the network-based

cluster-tracking approach was the only one composed of patients who were mostly women with cancers.

There is a known significant increase of thromboembolism event requiring low molecular weight heparin

in these patients [56]. Moreover, it is well-known that women have a higher risk of thromboembolism

event than men [57]. The trajectory F identified with the raw-data-based cluster-tracking approach was

the only one with patients first using combination of two antithrombotic drugs and then aspirin at older

age. As hemorrhage risk increases with age, patients at older age switch to only one platelet aggregation

inhibitor [53]. As a side note, regarding long-term illnesses, diabetes was among the two most frequent
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long-term illnesses in all the cluster-trajectories. No specific antithrombotic drugs are recommended for

patients suffering from diabetes. However, diabetes increases cardiovascular risk and therefore many

patients with antithrombotic drugs have diabetes [58].

We compared these new cluster-tracking approaches with three classical longitudinal clustering ap-

proaches. The better modified silhouette score was obtained with the cluster-tracking approaches. This

higher performance might arise from a better usage of the available information. Indeed, clustering per

age allows us to take into account a maximum number of patients: as the clustering is performed by age,

patient follow-ups over the entire period are not required and missing data can be handled. Contrarily,

classical longitudinal clustering approaches require patient follow-ups over the entire period. Longitudi-

nal clustering approaches hence either impute data or exclude patients with truncated data. Our new

cluster-tracking approaches are therefore less sensitive to small sample sizes. However, large sample

sizes increase computation time for all the approaches (supplementary Table S1). Another interesting

feature of the cluster-tracking approaches is that patients can switch clusters as their age progresses. A

patient can therefore belong to several cluster-trajectories. This allows considering some uncertainty in

patient clustering compared to the longitudinal-clustering approaches where a patient belongs to a single

longitudinal-cluster.

The modified silhouette score also showed comparable performances between the two cluster-tracking

approaches. However, it is to note that the network-based cluster-tracking approach does not require

the number of clusters to be defined a priori. This is an advantage as the number of clusters might be

a parameter difficult to set-up. In addition, the network-based cluster-tracking approach has also the

advantage of preserving privacy because the interactions between patients are considered rather than

absolute data. Another advantage is the flexibility of this approach, as many different measures can be

used to compute the similarity between patients. These similarity measures can then be tuned depending

on the data and question at hand. Moreover, a large number of algorithms exist for clustering networks.

Code Availability

The code for our two cluster-tracking approaches is available on GitHub (https://github.com/JudithLamb/

Cluster-tracking). For privacy reasons, antithrombotic drug reimbursements extracted from the EGB

cannot be shared publicly. We hence generated a simulated dataset of 5594 patients with their drug use

from these extracted data. The results obtained from this simulated sample dataset can be visualized in

an R Shiny app also available from the GitHub repository.

Funding

This work was supported by the Inserm cross-cutting program Genomic variability 2018 GOLD.

Acknowledgments

The authors would like to acknowledge Pierre Sabatier for extracting and formatting the data. The

authors would also like to thank Anthony Baptista for his contribution in the Methods section. We
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