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Abstract

Matrix imaging paves the way towards a next revolution in wave physics.
Based on the response matrix recorded between a set of sensors, it enables
an optimized compensation of aberration phenomena and multiple scattering
events that usually drastically hinder the focusing process in heterogeneous
media. Although it gave rise to spectacular results in optical microscopy or
seismic imaging, the success of matrix imaging has been so far relatively lim-
ited with ultrasonic waves because wave control is generally only performed
with a linear array of transducers. In this paper, we extend ultrasound ma-
trix imaging to a 3D geometry. Switching from a 1D to a 2D probe enables
a much sharper estimation of the transmission matrix that links each trans-
ducer and each medium voxel. Here, we first present an experimental proof
of concept on a tissue-mimicking phantom through ex-vivo tissues and then,

show the potential of 3D matrix imaging for transcranial applications.



o Introduction

1w The resolution of a wave imaging system can be defined as the ability to dis-
u cern small details of an object. In conventional imaging, this resolution cannot
12 overcome the diffraction limit of a half wavelength and may be further limited
13 by the maximum collection angle of the imaging device. However, even with a
1 perfect imaging system, the image quality is affected by the inhomogeneities of
15 the propagation medium. Large-scale spatial variations of the wave velocity in-
16 troduce aberrations as the wave passes through the medium of interest. Strong
17 concentration of scatterers also induces multiple scattering events that randomize
18 the directions of wave propagation, leading to a strong degradation of the image
19 resolution and contrast. Such problems are encountered in all domains of wave
20 physics, in particular for the inspection of biological tissues, whether it be by ul-
2 trasound imaging® or optical microscopy?, or for the probing of natural resources

2 or deep structure of the Earth’s crust with seismic waves®.

;3 To mitigate those problems, the concept of adaptive focusing has been adapted
2 from astronomy where it was developed decades ago*®. Ultrasound imaging em-
25 ploys array of transducers that allows to control and record the amplitude and
2 phase of broadband wave-fields. Wave-front distortions can be compensated for
2 by adjusting the time-delays added to each emitted and/or detected signal in order
2 to focus ultrasonic waves at a certain position inside the medium®®. The estima-
20 tion of those time delays implies an iterative time-consuming focusing process that

1011

30 should be ideally repeated for each point in the field-of-view-**. Such a complex

a1 adaptive focusing scheme cannot be implemented in real time since it is extremely

s

» sensitive to motion’® whether induced by the operator holding the probe or by the
;3 movement of tissues.

1 Fortunately, this tedious process can now be performed in post-processing 4

55 thanks to the tremendous progress made in terms of computational power and

3 memory capacity during the last decade. To optimize the focusing process and



» image formation, a matrix formalism can be fruitful®®®®. Indeed, once the reflec-
;s tion matrix R of the impulse responses between each transducer is known, any
3 physical experiment can be achieved numerically, either in a causal or anti-causal
w0 way, for any incident beam and as many times as desired. More specifically, assum-
s ing that the medium remains fixed during the acquisition, a multi-scale analysis
2 of the wave distortions can be performed to build an estimator of the transmis-
a3 sion matrix T between each transducer of the probe and each voxel inside the
s medium®™. Once the T-matrix is known, a local compensation of aberrations can
s be performed for each voxel, thereby providing a confocal image of the medium

s with a close to ideal resolution and an optimized contrast everywhere.

20124

s« Although it gave rise to striking results in optical microscopy or seismic

s imaging®?% the experimental demonstration of matrix imaging has been, so far,

LEIS2028 - Tndeed, the first proof-of-concept

10 less spectacular with ultrasonic waves
so experiments employed a linear array of transducers. Yet, aberrations in the human
s1 body are 3D-distributed and a 1D control of the wave-field is not sufficient for a fine
s2 compensation of wave-distortions as already shown by previous works* =2, More-
s3 over, 2D imaging limits the density of independent speckle grains which controls

s¢ the spatial resolution of the T-matrix estimator®®,

55 In this work, we extend the ultrasound matrix imaging (UMI) framework to
ss 3D using a fully populated matrix array of transducers®**?. The overall method
s7 is first validated by means of a well-controlled experiment combining ex-vivo pork
ss tissues as aberrating layer on top of a tissue-mimicking phantom. 3D UMI is
so then applied to a head phantom whose skull induces a strong attenuation, aber-
s ration and multiple scattering of the ultrasonic wave-field, phenomena that UMI
e can quantify independently of each other™. Inspired by the CLASS method de-

2022 aberrations are here compensated by a novel

62 veloped in optical microscopy
63 iterative phase reversal algorithm more efficient for 3D UMI than a singular value

e decomposition*®™®, In contrast with previous works, the convergence of this algo-



s Tithm is ensured by investigating the spatial reciprocity between the T-matrices
6 in transmission and reception. Throughout the paper, we will compare the gain
7 in terms of resolution and contrast provided by 3D UMI with respect to its 2D
¢ counterpart. In particular, we will demonstrate how 3D UMI can be a powerful

s0 tool for optimizing the focusing process inside the brain through the skull.

o Results

72 Beamforming the reflection matrix in a focused basis.

73 3D UMI starts with the acquisition of the reflection matrix (see Methods) by
» means of a 2D array of transducers (32 x 32 elements, see Fig. [Th,b). It was per-
75 formed first on a tissue-mimicking phantom with nylon rods through a layer of pork
76 tissue of fat and muscle (obtained from a chop rib piece), acting as an aberrating
7 layer [Fig. ], and then on a head phantom including brain and skull-mimicking
78 tissue, to reproduce transcranial imaging (see below). In the first experiment, the
s reflection matrix Ryy(f) is recorded in the transducer basis [Fig. [Th,c], i.e. by
so acquiring the impulse responses, R(Uj,, Uoyus,t), between each transducer (u) of
&1 the probe. In the head phantom experiment, skull attenuation imposes a plane
& wave insonification sequence [Fig. [Ib] to improve the signal-to-noise ratio. The
g3 reflection matrix Rg, then contains the reflected wave-field R(6;y,, Uoyy, t) recorded
s by the transducers u,y [Fig. [I] for each incident plane wave of angle 6y,

ss  Whatever the illumination sequence, the reflectivity of a medium at a given
g point r can be estimated in post-processing by a coherent compound of incident
s waves delayed to virtually focus on this point, and coherently summing the echoes
ss recorded by the probe coming from that same point [Fig. } UMI basically
s consists in decoupling the input (ry,) and output (rey) focusing points [Fig. [Ig]. By
s applying appropriate time delays to the transmission (wy,/6;,) and reception (o)
a channels (see Methods), Ryu(t) and Regy(t) can be projected at each depth z in a

o2 focused basis, thereby forming a broadband focused reflection matrix, R,,(2) =

4
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FIG. 1. 3D Ultrasound Matrix Imaging (UMI). (a,b) The R-matrix can be ac-
quired in the transducer (a) or plane-wave (b) basis in transmit and (c) recording the
back-scattered wave-field on each transducer in receive. (d) Confocal imaging consists
in a simultaneous focusing of waves at input and output. (e) In UMI, the input (ri,)
and output (reu) focusing points are decoupled. (f) z—cross-section of the (g) focused
R—matrix. (h) UMI enables a quantification of aberrations by extracting a local RPSF
(displayed here in amplitude) from each antidiagonal of R,,(2). (i) UMI then consists
in a projection of the focused R-matrix in a correction (here transducer) basis at output.
The resulting dual R-matrix connects each focusing point to its reflected wave-front. (j)
UMI then consists in realigning those wave-fronts to isolate their distorted component
from their geometrical counterpart, thereby forming the D-matrix. (k) An iterative
phase reversal algorithm provides an estimator of the T—matrix between the correction
basis and the mid-point of input focusing points considered in panel g. (1) The phase
conjugate of the T—matrix provides a focusing law that improves the focusing process
at output. (m) RPSF amplitude after the output UMI process. The ultrasound data
shown in this figure corresponds to the pork tissue experiment at depth z = 40 mm.
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FIG. 2. Ultrasound matrix imaging of a tissue-mimicking phantom through
a pork tissue. (a) Schematic of the experiment. (b) Maps of original RPSFs (in
amplitude) at depth z = 29 mm. (c) Aberration phase laws extracted at the different
steps of the UMI process. (d) Corresponding RPSFs after aberration compensation
at each step. (e,f) 3D confocal and UMI images with one longitudinal and transverse
cross-section.

93 [R(pin7 Pout, Z)]

94

95

Since the focal plane is bi-dimensional, each matrix R, (%) has a four-dimension

structure:  R(pin, Pouts 2) = R{Tin, Yin }, {Tout, Yout }> 2). Rpp(2) is thus concate-

6



o nated in 2D as a set of block matrices to be represented graphically [Fig. ] In
o7 such a representation, every sub-matrix of R corresponds to the reflection matrix
s between lines of virtual transducers located at 13, and y.., Whereas every ele-
s ment in the given sub-matrix corresponds to a specific couple (i, Tou) [Fig. [Le].
o Each coefficient R(%in, Yin, Touts Yout, 2) corresponds to the complex amplitude of
11 the echoes coming from the point rou = (Zout, Yout, 2) in the focal plane when fo-
102 cusing at point ri, = (Zin, Yin, 2) (Or conversely, since R,,(2) is a symmetric matrix
103 due to spatial reciprocity).

1w As already shown with 2D UMI, the diagonal of R,,(z) directly provides the

105 transverse cross-section of the confocal ultrasound image:

Z(pa Z) = |R(p1n = pou‘c>Z)|2 (1)

106 Where p = pi, = pow 1S the transverse coordinate of the confocal point. The
w7 corresponding 3D image is displayed in Fig. for the pork tissue experiment.
s Longitudinal and transverse cross-sections illustrate the effect of the aberrations
o induced by the pork layer by highlighting the distortion exhibited by the image of
uo the deepest nylon rod.

1 Probing the focusing quality.
112 We now show how to quantify aberrations in ultrasound speckle (without any
us guide star) by investigating the antidiagonals of R,,(z). In the single scattering

s Tegime, the focused R—matrix coefficients can be expressed as follows™:

R(pout> Pin; Z) = /deout(p — Pout; Pout, Z)’Y(p, z)Hz’rL(p — Pin> Pin> Z) (2)

us With Hi,/oue, the input/output point spread function (PSF); and v the medium
us reflectivity. This last equation shows that each pixel of the ultrasound image (diag-
17 onal elements of R,,(2)) results from a convolution between the sample reflectivity

us and an imaging PSF, which is itself a product of the input and output PSFs. The

7



us off-diagonal points in R,,(2) can be exploited for a quantification of the focusing
120 quality at any pixel of the ultrasound image by extracting each antidiagonal. Such
121 an operation is mathematically equivalent to a change of variable to express the
122 focused R—matrix in a common midpoint basis' (see Supplementary Section 2):

(3)

7pm+_72

A A
RM(Apa rm) =R <pm - Tp 2p ) )

123 where the subscript M stands for the common midpoint basis. r, = {pm, 2} =
124 {(Pin + Pout)/2, 2} is the common midpoint between the input and output focal
125 spots, with the two separated by a distance Ap = pout — Pin-

s In the speckle regime (random reflectivity), this quantity probes the local fo-
127 cusing quality as its ensemble average intensity, which we refer to as the reflection
s point spread function (RPSF), scales as an incoherent convolution between the

120 input and output PSFs*:
2 2 &P 2
RPSF(Ap,rw) = (|[Ru(Ap,10)[") o< [Hinl* ® |How|*(Ap, ), (4)

130 where (---) denotes an ensemble average, which, in practice, is performed by a

31 local spatial average (see Methods).

12 Figure [lh displays the mean RPSF associated with the focused R—matrix dis-
13 played in Fig. (pork tissue experiment). It clearly shows a distorted RPSF
13 which spreads well beyond the diffraction limit (black dashed line in Fig. ):

A

dpo(z) ~ 2sin {arctan [Au/(2z2)]}

(5)

135 with Au the lateral extension of the probe. The RSPF also exhibits a strong
13 anisotropy that could not have been grasped by 2D UMI. As we will see in the
137 next section, this kind of aberrations can only be compensated through a 3D

138 control of the wave-field.
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Adaptive focusing by iterative phase reversal.

Aberration compensation in the UMI framework is performed using the distor-
tion matrix concept. Introduced for 2D UMIM® the distortion matrix can be
obtained by: (i) projecting the focused R—matrix either at input or output in
a correction basis (here the transducer basis, see Fig. [1j); (ii) extracting wave
distortions exhibited by R when compared to a reference matrix that would have
been obtained in an ideal homogeneous medium of wave velocity ¢o [Fig. [1j]. The
resulting distortion matrix D = [D(u,r)| contains the aberrations induced when

focusing on any point r, expressed in the correction basis.

This matrix exhibits long-range correlations that can be understood in light of
isoplanicity. If in a first approximation, the pork tissue layer can be considered as
a phase screen aberrator, then the input and output PSFs can be considered as
spatially invariant: Hin/out(P — Pinjout: Tinjous) = H(P — Pinjout). UMI consists in
exploiting those correlations to determine the transfer function 7'(u) of the phase
screen. In practice, this is done by considering the correlation matrix C = D x DT.
The correlation between distorted wave-fields enables a virtual reflector synthesized

709 o

from the set of output focal spots'? [Fig. ] While, in previous works
iterative time-reversal process (or equivalently a singular value decomposition of
D) was performed to converge towards the incident wavefront that focuses perfectly
through the medium heterogeneities onto this virtual scatterer, here an iterative
phase reversal algorithm is employed to build an estimator T(u) of the transfer

function (see Methods). Supplementary Figure 3 demonstrates the superiority of

this algorithm compared to SVD for 3D UMI.

Iterative phase reversal provides an estimation of aberration transmittance
[Fig. ] whose phase conjugate is used to compensate for wave distortions (see
Methods). The resulting mean RPSF is displayed in Fig. . Although it shows
a clear improvement compared with the initial RPSF, high-order aberrations still

subsist. Because of its 3D feature, the pork tissue layer cannot be fully reduced to



17 an aberrating phase screen in the transducer basis.
1s Spatial reciprocity as a guide star.

1o The 3D distribution of the speed-of-sound breaks the spatial invariance of input
o and output PSFs. Figure [2b illustrates this fact by showing a map of local RPSF's
1 (see Methods). The RPSF is more strongly distorted below the fat layer of the
12 pork tissue (¢p &~ 1480 + 10 m/s*®) than below the muscle area (¢, ~ 1560 + 50
s m/s). A full-field compensation of aberrations similar to adaptive focusing does
17+ not allow a fine compensation of aberrations [Fig. [2d1]. Access to the transmission
s matrix T = [T'(u, r)] linking each transducer and each medium voxel is required

176 rather than just a simple aberration transmittance T'(u).

17 To that aim, a local correlation matrix C(r;,) should be considered around each
s point r, over a sliding box W(r — r;,) (see Methods), commonly called patches,
o whose choice of spatial extent w is subject to the following dilemma: On the
180 one hand, the spatial window should be as small as possible to grasp the rapid
11 variations of the PSFs across the field of view; on the other hand, these areas should
12 be large enough to encompass a sufficient number of independent realizations of

16419

183 disorder The bias made on our T-matrix estimator actually scales as (see

18 Supplementary Section 6):

1

T ) [ o~ G ©)

s C is the so-called coherence factor that is a direct indicator of the focusing quality®
15 but that also depends on the multiple scattering rate and noise background®®. Ny

187 is the number of diffraction-limited resolution cells in each spatial window.

s The validity of the T—matrix estimator in a region W, (Fig. ) is investigated
180 by examining the corrected RPSF in a neighbour region W (yellow box). W, and
10 W, are sufficiently close to assume, in a first approximation, that they belong to the

101 same isoplanatic patch. If the box is too small (left of Fig. [B{d), our estimator has

10



12 not converged yet and the correction is not valid, as shown by the degraded quality
103 of the RPSF in W [left panel of Fig. [3h] compared to its initial value[Fig. [3g]. With
10s sufficient spatial averaging [third panel of Fig. ], a valid aberration law can be
105 extracted, as shown by a corrected RPSF now close to be only diffraction-limited
s [third panel of Fig. ]
17 The question that now arises is how we can, in practice, know if the convergence
s of T is fulfilled without any a priori knowledge on T. An answer can be found
199 by comparing the estimated input and output aberration phase laws, Tin(u, rp)
200 and Tout(u, r,), at a given point r, as shown in Figs. 3¢ and f. Spatial reciprocity
201 implies that T and Thy, shall be equal when the convergence of the estimator is
202 reached [third panel of Figs. 3¢ and f]. Their normalized scalar product, Py, /ou =
203 NV, l'i‘in’i‘lut, can thus be used to probe the error made on the aberration phase law
20 |0T|2. Both quantities are actually related as follows (see Supplementary Section
205 7):

0T ~ 1 = Phyjous. (7)

200 The normalized scalar product P, oy is displayed as a function of w and shows
20r the convergence of the IPR process [Fig. [3p]. For a sufficiently large box [third
208 panel of Fig. ], T is supposed to have converged towards T when Ty and Tou
200 are almost equal [third panel of Fig. ,f], while, for a small box [left panel of
210 Flig. ], a large discrepancy can be found between them. In the following, the
2 parameter Py, jou¢ Will thus be used as a guide star for monitoring the convergence

212 of the UMI process.

23 The scaling law of Eq. [6] with respect to Ny is checked in Fig. [3b. The in-
214 verse scaling of the bias with Ny, shows the advantage of 3D UMI over 2D UMI,
a5 since Ny ~ w?, with d the imaging dimension. This superiority is evident in
216 F'ig. , which shows a faster convergence with 3D boxes (green curve) than with
27 2D patches (orange curve). For a given precision, 3D UMI thus provides a better

zs spatial resolution for our T—matrix estimator as shown by right panels of Figs. [,

11
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sidered spatial window W for 2D (orange) and 3D (green) imaging. (b) Corresponding
bias intensity estimator, [0T]?> = 1 — P, Jouts as a function of the number of resolution
cells Nyy contained in the window W;. The plot is in log-log scale and the theoretical
power law (Eq.[6) is shown with a dashed black line for comparison. (c) Cross-section of
the confocal volume showing the location of Wi in green and W, in yellow. The green
box W, centered around the point r; = (5, —5,41) mm, denotes the region where the
T—matrix is extracted, while the yellow box Wh, of fixed size wy = 2 mm and centered
around the point ro = (5, —5,45) mm, is the area where the effect of aberration correc-
tion is investigated by means of the RPSF. (d) Spatial windows W), considered for the
calculation of C(ry). From left to right: Boxes of dimension w = 0 mm, w = 0.75 mm,
w = 1.25 mm, rectangle of dimension w = 1.25 mm. (e,f) Corresponding input Tin and
output Ty aberration laws, respectively. The scalar product Py, /o, is displayed in each
sub-panel of (f). (g) Original RPSF associated with the yellow box Wy before correction
and (h) after correction using the corresponding T—matrices displayed in panels (e) and

(£).

210 where much better agreement between Tin and Tout is observed for a 3D box [third

12



20 panel of Fig. [B{d] than for a 2D patch [right panel of Fig. Bd] of same dimension w.

21 Multi-scale compensation of wave distortions.

2 The scaling of the bias intensity |07'|* with the coherence factor C has not
223 been discussed yet. This dependence is however crucial since it indicates that a
224 gradual compensation of aberrations shall be favored rather than a direct partition
s of the field-of-view into small boxes®? (see Supplementary Fig. 4). An optimal
26 UMI process should proceed as follows: first, compensate for input and output
227 wave distortions at a large scale to increase the coherence factor C; then, decrease
28 the spatial window W and improve the resolution of the T—matrix estimator.
220 The whole process can be iterated, leading to a multi-scale compensation of wave
20 distortions (see Methods). As explained above, the convergence of the process is

231 monitored using spatial reciprocity (P /out >0.9).

2 The result of 3D UMI is displayed in Fig. 2l It shows the evolution of the
2 T—matrix at each step [Fig. 2] and the corresponding local RPSFs [Fig. [2{d].
2u In the most aberrated area (i.e. under the fat), the phase fluctuations of the
235 aberration law corresponds to a time delay spread of 56 ns (rms). This value is
26 comparable with past measurements through the human abdominal wall*’. The
237 pork tissue layer thus induces a level of aberrations typical of standard ultrasound
238 diagnosis. The comparison with the initial and full-field maps of RPSF highlights
230 the benefit of a local compensation via the T—matrix, with a diffraction-limited
220 Tesolution reached everywhere. The local aberration phase laws exhibited by T
n perfectly match with the distribution of muscle and fat in the pork tissue layer.
22 The comparison of the final 3D image [Fig. [2f] and its cross-sections with their
243 initial counterparts [Fig. ] show the success of the UMI process, in particular
214 for the deepest nylon rod, which has retrieved its straight shape. The local RPSF
25 on the top right of Fig[2] shows a contrast improvement by 4.2 dB and resolution
26 enhancement by a factor 2 (see Methods and Supplementary Fig. 5).

13
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FIG. 4. Ultrasound Matrix Imaging (UMI) of the head phantom. (a) Top
and oblique views of the experimental configuration. Image credits: Harryarts and
kjpargeter on Freepik. (b,c) Original and UMI images, respectively. (d) Aberration
laws at 3 different depths. From top to bottom: z = 20 mm, z = 32 mm, z = 60 mm.
(e) Reciprocity criterion P, /ou¢ With or without the use of a confocal filter: Each box
chart displays the median, lower and upper quartiles, and the minimum and maximum
values. (f,g). Correlation function of the T-matrix in the (z, z)-plane (f) and (z,y)-
plane (g), respectively. We attribute the sidelobes along the y-axis (g) to the inactive
rows separating each block of 256 elements of the matrix array.

27 Overcoming multiple scattering for trans-cranial imaging

xus  The same UMI process is now applied to the ultrasound data collected on the
210 head phantom [Fig. ] The parameters of the multi-scale analysis are provided in
250 the Methods section (see also Supplementary Fig. 6). The first difference with the
251 pork tissue experiment lies in our choice of correction basis. Given the multi-layer

252 configuration in this experiment, the D—matrix is investigated in the plane wave

253 basism.

¢ The second difference is that our spatial reciprocity criterion B, oy is very low
25 [see the blue box plot in Fig. f]. This is the manifestation of a bad convergence

256 of our T—matrix estimator. The incoherent background exhibited by the original

14



Scattering regime Criginal RPSF Corrected RPSF Resolution

- 0
b? " aEn ¢ DEEE -
010/ /QONN ¢+ © - @0

20 20

z[mm]

@

80 80

--=- Di raction
== Conventional

L | === Single scattering
e Multiple scattering
=== Hectronic noise

T

10 100 100 i I N
<10 x[mm] 10 0 50 100 0o 5 10 15 20
CC——
% dp(-3ap) [mm]
i 1
0 % 100 0 Amplitude

FIG. 5. Aberrations and multiple scattering quantification. (a) Single scattering
(green), multiple scattering (blue) and noise (red) rate at z = 32 mm. (b) Single
scattering, multiple scattering, and noise rates as a function of depth. (c,d) Maps of
local RPSF's (in amplitude) before and after correction, respectively, at three different
depths (From left to right: z = 20 mm, 32 mm and 60 mm. Black boxes in panel (a)
and (c) corresponds to the same area. (e) Resolution dp(_34p) as a function of depth.
Initial resolution (red line) and its value after UMI (green line) are compared with the
ideal (diffraction-limited) resolution (Eq. [5)).

»7 PSFs [Fig. ] drastically affects the coherence factor C2%, which, in return, gives
2 rise to a strong bias on the T—matrix estimator (Eq. [6). The incoherent back-
250 ground is due to multiple scattering events in the skull and electronic noise, whose
20 Telative weight can be estimated by investigating the spatial reciprocity symmetry
261 of the R-matrix (see Methods). Fig. [5b shows the depth evolution of the single
»%2 and multiple scattering contributions, as well as electronic noise. While single
263 scattering dominates at shallow depths (z < 20 mm), multiple scattering quickly
264 Teaches 35% and remains relatively constant until electronic noise increases, so
s that the three contributions are almost equal at depths of 75 mm.

% Beyond the depth evolution, 3D imaging even allows the study of multiple

27 scattering in the transverse plane, as shown in Figure[fh. Two areas are examined,
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2 marked with black boxes, corresponding to the RPSFs shown in [Fig. 5] (2 = 32
260 mm). In the center, the RPSFs exhibits a low background due to the presence
20 of a spherical target, resulting in a single scattering rate of 90%. The second
on box on the right, however, is characterized by a much higher background, leading
o2 to a multiple-to-single scattering ratio slightly larger than one. This high level
213 of multiple scattering highlights the difficult task of trans-cranial imaging with

274 ultrasonic waves.

o5 In order to overcome these detrimental effects, an adaptive confocal filter can

26 be applied to the focused R—matrix!?.

P
_‘pout p1n| ) (8)

R/(pinapoubz) = R(pinvpoutaz) €xp ( 216<z>2

o7 This filter has a Gaussian shape, with a width [.(z) that scales as 3dp(2)*. The
o application of a confocal filter drastically improves the correlation between input
20 and output aberration phase laws (see Fig. de and Supplementary Fig. 7), proof

280 that a satisfying convergence towards the T—matrix is obtained.

2 Figure [dd shows the T—matrix obtained at different depths in the brain phan-
22 tom. Its spatial correlation function displayed in Figs. [dff,g provides an estimation
263 of the isoplanatic patch size: 5 mm in the transverse direction (Fig. [4f) and 2 mm
20 in depth (Fig. ). This rapid variation of the aberration phase law across the
2s5 field of view confirms a posterior: the necessity of a local compensation of aber-
286 Tations induced by the skull. It also confirms the importance of 3D UMI with a
2e7 fully sampled 2D array, as previous work recommended that the array pitch should
288 be no more than 50% of the aberrator correlation length to properly sample the

20 corresponding adapted focusing law=®.

20  The phase conjugate of the T—matrix at input and output enables a fine
201 compensation of aberrations. A set of corrected RPSFs are shown in Fig. [Bd.

202 The comparison with their initial values demonstrates the success of 3D UMI: a
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203 diffraction-limited resolution is obtained almost everywhere [Fig. [5g)], whether it
204 be in ultrasound speckle or in the neighborhood of bright targets, at shallow or

20 high depths, which proves the versatility of UMI.

26  The performance of 3D UMI is also striking when comparing the three-
27 dimensional image of the head phantom before and after UMI. [Figs. and
208 ¢, respectively]. The different targets were initially strongly distorted by the skull,
200 and are now nicely resolved with UMI. In particular, the first target, located at
s0 2 = 19 mm and originally duplicated, has recovered its true shape. In addition,
;o1 two targets laterally spaced by 10 mm are observed at 42 mm depth, as expected
302 [Fig. 4h]. The image of the target observed at 54 mm depth is also drastically
03 improved in terms of contrast and resolution but is not found at the expected
304 transverse position. One potential explanation is the size of this target (2 mm
205 diameter) larger than the resolution cell. The guide star is thus far from being
306 point-like, which can induce an uncertainty on the absolute transverse position of

so7 the target in the corrected image.

e Finally, an isolated target can be leveraged to highlight the gain in contrast
300 provided by 3D UMI with respect to its 2D counterpart. To that aim, a linear
s 1D array is emulated from the same raw data by collimating the incident beam
su in the y-direction [Fig. @ The ultrasound image is displayed before and after
sz UMI in Figs. [6b and c, respectively. The radial average of the corresponding focal
23 spots is displayed in Figs. [(d. Even though 2D UMI enables a diffraction-limited
a4 Tesolution, the contrast gain G is quite moderate (Gop ~ 8dB) as it scales with the
s number N of coherence grains exhibited by the 1D aberration phase law [Figs. [oh]:
a1 Nop ~ 6.2. On the contrary, as expected, 3D UMI provides a strong enhancement
a7 of the target echo (see the comparison between Figs. @e,f and g): Gsp ~ 18 dB.
sis The 2D aberration phase law actually provides a much larger number of spatial
s19 degrees of freedom than its 1D counterpart: N3p ~ 63. The gain in contrast is

20 accompanied by a drastic increase of the transverse resolution (> 8x for z > 40
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FIG. 6. 2D wversus 3D matrix imaging in a head phantom. (a) Aberration law
extracted with 2D UMI. (b,c) Original and corrected images of the same target with
2D UMI, respectively. (d) Aberration law extracted with 3D UMI for a target located
at z = 38 mm. (e,f) Original and corrected images of the same target with 3D UMI,
respectively. (g) Imaging PSF before (red) and after (green) 2D (dotted line) and 3D
(solid line) UMI. The depth range considered in each panel corresponds to the echo of
the target located at z = 38 mm.

;1 mm in Fig. ) Figure |§| demonstrates the necessity of a 2D ultrasonic probe for
32 trans-cranial imaging. Indeed, the complexity of wave propagation in the skull can

23 only be harnessed with a 3D control of the incident and reflected wave fields.
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24 D1SCussion

s In this experimental proof-of-concept, we demonstrated the capacity of 3D UMI
16 tO correct strong aberrations such as those encountered in trans-cranial imaging.

178

27 This work is not only a 3D extension of previous studies~**“since several crucial

328 elements have been introduced to make UMI more robust.

2o First, the proposed iterative phase reversal algorithm outperforms the SVD
330 for local compensation of aberrations because it can evaluate the aberration law
s on a larger angular support (see Supplementary Fig. 3), resulting in a sharper
12 compensation of aberrations. Second, the bias of our T-matrix estimator has been
333 expressed analytically (Eq. @ as a function of the coherence factor that grasps
s14 the detrimental effects of the virtual guide star blurring induced by aberrations,
135 multiple scattering and noise. This led us to define a general strategy for UMI
136 with: (4) a multi-scale compensation of wave distortions to gradually reduce the
337 blurring of the virtual guide star and tackle high-order aberrations associated with
138 small isoplanatic lengths; (47) the application of an adaptive confocal filter to cope
330 with multiple scattering and noise; (74) a fine monitoring of the convergence of our
s estimator by means of spatial reciprocity. The latter is a real asset, as it provides
s an objective criterion to check the physical significance of the extracted aberration

32 laws and optimize the resolution of our T—matrix estimator.

a3 Although the results presented in this paper are striking, they were obtained in
s vitro, and some challenges remain for in vivo brain imaging. Until now, UMI has
us only been applied to a static medium, while biological tissues are usually moving,
us especially in the case of vascular imaging, where blood flow makes the reflectivity
w7 vary quickly over time. A lot of 3D imaging modes are indeed designed to image
sz blood flow, such as transcranial Doppler imaging®? or ULM“%*# These methods

4243 and their coupling with matrix imaging

a0 are strongly sensitive to aberrations
0 would be rewarding to increase the signal-to-noise ratio and improve the image

351 resolution, not only in the vicinity of bright reflectors** but also in ultrasound
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352 speckle.

i3 However, due to spatial aliasing, the number of illuminations required for UMI
354 scales with the number of resolution cells covered by the RPSF (see Supplemen-
35 tary Fig. 8). Because the aberration level through the skull is important, the
ss6 1llumination basis should thus be fully sampled. It limits 3D transcranial UMI to
57 a compounded frame rate of only a few hertz, which is much too slow for ultrafast
sss imaging®. Moreover, a reduced number of illuminations breaks the symmetry of
350 the reflection matrix. It would therefore also affect the accuracy of our monitoring

w0 parameter based on spatial reciprocity.

1 Soft tissues usually exhibit much slower movement, and provide signals several
32 dB higher than blood. Ultrasound imaging of tissues is generally discarded for the
363 brain because of the strong level of aberrations and reverberations. Interestingly,
s« UMI can open a new route towards quantitative brain imaging since a matrix

15 framework can also enable the mapping of physical parameters such as the speed-

49150 51152

366 Of-sound™™ 48 attenuation and scattering coefficients?Y, or fiber anisotropy
s7 Those various observables can be extremely enlightening for the characterization

ses 0f cerebral tissues.

=3

0 Alternatively, a solution to directly implement 3D UMI in wvivo for ultrafast

a0 imaging, would be to design an imaging sequence in which the fully sampled

J

sn R—matrix is acquired prior to the ultrafast acquisition itself, where the illumi-

sz nation basis can be drastically downsampled. The T—matrix obtained from R

J

3

by

3 could then be used to correct the ultrafast images in post-processing.

s Interestingly, if an ultrafast 3D UMI acquisition is possible (in cases with less
w5 aberrations, or at shallow depths), the quickly decorrelating speckle observed in
a6 blood flow can be an opportunity since it provides a large number of speckle real-
377 izations in a given voxel. A high resolution T—matrix could thus be, in principle,

s extracted without spatial averaging and relying on any isoplanatic assumption®*°4,

s9 So far, one limit of UMI concerns the strong aberration regime in which extreme
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time delay fluctuations can occur. Indeed, our approach relies on a broadband
focused reflection matrix that consists in a coherent time gating of singly-scattered
echoes. If time delay fluctuations are larger than the time resolution 0t of our
measurement, the angular components of each echo will not necessarily emerge in
the same time gate and aberration compensation will be imperfect.

Beyond strong aberrations, another issue for transcranial imaging arises from
multiple reflections caused by the skull. While such reverberations are not observed
in the pork tissue experiment, their detrimental effects are much greater in a
transcranial experiment because of the large impedance mismatch between the
skull and brain tissues. In this work, such artefacts are not corrected and they
drastically pollute the image at shallow depths (z < 20 mm).

To cope with those issues, a polychromatic approach to matrix imaging is re-
quired. Indeed, the aberration compensation scheme proposed in this paper is
equivalent to a simple application of time delays on each transmit and receive
channel. On the contrary, a full compensation of reverberation requires the tailor-
ing of a complex spatio-temporal adaptive (or even inverse) filter. To that aim, 3D
UMI provides an adequate framework to exploit, at best, all the spatio-temporal
degrees of freedom provided by a high-dimension array of broadband transducers.

To conclude, 3D UMI is general and can be applied to any insonification se-
quence (plane wave or virtual source illumination) or array configuration (ran-
dom or periodic, sparse or dense). Matrix imaging can be also extended to any

field of wave physics for which a multi-element technology is available: optical

20122 25126 5

imaging , seismic imaging and also radar®. All the conclusions raised in
that paper can be extended to each of these fields. The matrix formalism is thus

a powerful tool for the big data revolution coming in wave imaging.
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« Methods

ws Description of the pork tissue experiment. The first sample under investi-
a7 gation is a tissue-mimicking phantom (speed of sound: ¢y = 1540 m/s) composed
a8 of random distribution of unresolved scatterers which generate ultrasonic speckle
w09 characteristic of human tissue [Fig. [2h]. The system also contains nylon filaments
a0 placed at regular intervals, with a point-like cross-section, and, at a depth of 40
an mm, a 10 mm-diameter hyperechoic cylinder, containing a higher density of unre-
a2 solved scatterers. A 12-mm thick pork tissue layer is placed on top of the phantom.
a3 [t is immersed in water to ensure its acoustical contact with the probe and the
ss phantom. Since the pork layer contains a part of muscle tissue (¢, ~ 1560 m/s)
as and a part of fat tissue (¢ ~ 1480 m/s), it acts as an aberrating layer. This ex-
a6 periment mimics the situation of abdominal in vivo imaging, in which layers of fat
a7 and muscle tissues generate strong aberration and scattering at shallow depths.

ais The acquisition of the reflection matrix is performed using a 2D matrix array of
a9 transducers (Vermon) whose characteristics are provided in Tab. [l The electronic
20 hardware used to drive the probe was developed by Supersonic Imagine (member of
a1 Hologic group) in the context of collaboration agreement with Langevin Institute.

422

Number of transducers||32 x 32 = 1024 (with 6 dead elements)

Geometry (y-axis) 3 inactive rows between each block of 256 elements
Pitch ou=0.5mm (= A\ at ¢ = 1540 m/s)
Aug\ ([ 16 mm
Aperture Au = (Auy> = (17'5 mm)
Central frequency fe =3 MHz

Bandwidth (at —6dB) [[80%— Af = [1.8 — 4.2] MHz
Transducer directivity (|€nq.: = 28° at ¢ = 1400 m/s

TABLE I. Matrix array datasheet.

423
424

s The reflection matrix is acquired by recording the impulse response between
a6 each transducer of the probe using 1Q modulation with a sampling frequency

w21 fg = 6 MHz. To that aim, each transducer u;, emits successively a sinusoidal
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a8 burst of three half periods at the central frequency f.. For each excitation uy,, the
220 back-scattered wave-field is recorded by all probe elements u,,; over a time length
w0 At = 139 ps. This set of impulse responses is stored in the canonical reflection

s matrix Ryy(t) = [R(Win, Uout, T)].

222 Description of the head phantom experiment.
a3 In this second experiment, the same probe [Tab. [I] is placed slightly above
a4 the temporal window of a mimicking head phantom, whose characteristics are

a3 described in Tab. [[I, To investigate the performance of UMI in terms of resolution

@

136 and contrast, the manufacturer (True Phantom Solutions) was asked to place small

w37 spherical targets made of bone-mimicking material inside the brain. They are

w

4

@

s arranged crosswise, evenly spaced in the 3 directions with a distance of 1 c¢m
a0 between two consecutive targets, and their diameter increases with depth: 0.2,
w0 0.5, 1, 2, 3 mm [Fig. [4h]. Skull thickness is of ~ 6 mm on average at the position
a1 where the probe is placed and the first spherical target is located at z ~ 20 mm
a2 depth, while the center of the cross is at z ~ 40 mm depth. The transverse size of

43 the head is ~ 14 cm.

Speed-of-sound | Density Attenuation
[m/s] [g/cm3]|@2.25 MHz [dB/cm]
Cortical bone 3000 £ 30 2.31 6.4+0.3
Trabecular bone| 2800 =+ 50 2.03 21£2
Brain tissue 1400 + 10 0.99 1.0+£0.2
Skin tissue 1400 + 10 1.01 1.7+£0.2

TABLE II. Head phantom characteristics.

aa  To improve the signal-to-noise ratio, the R-matrix is here acquired using a set

ws of plane waves>?.

For each plane wave of angles of incidence 6;, = (0,,6,), the
us time-dependent reflected wave field R(6i,, Uout, t) is recorded by each transducer
a7 Ugye. This set of wave-fields forms a reflection matrix acquired in the plane wave

ws basis, Rgu(t) = [R(Oin, Uoyt, t)]. Since the transducer and plane wave bases are
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uo related by a simple Fourier transform at the central frequency, the array pitch
w0 Ou and probe size Au dictate the angular pitch 60 and maximum angle 6,,,,
ss1 necessary to acquire a full reflection matrix in the plane wave basis such that:
152 Opmax = arcsinf[A./(20u)] =~ 28°; 06 = arcsin [A./(2Au,)] = 0.8°, with A\, = ¢/ f. the
ss3 central wavelength and ¢y = 1400 m/s the speed-of-sound in the brain phantom.
s A set of 1225 plane waves are thus generated by applying appropriate time delays

ass AT (O3, Wiy ) to each transducer w;, = (uy, u,) of the probe:

AT(0y, Wiy) = [uy sin b, + u, sin b,/ co. (9)

Focused beamforming of the reflection matrix. The focused R—matrix,
R,,(2) = [R(Pin, Pout, #)], is built in the time domain via a conventional delay-
and-sum beamforming scheme that consists in applying appropriate time-delays in

order to focus at different points at input ri, = (Pin, 2) = ({Zin, Yin }, 2) and output

Tout = (pouta Z) == ({xoumyout}a Z):

R(pim Pout Z) = Z Z A({iina rin}> {uout7 rout}>R (iim Uout, 7—(iiny I.in) + T(uout7 rout))

iin Uout

(10)

w6 where i = u or 0 accounts for the illumination basis. A is an apodization factor
»s7 that limit the extent of the synthetic aperture at emission and reception. This

s synthetic aperture is dictated by the transducers’ directivity O, ~ 28%7,

0 In the transducer basis, the time-of-flights, 7(u, r), writes:

) = 2t emwp CEDEES »
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w0 In the plane wave basis, 7(0,r) is given by

7(0,r) = |xsind, + ysinb, + z\/l —sin® 0, — sin® 0, | /co. (12)

w1 Local average of the reflection point spread function. To probe the local
w2 RPSF, the field-of-view is divided into spatial regions W(r,, —rp), defined by their
a3 center r, and their extent w = (w,, w,), where w, and w, denote the lateral and
s axial extent, respectively. A local average of the back-scattered intensity can then

w5 be performed in each region:

RPSF(Ap.x,) = (|Raa(Ap,r) P W(es —1,)) (13)

'm

w6 where the symbol (---) denotes here a spatial average over the variable in the
a7 subscript. W(ry, —r,) = 1 for |pm — pp| < w,/2 and |z, — 2,| < w,/2, and zero
ws otherwise. The dimensions of W used for [Fig. 2b,d] are: w = (w,, w.) = (3.2,3)
w9 mm. The dimensions of W to obtain [Figs. pk,d] are: w = (w,,w.) = (4,5.5) mm.

470

an Distortion Matrix in 3D UMI. The first step consists in projecting the focused
a2 R—matrix R,,(2) [Fig. [Ik] onto a dual basis ¢ at output [Fig. [1j]:

Rye(2) = Ryp(2) X Gpel(2) (14)

a3 where the symbol x stands for the matrix product. Gpc(2) is the propagation
ar matrix predicted by the homogeneous propagation model between the focused basis
a5 (p) and the correction basis (c) at each depth z. ¢ can be either the plane wave, the

w6 transducer, or any other correction basis suitable for a particular experiment#859,
a7 In the transducer basis (¢ = u), the coefficients of G,yu(z) correspond to the
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ws z—derivative of the Green’s function™®:

ik /lu—npl24 22
Zezkc lu—p|2+2z

P = a4 )

(15)

a9 where k. is the wavenumber at the central frequency. In the Fourier basis (¢ = k),

w0 G i simply corresponds to the Fourier transform operator™”:

G(p,k) = exp (jk.p) = exp(j (k.x + k,y)) . (16)

w1 At each depth 2, the reflected wave-fronts contained in R, are then decomposed

w2 into the sum of a geometric component G, that would be ideally obtained in

pcs
a3 absence of aberrations, and a distorted component that corresponds to the gap

s between the measured wave-fronts and their ideal counterparts [Fig. [LjJ7:

Dpe(2) = Gle(2) 0 Rpe(2) (17)

sss where the symbol o stands for a Hadamard product. Dye = Dpe(2) = [D({Pin; 2}, Cout)]
a6 1S the so-called distortion matrix, here expressed at the output. Note that the
g7 same operations can be performed by exchanging input and output to obtain the

sss input distortion matrix D¢y = [D(Cin, Tour)] = [D(Cins {Pouts 2})]-

a0 Local correlation analysis of the D—matrix. The next step is to exploit
a0 local correlations in D, to extract the T-matrix. To that aim, a set of output
a1 correlation matrices Coy(rp) shall be considered between distorted wave-fronts in

492 the vicinity of each point r;, in the field-of-view:

C(Conts Couts Tp) = (D(Fin; Cout) D™ (Tin, o)WV (1in — 1)) (18)

w03 An equivalent operation can be performed in input in order to extract a local

s correlation matrix Cy,(rp,) from the input distortion matrix De,.
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w5 Iterative phase reversal algorithm. The iterative phase reversal algorithm is

a6 a computational process that provides an estimator of the transmission matrix,
Tout(z) = G;c(z) X Houe(2), (19)

a7 where the superscript T stands for matrix transpose. Tout=[T (Cout, I'p)] links each
498 point Coyy in the dual basis and each voxel r;, of the medium to be imaged [Fig. ]

w0 Mathematically, the algorithm is based on the following recursive relation:

T (ry) = exp [ arg { Cou () x TUiy V() (20)

(?11 is the estimator of T4y at the n'™® iteration of the phase reversal process.

s00 where TO

501 Tﬁ,?t is an arbitrary wave-front that initiates the iterative phase reversal process
s2 (typically a flat phase law) and Tout = lim,, 00 T((:l)t is the result of this iterative
s03 phase reversal process.

sos  This iterative phase reversal algorithm, repeated for each point r,, yields an
s0s estimator Toye of the T-matrix. Its digital phase conjugation enables a local

sos compensation of aberrations [Fig. ] The focused R—matrix can be updated as

so7 follows:

R (2) = [Dpe(2) o Th(2)| x Ghe(2) (21)

sos Where the symbol t stands for transpose conjugate and o for the Hadamard prod-
so0 uct. The same process is then applied to the input correlation matrix C;, for the

s estimation of the input transmission matrix, Tiy(2) = G () x Hiy(2).

su Multi-scale analysis of wave distortions. To ensure the convergence of the
si2 [PR algorithm, several iterations of the aberration correction process are performed
s13 while reducing the size of the patches W with an overlap of 50% between them.
su Three correction steps are performed in the pork tissue experiment, whereas six

s15 are performed in the head phantom experiment [as described in Table . At each

27



s16 step, the correction is performed both at input and output and reciprocity between
si7 input and output aberration laws is checked. The correction process is stopped if

s1s the normalized scalar product P, /04 does not reach 0.9.

] H Pork tissue H Head phantom \
Correction step 1° 2° 3° 1° 2° 3° 4° 5° 6°
Number of transverse patches||1 x 1|2 x 2|4 x 4||1 x 1|2 x 2{3 x 3|4 x 4|5 X 5|6 X 6
W, = (wy, wy) mm] 16 | 12 8 20 | 15 [13.3] 10 8 | 6.6
w, [mm] 3 3 3 55 | 55 | 55 | 55| 55|55

TABLE III. Parameters of UMI in both experiments.

519

520

s21 Synthesise a 1D linear array. To estimate the benefits of 3D imaging compared
s22 to 2D UMI, a simulation of a 1D array is performed on experimental ultrasound
s23 data acquired with our 2D matrix array. To that aim, cylindrical time delays are

s2« applied at input and output:

in g H(s)
T’(Q(S),s,z): ssin —Cl;zcos (22)

525

\/(s —ul8))2 4 22
Co '

(23)

T'(u(s), s,2) =

s26 with s = x or y, depending on our focus plane choice.
The focused R—matrix is still built in the time domain but using this time the

following delay-and-sum beamforming:

2D beamforming along (y,z)-plane

RPP) (4, Yous, 2) = Z ZR 6:n, Uout, 7 (6 yin, 2) + 7' (1Y), Yous, 2)

6in Uout

+f/(91(:)7$f7 %) + T,(u(()ﬁ)tvva zt) — 2z¢/co | - (24)

Cylindrical law t\(: focus at (x¢, z)
s7 The images displayed in Fig. [6b,c are obtained by synthesizing input and output
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s2s beams collimated in the (y, z)—plane by focusing on a line located at (x; = 0 mm,
s20 2z = 37.25 mm), thereby mimicking the beamforming process by a conventional

s3 linear array of transducers.

sn Estimation of contrast and resolution. Contrast and resolution are evaluated
s22 by means of the RPSF. Equivalent to the full width at half maximum commonly
s33 used in 2D UMI, the transverse resolution dp is assessed in 3D based on the area

s34 A(_3qp) at half maximum of the RPSF amplitude:

0p(—3aB) = \/ A(—3dB) /T (25)

s35 The contrast, F, is computed locally by decomposing the normalised RPSF as the

s3 sum of three components®®:

_ RPSF(r,,Ap)
~ RPSF(rp,,Ap=0)

RPSF(rp, Ap) = as(rp) + an(rp) + an(rp). (26)

s (ig 1S the single scattering rate that corresponds to the confocal peak. a,; is a
s3s multiple scattering rate that gives rise to a diffuse halo; ay corresponds to the
s3 electronic noise rate which results in a flat plateau. A local contrast can then be

sa0 deduced from the ratio between ag and the incoherent background ag = ay +ay,

r) — as(rp) _ 1 —ap(rp)
70 ) T i 0

sa Single and multiple scattering rates. The single scattering, multiple scatter-
s22 ing and noise rates can be directly computed from the decomposition of the RPSF
sa3 (Eq. . However, at large depths, multiple scattering and noise are difficult to
sas discriminate since they both give rise to a flat plateau in the RPSF. In that case,
sss the spatial reciprocity symmetry can be invoked to differentiate their contribution.

ss5s The multiple scattering component actually gives rise to a symmetric R-matrix
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sa7 while electronic noise is associated with a fully random matrix. The relative part
sss Of the two components can thus be estimated by computing the degree of anti-
ss0 symmetry 3 in the R—matrix. To that aim, the R-matrix is first projected onto

ss0 its anti-symmetric subspace at each depth :

RPP(Z> - R‘;er<z)
2

RY(2) = (28)

ss1 where the superscript T stands for matrix transpose. In a common midpoint

ss2 representation, (Eq. re-writes:

RM(rm7 Ap) - RM (rm> —Ap)

RS (v, Ap) = 5 (29)
53 A local degree of anti-symmetry 3 is then computed as follows:
(A) ?
R (s Ap)| Wir = 1,)D(Ap)
rm,A
Blry) = sl (30)

<|RM (I‘m, Ap)|2 W(rm - rp)D(Ap)>[rm,Ap]

where D(Ap) is a de-scanned window function that eliminates the confocal peak
such that the computation of 5 is only made by considering the incoherent back-
ground. Typically, we chose D(Ap) = 1 for Ap > 6dpy(z), and zero otherwise.
Assuming equi-partition of the electronic noise between its symmetric and anti-
symmetric subspace, the multiple scattering rate aj; and noise ratio ay can then

be deduced (see Supplementary Section 11):

ay(rp) = (1 = 28(ry)) ap(rp) (31)
an(ry) = 28(rp)ap(ry) (32)

ss¢ In the head phantom experiment [Fig. }, these rates are estimated at each depth

sss by averaging over a window of size w = (w,, w,) = (20, 5.5) mm.

30



sss Computational insights. While the UMI process is close to real-time for 2D
ss7 imaging (i.e. for linear, curve or phased array probes), 3D UMI (using a fully
sss populated matrix array of transducers) is still far from it (see Tab. as it in-
ss0 volves the processing of much more ultrasound data. Even if computing a confocal
ss0 3D image only requires a few minutes, building the focused R—matrix from the
s raw data takes a few hours (on GPU with CUDA language) while one step of
se2 aberration correction only lasts for a few minutes. All the post-processing was
ses realized with Matlab (R2021a) on a working station with 2 processors @2.20GHz,
see 128Go of RAM, and a GPU with 48 Go of dedicated memory.

565

2D imaging 3D imaging
Number of channels [Input x Output] 32 x 32 ~ 10%[1024 x 1024 ~ 10°

Field-of-view (Az, Ay, Az) (20,0,80) mm| (20,20,80) mm

Data | Time | Data Time

Reflection matrix acquisition: Ryy(t) 6 Mo | 8ms | 6 Go | 260 ms
Confocal image Z(r) 53 ko (5.1 ms|2.2 Mo| 1.3 min

Matrix Imaging Focused R—matrix: R,,(2) (2.2 Mo|15 ms |3.6 Go| 2.3h
Estimation of T & correction 0.15 s 4.5 min

TABLE IV. Computational insights. Here, we compare the typical amount of data
and computational time at each post-processing step of UMI. The comparison between
2D and 3D imaging is made using a single line of transducers versus all the transducers
of our matrix array. In both cases, the pixel/voxel resolution is fixed at 0.5 mm, which
corresponds approximately to one wavelength. The maximum distance between the input
and output focusing points is set to 10 mm. The estimation of T is here investigated
without a multi-scale analysis on a single iteration at input and output.
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sso Data availability. The ultrasound data generated in this study is available at
so7 Zenodo®™ (https://zenodo.org/record /8159177).

568

ss0o Code availability. Codes used to post-process the ultrasound data within this
s70 paper are available from the corresponding author upon request.
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590 Supplementary Information

so0 This document provides further information on: (7) the UMI workflow; (iz) the
so RPSF and the common midpoint basis; (74) the comparison between iterative
s03 time reversal and phase reversal; (iv) the bias of the T—matrix estimator; (v) the
soe comparison between a multi-scale and local analysis of wave distortions; (vi) the
ss impact of the confocal filter; (wvit) the effect of an incompleteness of the illumination

s06 Dasis.

s7 S1.  WORKFLOW

s oupplementary Figure |[S1|shows a workflow that sums up the different steps of

soo the UMI procedure performed in the accompanying paper.

s01 S2. RPSF AND COMMON MIDPOINT

2 To probe the local focusing quality, the reflection point spread function (RPSF)
s03 can be investigated. Its extraction from the focused reflection matrix, R,,(2) =
604 [R(Pin, Pout, 2)], consists in the following change of variable to project the data into

s0s & common midpoint basis:

Pin Ap Pout — Pin
— Pin+Pout
Pout — Pm | — = 2 - . (Sl)
z z z
Vv
Focused Common midpoint

s0s This operation is described schematically in Supplementary Figure [52| for the sim-
s07 ple case of 2D imaging with a linear array of transducers. It consists in extracting
s0s each antidiagonal of the focused reflection matrix R, (z) (red boxes in Supplemen-

s00 tary Figure ), corresponding to a matrix rotation by 45°. In this representation,
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Acquisition

[ The reflection matrix

Riu(t) =

(R, Wous, 1) ]

Post-processing

I
1. Focusing/Beamforming (Eq. 10)

Y

[ The focused reflection matrix

Rpp(2) =

[R(Pin, Pout; 2)] € ]

i

:

(Eq. 14)

/

Distorted wavefronts alignement D, /Drc

(Eq. 17) ¢

Cin/Cout(rp)

Yy

Spatial correlations study
(Eq. 18) W(r —rp)

lterative Phase Reversal
(Eq. 19)
-

2. Aberration law estimation ~ 4. Correction Iterative loop
Confocal Filter R/ ( ) Dual basi
2 ual basis Rcr/ch - Input/Output
(Eq. 8) e (Eq. 14) - Correction basis
¢ ¢ - Multi-scale analysis
. L , , ) )
Dual basis projection Rcr/ch Phase conjugation R(pc;))rr)

Tin/out (rp) —

(Eq. 21)

J

p_.>09

in/out

L 3. Spatial reciprocity check j

FIG. S1. Flowchart of the UMI process.

610 Ty = (Tin + Tout)/2 is the common midpoint between the input and output focal

s11 spot, with the two separated by a distance Az = x4y — Tin. These considerations

s12 can be extended to 3D imaging, so that the transverse coordinate, previously =z,

613 NOW becomes p = (z,y).

614 S3.

CORRELATION MATRIX OF WAVE DISTORTIONS

ss  In the accompanying paper, an iterative phase reversal (IPR) process and a

6

-

s multi-scale analysis of D have been implemented to retrieve the T—matrix. In
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FIG. S2. Common midpoint representation. In 2D ultrasound imaging with linear
or convex probes, the change from a (a,b) conventional to a (c,d) common midpoint
representation corresponds to a 45° rotation of the focused reflection matrix. Panels a
and ¢ show a schematic representation of such a transformation, while panels b and d
show experimental ultrasound data in speckle of an ultrasound phantom with a linear
probe. Note that the change from the focused to the common midpoint representation
implies two new sampling grids, represented by solid and dashed lines. (e) Schematic
representation of the position of the input (xj,) and output (x.y) focal spots, spaced by
Az and their common midpoint z,. (f) Extracted RPSF by spatial averaging over all
midpoints zp, at depth z = 30 mm.

the following, we provide a theoretical framework to justify this process, outline
its limits and conditions of success. For sake of lighter notation, the dependence

over r, will be omitted in the following.

At each step of the aberration correction process, a local correlation matrix
of D is computed. The UMI process assumes the convergence of the correlation
matrix C towards its ensemble average (C), the so-called covariance matrix 7,

In fact, this convergence is never fully realized and C should be decomposed as
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624 the sum of this covariance matrix (C) and a perturbation term 0C:
C=(C) +4C. (S2)

ss The intensity of the perturbation term scales as the inverse of the number Ny, =

e (w2w,)/(0p3dzo) of resolution cells in each sub-region!®1%1:

(I5C(e.¢ rp)”) = <|C(C’]$;’Vrp)| ) (S3)

sz This perturbation term can thus be reduced by increasing the size of the spatial
s window W, but at the cost of a resolution loss. In the following, we express
s20 theoretically the bias induced by this perturbation term on the estimation of T-
e30 matrices. In particular, we will show how it scales with N,y in each spatial window
s VW and the focusing quality. To that aim, we will consider the output correlation

s32 matrix Cgy; but a similar demonstration can be performed at input.

633 S4. COVARIANCE MATRIX: SYNTHESIS OF A VIRTUAL GUIDE
e3s STAR

e Under assumptions of local isoplanicity in each spatial window and random

s3 reflectivity, the covariance matrix can be expressed as followst’:

<C0ut> = Tout X CH X TT (84)

out’

s37 Or in terms of matrix coefficients,

—i ﬂ.(C*C/)-P
(C(e. ) :TOUt(C)T(;(ut(c/)/dp|HiH(p)|26 SR (S5)
ICH‘ZC,C/)
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Cpy is a reference correlation matrix associated with a virtual reflector whose
scattering distribution corresponds to the input focal spot intensity | Hy,(p)|>. This
scatterer plays the role of virtual guide star in the UMI process (Fig. 1k of the

accompanying paper).

S5. COMPARISON BETWEEN ITERATIVE TIME REVERSAL AND
PHASE REVERSAL

In previous works on 2D UMI™* the T-matrix was estimated by performing

a singular value decomposition of Dy,.:
D, = VI x 3 x Uyy, (S6)
or, equivalently, the eigenvalue decomposition of Cgy:
Cou = Ul x 22 x Upys. (S7)

3} is a diagonal matrix containing the singular values o; in descending order: o; >
0y > .. > oy. Uy and Vi, are unitary matrices that contain the orthonormal set
()] and Vi) = [V (x)].

of output and input eigenvectors, UY = U, ®

out out

The reason of this eigenvalue decomposition can be intuitively understood by
considering the asymptotic case of a point-like input focusing beam. In this ideal

case, Eq. [S7| becomes Cyyi(c, ') = Toue(c)Tr(c"). Dy is then of rank 1 — the first

out
1)

out vields the aberration transmittance Toy.

output singular vector U

However, in reality, the input PSF Hj, is of course far from being point-like.
The spectrum of D, displays a continuum of singular values [Supplementary Fig-

ure ] The effective rank of C,, is shown to scale as the number of resolution
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FIG. S3. Iterative Time Reversal vs. Iterative Phase Reversal. (a) The first
step of ITR and IPR corresponds to the following fictitious experiment: Insonifying the
medium by an arbitrary wave-front (here a plane wave) using an array of transducers and
recording the reflected wave-front with the same probe. (b) The ITR process consists in
time-reversing this wave-front in post-processing and sending it back into the medium,
recording again the reflected wave-front, and so on. (c) The IPR process is similar but
normalizes the amplitude of the time-reversed wavefront at every iteration. (d) Singular
value distribution of Dy for a box W of dimension w = (w, wy,w.) = (2,—5,2)mm
centered around point r, = (3, —5.5,23) mm. (e,f) Modulus of the two first eigenvectors
U((fgt. (g) Modulus of the vector Cqyt X Tout.- (h) Delimitation of muscle and fat over
the probe surface. (i,j,k) Phase of U u® and Tout-

out» out
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es7 cells covered by the input PSF H;, -
M5 ~ ((Spin/(5p0)2. (88)

ess With dpy, the spatial extension of Hj,. The amplitude of the corresponding eigen-

es0 vectors UL depends on the exact shape of the virtual guide star, that is to say,

out

s0 on aberrations induced by the incident wave-front.

61 Supplementary Figures and f show the modulus of two first eigenvectors,
662 U(()l)t and U They clearly show a complementary feature. While UY is associ-

u out* out

s63 ated with the fat layer, Ufj}t maps onto the muscle part of the pork chop [Supple-
sss mentary Figure ] This result can be understood by the discontinuity of the
sss speed-of-sound between the muscle and fat parts of the pork chop that breaks the
sss Spatial invariance and isoplanicity. As a consequence, the SVD process tends to

s67 converge onto eigenstates associated with the most isoplanatic components of D,..

se T'his property is not satisfactory in the present case since each eigenvector only
s covers a part of the probe aperture. In other words, the phases of UM [Supplemen-
o0 tary Figure ] and U® [Supplementary Figure ] are only satisfying estimators
o1 of T over some parts of the probe. Therefore, they cannot independently lead to

s2 an aberration compensation over the full numerical aperture.

e3  To circumvent that problem, one can take advantage of the analogy with itera-
ens tive time reversal (ITR). The eigenvector U((jl)t can actually be seen as the result of
o7 the following fictitious experiment that consists in illuminating the virtual scatterer
o6 by an arbitrary wave-front and recording the reflected wave-field [Supplementary
7 Figure ] This wave-field is time-reversed and back-emitted towards the virtual
ers scatterer [Supplementary Figure ] This process can then be iterated many

e7o times and each step can be mathematically written as:

oW — ¢, x W) (S9)
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o0 with W) the wave-front at iteration n of the ITR process and o, the scatterer
sa1 reflectivity. ITR is shown to converge towards a time-reversal invariant that is

ss2 nothing other than the first eigenvector, Ugl)t = lirf w),
n—-+0oo

3 1o optimize the estimation of aberrations over the full probe aperture, our idea
e84 i to modify the I'TR process by still re-emitting a phase-reversed wave-field but
ess with a constant amplitude on each probe element [Supplementary Figure [S3f]. In

sss practice, this operation is performed using the following IPR algorithm:
T = exp [iarg { Cou x T} (S10)

es7 Where Tgﬁl is the estimator of Toy at the n'® iteration of IPR. Tg?]t is an arbi-

ess trary wave-front that initiates IPR (typically a plane wave). Toue = lim, o Téﬁl
es0 1S the result of this IPR process. Unlike ITR, IPR equally addresses each angular
so0 component of the imaging process to reach a diffraction-limited resolution. Sup-
1 plementary Figure illustrates this fact by showing the modulus of C,; Tout.

s02 Compared with vl [Supplementary Figure ] and U?

out out

[Supplementary Fig-
603 Ur'E ], it clearly shows that the phase-reversed invariant ’i‘out simultaneously
sos addresses each angular component of the aberrated wave-field. Tout is thus a much
s0s better estimator of the T—matrix [Supplementary Figure ] than the aberration
s0s phase laws extracted by the SVD process [Supplementary Figures and jl.

sov  When applied to the whole field-of-view, the IPR algorithm is mathematically
s0s equivalent to the CLASS algorithm developed in optical microscopy??. However,
s00 the IPR algorithm is much more efficient for a local compensation of aberrations.
700 For IPR, the angular resolution 66 of the aberration phase law is only limited by the
701 angular pitch of the plane wave illumination basis or the pitch p of the transducer
702 array in the canonical basis: 00; ~ A/p. With CLASS, the resolution §6c of the
703 aberration law is governed by the size of the spatial window W on which the focused

704 reflection matrix is truncated: 06c ~ z/w,. It can be particularly detrimental
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705 when high-order aberrations and small isopalanatic patches are targeted.

76 56. BIAS ON THE T-MATRIX ESTIMATION

77 In practice, however, the T—matrix estimator is still impacted by the blurring
s of the synthesized guide star and the presence of diffusive background and/or
700 noise. Therefore, the whole process shall be iterated at input and output in order
70 to gradually refine the guide star and reduce the bias on our T—matrix estimator.
1 Moreover, the spatial window W over which the C—matrix is computed shall be
72 gradually decreased in order to address the high-order aberration components, the
713 latter one being associated with smaller isoplanatic patches.

7a  To understand the parameters controlling the bias 6 T,,; between Tout and Ty,

715 one can express Ty as follows:

o . = Cout X Tout
Tout = exp <]arg {Cout X Tout}) = < (Sll)
||Cout X Tout||

716 By injecting Eq. into the last expression, Tou can be expressed, at first order,

77 as the sum of its expected value T, and a perturbation term 5Tout:

T <C0ut> X Tout 6Cout X Tout
Tout = + . S12
= [{Con) X Toul] " [{Cont) X Toul] (512)

-~ -~

=Tout 3§Tout

[\

718 The bias intensity can be expressed as follows:

T(T)ut X (FCZMt X 0Cout X Tout

‘5T0ut’2 — ¥
Tout X <Cout>T X <Cout> X Tout

(S13)

7o Using Eq. [S3], the numerator of the last equation can be expressed as follows:

T! . % 0C! . % 6Cou X Toue = N2(|0C(c, &) *) = N2|C(c,c)|?/Nyy.  (S14)
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720 with N,, the number of transducers.

71 The denominator of Eq. can be expressed as follows:

2
Tlut X <Cout>Jr X <Cout> X Tout = M2 Zﬂn é 7—1in(c) (815)
722 The bias intensity is thus given by:
c 2
Tin ® Tin(0)
|5Tout(c)|2 = 2 (816)

Ny [ Tin & Tin(c)

723 In the last expression, we recognize the ratio between the coherent intensity (energy
74 deposited exactly at focus) and the mean incoherent input intensity. This quantity

75 is known as the coherence factor in ultrasound imaging®4¢:

ST ®Tule) _ |[Hulp=0)?

Cin c —
T @ Tw(0) AP | dolHin(p)”

(S17)

726 In the speckle regime and for a 2D probe, the coherence factor C ranges from 0,
72 for strong aberrations and/or multiple scattering background, to 4/9 in the ideal

728 case®. The bias intensity can thus be rewritten as:

1

6T o (C)]? = =5~
T (@) = e

(S18)

729 This last expression justifies the multi-scale analysis proposed in the accompanying
720 paper. A gradual increase of the focusing quality, quantified by C, is required to
721 address smaller spatial windows that scale as Nyy. Following this scheme, the bias

72 made of our T—matrix estimator can be minimized.
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733 S7. PROBING THE BIAS INTENSITY WITH SPATIAL RECIPROCITY

7% In the accompanying paper, we use the scalar product B,/ between input and
735 output aberration phase laws to monitor the bias |§T'|> of our T—matrix estimator.
136 Here we demonstrate the link between both quantities. To do so, the estimator

737 can be written as:

A

T(c,rp) = exp[j{o(c,rp) +do(c,1p)}] (S19)

73 with T'(c,r,) = exp [j¢(c,rp)] and d¢(c, r,) the phase error of the estimator.

70 On the one hand, the bias intensity can be rewritten using Eq. [f] as follows:

. . 5¢ C,r dp<<1
16T (c,r,)|2 = |1 — exp[jdd(c, r,)]|* = 4sin? {%} < [0g(e, 1)) (S20)
70 On the other hand, the scalar product B, /o is given by

Pajous = N exp [ {6¢im(c, 1p) — 0dout(c, 1)} (S21)

1 In the previous equation, the sum over ¢ can be replaced by an ensemble average

2 since N, = N, >> 1:

Pinjout = (exp [7 {0¢m(c,Tp) — dgout(c,1p) }H) - (S22)

723 Assuming a small phase error (0in/oue << 1), the last equation can be rewritten

744 AS fOHOWS

([0¢in(c,rp) — ddous(c, rp)]2> .

5 (S23)

Pin/out ~ 1 +] <5¢in<cy rp) - 5¢0ut(ca rp)> -
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s Since (i /our) = 0 and (0dindgout) = 0, the last expression simplifies into

PO (3 A8 20

ne Assuming an equivalent phase error at input and output ({|d¢i,(c,1p)|?) =

77 (|0ous (¢, 1p)[?)) finally leads to:

Pajou = 1= (J0¢(c, 1p)[%). (525)
72 Combining the latter expression with Eq. leads to the final result:

Prajon = 1 = (0T (e 1)) . (526)

749 Py jout 18 thus a relevant quantity to estimate the bias intensity (see Fig. 3b of the

750 accompanying paper).

1 S8. MULTI-SCALE ANALYSIS OF WAVE DISTORTIONS

7 Supplementary Figure [S4] demonstrates the benefit of a multi-scale analysis of
753 wave distortions with a gradual decrease of spatial windows W at each step of
75 the UMI process [Supplementary Figure ] To that aim, this aberration cor-
755 rection scheme is compared with a direct estimation of the T—matrix over the
756 smallest patches W [Supplementary Figure ] The estimated transmission ma-
s trices T differ in both cases (see comparison between Supplementary Figures
s and e) especially in the fat layer. The RPSFs obtained after phase conjugation of
s T demonstrate the benefit of the multi-scale analysis [Supplementary Figure }
760 compared with a direct local investigation of wave distortions [Supplementary Fig-
w1 ure[S4f]. The fat area is actually the most aberrated in the field-of-view (see initial

2 RPSFs displayed by Fig. 2b of the accompanying paper). The initial coherence
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LittlebyLittlevsDirectALex.png

FIG. S4. Multi-scale versus direct local analysis of wave distortions (pork chop
experiment, z = 29 mm). (a) Representation of the spatial windows used at each step of
UMI (see Tab. ITI of the accompanying paper). (b) Aberration phase laws (T) extracted
by a multi-scale analysis. (c) RPSFs after multi-scale aberration compensation. (d)
Representation of the spatial windows used for a direct local compensation of wave
distortions. (e) Aberration phase laws (T) extracted by a local analysis of D. (f)

RPSFs after local aberration compensation.

763 factor C is thus much smaller in this area, which induces a strong bias on T when

76a wave distortions are investigated over a reduced isoplanatic patch. On the con-
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765 trary, a multi-scale analysis enables a gradual enhancement of this coherence factor

766 in this area and finally leads to an unbiased estimation of T.

77 Supplementary Figure shows the performance of UMI by comparing the
6s RPSFs before and after aberration compensation. In the most aberrated area (top
760 right of the field-of-view), the resolution is improved by almost a factor two, while

70 the contrast is increased by 4.2 dB.

0.5

Amplitude

B §_355 =0.92mm
C =45

AX [mm)]

FIG. S5. Contrast & resolution enhancement in the pork chop experiment.
(a) Maps of local RPSF (z = 29 mm). (b) Local RPSF on the top right of the field-
of-view. (c) Map of RPSF after the UMI process. (d) Corrected RPSF on the top
right of the field-of-view. The resolution is evaluated at —3dB (see Methods in the
accompanying paper). The contrast F is the ratio between the confocal peak and the

_,, multiple scattering/noise background (see also Methods).

772

7z Supplementary Figure [S6 shows the evolution of the RPSF during the UMI
772 process applied to the head phantom experiment. A gradual enhancement of the
7 focusing process is observed at each step of UMI, which enables an estimation of

77 the T—matrix at a higher resolution.
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FIG. S6. Multi-scale compensation of wave distortions in the head phantom.
(a) Successive patches used to perform a multi-scale analysis of wave distortions. (b)
Radial profile of the RPSF amplitude at each step for three different depths (From left
to right: z =20, z = 32 and z = 60 mm). (c) Resolution as a function of depth at each
step of correction (from red to green). At large depth (red dashed line), initial resolution
can not be extracted as the incoherent background is larger than 1/2 as shown in panel
(b) for z = 60 mm.

778 S9. CONFOCAL FILTER

7o Supplementary Figure[S7]shows the effect of the confocal filter on the T—matrix
70 estimation. The output aberration phase laws contained in Tou look much more
7e1 noisy in absence of an adaptive confocal filter (see the comparison between Supple-
72 mentary Figures and b). As shown by the scalar product between input and
3 output aberration phase laws [Supplementary Figure[S7k], this “noise” comes from
7 the imperfect convergence of T towards T. Without any confocal filter, multiple
785 scattering drastically reduces the coherence factor and induces a strong bias on
785 estimation of T (see Supplementary Section S5). On the contrary, the adaptive
77 confocal filter enables an enhancement of this coherence factor C to ensure a sat-

788 isfactory estimation of T. The high degree of correlation between ’i‘in and Tout
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FIG. S7. Confocal filter in transcranial imaging. (a,b) Output aberration phase

laws (Tout) extracted without and with a confocal filter. (c,d) Normalised scalar prod-
ucts Py, /ot Without and with a confocal filter, respectively. (e,f) RPSFs obtained with
UMI without and with a confocal filter. (g) Box plot corresponding to the panels (c,d).
Experimental data shown in this figure correspond to the head phantom experiment

described in the accompanying paper (z = 50mm).

780 proves this last assertion [Supplementary Figure ] The effect of the confocal
700 filter is also particularly obvious when looking at the RPSF obtained at the end
701 of the UMI process. While a strong incoherent background subsists on the lat-
792 eral parts of the field-of-view when no confocal filter is applied [Supplementary

703 Fligure ], a homogeneous focusing quality is obtained with the confocal filter
s [Supplementary Figure [STf].
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FIG. S8. INlumination sequence. (a-e) Representation of different plane wave illu-
mination sequence in the k—space. (f-j) Aliasing effect exhibited by the RPSFs due
to incompleteness of illumination sequence displayed in panels a-e, respectively. These
RPSF's have been measured in a speckle area of a tissue-mimicking phantom.

795 S10. ILLUMINATION BASIS

796 Supplementary Figure shows the impact of the illumination sequence on
v UML If the input illumination basis is complete [Supplementary Figure [S8h], the
s RSPF exhibits the expected diffraction-limited resolution [Supplementary Fig-
799 UTE ] The side lobes along the y-axis are due to the probe geometry made
soo of four blocks of transducers separated by a distance of 0.5 mm (three inactive
sor Tows of transducers along the y-axis).

s2  When the number of illuminating plane waves is reduced [Supplementary Fig-
s03 UT€S —e], spatial aliasing occurs on corresponding RPSFs [Supplementary Fig-
sos ures [S8g-j]. The maximal extension App.x of the RPSF has to be fixed to avoid
s0s the spatial aliasing induced by the incompleteness of the plane wave illumination

so6 basis; Apmax 18 inversely proportional to the angular step 66 of the plane wave
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so7 1llumination basis:

AP ~ Ao/ (260) (S27)

sos With A\, the central wavelength and §6 the angular pitch used for the illumination
s00 sequence. Thus, to avoid spatial aliasing, the coefficients R(pin, Pout, 2) associated
s10 with a transverse distance |pouy — pin| larger than the superior bound Apy,, should

s be filtered via a confocal filter.

sz BEquation implies the necessity of recording a high-dimension R—matrix for
s13 transcranial imaging, as aberrations are particularly important in that configura-
a1 tion (see Fig. 5 of the accompanying paper). The number of independent incident

s15 waves should scale as the number of resolution cells over which the RPSF spreads.

s16 S11. DISCRIMINATE MULTIPLE SCATTERING FROM ELECTRONIC
s17 NOISE

sis  We consider here the background of the focused reflection matrix for a given
s19 point rp:

B(Ap,rp) = (Rp(Ap, ) D(Ap)W (1 — 1p))r, (528)
220 where D(Ap) is a de-scanned window function that eliminates the confocal peak
21 and W is a spatial average window function around the targeted focal point ry,.

g2 The background can be decomposed as the sum of a fully symmetric matrix
s23 associated to multiple scattering (due to spatial reciprocity) and a fully random

s24 matrix associated to the electronic noise as follows:

B = M  + N (S29)
~— ~— ~—~
Background Multiple scattering  Noise

s2s Projecting the B—matrix onto its anti-symmetric subspace directly holds the anti-

20



s26 Symmetric part of the electronic noise such that:

=== -

BW N (S30)

Assuming equi-repartition of the electronic noise onto its symmetric and anti-

symmetric subspace leads to:
1
IB&|? = [N®)2 = 5INT? (531)
2z The norm of the background can be expressed as follows:

1B = M + N[} + 2 (M|N) (532)
——

~0

Assuming that the scalar product between the electronic noise and the multiple

scattering is zero on average, the multiple scattering rate a;,; can be derived by

combining equations (S31)) & (S32)):

M7 BW|”
apy =42l g 2 (933)
B[ 1B
B

g8 With § the anti-symmetric rate of the B—matrix.

g0 512. NOTATION AND SYMBOLS
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