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Abstract

Matrix imaging paves the way towards a next revolution in wave physics.

Based on the response matrix recorded between a set of sensors, it enables

an optimized compensation of aberration phenomena and multiple scattering

events that usually drastically hinder the focusing process in heterogeneous

media. Although it gave rise to spectacular results in optical microscopy or

seismic imaging, the success of matrix imaging has been so far relatively lim-

ited with ultrasonic waves because wave control is generally only performed

with a linear array of transducers. In this paper, we extend ultrasound ma-

trix imaging to a 3D geometry. Switching from a 1D to a 2D probe enables

a much sharper estimation of the transmission matrix that links each trans-

ducer and each medium voxel. Here, we first present an experimental proof

of concept on a tissue-mimicking phantom through ex-vivo tissues and then,

show the potential of 3D matrix imaging for transcranial applications.
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Introduction9

The resolution of a wave imaging system can be defined as the ability to dis-10

cern small details of an object. In conventional imaging, this resolution cannot11

overcome the diffraction limit of a half wavelength and may be further limited12

by the maximum collection angle of the imaging device. However, even with a13

perfect imaging system, the image quality is affected by the inhomogeneities of14

the propagation medium. Large-scale spatial variations of the wave velocity in-15

troduce aberrations as the wave passes through the medium of interest. Strong16

concentration of scatterers also induces multiple scattering events that randomize17

the directions of wave propagation, leading to a strong degradation of the image18

resolution and contrast. Such problems are encountered in all domains of wave19

physics, in particular for the inspection of biological tissues, whether it be by ul-20

trasound imaging1 or optical microscopy2, or for the probing of natural resources21

or deep structure of the Earth’s crust with seismic waves3.22

To mitigate those problems, the concept of adaptive focusing has been adapted23

from astronomy where it was developed decades ago4,5. Ultrasound imaging em-24

ploys array of transducers that allows to control and record the amplitude and25

phase of broadband wave-fields. Wave-front distortions can be compensated for26

by adjusting the time-delays added to each emitted and/or detected signal in order27

to focus ultrasonic waves at a certain position inside the medium6–9. The estima-28

tion of those time delays implies an iterative time-consuming focusing process that29

should be ideally repeated for each point in the field-of-view10,11. Such a complex30

adaptive focusing scheme cannot be implemented in real time since it is extremely31

sensitive to motion12 whether induced by the operator holding the probe or by the32

movement of tissues.33

Fortunately, this tedious process can now be performed in post-processing13,1434

thanks to the tremendous progress made in terms of computational power and35

memory capacity during the last decade. To optimize the focusing process and36
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image formation, a matrix formalism can be fruitful15–18. Indeed, once the reflec-37

tion matrix R of the impulse responses between each transducer is known, any38

physical experiment can be achieved numerically, either in a causal or anti-causal39

way, for any incident beam and as many times as desired. More specifically, assum-40

ing that the medium remains fixed during the acquisition, a multi-scale analysis41

of the wave distortions can be performed to build an estimator of the transmis-42

sion matrix T between each transducer of the probe and each voxel inside the43

medium19. Once the T-matrix is known, a local compensation of aberrations can44

be performed for each voxel, thereby providing a confocal image of the medium45

with a close to ideal resolution and an optimized contrast everywhere.46

Although it gave rise to striking results in optical microscopy20–24 or seismic47

imaging25,26, the experimental demonstration of matrix imaging has been, so far,48

less spectacular with ultrasonic waves17,18,27,28. Indeed, the first proof-of-concept49

experiments employed a linear array of transducers. Yet, aberrations in the human50

body are 3D-distributed and a 1D control of the wave-field is not sufficient for a fine51

compensation of wave-distortions as already shown by previous works29–32. More-52

over, 2D imaging limits the density of independent speckle grains which controls53

the spatial resolution of the T-matrix estimator28.54

In this work, we extend the ultrasound matrix imaging (UMI) framework to55

3D using a fully populated matrix array of transducers33–35. The overall method56

is first validated by means of a well-controlled experiment combining ex-vivo pork57

tissues as aberrating layer on top of a tissue-mimicking phantom. 3D UMI is58

then applied to a head phantom whose skull induces a strong attenuation, aber-59

ration and multiple scattering of the ultrasonic wave-field, phenomena that UMI60

can quantify independently of each other1,19. Inspired by the CLASS method de-61

veloped in optical microscopy20,22, aberrations are here compensated by a novel62

iterative phase reversal algorithm more efficient for 3D UMI than a singular value63

decomposition16–18. In contrast with previous works, the convergence of this algo-64
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rithm is ensured by investigating the spatial reciprocity between the T-matrices65

in transmission and reception. Throughout the paper, we will compare the gain66

in terms of resolution and contrast provided by 3D UMI with respect to its 2D67

counterpart. In particular, we will demonstrate how 3D UMI can be a powerful68

tool for optimizing the focusing process inside the brain through the skull.69

Results70

Beamforming the reflection matrix in a focused basis.7172

3D UMI starts with the acquisition of the reflection matrix (see Methods) by73

means of a 2D array of transducers (32× 32 elements, see Fig. 1a,b). It was per-74

formed first on a tissue-mimicking phantom with nylon rods through a layer of pork75

tissue of fat and muscle (obtained from a chop rib piece), acting as an aberrating76

layer [Fig. 2a], and then on a head phantom including brain and skull-mimicking77

tissue, to reproduce transcranial imaging (see below). In the first experiment, the78

reflection matrix Ruu(t) is recorded in the transducer basis [Fig. 1a,c], i.e. by79

acquiring the impulse responses, R(uin,uout, t), between each transducer (u) of80

the probe. In the head phantom experiment, skull attenuation imposes a plane81

wave insonification sequence [Fig. 1b] to improve the signal-to-noise ratio. The82

reflection matrix Rθu then contains the reflected wave-field R(θin,uout, t) recorded83

by the transducers uout [Fig. 1c] for each incident plane wave of angle θin.84

Whatever the illumination sequence, the reflectivity of a medium at a given85

point r can be estimated in post-processing by a coherent compound of incident86

waves delayed to virtually focus on this point, and coherently summing the echoes87

recorded by the probe coming from that same point [Fig. 1d]. UMI basically88

consists in decoupling the input (rin) and output (rout) focusing points [Fig. 1e]. By89

applying appropriate time delays to the transmission (uin/θin) and reception (uout)90

channels (see Methods), Ruu(t) and Rθu(t) can be projected at each depth z in a91

focused basis, thereby forming a broadband focused reflection matrix, Rρρ(z) ≡92
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FIG. 1. 3D Ultrasound Matrix Imaging (UMI). (a,b) The R-matrix can be ac-

quired in the transducer (a) or plane-wave (b) basis in transmit and (c) recording the

back-scattered wave-field on each transducer in receive. (d) Confocal imaging consists

in a simultaneous focusing of waves at input and output. (e) In UMI, the input (rin)

and output (rout) focusing points are decoupled. (f) x−cross-section of the (g) focused

R−matrix. (h) UMI enables a quantification of aberrations by extracting a local RPSF

(displayed here in amplitude) from each antidiagonal of Rρρ(z). (i) UMI then consists

in a projection of the focused R-matrix in a correction (here transducer) basis at output.

The resulting dual R-matrix connects each focusing point to its reflected wave-front. (j)

UMI then consists in realigning those wave-fronts to isolate their distorted component

from their geometrical counterpart, thereby forming the D-matrix. (k) An iterative

phase reversal algorithm provides an estimator of the T−matrix between the correction

basis and the mid-point of input focusing points considered in panel g. (l) The phase

conjugate of the T−matrix provides a focusing law that improves the focusing process

at output. (m) RPSF amplitude after the output UMI process. The ultrasound data

shown in this figure corresponds to the pork tissue experiment at depth z = 40 mm.
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FIG. 2. Ultrasound matrix imaging of a tissue-mimicking phantom through

a pork tissue. (a) Schematic of the experiment. (b) Maps of original RPSFs (in

amplitude) at depth z = 29 mm. (c) Aberration phase laws extracted at the different

steps of the UMI process. (d) Corresponding RPSFs after aberration compensation

at each step. (e,f) 3D confocal and UMI images with one longitudinal and transverse

cross-section.

[R(ρin,ρout, z)].93

Since the focal plane is bi-dimensional, each matrixRρρ(z) has a four-dimension94

structure: R(ρin,ρout, z) = R({xin, yin}, {xout, yout}, z). Rρρ(z) is thus concate-95
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nated in 2D as a set of block matrices to be represented graphically [Fig. 1g]. In96

such a representation, every sub-matrix of R corresponds to the reflection matrix97

between lines of virtual transducers located at yin and yout, whereas every ele-98

ment in the given sub-matrix corresponds to a specific couple (xin, xout) [Fig. 1e].99

Each coefficient R(xin, yin, xout, yout, z) corresponds to the complex amplitude of100

the echoes coming from the point rout = (xout, yout, z) in the focal plane when fo-101

cusing at point rin = (xin, yin, z) (or conversely, since Rρρ(z) is a symmetric matrix102

due to spatial reciprocity).103

As already shown with 2D UMI, the diagonal of Rρρ(z) directly provides the104

transverse cross-section of the confocal ultrasound image:105

I(ρ, z) = |R(ρin = ρout, z)|2 (1)

where ρ = ρin = ρout is the transverse coordinate of the confocal point. The106

corresponding 3D image is displayed in Fig. 2e for the pork tissue experiment.107

Longitudinal and transverse cross-sections illustrate the effect of the aberrations108

induced by the pork layer by highlighting the distortion exhibited by the image of109

the deepest nylon rod.110

Probing the focusing quality.111

We now show how to quantify aberrations in ultrasound speckle (without any112

guide star) by investigating the antidiagonals of Rρρ(z). In the single scattering113

regime, the focused R−matrix coefficients can be expressed as follows1:114

R(ρout,ρin, z) =

∫
dρHout(ρ− ρout,ρout, z)γ(ρ, z)Hin(ρ− ρin,ρin, z) (2)

with Hin/out, the input/output point spread function (PSF); and γ the medium115

reflectivity. This last equation shows that each pixel of the ultrasound image (diag-116

onal elements ofRρρ(z)) results from a convolution between the sample reflectivity117

and an imaging PSF, which is itself a product of the input and output PSFs. The118
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off-diagonal points in Rρρ(z) can be exploited for a quantification of the focusing119

quality at any pixel of the ultrasound image by extracting each antidiagonal. Such120

an operation is mathematically equivalent to a change of variable to express the121

focused R−matrix in a common midpoint basis1 (see Supplementary Section 2):122

RM(∆ρ, rm) = R

(
ρm − ∆ρ

2
,ρm +

∆ρ

2
, z

)
, (3)

where the subscript M stands for the common midpoint basis. rm = {ρm, z} =123

{(ρin + ρout)/2, z} is the common midpoint between the input and output focal124

spots, with the two separated by a distance ∆ρ = ρout − ρin.125

In the speckle regime (random reflectivity), this quantity probes the local fo-126

cusing quality as its ensemble average intensity, which we refer to as the reflection127

point spread function (RPSF), scales as an incoherent convolution between the128

input and output PSFs1:129

RPSF (∆ρ, rm) =
〈
|RM(∆ρ, rm)|2

〉
∝ |Hin|2

∆ρ
⊛ |Hout|2(∆ρ, rm), (4)

where ⟨· · · ⟩ denotes an ensemble average, which, in practice, is performed by a130

local spatial average (see Methods).131

Figure 1h displays the mean RPSF associated with the focused R−matrix dis-132

played in Fig. 1g (pork tissue experiment). It clearly shows a distorted RPSF133

which spreads well beyond the diffraction limit (black dashed line in Fig. 1h):134

δρ0(z) ∼
λc

2 sin {arctan [∆u/(2z)]}
(5)

with ∆u the lateral extension of the probe. The RSPF also exhibits a strong135

anisotropy that could not have been grasped by 2D UMI. As we will see in the136

next section, this kind of aberrations can only be compensated through a 3D137

control of the wave-field.138
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Adaptive focusing by iterative phase reversal.139

Aberration compensation in the UMI framework is performed using the distor-140

tion matrix concept. Introduced for 2D UMI17,28, the distortion matrix can be141

obtained by: (i) projecting the focused R−matrix either at input or output in142

a correction basis (here the transducer basis, see Fig. 1i); (ii) extracting wave143

distortions exhibited by R when compared to a reference matrix that would have144

been obtained in an ideal homogeneous medium of wave velocity c0 [Fig. 1j]. The145

resulting distortion matrix D = [D(u, r)] contains the aberrations induced when146

focusing on any point r, expressed in the correction basis.147

This matrix exhibits long-range correlations that can be understood in light of148

isoplanicity. If in a first approximation, the pork tissue layer can be considered as149

a phase screen aberrator, then the input and output PSFs can be considered as150

spatially invariant: Hin/out(ρ − ρin/out, rin/out) = H(ρ − ρin/out). UMI consists in151

exploiting those correlations to determine the transfer function T (u) of the phase152

screen. In practice, this is done by considering the correlation matrix C = D×D†.153

The correlation between distorted wave-fields enables a virtual reflector synthesized154

from the set of output focal spots17 [Fig. 1k]. While, in previous works17,19, an155

iterative time-reversal process (or equivalently a singular value decomposition of156

D) was performed to converge towards the incident wavefront that focuses perfectly157

through the medium heterogeneities onto this virtual scatterer, here an iterative158

phase reversal algorithm is employed to build an estimator T̂ (u) of the transfer159

function (see Methods). Supplementary Figure 3 demonstrates the superiority of160

this algorithm compared to SVD for 3D UMI.161

Iterative phase reversal provides an estimation of aberration transmittance162

[Fig. 1k] whose phase conjugate is used to compensate for wave distortions (see163

Methods). The resulting mean RPSF is displayed in Fig. 1m. Although it shows164

a clear improvement compared with the initial RPSF, high-order aberrations still165

subsist. Because of its 3D feature, the pork tissue layer cannot be fully reduced to166
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an aberrating phase screen in the transducer basis.167

Spatial reciprocity as a guide star.168

The 3D distribution of the speed-of-sound breaks the spatial invariance of input169

and output PSFs. Figure 2b illustrates this fact by showing a map of local RPSFs170

(see Methods). The RPSF is more strongly distorted below the fat layer of the171

pork tissue (cf ≈ 1480 ± 10 m/s36) than below the muscle area (cm ≈ 1560 ± 50172

m/s). A full-field compensation of aberrations similar to adaptive focusing does173

not allow a fine compensation of aberrations [Fig. 2d1]. Access to the transmission174

matrix T = [T (u, r)] linking each transducer and each medium voxel is required175

rather than just a simple aberration transmittance T (u).176

To that aim, a local correlation matrix C(rp) should be considered around each177

point rp over a sliding box W(r − rp) (see Methods), commonly called patches,178

whose choice of spatial extent w is subject to the following dilemma: On the179

one hand, the spatial window should be as small as possible to grasp the rapid180

variations of the PSFs across the field of view; on the other hand, these areas should181

be large enough to encompass a sufficient number of independent realizations of182

disorder16,19. The bias made on our T-matrix estimator actually scales as (see183

Supplementary Section 6):184

|δT (u, rp)|2 ∼
1

C2NW
. (6)

C is the so-called coherence factor that is a direct indicator of the focusing quality8185

but that also depends on the multiple scattering rate and noise background28. NW186

is the number of diffraction-limited resolution cells in each spatial window.187

The validity of the T−matrix estimator in a region W1 (Fig. 3c) is investigated188

by examining the corrected RPSF in a neighbour region W2 (yellow box). W1 and189

W2 are sufficiently close to assume, in a first approximation, that they belong to the190

same isoplanatic patch. If the box is too small (left of Fig. 3d), our estimator has191
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not converged yet and the correction is not valid, as shown by the degraded quality192

of the RPSF inW2 [left panel of Fig. 3h] compared to its initial value[Fig. 3g]. With193

sufficient spatial averaging [third panel of Fig. 3d], a valid aberration law can be194

extracted, as shown by a corrected RPSF now close to be only diffraction-limited195

[third panel of Fig. 3h].196

The question that now arises is how we can, in practice, know if the convergence197

of T̂ is fulfilled without any a priori knowledge on T. An answer can be found198

by comparing the estimated input and output aberration phase laws, T̂in(u, rp)199

and T̂out(u, rp), at a given point rp as shown in Figs. 3e and f. Spatial reciprocity200

implies that T̂in and T̂out shall be equal when the convergence of the estimator is201

reached [third panel of Figs. 3e and f]. Their normalized scalar product, Pin/out =202

N−1
u T̂inT̂

†
out, can thus be used to probe the error made on the aberration phase law203

|δT |2. Both quantities are actually related as follows (see Supplementary Section204

7):205

|δT |2 ≃ 1− Pin/out. (7)

The normalized scalar product Pin/out is displayed as a function of w and shows206

the convergence of the IPR process [Fig. 3a]. For a sufficiently large box [third207

panel of Fig. 3d], T̂ is supposed to have converged towards T when T̂in and T̂out208

are almost equal [third panel of Fig. 3e,f], while, for a small box [left panel of209

Fig. 3d], a large discrepancy can be found between them. In the following, the210

parameter Pin/out will thus be used as a guide star for monitoring the convergence211

of the UMI process.212

The scaling law of Eq. 6 with respect to NW is checked in Fig. 3b. The in-213

verse scaling of the bias with NW shows the advantage of 3D UMI over 2D UMI,214

since NW ∼ wd, with d the imaging dimension. This superiority is evident in215

Fig. 3a, which shows a faster convergence with 3D boxes (green curve) than with216

2D patches (orange curve). For a given precision, 3D UMI thus provides a better217

spatial resolution for our T−matrix estimator as shown by right panels of Figs. 3f,218
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FIG. 3. Convergence of the UMI process towards the T-matrix. (a) Normalized

scalar product Pin/out extracted at a point r1 (c) as a function of the size w1 of the con-

sidered spatial window W1 for 2D (orange) and 3D (green) imaging. (b) Corresponding

bias intensity estimator, |δT |2 = 1 − Pin/out, as a function of the number of resolution

cells NW contained in the window W1. The plot is in log-log scale and the theoretical

power law (Eq. 6) is shown with a dashed black line for comparison. (c) Cross-section of

the confocal volume showing the location of W1 in green and W2 in yellow. The green

box W1, centered around the point r1 = (5,−5, 41) mm, denotes the region where the

T̂−matrix is extracted, while the yellow box W2, of fixed size w2 = 2 mm and centered

around the point r2 = (5,−5, 45) mm, is the area where the effect of aberration correc-

tion is investigated by means of the RPSF. (d) Spatial windows W1 considered for the

calculation of C(r1). From left to right: Boxes of dimension w = 0 mm, w = 0.75 mm,

w = 1.25 mm, rectangle of dimension w = 1.25 mm. (e,f) Corresponding input T̂in and

output T̂out aberration laws, respectively. The scalar product Pin/out is displayed in each

sub-panel of (f). (g) Original RPSF associated with the yellow box W2 before correction

and (h) after correction using the corresponding T̂−matrices displayed in panels (e) and

(f).

where much better agreement between T̂in and T̂out is observed for a 3D box [third219
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panel of Fig. 3d] than for a 2D patch [right panel of Fig. 3d] of same dimension w.220

Multi-scale compensation of wave distortions.221

The scaling of the bias intensity |δT |2 with the coherence factor C has not222

been discussed yet. This dependence is however crucial since it indicates that a223

gradual compensation of aberrations shall be favored rather than a direct partition224

of the field-of-view into small boxes22 (see Supplementary Fig. 4). An optimal225

UMI process should proceed as follows: first, compensate for input and output226

wave distortions at a large scale to increase the coherence factor C; then, decrease227

the spatial window W and improve the resolution of the T−matrix estimator.228

The whole process can be iterated, leading to a multi-scale compensation of wave229

distortions (see Methods). As explained above, the convergence of the process is230

monitored using spatial reciprocity (Pin/out >0.9).231

The result of 3D UMI is displayed in Fig. 2. It shows the evolution of the232

T−matrix at each step [Fig. 2c] and the corresponding local RPSFs [Fig. 2d].233

In the most aberrated area (i.e. under the fat), the phase fluctuations of the234

aberration law corresponds to a time delay spread of 56 ns (rms). This value is235

comparable with past measurements through the human abdominal wall37. The236

pork tissue layer thus induces a level of aberrations typical of standard ultrasound237

diagnosis. The comparison with the initial and full-field maps of RPSF highlights238

the benefit of a local compensation via the T−matrix, with a diffraction-limited239

resolution reached everywhere. The local aberration phase laws exhibited by T̂240

perfectly match with the distribution of muscle and fat in the pork tissue layer.241

The comparison of the final 3D image [Fig. 2f] and its cross-sections with their242

initial counterparts [Fig. 2e] show the success of the UMI process, in particular243

for the deepest nylon rod, which has retrieved its straight shape. The local RPSF244

on the top right of Fig.2 shows a contrast improvement by 4.2 dB and resolution245

enhancement by a factor 2 (see Methods and Supplementary Fig. 5).246
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FIG. 4. Ultrasound Matrix Imaging (UMI) of the head phantom. (a) Top

and oblique views of the experimental configuration. Image credits: Harryarts and

kjpargeter on Freepik. (b,c) Original and UMI images, respectively. (d) Aberration

laws at 3 different depths. From top to bottom: z = 20 mm, z = 32 mm, z = 60 mm.

(e) Reciprocity criterion Pin/out with or without the use of a confocal filter: Each box

chart displays the median, lower and upper quartiles, and the minimum and maximum

values. (f,g). Correlation function of the T̂-matrix in the (x, z)-plane (f) and (x, y)-

plane (g), respectively. We attribute the sidelobes along the y-axis (g) to the inactive

rows separating each block of 256 elements of the matrix array.

Overcoming multiple scattering for trans-cranial imaging247

The same UMI process is now applied to the ultrasound data collected on the248

head phantom [Fig. 4a]. The parameters of the multi-scale analysis are provided in249

the Methods section (see also Supplementary Fig. 6). The first difference with the250

pork tissue experiment lies in our choice of correction basis. Given the multi-layer251

configuration in this experiment, the D−matrix is investigated in the plane wave252

basis17.253

The second difference is that our spatial reciprocity criterion Pin/out is very low254

[see the blue box plot in Fig. 4e]. This is the manifestation of a bad convergence255

of our T−matrix estimator. The incoherent background exhibited by the original256
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FIG. 5. Aberrations and multiple scattering quantification. (a) Single scattering

(green), multiple scattering (blue) and noise (red) rate at z = 32 mm. (b) Single

scattering, multiple scattering, and noise rates as a function of depth. (c,d) Maps of

local RPSFs (in amplitude) before and after correction, respectively, at three different

depths (From left to right: z = 20 mm, 32 mm and 60 mm. Black boxes in panel (a)

and (c) corresponds to the same area. (e) Resolution δρ(−3dB) as a function of depth.

Initial resolution (red line) and its value after UMI (green line) are compared with the

ideal (diffraction-limited) resolution (Eq. 5).

PSFs [Fig. 5c] drastically affects the coherence factor C28, which, in return, gives257

rise to a strong bias on the T−matrix estimator (Eq. 6). The incoherent back-258

ground is due to multiple scattering events in the skull and electronic noise, whose259

relative weight can be estimated by investigating the spatial reciprocity symmetry260

of the R-matrix (see Methods). Fig. 5b shows the depth evolution of the single261

and multiple scattering contributions, as well as electronic noise. While single262

scattering dominates at shallow depths (z < 20 mm), multiple scattering quickly263

reaches 35% and remains relatively constant until electronic noise increases, so264

that the three contributions are almost equal at depths of 75 mm.265

Beyond the depth evolution, 3D imaging even allows the study of multiple266

scattering in the transverse plane, as shown in Figure 5a. Two areas are examined,267
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marked with black boxes, corresponding to the RPSFs shown in [Fig. 5c] (z = 32268

mm). In the center, the RPSFs exhibits a low background due to the presence269

of a spherical target, resulting in a single scattering rate of 90%. The second270

box on the right, however, is characterized by a much higher background, leading271

to a multiple-to-single scattering ratio slightly larger than one. This high level272

of multiple scattering highlights the difficult task of trans-cranial imaging with273

ultrasonic waves.274

In order to overcome these detrimental effects, an adaptive confocal filter can275

be applied to the focused R−matrix19.276

R′(ρin,ρout, z) = R(ρin,ρout, z) exp

(
−|ρout − ρin|2

2lc(z)2

)
(8)

This filter has a Gaussian shape, with a width lc(z) that scales as 3δρ0(z)
19. The277

application of a confocal filter drastically improves the correlation between input278

and output aberration phase laws (see Fig. 4e and Supplementary Fig. 7), proof279

that a satisfying convergence towards the T−matrix is obtained.280

Figure 4d shows the T−matrix obtained at different depths in the brain phan-281

tom. Its spatial correlation function displayed in Figs. 4f,g provides an estimation282

of the isoplanatic patch size: 5 mm in the transverse direction (Fig. 4f) and 2 mm283

in depth (Fig. 4g). This rapid variation of the aberration phase law across the284

field of view confirms a posteriori the necessity of a local compensation of aber-285

rations induced by the skull. It also confirms the importance of 3D UMI with a286

fully sampled 2D array, as previous work recommended that the array pitch should287

be no more than 50% of the aberrator correlation length to properly sample the288

corresponding adapted focusing law38.289

The phase conjugate of the T−matrix at input and output enables a fine290

compensation of aberrations. A set of corrected RPSFs are shown in Fig. 5d.291

The comparison with their initial values demonstrates the success of 3D UMI: a292
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diffraction-limited resolution is obtained almost everywhere [Fig. 5e)], whether it293

be in ultrasound speckle or in the neighborhood of bright targets, at shallow or294

high depths, which proves the versatility of UMI.295

The performance of 3D UMI is also striking when comparing the three-296

dimensional image of the head phantom before and after UMI. [Figs. 4b and297

c, respectively]. The different targets were initially strongly distorted by the skull,298

and are now nicely resolved with UMI. In particular, the first target, located at299

z = 19 mm and originally duplicated, has recovered its true shape. In addition,300

two targets laterally spaced by 10 mm are observed at 42 mm depth, as expected301

[Fig. 4a]. The image of the target observed at 54 mm depth is also drastically302

improved in terms of contrast and resolution but is not found at the expected303

transverse position. One potential explanation is the size of this target (2 mm304

diameter) larger than the resolution cell. The guide star is thus far from being305

point-like, which can induce an uncertainty on the absolute transverse position of306

the target in the corrected image.307

Finally, an isolated target can be leveraged to highlight the gain in contrast308

provided by 3D UMI with respect to its 2D counterpart. To that aim, a linear309

1D array is emulated from the same raw data by collimating the incident beam310

in the y-direction [Fig. 6]. The ultrasound image is displayed before and after311

UMI in Figs. 6b and c, respectively. The radial average of the corresponding focal312

spots is displayed in Figs. 6d. Even though 2D UMI enables a diffraction-limited313

resolution, the contrast gain G is quite moderate (G2D ∼ 8dB) as it scales with the314

number N of coherence grains exhibited by the 1D aberration phase law [Figs. 6a]:315

N2D ∼ 6.2. On the contrary, as expected, 3D UMI provides a strong enhancement316

of the target echo (see the comparison between Figs. 6e,f and g): G3D ∼ 18 dB.317

The 2D aberration phase law actually provides a much larger number of spatial318

degrees of freedom than its 1D counterpart: N3D ∼ 63. The gain in contrast is319

accompanied by a drastic increase of the transverse resolution (> 8× for z > 40320
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FIG. 6. 2D versus 3D matrix imaging in a head phantom. (a) Aberration law

extracted with 2D UMI. (b,c) Original and corrected images of the same target with

2D UMI, respectively. (d) Aberration law extracted with 3D UMI for a target located

at z = 38 mm. (e,f) Original and corrected images of the same target with 3D UMI,

respectively. (g) Imaging PSF before (red) and after (green) 2D (dotted line) and 3D

(solid line) UMI. The depth range considered in each panel corresponds to the echo of

the target located at z = 38 mm.

mm in Fig. 5e). Figure 6 demonstrates the necessity of a 2D ultrasonic probe for321

trans-cranial imaging. Indeed, the complexity of wave propagation in the skull can322

only be harnessed with a 3D control of the incident and reflected wave fields.323
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Discussion324

In this experimental proof-of-concept, we demonstrated the capacity of 3D UMI325

to correct strong aberrations such as those encountered in trans-cranial imaging.326

This work is not only a 3D extension of previous studies17,28since several crucial327

elements have been introduced to make UMI more robust.328

First, the proposed iterative phase reversal algorithm outperforms the SVD329

for local compensation of aberrations because it can evaluate the aberration law330

on a larger angular support (see Supplementary Fig. 3), resulting in a sharper331

compensation of aberrations. Second, the bias of our T-matrix estimator has been332

expressed analytically (Eq. 6) as a function of the coherence factor that grasps333

the detrimental effects of the virtual guide star blurring induced by aberrations,334

multiple scattering and noise. This led us to define a general strategy for UMI335

with: (i) a multi-scale compensation of wave distortions to gradually reduce the336

blurring of the virtual guide star and tackle high-order aberrations associated with337

small isoplanatic lengths; (ii) the application of an adaptive confocal filter to cope338

with multiple scattering and noise; (iii) a fine monitoring of the convergence of our339

estimator by means of spatial reciprocity. The latter is a real asset, as it provides340

an objective criterion to check the physical significance of the extracted aberration341

laws and optimize the resolution of our T−matrix estimator.342

Although the results presented in this paper are striking, they were obtained in343

vitro, and some challenges remain for in vivo brain imaging. Until now, UMI has344

only been applied to a static medium, while biological tissues are usually moving,345

especially in the case of vascular imaging, where blood flow makes the reflectivity346

vary quickly over time. A lot of 3D imaging modes are indeed designed to image347

blood flow, such as transcranial Doppler imaging39 or ULM40,41. These methods348

are strongly sensitive to aberrations42,43 and their coupling with matrix imaging349

would be rewarding to increase the signal-to-noise ratio and improve the image350

resolution, not only in the vicinity of bright reflectors44 but also in ultrasound351
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speckle.352

However, due to spatial aliasing, the number of illuminations required for UMI353

scales with the number of resolution cells covered by the RPSF (see Supplemen-354

tary Fig. 8). Because the aberration level through the skull is important, the355

illumination basis should thus be fully sampled. It limits 3D transcranial UMI to356

a compounded frame rate of only a few hertz, which is much too slow for ultrafast357

imaging45. Moreover, a reduced number of illuminations breaks the symmetry of358

the reflection matrix. It would therefore also affect the accuracy of our monitoring359

parameter based on spatial reciprocity.360

Soft tissues usually exhibit much slower movement, and provide signals several361

dB higher than blood. Ultrasound imaging of tissues is generally discarded for the362

brain because of the strong level of aberrations and reverberations. Interestingly,363

UMI can open a new route towards quantitative brain imaging since a matrix364

framework can also enable the mapping of physical parameters such as the speed-365

of-sound1,46–48, attenuation and scattering coefficients49,50, or fiber anisotropy51,52.366

Those various observables can be extremely enlightening for the characterization367

of cerebral tissues.368

Alternatively, a solution to directly implement 3D UMI in vivo for ultrafast369

imaging, would be to design an imaging sequence in which the fully sampled370

R−matrix is acquired prior to the ultrafast acquisition itself, where the illumi-371

nation basis can be drastically downsampled. The T̂−matrix obtained from R372

could then be used to correct the ultrafast images in post-processing.373

Interestingly, if an ultrafast 3D UMI acquisition is possible (in cases with less374

aberrations, or at shallow depths), the quickly decorrelating speckle observed in375

blood flow can be an opportunity since it provides a large number of speckle real-376

izations in a given voxel. A high resolution T−matrix could thus be, in principle,377

extracted without spatial averaging and relying on any isoplanatic assumption53,54.378

So far, one limit of UMI concerns the strong aberration regime in which extreme379
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time delay fluctuations can occur. Indeed, our approach relies on a broadband380

focused reflection matrix that consists in a coherent time gating of singly-scattered381

echoes. If time delay fluctuations are larger than the time resolution δt of our382

measurement, the angular components of each echo will not necessarily emerge in383

the same time gate and aberration compensation will be imperfect.384

Beyond strong aberrations, another issue for transcranial imaging arises from385

multiple reflections caused by the skull. While such reverberations are not observed386

in the pork tissue experiment, their detrimental effects are much greater in a387

transcranial experiment because of the large impedance mismatch between the388

skull and brain tissues. In this work, such artefacts are not corrected and they389

drastically pollute the image at shallow depths (z < 20 mm).390

To cope with those issues, a polychromatic approach to matrix imaging is re-391

quired. Indeed, the aberration compensation scheme proposed in this paper is392

equivalent to a simple application of time delays on each transmit and receive393

channel. On the contrary, a full compensation of reverberation requires the tailor-394

ing of a complex spatio-temporal adaptive (or even inverse) filter. To that aim, 3D395

UMI provides an adequate framework to exploit, at best, all the spatio-temporal396

degrees of freedom provided by a high-dimension array of broadband transducers.397

To conclude, 3D UMI is general and can be applied to any insonification se-398

quence (plane wave or virtual source illumination) or array configuration (ran-399

dom or periodic, sparse or dense). Matrix imaging can be also extended to any400

field of wave physics for which a multi-element technology is available: optical401

imaging20–22, seismic imaging25,26 and also radar55. All the conclusions raised in402

that paper can be extended to each of these fields. The matrix formalism is thus403

a powerful tool for the big data revolution coming in wave imaging.404
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Methods405

Description of the pork tissue experiment. The first sample under investi-406

gation is a tissue-mimicking phantom (speed of sound: c0 = 1540 m/s) composed407

of random distribution of unresolved scatterers which generate ultrasonic speckle408

characteristic of human tissue [Fig. 2a]. The system also contains nylon filaments409

placed at regular intervals, with a point-like cross-section, and, at a depth of 40410

mm, a 10 mm-diameter hyperechoic cylinder, containing a higher density of unre-411

solved scatterers. A 12-mm thick pork tissue layer is placed on top of the phantom.412

It is immersed in water to ensure its acoustical contact with the probe and the413

phantom. Since the pork layer contains a part of muscle tissue (cm ∼ 1560 m/s)414

and a part of fat tissue (cf ∼ 1480 m/s), it acts as an aberrating layer. This ex-415

periment mimics the situation of abdominal in vivo imaging, in which layers of fat416

and muscle tissues generate strong aberration and scattering at shallow depths.417

The acquisition of the reflection matrix is performed using a 2D matrix array of418

transducers (Vermon) whose characteristics are provided in Tab. I. The electronic419

hardware used to drive the probe was developed by Supersonic Imagine (member of420

Hologic group) in the context of collaboration agreement with Langevin Institute.421

422

Number of transducers 32× 32 = 1024 (with 6 dead elements)
Geometry (y-axis) 3 inactive rows between each block of 256 elements
Pitch δu = 0.5 mm (≈ λ at c = 1540 m/s)

Aperture ∆u =

(
∆ux

∆uy

)
=

(
16 mm
17.5 mm

)
Central frequency fc = 3 MHz
Bandwidth (at −6dB) 80%→ ∆f = [1.8− 4.2] MHz
Transducer directivity θmax = 28◦ at c = 1400 m/s

TABLE I. Matrix array datasheet.
423

424

The reflection matrix is acquired by recording the impulse response between425

each transducer of the probe using IQ modulation with a sampling frequency426

fs = 6 MHz. To that aim, each transducer uin emits successively a sinusoidal427
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burst of three half periods at the central frequency fc. For each excitation uin, the428

back-scattered wave-field is recorded by all probe elements uout over a time length429

∆t = 139 µs. This set of impulse responses is stored in the canonical reflection430

matrix Ruu(t) = [R(uin,uout, t)].431

Description of the head phantom experiment.432

In this second experiment, the same probe [Tab. I] is placed slightly above433

the temporal window of a mimicking head phantom, whose characteristics are434

described in Tab. II. To investigate the performance of UMI in terms of resolution435

and contrast, the manufacturer (True Phantom Solutions) was asked to place small436

spherical targets made of bone-mimicking material inside the brain. They are437

arranged crosswise, evenly spaced in the 3 directions with a distance of 1 cm438

between two consecutive targets, and their diameter increases with depth: 0.2,439

0.5, 1, 2, 3 mm [Fig. 4a]. Skull thickness is of ∼ 6 mm on average at the position440

where the probe is placed and the first spherical target is located at z ≈ 20 mm441

depth, while the center of the cross is at z ≈ 40 mm depth. The transverse size of442

the head is ∼ 14 cm.443

Speed-of-sound Density Attenuation

[m/s] [g/cm3] @2.25 MHz [dB/cm]

Cortical bone 3000± 30 2.31 6.4± 0.3

Trabecular bone 2800± 50 2.03 21± 2

Brain tissue 1400± 10 0.99 1.0± 0.2

Skin tissue 1400± 10 1.01 1.7± 0.2

TABLE II. Head phantom characteristics.

To improve the signal-to-noise ratio, the R-matrix is here acquired using a set444

of plane waves56. For each plane wave of angles of incidence θin = (θx, θy), the445

time-dependent reflected wave field R(θin,uout, t) is recorded by each transducer446

uout. This set of wave-fields forms a reflection matrix acquired in the plane wave447

basis, Rθu(t) = [R(θin,uout, t)]. Since the transducer and plane wave bases are448
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related by a simple Fourier transform at the central frequency, the array pitch449

δu and probe size ∆u dictate the angular pitch δθ and maximum angle θmax450

necessary to acquire a full reflection matrix in the plane wave basis such that:451

θmax = arcsin[λc/(2δu)] ≈ 28◦; δθ = arcsin [λc/(2∆uy)] ≈ 0.8◦, with λc = c0/fc the452

central wavelength and c0 = 1400 m/s the speed-of-sound in the brain phantom.453

A set of 1225 plane waves are thus generated by applying appropriate time delays454

∆τ(θin,uin) to each transducer uin = (ux, uy) of the probe:455

∆τ(θin,uin) = [ux sin θx + uy sin θy]/c0. (9)

Focused beamforming of the reflection matrix. The focused R−matrix,

Rρρ(z) = [R(ρin,ρout, z)], is built in the time domain via a conventional delay-

and-sum beamforming scheme that consists in applying appropriate time-delays in

order to focus at different points at input rin = (ρin, z) = ({xin, yin}, z) and output

rout = (ρout, z) = ({xout, yout}, z):

R(ρin,ρout, z) =
∑
iin

∑
uout

A({iin, rin}, {uout, rout})R (iin,uout, τ(iin, rin) + τ(uout, rout))

(10)

where i = u or θ accounts for the illumination basis. A is an apodization factor456

that limit the extent of the synthetic aperture at emission and reception. This457

synthetic aperture is dictated by the transducers’ directivity θmax ∼ 28◦57.458

In the transducer basis, the time-of-flights, τ(u, r), writes:459

τ(u, r) =
|u− r|

c0
=

√
(x− ux)2 + (y − uy)2 + z2

c0
. (11)
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In the plane wave basis, τ(θ, r) is given by460

τ(θ, r) =

[
x sin θx + y sin θy + z

√
1− sin2 θx − sin2 θy

]
/c0. (12)

Local average of the reflection point spread function. To probe the local461

RPSF, the field-of-view is divided into spatial regions W(rm−rp), defined by their462

center rp and their extent w = (wρ, wz), where wρ and wz denote the lateral and463

axial extent, respectively. A local average of the back-scattered intensity can then464

be performed in each region:465

RPSF (∆ρ, rp) =
〈
|RM(∆ρ, rm)|2W(rm − rp)

〉
rm

(13)

where the symbol ⟨· · · ⟩ denotes here a spatial average over the variable in the466

subscript. W(rm − rp) = 1 for |ρm − ρp| < wρ/2 and |zm − zp| < wz/2, and zero467

otherwise. The dimensions of W used for [Fig. 2b,d] are: w = (wρ, wz) = (3.2, 3)468

mm. The dimensions of W to obtain [Figs. 5c,d] are: w = (wρ, wz) = (4, 5.5) mm.469

470

Distortion Matrix in 3D UMI. The first step consists in projecting the focused471

R−matrix Rρρ(z) [Fig. 1e] onto a dual basis c at output [Fig. 1i]:472

Rρc(z) = Rρρ(z)×Gρc(z) (14)

where the symbol × stands for the matrix product. Gρc(z) is the propagation473

matrix predicted by the homogeneous propagation model between the focused basis474

(ρ) and the correction basis (c) at each depth z. c can be either the plane wave, the475

transducer, or any other correction basis suitable for a particular experiment23,58,59.476

In the transducer basis (c = u), the coefficients of Gρu(z) correspond to the477
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z−derivative of the Green’s function19:478

G(ρ,u, z) =
zeikc

√
|u−ρ|2+z2

4π(|u− ρ|2 + z2)
(15)

where kc is the wavenumber at the central frequency. In the Fourier basis (c = k),479

Gρk simply corresponds to the Fourier transform operator17:480

G(ρ,k) = exp (jk.ρ) = exp(j (kxx+ kyy)) . (16)

At each depth z, the reflected wave-fronts contained inRρc are then decomposed481

into the sum of a geometric component Gρc, that would be ideally obtained in482

absence of aberrations, and a distorted component that corresponds to the gap483

between the measured wave-fronts and their ideal counterparts [Fig. 1j]17,19:484

Dρc(z) = G∗
ρc(z) ◦Rρc(z) (17)

where the symbol ◦ stands for a Hadamard product. Drc = Dρc(z) = [D({ρin, z}, cout)]485

is the so-called distortion matrix, here expressed at the output. Note that the486

same operations can be performed by exchanging input and output to obtain the487

input distortion matrix Dcr = [D(cin, rout)] = [D(cin, {ρout, z})].488

Local correlation analysis of the D−matrix. The next step is to exploit489

local correlations in Drc to extract the T-matrix. To that aim, a set of output490

correlation matrices Cout(rp) shall be considered between distorted wave-fronts in491

the vicinity of each point rp in the field-of-view:492

C(cout, c
′
out, rp) = ⟨D(rin, cout)D

∗(rin, c
′
out)W(rin − rp)⟩rin (18)

An equivalent operation can be performed in input in order to extract a local493

correlation matrix Cin(rp) from the input distortion matrix Dcr.494
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Iterative phase reversal algorithm. The iterative phase reversal algorithm is495

a computational process that provides an estimator of the transmission matrix,496

Tout(z) = G⊤
ρc(z)×Hout(z), (19)

where the superscript ⊤ stands for matrix transpose. Tout=[T(cout, rp)] links each497

point cout in the dual basis and each voxel rp of the medium to be imaged [Fig. 1k].498

Mathematically, the algorithm is based on the following recursive relation:499

T̂
(n)
out(rp) = exp

[
i arg

{
Cout(rp)× T̂

(n−1)
out (rp)

}]
(20)

where T̂
(n)
out is the estimator ofTout at the n

th iteration of the phase reversal process.500

T̂
(0)
out is an arbitrary wave-front that initiates the iterative phase reversal process501

(typically a flat phase law) and T̂out = limn→∞ T̂
(n)
out is the result of this iterative502

phase reversal process.503

This iterative phase reversal algorithm, repeated for each point rp, yields an504

estimator T̂out of the T-matrix. Its digital phase conjugation enables a local505

compensation of aberrations [Fig. 1l]. The focused R−matrix can be updated as506

follows:507

R(corr)
ρρ (z) =

[
Dρc(z) ◦ T̂†

out(z)
]
×G†

ρc(z) (21)

where the symbol † stands for transpose conjugate and ◦ for the Hadamard prod-508

uct. The same process is then applied to the input correlation matrix Cin for the509

estimation of the input transmission matrix, Tin(z) = G⊤
ρc(z)×Hin(z).510

Multi-scale analysis of wave distortions. To ensure the convergence of the511

IPR algorithm, several iterations of the aberration correction process are performed512

while reducing the size of the patches W with an overlap of 50% between them.513

Three correction steps are performed in the pork tissue experiment, whereas six514

are performed in the head phantom experiment [as described in Table III]. At each515
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step, the correction is performed both at input and output and reciprocity between516

input and output aberration laws is checked. The correction process is stopped if517

the normalized scalar product Pin/out does not reach 0.9.518

Pork tissue Head phantom

Correction step 1◦ 2◦ 3◦ 1◦ 2◦ 3◦ 4◦ 5◦ 6◦

Number of transverse patches 1× 1 2× 2 4× 4 1× 1 2× 2 3× 3 4× 4 5× 5 6× 6
wρ = (wx, wy) [mm] 16 12 8 20 15 13.3 10 8 6.6

wz [mm] 3 3 3 5.5 5.5 5.5 5.5 5.5 5.5

TABLE III. Parameters of UMI in both experiments.
519

520

Synthesise a 1D linear array. To estimate the benefits of 3D imaging compared521

to 2D UMI, a simulation of a 1D array is performed on experimental ultrasound522

data acquired with our 2D matrix array. To that aim, cylindrical time delays are523

applied at input and output:524

τ ′(θ(s), s, z) =
s sin θ(s) + z cos θ(s)

c0
(22)

525

τ ′(u(s), s, z) =

√
(s− u(s))2 + z2

c0
. (23)

with s = x or y, depending on our focus plane choice.526

The focused R−matrix is still built in the time domain but using this time the

following delay-and-sum beamforming:

R(2D)(yin, yout, z) =
∑
θin

∑
uout

R

θin,uout,

2D beamforming along (y,z )-plane︷ ︸︸ ︷
τ ′(θ

(y)
in , yin, z) + τ ′(u

(y)
out, yout, z)

+ τ ′(θ
(x)
in , xf, zf) + τ ′(u

(x)
out, xf, zf)− 2zf/c0︸ ︷︷ ︸

Cylindrical law to focus at (xf, zf)

 . (24)

The images displayed in Fig. 6b,c are obtained by synthesizing input and output527
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beams collimated in the (y, z)−plane by focusing on a line located at (xf = 0 mm,528

zf = 37.25 mm), thereby mimicking the beamforming process by a conventional529

linear array of transducers.530

Estimation of contrast and resolution. Contrast and resolution are evaluated531

by means of the RPSF. Equivalent to the full width at half maximum commonly532

used in 2D UMI, the transverse resolution δρ is assessed in 3D based on the area533

A(−3dB) at half maximum of the RPSF amplitude:534

δρ(−3dB) =
√
A(−3dB)/π (25)

The contrast, F , is computed locally by decomposing the normalised RPSF as the535

sum of three components28:536

RPSF (rp,∆ρ) =
RPSF (rp,∆ρ)

RPSF (rp,∆ρ = 0)
= αS(rp) + αM(rp) + αN(rp). (26)

αS is the single scattering rate that corresponds to the confocal peak. αM is a537

multiple scattering rate that gives rise to a diffuse halo; αN corresponds to the538

electronic noise rate which results in a flat plateau. A local contrast can then be539

deduced from the ratio between αS and the incoherent background αB = αM+αN ,540

F(rp) =
αS(rp)

αB(rp)
=

1− αB(rp)

αB(rp)
(27)

Single and multiple scattering rates. The single scattering, multiple scatter-541

ing and noise rates can be directly computed from the decomposition of the RPSF542

(Eq. 26). However, at large depths, multiple scattering and noise are difficult to543

discriminate since they both give rise to a flat plateau in the RPSF. In that case,544

the spatial reciprocity symmetry can be invoked to differentiate their contribution.545

The multiple scattering component actually gives rise to a symmetric R-matrix546
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while electronic noise is associated with a fully random matrix. The relative part547

of the two components can thus be estimated by computing the degree of anti-548

symmetry β in the R−matrix. To that aim, the R-matrix is first projected onto549

its anti-symmetric subspace at each depth :550

R(A)
ρρ (z) =

Rρρ(z)−R⊤
ρρ(z)

2
(28)

where the superscript ⊤ stands for matrix transpose. In a common midpoint551

representation, (Eq. 28) re-writes:552

R
(A)
M (rm,∆ρ) =

RM(rm,∆ρ)−RM(rm,−∆ρ)

2
. (29)

A local degree of anti-symmetry β is then computed as follows:553

β(rp) =

〈∣∣∣R(A)
M (rm,∆ρ)

∣∣∣2W(rm − rp)D(∆ρ)

〉
[rm,∆ρ]〈

|RM(rm,∆ρ)|2W(rm − rp)D(∆ρ)
〉
[rm,∆ρ]

(30)

where D(∆ρ) is a de-scanned window function that eliminates the confocal peak

such that the computation of β is only made by considering the incoherent back-

ground. Typically, we chose D(∆ρ) = 1 for ∆ρ > 6δρ0(z), and zero otherwise.

Assuming equi-partition of the electronic noise between its symmetric and anti-

symmetric subspace, the multiple scattering rate αM and noise ratio αN can then

be deduced (see Supplementary Section 11):

αM(rp) = (1− 2β(rp))αB(rp) (31)

αN(rp) = 2β(rp)αB(rp) (32)

In the head phantom experiment [Fig. 5b], these rates are estimated at each depth554

by averaging over a window of size w = (wρ, wz) = (20, 5.5) mm.555
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Computational insights. While the UMI process is close to real-time for 2D556

imaging (i.e. for linear, curve or phased array probes), 3D UMI (using a fully557

populated matrix array of transducers) is still far from it (see Tab. IV) as it in-558

volves the processing of much more ultrasound data. Even if computing a confocal559

3D image only requires a few minutes, building the focused R−matrix from the560

raw data takes a few hours (on GPU with CUDA language) while one step of561

aberration correction only lasts for a few minutes. All the post-processing was562

realized with Matlab (R2021a) on a working station with 2 processors @2.20GHz,563

128Go of RAM, and a GPU with 48 Go of dedicated memory.564

565

2D imaging 3D imaging
Number of channels [Input × Output] 32× 32 ≈ 103 1024× 1024 ≈ 106

Field-of-view (∆x,∆y,∆z) (20, 0, 80) mm (20, 20, 80) mm
Data Time Data Time

Reflection matrix acquisition: Ruu(t) 6 Mo 8 ms 6 Go 260 ms
Confocal image I(r) 53 ko 5.1 ms 2.2 Mo 1.3 min

Matrix Imaging
Focused R−matrix: Rρρ(z) 2.2 Mo 15 ms 3.6 Go 2.3 h
Estimation of T & correction 0.15 s 4.5 min

TABLE IV. Computational insights. Here, we compare the typical amount of data

and computational time at each post-processing step of UMI. The comparison between

2D and 3D imaging is made using a single line of transducers versus all the transducers

of our matrix array. In both cases, the pixel/voxel resolution is fixed at 0.5 mm, which

corresponds approximately to one wavelength. The maximum distance between the input

and output focusing points is set to 10 mm. The estimation of T is here investigated

without a multi-scale analysis on a single iteration at input and output.
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Data availability. The ultrasound data generated in this study is available at566

Zenodo60 (https://zenodo.org/record/8159177).567

568

Code availability. Codes used to post-process the ultrasound data within this569

paper are available from the corresponding author upon request.570
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Supplementary Information590

This document provides further information on: (i) the UMI workflow; (ii) the591

RPSF and the common midpoint basis; (iii) the comparison between iterative592

time reversal and phase reversal; (iv) the bias of the T−matrix estimator; (v) the593

comparison between a multi-scale and local analysis of wave distortions; (vi) the594

impact of the confocal filter; (vii) the effect of an incompleteness of the illumination595

basis.596

S1. WORKFLOW597

Supplementary Figure S1 shows a workflow that sums up the different steps of598

the UMI procedure performed in the accompanying paper.599600

S2. RPSF AND COMMON MIDPOINT601

To probe the local focusing quality, the reflection point spread function (RPSF)602

can be investigated. Its extraction from the focused reflection matrix, Rρρ(z) =603

[R(ρin,ρout, z)], consists in the following change of variable to project the data into604

a common midpoint basis:605 
ρin

ρout

z


︸ ︷︷ ︸
Focused

→


∆ρ

ρm

z

 =


ρout − ρin

ρin+ρout

2

z


︸ ︷︷ ︸

Common midpoint

. (S1)

This operation is described schematically in Supplementary Figure S2 for the sim-606

ple case of 2D imaging with a linear array of transducers. It consists in extracting607

each antidiagonal of the focused reflection matrix Rxx(z) (red boxes in Supplemen-608

tary Figure S2a), corresponding to a matrix rotation by 45◦. In this representation,609
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FIG. S1. Flowchart of the UMI process.

xm = (xin + xout)/2 is the common midpoint between the input and output focal610

spot, with the two separated by a distance ∆x = xout − xin. These considerations611

can be extended to 3D imaging, so that the transverse coordinate, previously x,612

now becomes ρ = (x, y).613

S3. CORRELATION MATRIX OF WAVE DISTORTIONS614

In the accompanying paper, an iterative phase reversal (IPR) process and a615

multi-scale analysis of D have been implemented to retrieve the T−matrix. In616
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FIG. S2. Common midpoint representation. In 2D ultrasound imaging with linear

or convex probes, the change from a (a,b) conventional to a (c,d) common midpoint

representation corresponds to a 45◦ rotation of the focused reflection matrix. Panels a

and c show a schematic representation of such a transformation, while panels b and d

show experimental ultrasound data in speckle of an ultrasound phantom with a linear

probe. Note that the change from the focused to the common midpoint representation

implies two new sampling grids, represented by solid and dashed lines. (e) Schematic

representation of the position of the input (xin) and output (xout) focal spots, spaced by

∆x and their common midpoint xm. (f) Extracted RPSF by spatial averaging over all

midpoints xm at depth z = 30 mm.

the following, we provide a theoretical framework to justify this process, outline617

its limits and conditions of success. For sake of lighter notation, the dependence618

over rp will be omitted in the following.619

At each step of the aberration correction process, a local correlation matrix620

of D is computed. The UMI process assumes the convergence of the correlation621

matrix C towards its ensemble average ⟨C⟩, the so-called covariance matrix17,19.622

In fact, this convergence is never fully realized and C should be decomposed as623
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the sum of this covariance matrix ⟨C⟩ and a perturbation term δC:624

C = ⟨C⟩+ δC. (S2)

The intensity of the perturbation term scales as the inverse of the number NW =625

(w2
ρwz)/(δρ

2
0δz0) of resolution cells in each sub-region16,17,19:626

〈
|δC(c, c′, rp)|2

〉
=

〈
|C(c, c′, rp)|2

〉
NW

(S3)

This perturbation term can thus be reduced by increasing the size of the spatial627

window W , but at the cost of a resolution loss. In the following, we express628

theoretically the bias induced by this perturbation term on the estimation of T-629

matrices. In particular, we will show how it scales with NW in each spatial window630

W and the focusing quality. To that aim, we will consider the output correlation631

matrix Cout but a similar demonstration can be performed at input.632

S4. COVARIANCE MATRIX: SYNTHESIS OF A VIRTUAL GUIDE633

STAR634

Under assumptions of local isoplanicity in each spatial window and random635

reflectivity, the covariance matrix can be expressed as follows17:636

⟨Cout⟩ = Tout ×CH ×T†
out, (S4)

or in terms of matrix coefficients,637

⟨C(c, c′)⟩ = Tout(c)T
∗
out(c

′)

∫
dρ|Hin(ρ)|2e

−i2π
(c−c′).ρ

λzp︸ ︷︷ ︸
=CH(c,c′)

. (S5)
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CH is a reference correlation matrix associated with a virtual reflector whose638

scattering distribution corresponds to the input focal spot intensity |Hin(ρ)|2. This639

scatterer plays the role of virtual guide star in the UMI process (Fig. 1k of the640

accompanying paper).641

S5. COMPARISON BETWEEN ITERATIVE TIME REVERSAL AND642

PHASE REVERSAL643

In previous works on 2D UMI17,19, the T-matrix was estimated by performing644

a singular value decomposition of Drc:645

Drc = V†
in ×Σ×Uout, (S6)

or, equivalently, the eigenvalue decomposition of Cout:646

Cout = U†
out ×Σ2 ×Uout. (S7)

Σ is a diagonal matrix containing the singular values σi in descending order: σ1 >647

σ2 > .. > σN . Uout and Vin are unitary matrices that contain the orthonormal set648

of output and input eigenvectors, U
(i)
out = [U

(i)
out(c)] and V

(i)
in = [V

(i)
in (r)].649

The reason of this eigenvalue decomposition can be intuitively understood by650

considering the asymptotic case of a point-like input focusing beam. In this ideal651

case, Eq. S7 becomes Cout(c, c
′) = Tout(c)T

∗
out(c

′). Drc is then of rank 1 – the first652

output singular vector U
(1)
out yields the aberration transmittance Tout.653

However, in reality, the input PSF Hin is of course far from being point-like.654

The spectrum of Drc displays a continuum of singular values [Supplementary Fig-655

ure S3d]. The effective rank of Cout is shown to scale as the number of resolution656
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FIG. S3. Iterative Time Reversal vs. Iterative Phase Reversal. (a) The first

step of ITR and IPR corresponds to the following fictitious experiment: Insonifying the

medium by an arbitrary wave-front (here a plane wave) using an array of transducers and

recording the reflected wave-front with the same probe. (b) The ITR process consists in

time-reversing this wave-front in post-processing and sending it back into the medium,

recording again the reflected wave-front, and so on. (c) The IPR process is similar but

normalizes the amplitude of the time-reversed wavefront at every iteration. (d) Singular

value distribution of Drc for a box W of dimension w = (wx, wy, wz) = (2,−5, 2)mm

centered around point rp = (3,−5.5, 23) mm. (e,f) Modulus of the two first eigenvectors

U
(i)
out. (g) Modulus of the vector Cout × T̂out. (h) Delimitation of muscle and fat over

the probe surface. (i,j,k) Phase of U
(1)
out, U

(2)
out and T̂out.
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cells covered by the input PSF Hin
19:657

Mδ ∼ (δρin/δρ0)
2. (S8)

with δρin the spatial extension of Hin. The amplitude of the corresponding eigen-658

vectors U
(i)
out depends on the exact shape of the virtual guide star, that is to say,659

on aberrations induced by the incident wave-front.660

Supplementary Figures S3e and f show the modulus of two first eigenvectors,661

U
(1)
out and U

(2)
out. They clearly show a complementary feature. While U

(1)
out is associ-662

ated with the fat layer, U
(2)
out maps onto the muscle part of the pork chop [Supple-663

mentary Figure S3h]. This result can be understood by the discontinuity of the664

speed-of-sound between the muscle and fat parts of the pork chop that breaks the665

spatial invariance and isoplanicity. As a consequence, the SVD process tends to666

converge onto eigenstates associated with the most isoplanatic components of Drc.667

This property is not satisfactory in the present case since each eigenvector only668

covers a part of the probe aperture. In other words, the phases ofU(1) [Supplemen-669

tary Figure S3i] andU(2) [Supplementary Figure S3j] are only satisfying estimators670

of T over some parts of the probe. Therefore, they cannot independently lead to671

an aberration compensation over the full numerical aperture.672

To circumvent that problem, one can take advantage of the analogy with itera-673

tive time reversal (ITR). The eigenvector U
(1)
out can actually be seen as the result of674

the following fictitious experiment that consists in illuminating the virtual scatterer675

by an arbitrary wave-front and recording the reflected wave-field [Supplementary676

Figure S3a]. This wave-field is time-reversed and back-emitted towards the virtual677

scatterer [Supplementary Figure S3b]. This process can then be iterated many678

times and each step can be mathematically written as:679

σW(n+1) = Cout ×W(n) (S9)
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with W(n), the wave-front at iteration n of the ITR process and σ, the scatterer680

reflectivity. ITR is shown to converge towards a time-reversal invariant that is681

nothing other than the first eigenvector, U
(1)
out = lim

n→+∞
W(n).682

To optimize the estimation of aberrations over the full probe aperture, our idea683

is to modify the ITR process by still re-emitting a phase-reversed wave-field but684

with a constant amplitude on each probe element [Supplementary Figure S3c]. In685

practice, this operation is performed using the following IPR algorithm:686

T̂
(n+1)
out = exp

[
i arg

{
Cout × T̂

(n)
out

}]
(S10)

where T̂
(n)
out is the estimator of Tout at the nth iteration of IPR. T̂

(0)
out is an arbi-687

trary wave-front that initiates IPR (typically a plane wave). T̂out = limn→∞ T̂
(n)
out688

is the result of this IPR process. Unlike ITR, IPR equally addresses each angular689

component of the imaging process to reach a diffraction-limited resolution. Sup-690

plementary Figure S3g illustrates this fact by showing the modulus of Cout× T̂out.691

Compared with U
(1)
out [Supplementary Figure S3e] and U

(2)
out [Supplementary Fig-692

ure S3f], it clearly shows that the phase-reversed invariant T̂out simultaneously693

addresses each angular component of the aberrated wave-field. T̂out is thus a much694

better estimator of the T−matrix [Supplementary Figure S3k] than the aberration695

phase laws extracted by the SVD process [Supplementary Figures S3i and j].696

When applied to the whole field-of-view, the IPR algorithm is mathematically697

equivalent to the CLASS algorithm developed in optical microscopy20. However,698

the IPR algorithm is much more efficient for a local compensation of aberrations.699

For IPR, the angular resolution δθ of the aberration phase law is only limited by the700

angular pitch of the plane wave illumination basis or the pitch p of the transducer701

array in the canonical basis: δθI ∼ λ/p. With CLASS, the resolution δθC of the702

aberration law is governed by the size of the spatial windowW on which the focused703

reflection matrix is truncated: δθC ∼ z/wρ. It can be particularly detrimental704
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when high-order aberrations and small isopalanatic patches are targeted.705

S6. BIAS ON THE T−MATRIX ESTIMATION706

In practice, however, the T−matrix estimator is still impacted by the blurring707

of the synthesized guide star and the presence of diffusive background and/or708

noise. Therefore, the whole process shall be iterated at input and output in order709

to gradually refine the guide star and reduce the bias on our T−matrix estimator.710

Moreover, the spatial window W over which the C−matrix is computed shall be711

gradually decreased in order to address the high-order aberration components, the712

latter one being associated with smaller isoplanatic patches.713

To understand the parameters controlling the bias δTout between T̂out and Tout,714

one can express T̂out as follows:715

T̂out = exp
(
jarg

{
Cout × T̂out

})
=

Cout × T̂out

||Cout × T̂out||
(S11)

By injecting Eq. S2 into the last expression, T̂out can be expressed, at first order,716

as the sum of its expected value Tout and a perturbation term δT̂out:717

T̂out =
⟨Cout⟩ ×Tout

||⟨Cout⟩ ×Tout||︸ ︷︷ ︸
=Tout

+
δCout ×Tout

||⟨Cout⟩ ×Tout||︸ ︷︷ ︸
≃δT̂out

. (S12)

The bias intensity can be expressed as follows:718

|δTout|2 =
T†

out × δC†
out × δCout ×Tout

T†
out × ⟨Cout⟩† × ⟨Cout⟩ ×Tout

(S13)

Using Eq. S3, the numerator of the last equation can be expressed as follows:719

T†
out × δC†

out × δCout ×Tout = N2
u⟨|δC(c, c′)|2⟩ = N2

u |C(c, c)|2/NW . (S14)
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with Nu the number of transducers.720

The denominator of Eq. S13 can be expressed as follows:721

T†
out × ⟨Cout⟩† × ⟨Cout⟩ ×Tout = M2

∣∣∣∣∣∑
c

Tin

c
⊛ Tin(c)

∣∣∣∣∣
2

(S15)

The bias intensity is thus given by:722

|δTout(c)|2 =

∣∣∣Tin

c
⊛ Tin(0)

∣∣∣2
NW

∣∣∣∑c Tin

c
⊛ Tin(c)

∣∣∣2 (S16)

In the last expression, we recognize the ratio between the coherent intensity (energy723

deposited exactly at focus) and the mean incoherent input intensity. This quantity724

is known as the coherence factor in ultrasound imaging8,16:725

Cin =

∑
c Tin

c
⊛ Tin(c)

Tin

c
⊛ Tin(0)

=
|Hin(ρ = 0)|2

∆ρ−2
max

∫
dρ|Hin(ρ)|2

(S17)

In the speckle regime and for a 2D probe, the coherence factor C ranges from 0,726

for strong aberrations and/or multiple scattering background, to 4/9 in the ideal727

case61. The bias intensity can thus be rewritten as:728

|δTout(c)|2 =
1

C2
inNW

(S18)

This last expression justifies the multi-scale analysis proposed in the accompanying729

paper. A gradual increase of the focusing quality, quantified by C, is required to730

address smaller spatial windows that scale as NW . Following this scheme, the bias731

made of our T−matrix estimator can be minimized.732
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S7. PROBING THE BIAS INTENSITY WITH SPATIAL RECIPROCITY733

In the accompanying paper, we use the scalar product Pin/out between input and734

output aberration phase laws to monitor the bias |δT |2 of our T−matrix estimator.735

Here we demonstrate the link between both quantities. To do so, the estimator736

can be written as:737

T̂ (c, rp) = exp [j {ϕ(c, rp) + δϕ(c, rp)}] (S19)

with T (c, rp) = exp [jϕ(c, rp)] and δϕ(c, rp) the phase error of the estimator.738

On the one hand, the bias intensity can be rewritten using Eq. 6 as follows:739

|δT (c, rp)|2 = |1− exp[jδϕ(c, rp)]|2 = 4 sin2

[
δϕ(c, rp))

2

]
δϕ<<1∼ [δϕ(c, rp)]

2 (S20)

On the other hand, the scalar product Pin/out is given by740

Pin/out = N−1
c

∑
c

exp [j {δϕin(c, rp)− δϕout(c, rp)}] (S21)

In the previous equation, the sum over c can be replaced by an ensemble average741

since Nc = Nu >> 1:742

Pin/out = ⟨exp [j {δϕin(c, rp)− δϕout(c, rp)}]⟩ . (S22)

Assuming a small phase error (δϕin/out << 1), the last equation can be rewritten743

as follows744

Pin/out ≃ 1 + j ⟨δϕin(c, rp)− δϕout(c, rp)⟩ −
⟨[δϕin(c, rp)− δϕout(c, rp)]

2⟩
2

. (S23)
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Since ⟨δϕin/out⟩ = 0 and ⟨δϕinδϕout⟩ = 0, the last expression simplifies into745

Pin/out ≃ 1− ⟨|δϕin(c, rp)|2

2
− ⟨|δϕout(c, rp)|2⟩

2
. (S24)

Assuming an equivalent phase error at input and output (⟨|δϕin(c, rp)|2⟩ =746

⟨|δϕout(c, rp)|2⟩) finally leads to:747

Pin/out ≃ 1− ⟨|δϕ(c, rp)|2⟩. (S25)

Combining the latter expression with Eq. S20 leads to the final result:748

Pin/out ≃ 1−
〈
|δT (c, rp)|2

〉
. (S26)

Pin/out is thus a relevant quantity to estimate the bias intensity (see Fig. 3b of the749

accompanying paper).750

S8. MULTI-SCALE ANALYSIS OF WAVE DISTORTIONS751

Supplementary Figure S4 demonstrates the benefit of a multi-scale analysis of752

wave distortions with a gradual decrease of spatial windows W at each step of753

the UMI process [Supplementary Figure S4a]. To that aim, this aberration cor-754

rection scheme is compared with a direct estimation of the T−matrix over the755

smallest patches W [Supplementary Figure S4d]. The estimated transmission ma-756

trices T̂ differ in both cases (see comparison between Supplementary Figures S4b757

and e) especially in the fat layer. The RPSFs obtained after phase conjugation of758

T̂ demonstrate the benefit of the multi-scale analysis [Supplementary Figure S4c]759

compared with a direct local investigation of wave distortions [Supplementary Fig-760

ure S4f]. The fat area is actually the most aberrated in the field-of-view (see initial761

RPSFs displayed by Fig. 2b of the accompanying paper). The initial coherence762
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LittlebyLittlevsDirectALex.png

FIG. S4. Multi-scale versus direct local analysis of wave distortions (pork chop

experiment, z = 29 mm). (a) Representation of the spatial windows used at each step of

UMI (see Tab. III of the accompanying paper). (b) Aberration phase laws (T̂) extracted

by a multi-scale analysis. (c) RPSFs after multi-scale aberration compensation. (d)

Representation of the spatial windows used for a direct local compensation of wave

distortions. (e) Aberration phase laws (T̂) extracted by a local analysis of D. (f)

RPSFs after local aberration compensation.

factor C is thus much smaller in this area, which induces a strong bias on T when763

wave distortions are investigated over a reduced isoplanatic patch. On the con-764
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trary, a multi-scale analysis enables a gradual enhancement of this coherence factor765

in this area and finally leads to an unbiased estimation of T.766

Supplementary Figure S5 shows the performance of UMI by comparing the767

RPSFs before and after aberration compensation. In the most aberrated area (top768

right of the field-of-view), the resolution is improved by almost a factor two, while769

the contrast is increased by 4.2 dB.770

FIG. S5. Contrast & resolution enhancement in the pork chop experiment.

(a) Maps of local RPSF (z = 29 mm). (b) Local RPSF on the top right of the field-

of-view. (c) Map of RPSF after the UMI process. (d) Corrected RPSF on the top

right of the field-of-view. The resolution is evaluated at −3dB (see Methods in the

accompanying paper). The contrast F is the ratio between the confocal peak and the

multiple scattering/noise background (see also Methods).
771

772

Supplementary Figure S6 shows the evolution of the RPSF during the UMI773

process applied to the head phantom experiment. A gradual enhancement of the774

focusing process is observed at each step of UMI, which enables an estimation of775

the T−matrix at a higher resolution.776777
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FIG. S6. Multi-scale compensation of wave distortions in the head phantom.

(a) Successive patches used to perform a multi-scale analysis of wave distortions. (b)

Radial profile of the RPSF amplitude at each step for three different depths (From left

to right: z = 20, z = 32 and z = 60 mm). (c) Resolution as a function of depth at each

step of correction (from red to green). At large depth (red dashed line), initial resolution

can not be extracted as the incoherent background is larger than 1/2 as shown in panel

(b) for z = 60 mm.

S9. CONFOCAL FILTER778

Supplementary Figure S7 shows the effect of the confocal filter on the T−matrix779

estimation. The output aberration phase laws contained in T̂out look much more780

noisy in absence of an adaptive confocal filter (see the comparison between Supple-781

mentary Figures S7a and b). As shown by the scalar product between input and782

output aberration phase laws [Supplementary Figure S7c], this “noise” comes from783

the imperfect convergence of T̂ towards T. Without any confocal filter, multiple784

scattering drastically reduces the coherence factor and induces a strong bias on785

estimation of T (see Supplementary Section S5). On the contrary, the adaptive786

confocal filter enables an enhancement of this coherence factor C to ensure a sat-787

isfactory estimation of T. The high degree of correlation between T̂in and T̂out788
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FIG. S7. Confocal filter in transcranial imaging. (a,b) Output aberration phase

laws (T̂out) extracted without and with a confocal filter. (c,d) Normalised scalar prod-

ucts Pin/out without and with a confocal filter, respectively. (e,f) RPSFs obtained with

UMI without and with a confocal filter. (g) Box plot corresponding to the panels (c,d).

Experimental data shown in this figure correspond to the head phantom experiment

described in the accompanying paper (z = 50mm).

proves this last assertion [Supplementary Figure S7d]. The effect of the confocal789

filter is also particularly obvious when looking at the RPSF obtained at the end790

of the UMI process. While a strong incoherent background subsists on the lat-791

eral parts of the field-of-view when no confocal filter is applied [Supplementary792

Figure S7e], a homogeneous focusing quality is obtained with the confocal filter793

[Supplementary Figure S7f].794
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FIG. S8. Illumination sequence. (a-e) Representation of different plane wave illu-

mination sequence in the k−space. (f -j) Aliasing effect exhibited by the RPSFs due

to incompleteness of illumination sequence displayed in panels a-e, respectively. These

RPSFs have been measured in a speckle area of a tissue-mimicking phantom.

S10. ILLUMINATION BASIS795

Supplementary Figure S8 shows the impact of the illumination sequence on796

UMI. If the input illumination basis is complete [Supplementary Figure S8a], the797

RSPF exhibits the expected diffraction-limited resolution [Supplementary Fig-798

ure S8f]. The side lobes along the y-axis are due to the probe geometry made799

of four blocks of transducers separated by a distance of 0.5 mm (three inactive800

rows of transducers along the y-axis).801

When the number of illuminating plane waves is reduced [Supplementary Fig-802

ures S8b-e], spatial aliasing occurs on corresponding RPSFs [Supplementary Fig-803

ures S8g-j]. The maximal extension ∆ρmax of the RPSF has to be fixed to avoid804

the spatial aliasing induced by the incompleteness of the plane wave illumination805

basis; ∆ρmax is inversely proportional to the angular step δθ of the plane wave806
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illumination basis:807

∆ρmax ∼ λc/(2δθ) (S27)

with λc the central wavelength and δθ the angular pitch used for the illumination808

sequence. Thus, to avoid spatial aliasing, the coefficients R(ρin,ρout, z) associated809

with a transverse distance |ρout−ρin| larger than the superior bound ∆ρmax should810

be filtered via a confocal filter.811

Equation S27 implies the necessity of recording a high-dimension R−matrix for812

transcranial imaging, as aberrations are particularly important in that configura-813

tion (see Fig. 5 of the accompanying paper). The number of independent incident814

waves should scale as the number of resolution cells over which the RPSF spreads.815

S11. DISCRIMINATE MULTIPLE SCATTERING FROM ELECTRONIC816

NOISE817

We consider here the background of the focused reflection matrix for a given818

point rp:819

B(∆ρ, rp) = ⟨RM(∆ρ, rm)D(∆ρ)W(rm − rp)⟩rm (S28)

where D(∆ρ) is a de-scanned window function that eliminates the confocal peak820

and W is a spatial average window function around the targeted focal point rp.821

The background can be decomposed as the sum of a fully symmetric matrix822

associated to multiple scattering (due to spatial reciprocity) and a fully random823

matrix associated to the electronic noise as follows:824

B︸︷︷︸
Background

= M︸︷︷︸
Multiple scattering

+ N︸︷︷︸
Noise

(S29)

Projecting the B−matrix onto its anti-symmetric subspace directly holds the anti-825
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symmetric part of the electronic noise such that:826

B(A) =
B−B⊤

2
= N(A) (S30)

Assuming equi-repartition of the electronic noise onto its symmetric and anti-

symmetric subspace leads to:

∥B(A)∥2 = ∥N(A)∥2 = 1

2
∥N∥2 (S31)

The norm of the background can be expressed as follows:827

∥B∥2 = ∥M∥2 + ∥N∥2 + 2 ⟨M|N⟩︸ ︷︷ ︸
∼0

(S32)

Assuming that the scalar product between the electronic noise and the multiple

scattering is zero on average, the multiple scattering rate αM can be derived by

combining equations (S31) & (S32):

αM =
∥M∥2

∥B∥2
=1− 2

∥B(A)∥2

∥B∥2︸ ︷︷ ︸
β

(S33)

with β the anti-symmetric rate of the B−matrix.828
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[42] C. Demené, J. Robin, A. Dizeux, B. Heiles, M. Pernot, M. Tanter, and F. Perren,948

Transcranial ultrafast ultrasound localization microscopy of brain vasculature in949

patients, Nat. Biomed. Imag. 5, 219 (2021).950

[43] D. E. Soulioti, D. Espindola, P. A. Dayton, and G. F. Pinton, Super-Resolution951

Imaging Through the Human Skull, IEEE Trans. Ultrason. Ferroelectr. Freq. Con-952

trol 67, 25 (2020).953
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