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Abstract

Matrix imaging paves the way towards a next revolution in wave imaging.

Based on the response matrix recorded between a set of sensors, it enables

an optimized compensation of aberration phenomena and multiple scattering

events that usually drastically hinder the focusing process in heterogeneous

media. Although it gave rise to spectacular results in optical microscopy or

seismic imaging, the success of matrix imaging has been so far relatively lim-

ited with ultrasonic waves because wave control is generally only performed

with a linear array of transducers. In this paper, we extend ultrasound ma-

trix imaging to a 3D geometry. Switching from a 1D to a 2D probe enables

a much sharper estimation of the transmission matrix that links each trans-

ducer and each medium voxel. Here, we first present an experimental proof

of concept on a tissue-mimicking phantom through ex-vivo tissues and then,

show the potential of 3D matrix imaging for transcranial applications.
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Introduction

The resolution of a wave imaging system can be defined as the ability to dis-

cern small details of an object. In conventional imaging, this resolution cannot

overcome the diffraction limit of a half wavelength and may be further limited by

the maximum collection angle of the imaging device. However, even with a per-

fect imaging system, the image quality is affected by the inhomogeneities of the

propagation medium. Large-scale spatial variations of the wave velocity introduce

aberrations as wave passes through the medium of interest. Strong concentration

of scatterers also induces multiple scattering events that randomize the directions

of wave propagation, leading to a strong degradation of the image resolution and

contrast. Such problems are encountered in all domains of wave physics, in partic-

ular for the inspection of biological tissues, whether it be by ultrasound imaging [1]

or optical microscopy [2], or for the probing of natural resources or deep structure

of the Earth’s crust with seismic waves [3].

To mitigate those problems, the concept of adaptive focusing has been adapted

from astronomy where it was developed decades ago [4, 5]. Ultrasound imaging

employs array of transducers that allows to control and record the amplitude

and phase of broadband wave-fields. Wave-front distortions can be compensated

for by adjusting the time-delays added to each emitted and/or detected signal

in order to focus ultrasonic waves at a certain position inside the medium [6–9].

The estimation of those time delays implies an iterative time-consuming focusing

process that should be ideally repeated for each point in the field-of-view [10,

11]. Due to time constraint, such a complex adaptive focusing scheme cannot be

implemented in real-time with standard ultrasound imaging systems.

Fortunately, this tedious process can now be performed in post-processing [12,

13] thanks to the tremendous progress made in terms of computational power and

memory capacity during the last decade. To optimize the focusing process and

image formation, a matrix formalism can be fruitful [14–17]. Indeed, once the
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reflection matrix R of impulse responses between each transducer is known, any

physical experiment can be achieved numerically, either in a causal or anti-causal

way, for any incident beam and as many times as desired. Thereby a multi-

scale analysis of wave distortions can be performed to build an estimator of the

transmission matrix T between each transducer of the probe and each voxel inside

the medium [18]. Once the T-matrix is known, a local compensation of aberrations

can be performed for each voxel, thereby providing a confocal image of the medium

with a close to ideal resolution and an optimized contrast everywhere.

Although it gave rise to striking results in optical microscopy [19–23] or seismic

imaging [24, 25], the experimental demonstration of matrix imaging has been, so

far, less spectacular with ultrasonic waves [16, 17, 26, 27]. Indeed, the first proof-

of-concept experiments employed a linear array of transducers. Yet, aberrations

in the human body are 3D-distributed and a 1D control of the wave-field is not

sufficient for a fine compensation of wave-distortions. Moreover, 2D imaging limits

the density of independent speckle grains which controls the spatial resolution of

the T-matrix estimator [27].

In this work, we extend the ultrasound matrix imaging (UMI) framework to 3D

using a fully populated matrix array of transducers [28–30]. The overall method

is first validated by means of a well-controlled experiment combining ex-vivo pork

tissues as aberrating layer on top of a tissue-mimicking phantom. 3D UMI is then

applied to a head phantom whose skull induces a strong attenuation, aberration

and multiple scattering of the ultrasonic wave-field, phenomena that UMI can

quantify independently from each other [1, 18]. Inspired by the CLASS method

developed in optical microscopy [19, 21], aberrations are here compensated by a

novel iterative phase reversal algorithm more efficient for 3D UMI than a singular

value decomposition [15–17]. In contrast with previous works, the convergence of

this algorithm is ensured by investigating the spatial reciprocity between the T-

matrices in transmission and reception. Throughout the paper, we will compare
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the gain in terms of resolution and contrast provided by 3D UMI with respect

to its 2D counterpart. In particular, we will demonstrate how 3D UMI can be a

powerful tool for optimizing the focusing process inside the brain and improving

the ultrafast Doppler imaging mode [30, 31] or Ultrasound Localization Microscopy

(ULM) [32–35] that are revolutionizing the field of functional ultrasound.

Results

Beamforming the reflection matrix in a focused basis.

3D UMI starts with the acquisition of the reflection matrix (see Methods) by

means of a 2D array of transducers (32× 32 elements, see Fig. 1a,b). It was per-

formed first on a tissue-mimicking phantom with nylon rods through a pork chop

acting as an aberrating layer [Fig. 2a], and then on a head phantom including

brain and skull-mimicking tissue, to reproduce transcranial imaging [Fig. 4a]. In

the first experiment, the reflection matrix Ruu(t) is recorded in the transducer

basis [Fig. 1a1,b], i.e by acquiring the impulse responses, R(uin,uout, t), between

each transducer of the probe (u). In the head phantom experiment, skull at-

tenuation imposes a plane wave insonification sequence [Fig. 1a2] to improve the

signal-to-noise ratio. The reflection matrix Rθu then contains the reflected wave-

field R(θin,uout, t) recorded by the transducers uout [Fig. 1b] for each incident

plane wave of angle θin.

Whatever the illumination sequence, the reflectivity of a medium at a given

point r can be estimated in post-processing by a coherent compound of inci-

dent waves delayed to virtually focus on this point, and coherently summing the

echoes recorded by the probe coming from that same point [Fig. 1c]. UMI ba-

sically consists in decoupling the input (rin) and output (rout) focusing points

[Fig. 1d]. By applying appropriate time delays to the transmission (uin/θin) and

reception (uout) channels (see Methods), Ruu(t) and Rθu(t) can be projected at

each depth z in a focused basis, thereby forming a broadband focused reflection
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FIG. 1. 3D Ultrasound Matrix Imaging (UMI). (a) The R-matrix can be acquired

in the (a1) transducer or (a2) plane-wave basis in transmit and (b) recording the back-

scattered wave-field on each transducer in receive. (c) Confocal imaging consists in

a simultaneous focusing of waves at input and output. (d) In UMI, the input (rin)

and output (rout) focusing points are decoupled. (e) x−cross-section of the (f) focused

R−matrix. (g) UMI enables a quantification of aberrations by extracting a local RPSF

(displayed here in amplitude) from each antidiagonal of Rρρ(z). (h) UMI then consists

in a projection of the focused R-matrix in a correction (here transducer) basis at output.

The resulting dual R-matrix connects each focusing point to its reflected wave-front. (i)

UMI then consists in realigning those wave-fronts to isolate their distorted component

from their geometrical counterpart, thereby forming the D-matrix. (j) An iterative

phase reversal algorithm provides an estimator of the T−matrix between the correction

basis and the mid-point of input focusing points considered in panel f. (k) The phase

conjugate of the T−matrix provides a focusing law that improves the focusing process

at output. (l) RPSF amplitude after the output UMI process. The ultrasound data

shown in this figure corresponds to the pork chop experiment at depth z = 40 mm.
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FIG. 2. Ultrasound matrix imaging of a tissue-mimicking phantom through a

pork chop: (a) Schematic of the experiment. (b) Maps of original RPSFs (in ampli-

tude) at depth z = 29 mm. (c) Aberration phase laws extracted at the different steps of

the UMI process. (d) Corresponding RPSFs after aberration compensation at each step.

(e,f) 3D confocal and UMI images with one longitudinal and transverse cross-section.

matrix, Rρρ(z) ≡ [R(ρin,ρout, z)].

Since the focal plane is bi-dimensional, each matrixRρρ(z) has a four-dimension

structure: R(ρin,ρout, z) = R([xin, yin], [xout, yout], z). Rρρ(z) is thus concatenated
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in 2D as a set of block matrices to be represented graphically [Fig. 1f]. In such a

representation, every sub-matrix ofR corresponds to the reflection matrix between

lines of virtual transducers located at yin and yout, whereas every element in the

given sub-matrix corresponds to a specific couple (xin, xout) [Fig. 1e]. Each coef-

ficient R(xin, yin, xout, yout, z) corresponds to the complex amplitude of the echoes

coming from the point rout = (xout, yout, z) in the focal plane when focusing at

point rin = (xin, yin, z) (or conversely since Rρρ(z) is a symmetric matrix due to

spatial reciprocity).

As already shown with 2D UMI, the diagonal of Rρρ(z) directly provides the

transverse cross-section of the confocal ultrasound image:

I(ρ, z) = |R(ρin = ρout, z)|2 (1)

The corresponding 3D image is displayed in Fig. 2e for the pork chop experiment.

Longitudinal and transverse cross-sections illustrate the effect of the aberrations

induced by the pork chop layer by highlighting the distortion exhibited by the

image of the deepest nylon rod.

Probing the focusing quality.

We now show how to quantify aberrations in ultrasound speckle (without any

guide star) by investigating the antidiagonals of Rρρ(z). In the single scattering

regime, the focused R−matrix coefficients can be expressed as follows [1]:

R(ρout,ρin, z) =

∫
drHout(ρ− ρout, rout)γ(ρ, z)Hin(ρ− ρin, rin) (2)

with Hin/out, the input/output point spread function (PSF); and γ the medium

reflectivity. This last equation shows that each pixel of the ultrasound image

(diagonal elements of Rρρ(z)) results from a convolution between the sample re-

flectivity and an imaging PSF which is itself a product of the input and output

PSFs.
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The off-diagonal points in Rρρ(z) can be exploited for a quantification of the

focusing quality at any pixel of the ultrasound image. The intensity profile along

each anti-diagonal of Rρρ(z) provides the reflection point spread function,

RPSF (∆ρ, r) = |R(r −∆ρ/2, r +∆ρ/2, z)|2. (3)

In the speckle regime (random reflectivity), this quantity directly probes the lo-

cal focusing quality as its ensemble average scales as an incoherent convolution

between the input and output PSFs [1]:

⟨RPSF ⟩(∆ρ, r) ∝ |Hin|2
∆ρ
⊛ |Hout|2(∆ρ, r). (4)

In practice, this ensemble average is performed by a local spatial average

(see Methods). Figure 1g displays the mean RPSF associated with the focused

R−matrix displayed in Fig. 1f (pork chop experiment). It clearly shows a dis-

torted RPSF which spreads well beyond the diffraction limit (black dashed line in

Fig. 1g):

δρ0(z) ∼
λc

2 sin {arctan [∆u/(2z)]}
(5)

with ∆u the lateral extension of the probe. The RSPF also exhibits a strong

anisotropy that could not have been grasped by 2D UMI. As we will see in the

next section, this kind of aberrations can only be compensated through a 3D

control of the wave-field.

Adaptive focusing by iterative phase reversal.

Aberration compensation in the UMI framework is performed using the distor-

tion matrix concept. Introduced for 2D UMI [16, 27], the distortion matrix can

be obtained by: (i) projecting the focused R−matrix either at input or output

in a correction basis (here the transducer basis, see Fig. 1h); (ii) extracting wave

distortions exhibited by R when compared to a reference matrix that would have
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been obtained in an ideal homogeneous medium of wave velocity c0 [Fig. 1i]. The

resulting distortion matrix D = [D(u, r)] contains the aberrations induced when

focusing on any point r, expressed in the correction basis.

This matrix exhibits long-range correlations that can be understood in light of

isoplanicity. If in a first approximation, the pork chop can be considered as a phase

screen aberrator, then the input and output PSFs can be considered as spatially

invariant: Hin/out(ρ− ρin/out, rin/out) = H(ρ− ρin/out). UMI consists in exploiting

those correlations to determine the transfer function T (u) of the phase screen. In

practice, this is done by considering the correlation matrix C = D × D†. The

correlation between distorted wave-fields enables a virtual reflector synthesized

from the set of output focal spots [16] [Fig. 1j]. While, in previous works [16, 18],

an iterative time-reversal process (or equivalently a singular value decomposition of

D) was performed to converge towards the incident wavefront that focuses perfectly

through the medium heterogeneities onto this virtual scatterer, here an iterative

phase reversal algorithm is employed to build an estimator T̂ (u) of the transfer

function (see Methods). Supplementary Figure S2 demonstrates the superiority of

this algorithm compared to SVD for 3D UMI.

Iterative phase reversal provides an estimation of aberration transmittance

[Fig. 1j] whose phase conjugate is used to compensate for wave distortions (see

Methods). The resulting mean RPSF is displayed in Fig. 1l. Although it shows

a clear improvement compared with the initial RPSF, high-order aberrations still

subsist. Because of its 3D feature, the pork chop cannot be fully reduced to an

aberrating phase screen in the transducer basis.
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Spatial reciprocity as a guide star.

The 3D distribution of the speed-of-sound breaks the spatial invariance of input

and output PSFs. Figure 2b illustrates this fact by showing a map of local RPSFs

(see Methods). The RPSF is more strongly distorted below the fat layer of the

pork chop (cf ≈ 1480± 10 m/s [36]) than below the muscle area (cm ≈ 1560± 50

m/s). A full-field compensation of aberrations similar to adaptive focusing does

not allow a fine compensation of aberrations [Fig. 2d1]. Access to the transmission

matrix T = [T (u, r)] linking each transducer and each medium voxel is required

rather than just a simple aberration transmittance T (u).

To that aim, a local correlation matrix C(r) should be considered around each

point r over a sliding box W(r) (see Methods). The choice of its spatial extension

w is subject to the following dilemma. On the one hand, the spatial window should

be as small as possible to grasp the rapid variations of the PSFs across the field

of view. On the other hand, these areas should be large enough to encompass a

sufficient number of independent realizations of disorder [18]. The bias made on

our T-matrix estimator actually scales as (see Supplementary Section S5):

||δT̂ (u, r)||2 ∼ 1/(C2 ×NW). (6)

C is the so-called coherence factor that is a direct indicator of the focusing qual-

ity [8] but that also depends on the multiple scattering rate and noise back-

ground [27]. NW is the number of diffraction-limited resolution cells in each spatial

window.

To study experimentally this convergence of our estimator, the evolution of

estimated input and output aberration phase laws, T̂in(u, rp) and T̂out(u, rp), is

investigated at a given point rp for different box sizew. T̂in is supposed to converge

for a sufficiently large box size (NW = 100) and this asymptotic value can be

considered as the reference Tin in the following. The evolution of the normalized
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scalar product, N−1
u T†

inT̂in, as a function of NW shows the convergence of the IPR

process [Fig. 3d], with Nu the number of transducers. The error made on the

aberration phase law, ||δT̂||2 = 2|1−N−1
u T†

inT̂in|, can be deduced and the scaling

law of Eq. 6 with respect to NW is checked [Fig. 3e].

The question that arises now is how we can, in practice, know if the convergence

of T̂ is fulfilled without any a priori knowledge on T. An answer can be found

by comparing the estimated input and output aberration phase laws in Fig. 3.

For a sufficiently large box (NW > 50), T̂in and T̂out are almost equal, while, for

a small box (NW <20), a large discrepancy can be found between them. Their

normalized scalar product, N−1
u T̂†

inT̂out, is thus a relevant observable to assess the

convergence of our estimator T̂. Its evolution actually closely follows the scalar

product between T̂in and Tin previously investigated [Fig. 3d], which means that

the parameter, ε = 2(1−N−1
u T̂†

inT̂out), is a reliable estimator of the bias intensity

||δT̂||2 [Fig. 3e]. In the following, spatial reciprocity will thus be used as a guide

star for assessing the convergence of the UMI process.

This inverse scaling of the bias with NW demonstrates the advantage of 3D

UMI with respect to 2D since NW ∼ wd, with d the imaging dimension. For a

given precision, 3D UMI provides a better spatial resolution for our T−matrix

estimator. This superiority is demonstrated by Fig. 3c3,c4 that shows a much

better agreement between Tin and Tout for a 3D box (Fig. 3a3) than for a 2D

patch (Fig. 3a4) of equal dimension w.

Multi-scale compensation of wave distortions.

The scaling of the bias intensity ||δT̂||2 with the coherence factor C has not

been discussed yet. This dependence is however crucial since it indicates that a

gradual compensation of aberrations shall be favored rather than a direct partition

of the field-of-view into small boxes [21] (see Supplementary Fig. S3). An optimal

UMI process should proceed as follows: first, compensate for input and output
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FIG. 3. Convergence of the UMI process towards the T-matrix. (a) Spa-

tial window W(r) used to compute C(rp) at point rp = (5,−5, 41) mm. (b,c) Ex-

tracted input and output aberration laws, respectively. (d) Normalized scalar products,

N−1
u T†

in(rp)T̂in(rp) (blue curve) and N−1
u T̂†

in(rp)T̂out(rp) (orange curve), versus the

number of resolution cells NW . (e) Corresponding bias intensity, ||δT̂in||2 (blue curve),

compared with its estimator ε (orange curve) based on spatial reciprocity, as a function

of NW . The plot is in log-log scale and the theoretical power law (Eq. 6) is shown for

comparison with a dashed black line.

wave distortions at a large scale to increase the coherence factor C; then, decrease

the spatial window W and improve the resolution of the T−matrix estimator.

The whole process can be iterated, leading to a multi-scale compensation of wave

distortions (see Methods). As explained above, the convergence of the process is

monitored using spatial reciprocity (ε <0.2).

The result of 3D UMI is displayed in Fig. 2. It shows the evolution of the

T−matrix at each step [Fig. 2c] and the corresponding local RPSFs [Fig. 2d]. The

comparison with the initial and full-field maps of RPSF highlights the benefit of a

local compensation via the T−matrix, with a diffraction-limited resolution reached
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everywhere. The local aberration phase laws exhibited by T perfectly match with

the distribution of muscle and fat in the pork chop. The comparison of the final

3D image [Figs. 2f] and its cross-sections with their initial counterparts [Figs. 2e]

show the success of the UMI process, in particular for the deepest nylon rod which

has retrieved its straight shape. The local RPSF on the top right of Fig.2 shows

a contrast improvement by 4.2 dB and resolution enhancement by a factor 2 (see

Methods and Supplementary Fig. S4).

FIG. 4. Ultrasound Matrix Imaging (UMI) of the head phantom. (a) Top

and oblique views of the experimental configuration. (b,c) Original and UMI images,

respectively. (d) Aberration laws at 3 different depths : z = 20 mm (d1), z = 32 mm

(d2), z = 60 mm (d3). (e) Reciprocity with or without the use of a confocal filter.

(f). Correlation function of the T̂-matrix in the (xz) and (xy) plane, respectively. We

attribute the sidelobes along the y-axis (f2) to the inactive rows separating each block

of 256 elements of the matrix array.

Overcoming multiple scattering for trans-cranial imaging

The same UMI process is now applied to the ultrasound data collected on the

head phantom [Fig. 4a]. The parameters of the multi-scale analysis are provided

in the Methods section (see also Supplementary Fig. S5). The first difference with
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FIG. 5. Aberrations and multiple scattering quantification: (a) Single scattering

(green), multiple scattering (blue) and noise (red) rate at z = 32 mm (b) Single scat-

tering, multiple scattering, and noise rates as a function of depth. (c,d) Maps of local

RPSFs (in amplitude) before and after correction, respectively, at three different depths

z = 20, 32 and 60 mm. Black boxes in panel (a) and (c2) corresponds to the same

area. (e) Resolution δ−3dB as a function of depth. Initial resolution (red line) and its

value after UMI (green line) are compared with the ideal (diffraction-limited) resolution

(Eq. 5).

the pork chop experiment lies in our choice of correction basis. Given the multi-

layer configuration in this experiment, the D−matrix is investigated in the plane

wave basis [16].

The second difference lies in the fact that the spatial reciprocity property is far

to be checked by the T−matrix estimator [Fig. 4e]. The incoherent background

exhibited by the original PSFs [Fig. 5c] drastically affects the coherence factor

C [27], which, in return, gives rise to a strong bias on the T−matrix estimator

(Eq. 6). The incoherent background is due to multiple scattering events in the

skull and electronic noise, whose relative weight can be estimated by investigating

the spatial reciprocity symmetry of the R-matrix (see Methods). Fig. 5b shows

the depth evolution of the single and multiple scattering contributions as well as
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electronic noise. While single scattering dominates at shallow depths (z < 20

mm), multiple scattering quickly reaches 35% and continues to increase until it

even overtakes single scattering at depths greater than z = 70 mm. Beyond the

depth evolution, 3D imaging even allows the study of multiple scattering in the

transverse plane, as shown in Figure 5a. Two areas are examined, marked with

black boxes, corresponding to the RPSFs shown in Fig. 5c2 (z = 32 mm). In the

center, the RPSF exhibits a low background due to the presence of a spherical

target, resulting in a single scattering rate of 90%. The second box on the right,

however, is characterized by a much higher background, leading to a multiple-to-

single scattering ratio slightly larger than one. This high level of multiple scattering

highlights the difficult task of trans-cranial imaging with ultrasonic waves.

In order to overcome these detrimental effects, an adaptive confocal filter can

be applied to the focused R−matrix [18].

R′(ρin,ρout, z) = R(ρin,ρout, z) exp

(
−|ρout − ρin|2

2lc(z)2

)
(7)

This filter has a Gaussian shape, with a width lc(z) that scales as 3δρ0(z) [18].

The application of a confocal filter drastically improves the correlation between

input and output aberration phase laws (see Fig. 4e and Supplementary Fig. S6),

proof that a satisfying convergence towards the T−matrix is obtained.

Figure 4d shows the T−matrix obtained at different depths in the brain phan-

tom. Its spatial correlation function displayed in Fig.4f provides an estimation of

the isoplanatic patch size: 5 mm in the transverse direction and 2 mm in depth.

This rapid variation of the aberration phase law across the field of view confirms

a posteriori the necessity of a local compensation of aberrations induced by the

skull. It also confirms the importance of 3D UMI with a fully sampled 2D array,

as previous work recommended that the array pitch should be no more than 50%

of the aberrator correlation length to properly sample the corresponding adapted
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focusing law [37].

The phase conjugate of the T−matrix at input and output enables a fine

compensation of aberrations. A set of corrected RPSFs are shown in Fig. 5d.

The comparison with their initial values demonstrates the success of 3D UMI: a

diffraction-limited resolution is obtained almost everywhere [Fig. 5e)], whether it

be in ultrasound speckle or in the neighborhood of bright targets, at shallow or

high depths, which proves the versatility of UMI.

The performance of 3D UMI is also striking when comparing the three-

dimensional image of the head phantom before and after UMI. [Figs. 4b and

c, respectively]. The different targets were initially strongly distorted by the skull,

and are now nicely resolved with UMI. In particular, the first target, located at

z = 19 mm and originally duplicated, has recovered its true shape. In addition,

two targets laterally spaced by 10 mm are observed at 42 mm depth, as expected

[Fig. 4a]. The image of the target observed at 54 mm depth is also drastically

improved in terms of contrast and resolution but is not found at the expected

transverse position. One potential explanation is the size of this target (2 mm

diameter) larger than the resolution cell. The guide star is thus far from being

point-like, which can induce an uncertainty on the absolute transverse position for

the target in the corrected image.

Finally, an isolated target can be leveraged to highlight the gain in contrast

provided by 3D UMI with respect to its 2D counterpart. To that aim, a linear

1D array is emulated from the same raw data by collimating the incident beam

in the y-direction [Fig. 6]. The ultrasound image is displayed before and after

UMI in Figs. 6b1 and c1, respectively. The radial average of the corresponding

focal spots is displayed in Figs. 6d. Even if 2D UMI enables a diffraction limited

resolution, the contrast gain G is quite moderate (G2D ∼ 8dB) since it scales

as the number N of coherence grains exhibited by the 1D aberration phase law

[Figs. 6a1]: N2D ∼ 6.2. On the contrary, 3D UMI provides a strong enhancement
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of the target echo (see the comparison between Figs. 6b2,c2 and d): G3D ∼ 18 dB.

The 2D aberration phase law actually provides a much larger number of spatial

degrees of freedom than its 1D counterpart: N3D ∼ 63. The gain in contrast is

accompanied by a drastic increase of the transverse resolution (> 8× for z > 40

mm in Fig. 5e). Figure 6 demonstrates the necessity of a 2D ultrasonic probe for

trans-cranial imaging. Indeed, the complexity of wave propagation in the skull can

only be harnessed with a 3D control of the incident and reflected wave fields.

FIG. 6. 2D versus 3D matrix imaging of a head phantom: (a) Aberration law

extracted with 2D (a1) or 3D (a2) UMI for a target located at z = 38 mm. (b,c) Original

and corrected images of the same target with 2D and 3D UMI, respectively. (d) Imaging

PSF before (red) and after (green) 2D (dotted line) and 3D (solid line) UMI.
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Discussion

In this experimental proof-of-concept, we demonstrated the capacity of 3D UMI

to correct strong aberrations such as those encountered in trans-cranial imaging.

Mathematically equivalent to the CLASS algorithm [19, 21] when applied to the

whole field-of-view, the proposed iterative phase reversal algorithm is much more

efficient for a local compensation of aberrations (see Supplementary Section S3).

Moreover, by applying an adapted confocal filter and probing the reciprocity be-

tween the input and output transmission matrices, an adaptive aberration phase

law was retrieved for each voxel of the field of view. A diffraction-limited 3D image

was obtained, even in a challenging case with a high level of multiple scattering.

Although these results are striking, they were obtained in vitro, and some chal-

lenges remain for in vivo brain imaging. Until now, UMI has only been applied

to a static medium, while biological tissues are usually moving, especially in the

case of vascular imaging, where blood flow makes the reflectivity vary quickly over

time. A lot of 3D imaging modes are indeed designed to image blood flow such as

transcranial Doppler imaging [38] or ULM [35, 39]. These methods are strongly

sensitive to aberrations [34, 40] and their coupling with matrix imaging would be

rewarding to increase the signal-to-noise ratio and improve the image resolution,

not only in the vicinity of bright reflectors [41] but also in ultrasound speckle.

Indeed, the number of illuminations required for UMI scales as the number

of resolution cells covered by the RPSF (see Supplementary Fig. S7). As the

aberration level through the skull is important, the uncorrected RPSFs are much

larger than the diffraction limit. This means that the illumination basis should be

fully sampled, limiting 3D UMI to a compounded framerate of only a few hertz,

which is much too slow for ultrafast imaging [42]. Soft tissues however usually

exhibit much slower movement, and provide signals several dB higher than blood.

Ultrasound imaging of tissues is generally discarded for the brain because of the

strong level of aberrations and reverberations. Interestingly, UMI can open a
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new route towards quantitative brain imaging since a matrix framework can also

enable the mapping of physical parameters such as the speed-of-sound [1, 43–

45], attenuation and scattering coefficients [46, 47], or fiber anisotropy [48, 49].

Those various observables can be extremely enlightening for the characterization

of cerebral tissues.

Alternatively, a solution to directly implement 3D UMI in vivo for ultrafast

imaging, would be to design an imaging sequence in which the fully sampled

R−matrix is acquired prior to the ultrafast acquisition itself, where the illumi-

nation basis can be drastically downsampled. The T−matrix obtained from R

could then be used to correct the ultrafast images in post processing.

Interestingly, if an ultrafast 3D UMI acquisition is possible (in cases with less

aberrations, or at shallow depths), the quickly decorrelating speckle observed in

blood flow can be an opportunity since it provides a large number of speckle

realizations in a given voxel. A high resolution T−matrix could thus be, in prin-

ciple, extracted without spatial averaging and relying on any isoplanatic assump-

tion [50, 51].

Beyond aberrations, another issue for transcranial imaging comes from the mul-

tiple reflections induced by the skull. Reverberations have been omitted in this

work but drastically pollute the image at shallow depths (z < 20 mm). To cope

with this issue, a polychromatic approach to matrix imaging is required. Indeed,

the aberration compensation scheme proposed in this paper is equivalent to a

simple application of time delays on each transmit and receive channel. On the

contrary, reverberation compensation requires the tailoring of a complex spatio-

temporal adaptive (or even inverse) filter. To that aim, 3D UMI provides an

adequate framework to exploit, at best, all the spatio-temporal degrees of freedom

provided by a high-dimension array of broadband transducers.

To conclude, 3D UMI is general and can be applied for any insonification se-

quence (plane wave or virtual source illumination) or array configuration (random
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or periodic, sparse or dense). Matrix imaging can be also extended to any field

of wave physics for which a multi-element technology is available: optical imaging

[19–21], seismic imaging [24, 25] and also radar [52]. All the conclusions raised in

that paper can be extended to each of these fields. The matrix formalism is thus

a powerful tool for the big data revolution coming in wave imaging.
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Methods
Description of the pork chop experiment. The first sample under investi-

gation is a tissue-mimicking phantom (speed of sound: c0 = 1540 m/s) composed

of random distribution of unresolved scatterers which generate ultrasonic speckle

characteristic of human tissue [Fig. 2a]. The system also contains nylon filaments

placed at regular intervals, with a point-like cross-section, and, at a depth of 40

mm, a 10 mm-diameter hyperechoic cylinder, containing a higher density of un-

resolved scatterers. A 12-mm thick pork chop is placed on top of the phantom.

It is immersed in water to ensure its acoustical contact with the probe and the

phantom. Since the pork chop contains a part of muscle tissues (cm ∼ 1560 m/s)

and a part of fat tissue (cf ∼ 1480 m/s), it acts as an aberrating layer. This

experiment mimics the situation of abdominal in vivo imaging, in which layers of

fat and muscle tissues generate strong aberration and scattering at shallow depths.

The acquisition of the reflection matrix is performed using a 2D matrix array

of transducers whose characteristics are provided in Tab. I. The reflection matrix

Number of transducers 32× 32 = 1024 (with 6 dead elements)
Geometry (y-axis) 3 inactive rows between each block of 256 elements
Pitch δu = 0.5 mm (≈ λ at c = 1540 m/s)

Aperture ∆u =

(
∆ux

∆uy

)
=

(
16 mm
17.5 mm

)
Central frequency fc = 3 MHz
Bandwidth (at −6dB) 80%→ ∆f = [1.8− 4.2] MHz
Transducer directivity θmax = 28◦ at c = 1400m/s

TABLE I. Matrix array datasheet

is acquired by recording the impulse response between each transducer of the

probe using IQ modulation with a sampling frequency fs = 6 MHz. To that aim,

each transducer uin emits successively a sinusoidal burst of three half periods at

the central frequency fc. For each excitation uin, the back-scattered wave-field

is recorded by all probe elements uout over a time length ∆t = 139 µs. This

set of impulse responses is stored in the canonical reflection matrix Ruu(t) =
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[R(uin,uout, t)].

Description of the head phantom experiment. In this second experiment,

Speed-of-sound Density Attenuation

[m/s] [g/cm3] @2.25 MHz [dB/cm]

Cortical bone 3000± 30 2.31 6.4± 0.3

Trabecular bone 2800± 50 2.03 21± 2

Brain tissue 1400± 10 0.99 1.0± 0.2

Skin tissue 1400± 10 1.01 1.7± 0.2

TABLE II. Head phantom characteristics

the same probe [Tab. I] is placed slightly above the temporal window of a mimicking

head phantom whose characteristics are described in Tab. II. To investigate the

performance of UMI in terms of resolution and contrast, the manufacturer (True

Phantom Solutions) was asked to place small spherical targets made of bone-

mimicking material inside the brain. They are arranged crosswise, evenly spaced

in the 3 directions with a distance of 1 cm between two consecutive targets, and

their diameter increases with depth: 0.2, 0.5, 1, 2, 3mm [Fig. 4a]. Skull thickness

is of ∼ 6 mm on average at the position where the probe is placed and the first

spherical target is located at z ≈ 20 mm depth, while the center of the cross is at

z ≈ 40 mm depth. The transverse size of the head is ∼ 14cm.

To improve the signal-to-noise ratio, the R-matrix is here acquired using a set

of plane waves [53]. For each plane wave of angles of incidence θin = (θx, θy), the

time-dependent reflected wave field R(θin,uout, t) is recorded by each transducer

uout. This set of wave-fields forms a reflection matrix acquired in the plane wave

basis, Rθu = [R(θin,uout, t)]. Since the transducer and plane wave bases are

related by a simple Fourier transform at the central frequency, the array pitch

δu and probe size ∆u dictate the angular pitch δθ and maximum angle θmax

necessary to acquire a full reflection matrix in the plane wave basis such that:

θmax = arcsin[λc/(2δu)] ≈ 28◦; δθ = arcsin [λc/(2∆uy)] ≈ 0.8◦, with λc = c0/fc the
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central wavelength and c0 = 1400 m/s the speed-of-sound in the brain phantom.

A set of 1225 plane waves are thus generated by applying appropriate time delays

τ(θin,uin) to each transducer uin = (ux, uy) of the probe:

τ(θin,uin) = [ux sin θx + uy sin θy]/c0. (8)

Focused beamforming of the reflection matrix. The focused R−matrix,

Rρρ(z) = [R(ρin,ρout, z)], is built in the time domain via a conventional delay-

and-sum beamforming scheme that consists in applying appropriate time-delays

in order to focus at different points at input rin = (xin, yin, z) and output rout =

(xout, yout, z):

R(ρin,ρout, z) =
∑
iin

∑
uout

Ain(iin, rin)Aout(uout, rout) (9)

×R (iin,uout, t(iin, rin) + t(uout, rout)) (10)

where i = u or θ accounts for the illumination basis. Ain and Aout are apodization

factors that limit the extent of the synthetic aperture at emission and reception.

This synthetic aperture is dictated by the transducers directivity θmax ∼ 28◦ [54].

In the transducer basis, the time delay, t(u, r), writes:

t(u, r) =
|u− r|

c0
=

√
(x− ux)2 + (y − uy)2 + z2

c0
. (11)

In the plane wave basis, t(θ, r) is given by

t(θ, r) =

[
x sin θx + y sin θy + z

√
1− sin2 θx − sin2 θy

]
/c0. (12)

Local average of the reflection point spread function. To probe the local
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RPSF, the field-of-view is divided into regions W(r) that are defined by their

central midpoint rp and their lateral extension wρ and thickness wz. A local

average of the back-scattered intensity can then be performed in each region:

⟨RPSF ⟩(∆ρ, rp) =
〈
|R(ρ−∆ρ/2,ρ+∆ρ/2, z)|2W(r − rp)

〉
r

(13)

where W(r− rp) = 1 for |ρ−ρp| < wρ/2 and |z− zp| < wz/2, and zero otherwise.

The dimensions of W(r) used for Fig. 2b,d are: wρ = 3.2 mm and wz = 3 mm.

The dimensions of W(r) to obtain Figs. 5c,d are: wρ = 4 mm and wz = 5.5 mm.

Distortion Matrix in 3D UMI. The first step consists in projecting the focused

R−matrix Rρρ(z) [Fig. 1d] onto a dual basis o at output [Fig. 1h]:

Rρo = Rρρ(z)× T0(z) (14)

where × stands for a matrix product and T0 the transmission matrix predicted by

the propagation model.

In the transducer basis (o = k), its coefficients correspond to the z−derivative

of the Green’s function [18]:

T0(ρ,u) =
zeikc|u−r|

4π|u− r|2
(15)

where kc is the wavenumber at the central frequency. In the Fourier basis (o = k),

T0 simply corresponds to the Fourier transform operator [16]:

T0(ρ,k) = exp(jkρ) = exp(j[kxx+ kyy]]). (16)

At each depth z, the reflected wave-fronts contained in Rρo are then decom-

posed into the sum of a geometric component T0, that would be ideally obtained
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in absence of aberrations, and a distorted component that corresponds to the gap

between the measured wave-fronts and their ideal counterparts [Fig. 1i] [16, 18]:

Dρo(z) = T∗
0(z) ◦Rρo(z) (17)

where the symbol ◦ stands for a Hadamard product. Dro = [Dρo(z)] = [D(ρin,oout, z)]

is the so-called distortion matrix. Note that the same operations can be performed

by exchanging input and output to obtain the input distortion matrix Dri.

Local correlation analysis of the D−matrix. The next step is to exploit local

correlations in Dro to extract the T-matrix. To that aim, a set of correlation

matrices Coo(rp) shall be considered between distorted wave-fronts in the vicinity

of each point rp in the field-of-view:

C(o,o′, rp) = ⟨D(rin,oout)D
∗(rin,o

′
out)W(rin − rp)⟩rin (18)

An equivalent operation can be performed in input in order to extract a local

correlation matrix Cii(rp) from the input distortion matrix Dri.

Iterative phase reversal algorithm. The iterative phase reversal algorithm is

a computational process that provides an estimator of the transmission matrix,

Tout = T0 ×Hout, that links each point o in the dual basis and each voxel rp of

the medium to be imaged [Fig. 1j]. Mathematically, the algorithm is based on the

following recursive relation:

T̂
(n)
out(rp) = exp

[
i arg

{
Coo(rp)× T̂

(n−1)
out (rp)

}]
(19)

where T̂
(n)
out is the estimator ofTout at the n

th iteration of the phase reversal process.

T̂
(0)
out is an arbitrary wave-front that initiates the iterative phase reversal process

(typically a flat phase law) and T̂out = limn→∞ T̂
(n)
out is the result of this iterative
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phase reversal process.

This iterative phase reversal algorithm, repeated for each point rp, yields an

estimator T̂out of the T-matrix. Its digital phase conjugation enables a local

compensation of aberrations [Fig. 1k]. The focused R−matrix can be updated as

follows:

Rρρ(z) =
[
Dρo(z) ◦ T̂†

out(z)
]
×T†

0(z) (20)

where the symbol † stands for transpose conjugate and ◦ for the Hadamard prod-

uct. The same process is then applied to the input correlation matrix Cii for the

estimation of the input transmission matrix Tin = T0 ×Hin.

Multi-scale analysis of wave distortions. To ensure the convergence of the

IPR algorithm, several iterations of the aberration correction process are performed

while reducing the size of the patches W with an overlap of 50% between them.

Three correction steps are performed in the pork chop experiment, whereas six are

performed in the head phantom experiment [as described in Table III]. At each

step, the correction is performed both at input and output and reciprocity between

input and output aberration laws is checked. The correction process is stopped if

the normalized scalar product N−1
u T̂†

inT̂out does not reach 0.9.

Pork chop Head phantom

Correction step 1◦ 2◦ 3◦ 1◦ 2◦ 3◦ 4◦ 5◦ 6◦

Number of transverse patches 1× 1 2× 2 4× 4 1× 1 2× 2 3× 3 4× 4 5× 5 6× 6
wρ = (wx, wy) [mm] 16 12 8 20 15 13.3 10 8 6.6

wz [mm] 3 3 3 5.5 5.5 5.5 5.5 5.5 5.5

TABLE III. Parameters of UMI in both experiments

Synthesise a 1D linear array. To estimate the benefits of 3D imaging compared

to 2D UMI, a simulation of a 1D array is performed on experimental ultrasound

data acquired with our 2D matrix array. To that aim, cylindrical time delays are
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applied at input and output:

t′(θ(s), s, z) =
s sin θ(s) + z cos θ(s)

c0
(21)

t′(u(s), s, z) =

√
(s− u(s))2 + z2

c0
. (22)

with s = x or y, depending on our focus plane choice.

The focused R−matrix is still built in the time domain but using this time the

following delay-and-sum beamforming:

R(2D)(yin, yout, z) =
∑
θin

∑
uout

R
(
θin,uout, t

′(θ
(y)
in , yin, z) + t′(u

(y)
out, yout, z)

+t′(θ
(x)
in , xf , zf ) + t′(u

(x)
out, xf , zf )− 2zf/c0

)
. (23)

The images displayed in Fig. 6b1,c1 are obtained by synthesizing input and output

beams collimated in the (y, z)−plane by focusing on a line located at (xf = 0 mm,

zf = 37.25 mm), thereby mimicking the beamforming process by a conventional

linear array of transducers.

Estimation of contrast and resolution. Contrast and resolution are evaluated

by means of the RPSF. Equivalent to the full width at half maximum commonly

used in 2D UMI, the transverse resolution δρ is assessed in 3D based on the area

A−3dB at half maximum of the RPSF amplitude:

δρ−3dB =
√

A−3dB/π (24)

The contrast, C, is computed locally by decomposing the RPSF at ∆ρ = 0 as

the sum of three components [27]:

RPSF (rp,∆ρ = 0) = IS(rp) + IM(rp) + IN(rp). (25)
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IS is the single scattering component that corresponds to a confocal peak. IM is

a multiple scattering contribution that gives rise to a diffuse halo; IN corresponds

to electronic noise which results in a flat plateau. A local contrast can then be

deduced from the ratio between IS and the incoherent background IB = IM + IN ,

C(rp) =
IS(rp)

IB(rp)
(26)

Single and multiple scattering rates. The single scattering, multiple scatter-

ing and noise rates can be directly computed from the decomposition of the RPSF

(Eq. 25):

αX(rp) = IX(rp))/RPSF (rp,∆ρ = 0) (27)

with X = S, M or N . However, at large depths, multiple scattering and noise are

difficult to discriminate since they both give rise to a flat plateau in the RPSF. In

that case, the spatial reciprocity symmetry can be invoked to differentiate their

contribution. The multiple scattering component actually gives rise to a symmetric

R-matrix while electronic noise is associated with a fully random matrix. The

relative part of the two components can thus be estimated by computing the degree

of symmetry β in the R−matrix. To that aim, the R-matrix is first projected onto

its symmetric subspace at each depth :

R(sym)
ρρ (z) =

Rρρ(z) +RT
ρρ(z)

2
(28)

where the superscript T stands for matrix transpose. A local degree of symmetry

β is then computed as follows:

β(rp) =
< |R(sym)

ρρ (z)|2W(r − rp)D(∆ρ) >

< |Rρρ(z)|2W(r − rp)D(∆ρ) >
(29)

where D(∆ρ) is a de-scanned window function that eliminates the confocal peak
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such that the computation of β is only made by considering the incoherent back-

ground. Typically, we chose D(∆ρ) = 1 for ∆ρ > 6δρ0(z), and zero otherwise.

The multiple scattering rate αM and noise ratio αN can then be deduced:

αM(rp) =
β(rp)IB(rp)

RPSF (rp = 0)
(30)

αN(rp) =
(1− β(rp))IB(rp)

RPSF (rp,∆ρ = 0)
(31)

(32)

In the head phantom experiment [Fig. 5b], these rates are estimated at each depth

by averaging over a window of size w = (wx, wy, wz) = (20, 20, 5.5)mm.

Computational insights. While the UMI process is close to real-time for 2D

imaging (i.e. for linear, curve or phased array probes), 3D UMI (using a fully

populated matrix array of transducers) is still far from it (see Tab. IV) as it in-

volves the processing of much more ultrasound data. Even if computing a confocal

3D image only requires a few minutes, building the focused R−matrix from the

raw data takes a few hours (on GPU with CUDA language) while one step of

aberration correction only lasts for a few minutes. All the post-processing was

realized with Matlab (R2021a) on a working station with 2 processors @2.20GHz,

128Go of RAM, and a GPU with 48 Go of dedicated memory.
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2D imaging 3D imaging
Number of channels [Input × Output] 32× 32 ≈ 103 1024× 1024 ≈ 106

Field-of-view (∆x,∆y,∆z) (20, 0, 80) mm (20, 20, 80) mm
Data Time Data Time

R-matrix acquisition Ruu(t) 6 Mo 8 ms 6 Go 260 ms
Confocal image I(r) 53 ko 5.1 ms 2.2 Mo 1.3 min

Matrix Imaging
Focused R−matrix: Rρρ(z) 2.2 Mo 15 ms 3.6 Go 2.3 h

Estimation of T̂ & correction 0.15 s 4.5 min

TABLE IV. Computational insights: Here we compare the typical amount of data

and computational time at each post-processing step of UMI. The comparison between

2D and 3D imaging is made using a single line of transducers versus all the transducers

of our matrix array. In both cases, the pixel/voxel resolution is fixed at 0.5 mm, which

corresponds approximately to one wavelength. The maximum distance between the input

and output focusing points is set to 10 mm. The estimation of T̂ is here investigated

without a multi-scale analysis on a single iteration at the input and at the output.
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Supplementary Information

This document provides further information on: (i) the UMI workflow; (ii) the

comparison between iterative time reversal and phase reversal; (iii) on the bias

of the T−matrix estimator; (iv) the comparison between a multi-scale and local

analysis of wave distortions; (v) the impact of the confocal filter; (vi) the effect of

an incompleteness of the illumination basis.

S1. WORKFLOW

Fig. S1 shows a workflow that sums up the different steps of the UMI procedure

performed in the accompanying paper.

FIG. S1. Flowchart of the UMI process.
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S2. CORRELATION MATRIX OF WAVE DISTORTIONS

In the accompanying paper, an iterative phase reversal (IPR) process and a

multi-scale analysis of D have been implemented to retrieve the T−matrix. In

the following, we provide a theoretical framework to justify this process, outline

its limits and conditions of success. For sake of lighter notation, the dependence

over rp will be omitted in the following.

At each step of the aberration correction process, a local correlation matrix ofD

is computed. The UMI process assumes the convergence of the correlation matrix

C towards its ensemble average ⟨C⟩, the so-called covariance matrix [16, 18]. In

fact, this convergence is never fully realized and C should be decomposed as the

sum of this covariance matrix ⟨C⟩ and a perturbation term δC:

C = ⟨C⟩+ δC. (S1)

The intensity of the perturbation term scales as the inverse of the number NW =

(w2
ρwz)/(δρ

2
0δz0) of resolution cells in each sub-region [15, 16, 18]:

〈
|δC(o,o′, rp)|2

〉
=

〈
|C(o,o′, rp)|2

〉
NW

(S2)

This perturbation term can thus be reduced by increasing the size of the spatial

window W , but at the cost of a resolution loss. In the following, we express

theoretically the bias induced by this perturbation term on the estimation of T-

matrices. In particular, we will show how it scales with NW in each spatial window

W and the focusing quality. To that aim, we will consider the output correlation

matrix Coo but a similar demonstration can be performed at input.
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S3. COVARIANCE MATRIX: SYNTHESIS OF A VIRTUAL GUIDE

STAR

Under assumptions of local isoplanicity in each spatial window and random

reflectivity, the covariance matrix can be expressed as follows [16]:

⟨Coo⟩ = Tout ×CH ×T†
out, (S3)

or in terms of matrix coefficients,

⟨C(o,o′)⟩ = Tout(o)T
∗
out(o

′)

∫
dρ|Hin(ρ)|2e

−i2π
(o−o′).ρ

λzp︸ ︷︷ ︸
=CH(o,o′)

. (S4)

CH is a reference correlation matrix associated with a virtual reflector whose

scattering distribution corresponds to the input focal spot intensity |Hin(ρ)|2. This

scatterer plays the role of virtual guide star in the UMI process (Fig. 1j of the

accompanying paper).

S4. COMPARISON BETWEEN ITERATIVE TIME REVERSAL AND

PHASE REVERSAL

In previous works on 2D UMI [16, 18], the T-matrix was estimated by perform-

ing a singular value decomposition of Dro:

Dro = V†
in ×Σ×Uout, (S5)

or, equivalently, the eigenvalue decomposition of Coo:

Coo = U†
out ×Σ2 ×Uout. (S6)
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Σ is a diagonal matrix containing the singular values σi in descending order: σ1 >

σ2 > .. > σN . Uout and Vin are unitary matrices that contain the orthonormal set

of output and input eigenvectors, U
(i)
out = [U

(i)
out(o)] and V

(i)
in = [V

(i)
in (r)].

The reason of this eigenvalue decomposition can be intuitively understood by

considering the asymptotic case of a point-like input focusing beam. In this ideal

case, Eq.S6 becomes C(o,o′) = Tout(o)T
∗
out(o

′). Dro is then of rank 1 – the first

output singular vector U
(1)
out yields the aberration transmittance Tout.

However, in reality, the input PSF Hin is of course far from being point-like.

The spectrum of Dro displays a continuum of singular values [Fig. S2d]. The

effective rank of Coo is shown to scale as the number of resolution cells covered by

the input PSF Hin [18]:

Mδ ∼ (δρin/δρ0)
2. (S7)

with δρin the spatial extension of the input PSF. The amplitude of the correspond-

ing eigenvectors U
(i)
out depends on the exact shape of the virtual guide star, that is

to say on aberrations induced by the incident wave-front.

Figures S2e and f show the modulus of two first eigenvectors, U
(1)
out and U

(2)
out.

They clearly show a complementary feature. While U
(1)
out is associated with the fat

layer, U
(2)
out maps onto the muscle part of the pork chop [Fig. S2h]. This result can

be understood by the discontinuity of the speed-of-sound between the muscle and

fat parts of the pork chop that breaks the spatial invariance and isoplanicity. As a

consequence, the SVD process tends to converge onto eigenstates associated with

the most isoplanatic components of Dro.

This property is not satisfactory in the present case since each eigenvector only

covers a part of the probe aperture. In other words, the phases of U(1) [Fig. S2i]

and U(2) [Fig. S2j] are only satisfying estimators of T over some parts of the probe.

Therefore, they cannot independently lead to an aberration compensation over the

full numerical aperture.

To circumvent that problem, one can take advantage of the analogy with iter-
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FIG. S2. Iterative Time Reversal vs. Iterative Phase Reversal. (a) The first

step of ITR and IPR corresponds to the following fictitious experiment: Insonifying the

medium by an arbitrary wave-front (here a plane wave) using an array of transducers and

recording the reflected wave-front with the same probe. (b) The ITR process consists in

time-reversing this wave-front in post-processing and sending it back into the medium,

recording again the reflected wave-front, and so on. (c) The IPR process is similar but

normalizes the amplitude of the time-reversed wavefront at every iteration. (d) Singular

value distribution of Dro for a box W of dimension w = (wx, wy, wz) = (2,−5, 2)mm

centered around point rp = (3,−5.5, 23) mm. (e,f) Modulus of the two first eigenvectors

U
(i)
out. (g) Modulus of the vector Coo × T̂out. (h) Delimitation of muscle and fat over

the probe surface. (i,j,k) Phase of U
(1)
out, U

(2)
out and T̂out.

ative time reversal (ITR). The eigenvector U
(1)
out can actually be seen as the result

36



of the following fictitious experiment that consists in illuminating the virtual scat-

terer by an arbitrary wave-front and recording the reflected wave-field [Fig. S2a].

This wave-field is time-reversed and back-emitted towards the virtual scatterer

[Fig. S2b]. This process can then be iterated many times and each step can be

mathematically written as:

σW(n+1) = Coo ×W(n) (S8)

with W(n), the wave-front at iteration n of the ITR process and σ, the scatterer

reflectivity. ITR is shown to converge towards a time-reversal invariant that is

nothing other than the first eigenvector, U
(1)
out = lim

n→+∞
W(n).

To optimize the estimation of aberrations over the full probe aperture, our idea

is to modify the ITR process by still re-emitting a phase-reversed wave-field but

with a constant amplitude on each probe element [Fig. S2c]. In practice, this

operation is performed using the following IPR algorithm:

T̂
(n+1)
out = exp

[
i arg

{
Coo × T̂

(n)
out

}]
(S9)

where T̂
(n)
out is the estimator of Tout at the n

th iteration of IPR. T̂
(0)
out is an arbitrary

wave-front that initiates IPR (typically a plane wave). T̂out = limn→∞ T̂
(n)
out is

the result of this IPR process. Unlike ITR, IPR equally addresses each angular

component of the imaging process to reach a diffraction-limited resolution. Fig. S2g

illustrates this fact by showing the modulus of Coo × T̂out. Compared with U
(1)
out

[Fig. S2e] and U
(2)
out [Fig. S2f], it clearly shows that the phase-reversed invariant

T̂out simultaneously addresses each angular component of the aberrated wave-

field. T̂out is thus a much better estimator of the T−matrix [Fig. S2k] than the

aberration phase laws extracted by the SVD process [Fig. S2i and j].

When applied to the whole field-of-view, the IPR algorithm is mathematically

equivalent to the CLASS algorithm developed in optical microscopy [19]. However,
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the IPR algorithm is much more efficient for a local compensation of aberrations.

For IPR, the angular resolution δθ of the aberration phase law is only limited by

the angular pitch of plane wave illumination basis or the pitch p of the transducer

array in the canonical basis: δθI ∼ λ/p. With CLASS, the resolution δθC of the

aberration law is governed by the size of the spatial windowW on which the focused

reflection matrix is truncated: δθC ∼ z/wρ. It can be particularly detrimental

when high-order aberrations and small isopalanatic patches are targeted.

S5. BIAS ON THE T−MATRIX ESTIMATION

In practice, however, the T−matrix estimator is still impacted by the blurring

of the synthesized guide star and the presence of diffusive background and/or

noise. Therefore the whole process shall be iterated at input and output in order

to gradually refine the guide star and reduce the bias on our T−matrix estimator.

Moreover, the spatial window W over which the C−matrix is computed shall be

gradually decreased in order to address the high-order aberration components, the

latter one being associated with smaller isoplanatic patches.

To understand the parameters controlling the bias δT̂out between T̂out and Tout,

one can express T̂out as follows:

T̂out = exp
(
jarg

{
Coo × T̂out

})
=

Coo × T̂out

||Coo × T̂out||
(S10)

By injecting Eq. S1 into the last expression, T̂out can be expressed, at first order,

as the sum of its expected value Tout and a perturbation term δT̂out:

T̂out =
⟨Coo⟩ ×Tout

||⟨Coo⟩ ×Tout||︸ ︷︷ ︸
=Tout

+
δCoo ×Tout

||⟨Coo⟩ ×Tout||︸ ︷︷ ︸
≃δT̂out

. (S11)
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The bias intensity can be expressed as follows:

||δT̂out||2 =
T†

out × δC†
oo × δCoo ×Tout

T†
out × ⟨Coo⟩† × ⟨Coo⟩ ×Tout

(S12)

Using Eq. S2, the numerator of the last equation can be expressed as follows:

T†
out × δC†

oo × δCoo ×Tout = N2
u⟨|δC(o,o′)|2⟩ = N2

u |C(o,o)|2/NW . (S13)

with Nu the number of transducers.

The denominator of Eq. S12 can be expressed as follows:

T†
out × ⟨Coo⟩† × ⟨Coo⟩ ×Tout = M2

∣∣∣∣∣∑
o

Tin

o
⊛ Tin(o)

∣∣∣∣∣
2

(S14)

The bias intensity is thus given by:

||δT̂out(o)||2 =

∣∣∣Tin

o
⊛ Tin(0)

∣∣∣2
NW

∣∣∣∑o Tin

o
⊛ Tin(o)

∣∣∣2 (S15)

In the last expression, we recognize the ratio between the coherent intensity (energy

deposited exactly at focus) and the mean incoherent input intensity. This quantity

is known as the coherence factor in ultrasound imaging [8, 15]:

Cin =

∑
o Tin

o
⊛ Tin(o)

Tin

o
⊛ Tin(0)

=
|Hin(ρ = 0)|2

∆ρ−2
max

∫
dρ|Hin(ρ)|2

(S16)

In the speckle regime and for a 2D probe, the coherence factor C ranges from 0,

for strong aberrations and/or multiple scattering background, to 4/9 in the ideal
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case [55]. The bias intensity can thus be rewritten as:

||δT̂out||2 =
1

C2
inNW

(S17)

This last expression justifies the multi-scale analysis proposed in the accompanying

paper. A gradual increase of the focusing quality, quantified by C, is required to

address smaller spatial windows that scale as NW . Following this scheme, the bias

made of our T−matrix estimator can be minimized.

S6. MULTI-SCALE ANALYSIS OF WAVE DISTORTIONS

Figure S3 demonstrates the benefit of a multi-scale analysis of wave distortions

with a gradual decrease of spatial windows W at each step of the UMI process

[Fig. S3a]. To that aim, this aberration correction scheme is compared with a direct

estimation of the T−matrix over the smallest patchesW [Fig. S3d]. The estimated

transmission matrices T̂ differ in both cases (see comparison between Figs. S3b

and e) especially in the fat layer. The RPSFs obtained after phase conjugation of

T̂ demonstrate the benefit of the multi-scale analysis [Fig. S3c] compared with a

direct local investigation of wave distortions [Fig. S3f]. The fat area is actually

the most aberrated in the field-of-view (see initial RPSFs displayed by Fig. 1b of

the accompanying paper). The initial coherence factor C is thus much smaller in

this area, which induces a strong bias on T when wave distortions are investigated

over a reduced isoplanatic patch. On the contrary, a multi-scale analysis enables

a gradual enhancement of this coherence factor in this area and finally leads to an

unbiased estimation of T.

Figure S4 shows the performance of UMI by comparing the RPSFs before and

after aberration compensation. In the most aberrated area (top right of the field-

of-view), the resolution is improved by almost a factor two while the contrast is

increased by 4.2 dB.

40



FIG. S3. Multi-scale versus direct local analysis of wave distortions (pork chop

experiment, z = 29 mm). (a) Representation of the spatial windows used at each step of

UMI (see Tab. III of the accompanying paper). (b) Aberration phase laws (T̂) extracted

by a multi-scale analysis. (c) RPSFs after multi-scale aberration compensation. (d)

Representation of the spatial windows used for a direct local compensation of wave

distortions. (e) Aberration phase laws (T̂) extracted by a local analysis of D. (f)

RPSFs after local aberration compensation.

Figure S5 shows the evolution of the RPSF during the UMI process applied to

the head phantom experiment. A gradual enhancement of the focusing process is

observed at each step of UMI which enables an estimation of the T−matrix at a

higher resolution.
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FIG. S4. Contrast & resolution enhancement in the pork chop experiment. (a)

Maps of local RPSF (z = 29 mm). (b) Local RPSF on the top right of the field-of-view.

(c) Map of RPSF after the UMI process. (d) Corrected RPSF on the top right of the field-

of-view. The resolution is evaluated at −3dB (see Methods in the accompanying paper).

The contrast C is the ratio between confocal peak and the multiple scattering/noise

background (see also Methods).

S7. CONFOCAL FILTER

Figure S6 shows the effect of the confocal filter on the T−matrix estimation.

The output aberration phase laws contained in T̂out look much more noisy in

absence of an adaptive confocal filter (see the comparison between Figs. S6a and

b). As shown by the scalar product between input and output aberration phase

laws [Fig. S6c], this “noise” comes from the imperfect convergence of T̂ towards T.

Without any confocal filter, multiple scattering drastically reduces the coherence

factor and induces a strong bias on estimation of T (see Supplementary Section

S5). On the contrary, the adaptive confocal filter enables an enhancement of this

coherence factor C to ensure a satisfactory estimation of T. The high degree of

correlation between T̂in and T̂out proves this last assertion [Fig. S6d]. The effect of
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FIG. S5. Multi-scale compensation of wave distortions in the head phantom.

(a) Successive patches used to perform a multi-scale analysis of wave distortions. (b)

Radial profile of the RPSF amplitude at each step for three different depths (z = 20,z =

32 and z = 60mm). (c) Resolution as a function of depth at each step of correction (from

red to green). At large depth (red dashed line), initial resolution can not be extracted

as the incoherent background is larger than 1/2 as shown in panel (b3).

the confocal filter is also particularly obvious when looking at the RPSF obtained

at the end of the UMI process. While a strong incoherent background subsists on

the lateral parts of the field-of-view when no confocal filter is applied [Fig. S6e],

an homogeneous focusing quality is obtained with the confocal filter [Fig. S6f].

S8. ILLUMINATION BASIS

Figure S7 shows the impact of the illumination sequence on UMI. If the input

illumination basis is complete [Fig. S7a], the RSPF exibits the expected diffraction-

limited resolution [Fig. S7f]. The side lobes along the y-axis are due to the probe

geometry made of four blocks of transducers separated by a distance of 0.5 mm

(three inactive rows of transducers along the y-axis).

When the number of illuminating plane waves is reduced [Figs. S7b-e], spa-
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FIG. S6. Confocal filter in transcranial imaging. (a,b) Output aberration phase

laws (T̂out) extracted without and with a confocal filter. (c,d) Normalised scalar prod-

ucts N−1
u T̂†

inT̂out without and with a confocal filter, respectively. (e,f) RPSFs obtained

with UMI without and with a confocal filter. (g) Box plot corresponding to the panels

(c,d). Experimental data shown in this figure correspond to the head phantom experi-

ment described in the accompanying paper (z = 50mm).

tial aliasing occurs on corresponding RPSFs [Figs. S7g-j]. The maximal extension

∆ρmax of the RPSF has to be fixed to avoid the spatial aliasing induced by the in-

completeness of the plane wave illumination basis; ∆ρmax is inversely proportional

to the angular step δθ of the plane wave illumination basis:

∆ρmax ∼ λc/(2δθ) (S18)

with λc the central wavelength and δθ the angular pitch used for the illumination

sequence. Thus, to avoid spatial aliasing, the coefficients R(ρin,ρout, z) associated
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FIG. S7. Illumination sequence. (a-e) Representation of different plane wave illu-

mination sequence in the k−space. (f -j) Aliasing effect exhibited by the RPSFs due

to incompleteness of illumination sequence displayed in panels a-e, respectively. These

RPSFs have been measured in a specke area of a tissue-mimicking phantom.

with a transverse distance |ρout−ρin| larger than the superior bound ∆ρmax should

be filtered via a confocal filter.

Equation S18 implies the necessity of recording a high-dimension R−matrix for

transcranial imaging as aberrations are particularly important in that configura-

tion (see Fig. 5 of the accompanying paper). The number of independent incident

waves should scale as the number of resolution cells over which the RPSF spreads.
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Matrix Imaging General

Symbol Meaning Symbol Meaning

R Reflection matrix I Confocal image

RPSF Reflection Point Spread Function H Point spread function

T Transmission matrix r = (x, y, z) Focal point

D Distortion matrix ρ = (x, y) Transverse coordinate

C Correlation matrix λc Wavelength at the central frequency

δC Perturbation term of C fs Sampling frequency

T̂ Estimator of T c0 Speed-of-sound hypothesis

||δT̂||2 bias on T̂ u Transducer position

ε Estimator of the bias intensity ||δT̂||2 δρ0 Transverse ideal resolution

i Input basis coordinate t Time

o Output basis coordoinate γ Medium reflectivity

σ Virtual reflector reflectivity θ Plane wave basis

lc Confocal filter size k Fourier basis

ITR Iterative Time Reversal fc Central frequency

IPR Iterative Phase Reversal β Background on RPSF intensity

rp Midpoint of spatial window W θmax Directivity of transducers

∆ρ Distance input/output δθ Plane wave sampling

Mathematical operators δu Transducer pitch

× Matrix product ∆u = (∆ux,∆uy) Probe dimension

o Hadamard product C Coherence factor

⊛ Convolution product fc Central frequency

† Transpose conjugate of a matrix A−3dB Area above 1/2 on RPSF amplitude

ˆ Estimator of a physical quantity δρ−3dB RPSF resolution

<> Ensemble average C RPSF contrast

SVD Singular Value Decomposition αS Single scattering rate
T Matrix transpose αM Multiple scattering rate

U(n) nth singular vector of a matrix αN Electronic noise rate

W Spatial average window function

NW Number of resolution cells in W
w = (wx, wy, wz) Dimension of W

τ Time-delay

A Apodization term of synthetic aperture

Nu Number of transducers

TABLE S5. List of symbols
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