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We study the local properties of positive solutions of the equation -∆u = u p -m |∇u| q in a punctured domain Ω \ {0} of R N or in a exterior domain R N \ B r0 in the range min{p, q} > 1 and m > 0. We prove a series of a priori estimates depending p and q, and of the sign of q -2p p+1 and q -p. Using various techniques we obtain removability results for singular sets and we give a precise description of behaviour of solutions near an isolated singularity or at infinity in R N .

Introduction

The aim of this paper is to study the local properties of solutions of L m,p,q u := -∆u + m|∇u| q -|u| p-1 u = 0 in Ω, (1.1) where m is a nonnegative real number, p, q ≥ 1 and Ω is either a punctured domain if we are interested in isolated singularities, or an exterior domain if we study the asymptotic behaviour of solutions. This equation has been introduced by Chipot and Weissler [START_REF] Chipot | On the elliptic problem ∆u -|∇u| q + λu p = 0, Nonlinear diffusion equations and their equilibrium states[END_REF] in connection with the associated evolution problem

∂ t u + L m,p,q u = 0 in Ω × (0, T ). (1.2) 
Its study has been developed in the radial case in [START_REF] Chipot | Some blowup results for a nonlinear parabolic equation with a gradient term[END_REF] and completed in [START_REF] Voirol | Étude de quelques équations elliptiques fortement non-linéaires[END_REF]. A very deep research of radial ground states has been carried on by Serrin and Zou in [START_REF] Serrin | Existence and non-existence results for ground states of quasilinear elliptic equations[END_REF] and [START_REF] Serrin | Classification of positive solutions of quasilinear elliptic equations[END_REF]. Several non-existence results of positive, not necessarily radial, supersolutions in an exterior domain have been obtained in [START_REF] Alarcón | Nonexistence of positive supersolutions to some nonlinear elliptic problems[END_REF] and [START_REF] Alarcón | Nonexistence results for elliptic equations with gradient terms[END_REF].

The interest of the operator L m,p,q lies in the presence of two reaction terms which are acting in opposite directions and are of a different nature. The following exponents play a key role in the study of asymptotics of solutions of (1.1), α = 2 p -1 , β = 2 -q q -1 , γ = q p -q if q = p and σ = (p + 1)q -2p.

(1.3)

When q = 2p p+1 the equation (1.1) is invariant under the transformation T defined by

T [u](x) = α u( x). (1.4) 
This critical value of q plays a fundamental role in the analysis of the solutions. If 1 < q < 2p p+1 , the source term is dominant for large values of u e.g. near a singular point, and the behaviour of singular solutions is modelled by the Lane-Emden equation -∆u -u p = 0.

(1.5) If 2p p+1 < q < p, the diffusion is negligeable and the behaviour of singular solutions is modelled by an eikonal equation u p -m|∇u| q = 0.

(1.6)

Notice that in this equation the sign of p -q is fundamental and makes the distinction between the existence or the non-existence of singular solutions. Another equation which plays a crucial role is the Riccatti equation -∆u + m|∇u| q = 0.

(1.7)

For this equation the value of q with respect to 2 is the key element. Finally, if q = 2p p+1 no reaction term is dominant and the value of m becomes fundamental as the following result proved in [START_REF] Bidaut-Véron | A priori estimates for elliptic equations with reaction terms involving the function and its gradient[END_REF] shows it:

Theorem A Let N ≥ 2, 1 < p < N +2
N -2 and q = 2p p+1 . Then there exist two positive constants c = c ( N, p) and m 0 such that for any real number m verifying |m| ≤ m 0 , any positive solution u of (1.1) in Ω satisfies

u(x) + |∇u(x)| 2 p+1 ≤ c (dist (x, ∂Ω)) -α
for all x ∈ Ω.

(1.8)

As a consequence there exists no positive solution (called ground state) in R N .

An a priori estimate holds by a perturbation method for positive solutions, for all values of m whenever 1 < p < N +2 N -2 , and the following result is obtained in [START_REF] Polacik | Singularity and decay estimates in superlinear problems via Liouville-type theorems[END_REF].

Theorem B Let N ≥ 2, 1 < p < N +2
N -2 and 1 < q < 2p p+1 . For any m ∈ R there exists a positive constant c = c(N, p, q, m) such that any positive solution u of (1.1) in Ω satisfies u(x) + |∇u(x)| 2 p+1 ≤ c 1 + (dist (x, ∂Ω)) -α for all x ∈ Ω.

(1.9)

Up to now, these two results were the only ones known concerning a priori estimates for general nonnegative solutions when m > 0. In the present article we prove new upper estimates for positive solutions u of (1.1) either in a punctured domain B r 0 \ {0} or in an exterior domain Ω = B c r 0 . The next statements extend previous results concerning positive supersolutions proved in [START_REF] Alarcón | Nonexistence of positive supersolutions to some nonlinear elliptic problems[END_REF]. If u is a positive continuous function defined either in B r 0 \ {0} or in B c r 0 , we set

µ(r) = inf |x|=r u(x), (1.10) 
and we prove the following estimates valid in the case 1 < q < p.

Theorem 1.1 Let N ≥ 1, p, q > 1 and m > 0.

1-Let u be a C 2 positive supersolution of (1.1) in B c r 0 , then 1-(i) If 2p p+1 < q < p there exists C = C(N, p, q, u) > 0 such that µ(r) ≤ Cr -α for all r ≥ 2r 0 .

(1.11)

1-(ii) If 1 < q ≤ 2p p+1 there exists C = C(N, p, q, u) > 0 such that µ(r) ≤ Cr -γ for all r ≥ 2r 0 .

(1.12)

1-(iii) If 1 < p ≤ q and µ(|x|) is bounded, then (1.12) is still satisfied. 2-Let u be a positive supersolution of (1.1) in B r 0 \ {0}, then 2-(i) If 2p p+1 ≤ q < p there exists C = C(N, p, q, u) > 0 such that µ(r) ≤ Cr -γ for all 0 < r ≤ r 0 2 .

(1.13)

2-(ii) If 1 < q < 2p p+1 there exists C = C(N, p, q, u) > 0 such that µ(r) ≤ Cr -α for all 0 < r ≤ r 0 2 .

(1.14)

All the estimates on µ(r) will play a crucial role for the study of radial solutions of (1.1) see [START_REF] Bidaut-Véron | Radial singular and regular solutions of the Chipot-Weissler equation[END_REF].

In the case q ≥ p, the upper estimates are no more satisfied. The next result points out a dichotomy for estimates of positive supersolutions in an exterior domain when q ≥ p. Theorem 1.2 Let N ≥ 2 and 1 < p ≤ q. If u is any positive supersolution of (1.1) in B c r 0 , then for any ρ > r 0 there exists c ρ , C ρ , C ρ , C ρ > 0 such that, for |x| ≥ ρ, (i) either

u(x) ≥    X m |x| q q-p 1 - Cρ |x| + if q > p c ρ e m -1 m |x| if q = p, (1.15) 
where X m = (m|γ| q ) 1 p-q , (ii) or p > N N -2 and

(a)

µ(|x|) ≤ C ρ [x] -α (b) u(x) ≥ C ρ [x] 2-N .
(1.16)

When q > p, the function U (x) = X m |x| |γ| is a C 1 subsolution of (1.1) in R N , a fact which shows the optimality of the lower estimate.

In the case q > p we prove a series of new estimates of solutions, by a delicate combination of Bernstein, Keller-Osserman methods and Moser iterative scheme. The general Bernstein estimates will play a fundamental role in the description of the behaviour of positive solutions near an isolated singularity or at infinity in R N . Theorem 1.3 Let q > p > 1, m > 0 and u be a nonnegative solution of (1.1) in a domain G ⊂ R N . Then 1-If G = B r 0 \ {0}, there exists c > 0 depending on N, p, q and u L ∞ (Br 0 \B 3r 0 4

) such that |∇u(x)| ≤ c|x|

-1 q-1 for all 0 < |x| ≤ r 0 2 .
(1.17)

2-If G = B c r 0 , there exists c > 0 depending on N , p, q and u L ∞ (B 2r 0 \Br 0 ) such that |∇u(x)| ≤ c|x| p q-p for all |x| ≥ 2r 0 .

(1.18)

Note that in B r 0 \ {0} the dominant effect comes from the Riccatti equation, while it comes from the eikonal equation in B c r 0 . However it concerns solutions which may blow-up at infinity. When q < p, the eikonal equation plays a fundamental role in the proof of the next result which uses all the previous techniques involved in the proof of Theorem 1.3 above combined with the doubling Lemma method of [START_REF] Hu | Remarks on the blow-up estimate for solutions of the heat equation with a nonlinear boundary condition[END_REF]. then there exists a positive constant C = C(N, p, q, u, r 0 , m) such that u(x) ≤ C|x| -q p-q and |∇u(x)| ≤ C|x|

-p p-q (1.20)
for all x ∈ B c 2r 0 . 2-Let 2p p+1 < q < p. Any u positive solution u of (1.1) in B r 0 \ {0} satisfies (1.20) for all x ∈ B r 0 2 \ {0} for some constant C = C(N, p, q, u, r 0 , m) > 0.

In a forthcoming article [START_REF] Bidaut-Véron | Radial singular and regular solutions of the Chipot-Weissler equation[END_REF] we prove the existence of infinitely many different radial solutions satisfying the decay estimate (1.20) by a combination of ODE and dynamical systems approach.

The following result is the counterpart at infinity Theorems A and B.

Theorem 1.5 Let 1 < p < N +2 N -2 , m > 0 and u be a positive solution of (1.1) in B c r 0 (r 0 > 0) satisfying lim |x|→∞ u(x) = 0.

(1.21) Assume (i) either 2p p+1 < q ≤ 2 and m is arbitrary, (ii) or q = 2p p+1 and m ≤ 0 for some 0 > 0 depending on N and p. Then there exists a positive constant C = C(N, p, q, u, r 0 , m) such that u(x) ≤ C|x| Thanks to the estimates of Theorem 1.3 we can prove removability results for singularities of positive solutions of (1.1).

Theorem 1.6 Let N ≥ 2, Ω ⊂ R N be a bounded smooth domain containing 0. If 1 ≤ p < q and q ≥ N N -1 , any nonnegative solution u ∈ C 2 (Ω \ {0}) of (1.1) in Ω \ {0} can be extended as a weak solution of the same equation in Ω and it belongs to L ∞ loc (Ω) ∩ W 1,q loc (Ω) ∩ H 1 loc (Ω).

This result admits extensions for removability of more general sets included in a domain Ω ⊂ R N in two completely different directions. Using a geometric construction as in [START_REF] Véron | Singularités éliminables d'équations elliptiques non linéaires[END_REF] we prove: Theorem 1.7 Let N ≥ 3, Ω ⊂ R N be a bounded domain, Σ ⊂ Ω a k-dimensional compact complete submanifold (0 ≤ k ≤ N -2), m > 0 and 1 ≤ p < q such that q ≥ codim(Σ) codim(Σ)-1 . Then any positive solution of (1.1) in Ω \ Σ is locally bounded and can be extended as a weak solution in Ω.

Using capacitary estimates we extend to the case q > 2 a previous removability result due to Brezis and Nirenberg [START_REF] Brezis | Removable singularities for nonlinear elliptic equations[END_REF] obtained in the case q = 2.

Theorem 1.8 Assume p > 0, q ≥ max{2, p} and m > 0. If K is a compact subset of Ω such that cap 1,q (K) = 0, then any positive solution of (1.1) in Ω \ K is locally bounded and can be extended as a weak solution in Ω.

The last Section is devoted to the study of asymptotics of positive solutions, either near a singularity or at infinity. In the case q < 2p p+1 the dominant equation for the study of isolated singularity is the Lane-Emden one, and the techniques involved combine energy methods and Fourier analysis. The description of the singular behaviour depends upon the value of p with respect to N N -2 and N +2 N -2 , and we obtain the complete classification of the possible behaviours of a positive solution near an isolated singularity:

Theorem 1.9 Let N ≥ 2, m > 0, 1 < p < N +2
N -2 and 1 < q < 2p p+1 . If u is a nonnegative solution of (1.1) in B r 0 \ {0}, then either u is a classical solution of (1.1) in B r 0 , or 1-when N ≥ 3 and 1 < p < N N -2 (resp. N = 2 and p > 1) there exists k > 0 such that |x| N -2 u(x) (resp. -u(x)/ ln |x|) converges to k when x → 0. Furthermore u satisfies

-∆u + m|∇u| q -u p = c N kδ 0 in D (B r 0 ); (1.23) 2-when N ≥ 3 and p = N N -2 , |x| N -2 (-ln |x|) N -2 2 u(x) converges to N -2 √ 2 N -2 when x → 0; 3-when N ≥ 3 and N N -2 < p < N +2 N -2 , |x| α u(x) converges to ω 0 := α (N -2)p-N p-1 1 p-1 when x → 0.
In the case q > p the dominant equation near an isolated singularity is the Riccatti equation; the removability result of Theorem 1.6 is no more valid if 1 < q < N N -1 , and we mainly use a scaling method.

Theorem 1.10 Let N ≥ 3, 1 < p < q < N N -1 , m > 0 and u be a nonnegative solution of (1.1) in B r 0 \ {0}. Then either u is a classical solution, (i) or |x| β u(x) converges to ξ m := 1 β (N -1)q-N m(q-1) 1 q-1 when x → 0, (ii) or there exists k > 0 such that |x| N -2 u(|x|, .) → c N k in L 1 (S N -1 ) when x → 0 and u satisfies -∆u + m|∇u| q -u p = kδ 0 in D (B r 0 ).
The asymptotic behaviour of solutions in an exterior domain exhibits also the two types of underlying dominant equations: either the Lane-Emden equation, or the eikonal equation. This depends on the value of q with respect to 2p p+1 , see Theorem 5.5, Theorem 5.6. The techniques are similar to the ones used in the analysis of isolated singularities but the range of values of q are reversed; a phenomenon which is easily understandable when considering the scaling transformations leaving the underlying equations invariant.

Estimates on supersolutions 2.1 Some preliminary results

In the sequel we denote by c or C a generic positive constant the value of which may vary from one occurence to another. When needed we introduce the constants c i , C i with i = 1, 2, ..., in particular within the development of the proof of a statement. If it is important we precise the parameters (N , p, q, m etc.) on which the various constants depend. In the next result we precise a bootstrap argument some variants of which have already been used in [START_REF] Bidaut-Véron | Singularities in elliptic systems with absorption terms[END_REF], [START_REF] Bidaut-Véron | Keller-Osserman estimates for some quasilinear elliptic systems[END_REF] and [START_REF] Bidaut-Véron | Liouville results and asymptotics of solutions of a quasilinear elliptic equation with supercritical source gradient term[END_REF].

Lemma 2.1 Let d, h ∈ R with 0 < d < 1 and y, Φ be two positive continuous functions defined on (0, r 0 ] (resp. [r 0 , ∞)). We assume that there exist C * , M > 0 and 0 ∈ (0, 1 8 ] such that for any ∈ (0, 0 ] and 0 < r ≤ r 0 2 (resp. any r ≥ 2r 0 ),

y(r) ≤ C * -h Φ(r)y d (r(1 -)) and max r 2 ≤τ ≤r Φ(τ ) ≤ M Φ(r), (2.1 
)

respectively y(r) ≤ C * -h Φ(r)y d (r(1 + )) and max r≤τ ≤ 3r 2 Φ(τ ) ≤ M Φ(r). (2.2)
Then there exists

c 1 = c 1 (C * , M, d, h, 0 ) > 0 such that y(r) ≤ c 1 (Φ(r)) 1 1-d , (2.3) in (0, r 0 2 ] (resp. in [2r 0 , ∞)).
Proof. The result is obvious when h ≤ 0, so we can suppose h > 0. Consider the sequence

n = 2 -n 0 , n ≥ 0.
Then the series n is convergent and

S = ∞ j=1 j ≤ 1 4 .
For n ≥ 1 we denote

P n = (1 -1 )...(1 -j )...(1 -n ) and Q n = (1 + 1 )...(1 + j )...(1 + n ).
Clearly the sequence {P n } is decreasing while the sequence {Q n } is increasing. Furthermore

Q n ≤ ∞ j=1 (1 + j ) := Q ≤ e S ≤ e 1 4 < 3 2 . 
Concerning P n , we have 1n > 1 1+2 n . Therefore

P n ≥ n j=1 (1 + 2 j ) -1 ≥ e -2S ≥ e -1 2 ,
which implies 1 2 < P n < 1. Then , for any r ∈ (0, r 0 2 ] (resp. r ≥ 2r 0 ) we have that

rP n ∈ [ r 2 , r] (resp. rQ n ∈ [r, 3r 2 ]
). First we assume (2.1) and use P n . Then

y(rP n-1 ) ≤ c 2 -h n Φ(rP n-1 )y d (rP n ).
In particular

           y(r) ≤ c 2 -h 1 Φ(r)y d (rP 1 )) y d (rP 1 ) ≤ c d 2 -hd 2 Φ d (rP 1 )y d 2 (rP 2 )) . . . y d n-1 (rP n-1 ) ≤ c d n-1 2 -hd n-1 n Φ d n-1 (rP n-1 )y d n (rP n )).
By the assumption on Φ, this implies

y(r) ≤ c 1+d+d 2 + +d n-1 2 -h 1 -hd 2 . . . -hd n-1 n Φ(r)φ d (rP 1 ) . . . Φ d n-1 (rP n-1 )y d n (rP n ),
for any n ≥ 2. Hence for any n ≥ 2,

y(r) ≤ (c 2 -h 0 ) 1+d+•••+d n-1 2 h(1+2d+...+nd n-1 ) Φ(r)Φ d (rP 1 )...Φ d n-1 (rP n-1 )y d n (rP n ) ≤ (c 2 -h 0 ) 1+d+•••+d n-1 2 h(1+2d+...+nd n-1 ) M d+d 2 +...d n-1 Φ 1+d+d 2 +...d n-1 (r). (2.4)
Letting n → ∞ and using the fact that P n → P > 0 and

y d n (rP n ) → 1 as n → ∞, since 0 < d < 1, we obtain y(r) ≤ (c 2 -h 0 ) 1 1-d 2 h (1-d) 2 M d 1-d (Φ(r)) 1 1-d .
(2.5)

If we assume (2.2), the proof of (2.3) in [2r 0 , ∞) is similar.

Next we recall and extend the monotony property dealing with supersolutions of Riccatti equation proved in [START_REF] Alarcón | Nonexistence of positive supersolutions to some nonlinear elliptic problems[END_REF].

Lemma 2.2 Let N ≥ 2, q > 1 and u ∈ C 2 (B r 0 \ {0}) (resp. u ∈ C 2 (B c r 0 )) be a positive function such that -∆u + |∇u| q ≥ 0 in B r 0 \ {0} (resp. in B c r 0 ).
Then the function µ defined by (1.10) is nonincreasing on (0, r 0 ] (resp. there exists

r 1 ≥ r 0 such that µ is monotone on [r 1 , ∞)).
Proof. The case of an exterior domain is treated in [1, Lemma 5]. In the first case, then for any r 1 ∈ (0, r 0 ) and δ > 0 there exists r d ∈ (0, r 1 ] such that for any 0 < r ≤ r δ such that µ(r

1 ) ≤ δr 2-N if N ≥ 3 or µ(r 1 ) ≤ δ| ln r| if N = 2. Let h(x) = µ(r 1 ) -δ|x| 2-N if N ≥ 3 (resp. h(x) = µ(r 1 ) -δ|| ln |x|| if N = 2). Then u ≥ h on ∂B r 1 ∪ ∂B r .
By the standard comparison principle [START_REF] Alarcón | Nonexistence of positive supersolutions to some nonlinear elliptic problems[END_REF], [START_REF] Nguyen | Isolated singularities of positive solutions of elliptic equations with a weighted gradient term[END_REF], u ≥ h in B r 1 \ B r . If we let r → 0 we derive u ≥ h in B r 1 \ {0}, and by letting δ → 0 we finally obtain u ≥ µ(r 1 ) in B r 1 \ {0}. In particular this inequality implies µ(r) ≥ µ(r 1 ) if 0 < r ≤ r 1 .

Estimates of the spherical minimum. Proof of Theorem 1.1

In this Section we consider non-necessarily radial supersolutions u of (1.1), either in a punctured or in an exterior domain. We give estimates of the minimum of u on spheres with center 0 µ(r) = min |y|=r u(y).

We first consider supersolutions of the exterior problem

-∆u + m|∇u| q -f (u) = 0 in B c r 0 , (2.6) 
where m > 0 and f satisfies (F) f is a continuous nondecreasing function on R + verifying f (0) = 0 and f > 0 on (0, ∞).

We recall the following result of [START_REF] Alarcón | Nonexistence of positive supersolutions to some nonlinear elliptic problems[END_REF]Theorems 1,[START_REF] Aviles | On isolated singularities in some nonlinear partial differential equations[END_REF][START_REF] Aviles | Local behavior of solutions of some elliptic equations[END_REF].

Theorem C (1) If lim inf r→0 r -p f (r) > 0 and 1 < p ≤ N N -2 , q > 2p p+1 , there exists no positive supersolution u ∈ C 2 (B c r 0 ) of (2.6) such that lim inf |x|→∞ u(x) < ∞.
(

) If lim inf r→∞ r -p f (r) > 0 and 1 < q < p, there exists no positive supersolution u ∈ C 2 (B c r 0 ) of (2.6) such that lim |x|→∞ u(x) = ∞. 2 
Here we combine a technique developed in [START_REF] Alarcón | Nonexistence of positive supersolutions to some nonlinear elliptic problems[END_REF]Lemma 6] in order to prove Theorem 1.1 with the bootstrap argument of Lemma 2.1.

Lemma 2.3 Let m > 0, N ≥ 1, q > 1 and f satisfying (F). Let u ∈ C 2 (B c r 0 ) (resp u ∈ C 2 (B r 0 \ {0})) be any positive function satisfying -∆u + m|∇u| q ≥ f (u) in B c r 0 (resp. in B r 0 \ {0})) .
(2.7)

1-Then for any R ≥ 2r 0 (resp. for any 0 < R ≤ r 0 2 ) and for any 0

< ≤ 1 2 , min (1-)R≤r≤(1+ )R f (u(r)) ≤ c 1 µ(R) 2 R 2 + µ q (R) q R q , (2.8) 
where

c 1 = c 1 (N, q, m) > 0.
2-As a consequence, any positive

C 2 supersolution u of (2.6) in B c r 0 satisfies (i) either lim |x|→∞ u(x) = ∞, (ii) or lim inf |x|→∞ u(x) = 0. Proof. 1-Let R ≥ 2r 0 (resp. 0 < R ≤ r 0
2 ) and ∈ (0, 1 2 ]. Let φ be a smooth nonnegative radial cut-off function defined on R + , vanishing on [0, 1

-] ∪ [1 + , ∞) with value 1 on [1 -2 , 1 + 2 ], such that |φ | ≤ C χ I and |φ | ≤ C 2 χ I where χ I = [1 -, 1 -2 ] ∪ [1 + 2 , 1 + ]. We set v(x) = u(x) -µ(R)φ ( |x| R ). There exists x R, such that |x R, | = R and u(x R, ) = µ(R), thus v(x R, ) = 0. If u is defined in B c r 0 , we have that v = u > 0 in (B R(1-) ∩ B c r 0 ) ∪ B c R(1+ ) . If u is defined in B r 0 \ {0}, then v = u > 0 in (B R(1-) \ {0}) ∪ B r 0 ∩ B c R(1+ ) . Then v achieves its nonpositive minimum at some x R, ∈ B R(1+ ) ∩ B c R(1-) , where ∇v( x R, ) = 0 and ∆v( x R, ) ≥ 0. Since v( x R, ) ≤ 0 there holds µ(| x R, |) ≤ µ(R) and f (u( x R, )) = -∆v( x R, ) + m|∇v( x R, )| q = -µ(R)∆ φ ( |x| R ) + mµ q (R) ∇ φ ( |x| R ) q ≤ c 1 µ(R) 2 R 2 + µ q (R) q R q ,
where c 1 = c 1 (N, p, q, m) > 0. Because u( x R, ) ≥ min

(1-)R≤r≤(1+ )R µ(r), (2.8) follows from the monotonicity of f . 2-From Lemma 2.2, µ(r) is monotone for large r. If µ is bounded, then min R 2 ≤r≤2R f (µ(r)) ≤ c 3 1 R 2 + 1 R q .
Hence lim Now we assume that f (u) = u p , p > 1, and prove Theorem 1.1. We recall that the exponents α, β and γ have been defined at (1.3).

R→∞ min f (µ( R 2 )), f (µ(2R)) = 0 which implies that µ(R) → 0 when R → ∞,
Proof of Theorem 1.1. Let p, q > 1 and u be a positive supersolution of (1.1) in B c r 0 (resp.

B r 0 \ {0}). Let R ≥ 2r 0 (resp. 0 < R ≤ R 2 ). From Lemma 2.3, we have that: if µ is nonincreasing on [R -, R + ], then µ(R) ≥ u( x R, ) ≥ µ(| x R, |) ≥ µ(R(1 + )), then µ p (R(1 + )) ≤ c 4 µ(R) 2 R 2 + µ q (R) q R q ≤ c 4 -h µ(R) R 2 + µ q (R) R q with h = max{2, q}, (2.9) if µ is nondecreasing on [R -, R + ], then µ(R) ≥ u( x R, ) ≥ µ(| x R, |) ≥ µ(R(1 -)), then µ p (R(1 -)) ≤ c 4 -h µ(R) R 2 + µ q (R) R q .
(2.10)

Note that for any c, R > 0 there holds

µ q (R) R q ≤ c µ(R) R 2 ⇐⇒ µ(R) ≤ c -1 q-1 R -β , (2.11) 
since β = 2-q q-1 .

1-The exterior problem. From Lemma 2.2, µ(r) is monotone for R ≥ r 1 ≥ r 0 large enough, so we assume R > r 1 , and either µ is decreasing or it increases to ∞. In our cases, we claim that µ is decreasing. It holds by assumption if q ≥ p. When q < p and if µ were increasing, then

µ((1 -)R) ≤ c 5 -h p R -h p µ q p (R),
and by Lemma 2.1,

µ(R) ≤ c 6 r -h p-q for R ≥ r 2 , contradiction.
Hence µ is decreasing and tends to 0 at infinity by (2.10). Furthermore (2.10) implies

µ p ((1 + )R) ≤ C -h R -hµ(R) and thus µ(( 1 
+ )R) ≤ C -h p R -h p µ 1 p (R) (2.

12)

with h = min{2, q}. Applying again Lemma 2.1 we deduce

µ(R) ≤ c 7 R -h p-1 .
(2.13)

Note that if q ≥ 2, h p-1 = α and we obtain (1.11). If 1 < q < 2, then h = q and h p-1 = q p-1 and we encounter two possibilities:

(a) if q p-1 ≥ β, then (1.13 ) implies µ(R) ≤ c 8 R -β ,
and by the equivalence in (2.11 )

µ q (R) R q ≤ c 1-q 8 µ(R) R 2 , which in turn implies µ p (R(1 + )) ≤ 2c 8 -2 µ(R) R 2
. By Lemma 2.1 we obtain (1.11).

This holds in particular when 1 < p ≤ q < 2 which completes the proof of 1-(iii). (b) Let A 0 = q p-1 < β. For any 0 < A ≤ β and µ(R) ≤ c 9 R -A we have that

µ p (2R) ≤ c 10 R -(A+2) + R -(A+1)q = c 10 R -(A+1)q 1 + R A(q-1)-(2-q) ≤ 2c 10 R -(A+1)q , so µ(2R) ≤ c 11 R - (A+1)q p
. We define a sequence {A n } by A 0 = q p-1 and

A n = (A n-1 + 1)q p for n ≥ 1. (2.14)
Then, as long as A n-1 ≤ β, we have

µ(2 n R) ≤ C n R -An .
Furthermore A 1 -A 0 = q(q-1) p(p-1) and A n -A n-1 = q(A n-1 -A n-2 ) p . Therefore the sequence {A n } is increasing.

Proof of 1-(i).

For q > 2p p+1 we have β < α < γ. If A n-1 < β for any n ≥ 1 the sequence {A n } converges to γ, contradiction. Therefore there exists n 0 ≥ 1 such that A n 0 +1 ≥ β, so we conclude as in case (a).

Proof of 1-(ii). If 1 < q ≤ 2p p+1 , then γ < α < β, and A 0 < γ ≤ β since q > 1. So the sequence {A n } is still increasing and it converges to γ. This implies that for any θ > 0, there exists

C θ such that µ(R) ≤ C θ R -γ+θ for R ≥ 2r 0 .
Set g(r) = r -γ , then

g p (R(1 + )) ≤ R -pγ ≤ -q g q (R) R q , since γ = q p-q . Recalling that µ p (R(1 + )) ≤ c 4 -q µ(R) R 2 + µ q (R) R q ,
and putting φ(R) = max{g(R), µ(R)} we obtain

φ(R(1 + )) ≤ c 12 -q µ(R) R 2 + µ q (R) R q + g q (R) r q ≤ c 13 -q φ(R) R 2 + φ q (R) R q . Because φ(R) ≥ g(R) ≥ R -β as γ ≤ β, we have φ(R) R 2 ≤ φ q (R) R q , hence φ(R(1 + )) ≤ c 14 -q p R -q p φ q p (R).
It follows from Lemma 2.1-(2.2)-(2.3) that φ(R) ≤ c 15 R -γ . This is (1.12).

2-

The problem in B r 0 \ {0}. By Lemma 2.2, µ is nonincreasing and (2.9) holds. If µ is bounded, then it admits a positive limit at 0 and the two estimates in 2 hold. Hence we assume that µ(R) → ∞ as R → 0. From (2.10)

µ p (R(1 -)) ≤ c 4 -h µ(R) R 2 + µ q (R) R q ,
where, we recall it, h = max{2, q}. We notice that if (2.11) holds, then

µ(( 1 
+ )R) ≤ c 16 R -2 p µ 1 p (R) =⇒ µ(R) ≤ C R -α ,
which is the desired estimate in the case 1 < q ≤ 2p p+1 . We notice also that the fact that µ(R) → ∞ as R → 0 implies

µ p (R(1 + )) ≤ c 4 -h 1 R 2 + 1 R q µ q (R) ≤ 2c 4 -h R -h µ q (R), which in turn yields µ(R) ≤ c 17 R -h p-q for 0 < R ≤ r 1 < r 0 . (2.15)
Hence, if h = q, we obtain (1.13).

Proof of 2-(i).

Let 2 > q ≥ 2p p+1 . Then β ≤ α ≤ γ, then we start with µ(R) ≤ R -A 0 with A 0 = 2 p-q > γ. For any A > 0 larger than γ and such that µ(R) ≤ c 18 R -A , there holds

µ p ( R 2 ) ≤ c 19 R -(1+A)q , as above since A > β. The sequence {A n } still defined by (2.14) satisfies µ R 2 n ≤ c n R -An as long as A n-1 > β. We have A 1 -A 0 = q-(p-q)A 0 p < 0. Since A n+1 -A n = q p (A n -A n-1
), the sequence {A n } is decreasing and it converges to γ. We adapt the technique developed in 1-(ii): for any θ > 0 there exists C θ > 0 such that

µ(R) ≤ C θ R -γ-θ for 0 < R ≤ r 0 2 .
Defining g(R) = R -γ and φ(R) = max{g(R), µ(R)}, then we obtain

φ p (R(1 -)) ≤ c 20 -h µ(R) R 2 + µ q (R) R q + g q (R) R q ≤ c 21 -h φ(R) R 2 + φ q (R) R q Because γ > β we have R -β ≤ R -γ ≤ φ(R) for 0 < R ≤ 1 which implies that φ(R) R 2 ≤ φ q (R) R q and φ p (R(1 -)) ≤ 2c 21 -h φ q (R) R q .
It follows by Lemma 2.1 that φ(R) ≤ c 22 R -γ and (1.13).

Proof of 2-(ii). If 1 < q < 2p p+1 . Then γ < β < α. We proceed as in case 2-(i) with the same sequence {A n }. We notice that A 0 = 2 p-q > α > γ since q > 1. Then A 1 < A 0 and as above {A n } is nonincreasing and converges to γ. As in the proof of 1-(i) there exists an integer n 0 such that A n 0 ≤ β which in turn implies (2.11), and finally (1.14) holds.

Remark. From Theorem 1.1 we recover easily the result of Theorem C- [START_REF] Alarcón | Nonexistence results for elliptic equations with gradient terms[END_REF]. Indeed, if f (r) > cr p for c > 0 and r ≥ r 1 and 1 < q < p, any positive supersolution u of (2.6) in B c r 1 such that lim |x|→∞ u(x) = ∞ is a supersolution of -∆u + m|∇u| q = cu p in this domain. Then lim r→∞ µ(r) = 0 from the upper estimates of Theorem 1.1, contradiction.

Construction of radial minorant solutions in the exterior problems

The next result extends the construction of [START_REF] Bidaut-Véron | Local and global behaviour of solutions of quasilinear elliptic equations of Emden-Fowler type[END_REF]Theorem 1.3] and brings precisions to [2, Lemma 4] that we recall below. Assume N ≥ 2, q > 1 and let f : (0, ∞) → R be positive, nondecreasing and continuous. Suppose there exists a positive supersolution u of problem (2.16) below. Then there exists a positive radial supersolution v of (2.16). In addition, if u does not blow up at infinity, then v is bounded, while if u blows up at infinity, v is bounded from below.

Our result is the following. Theorem 2.4 Let q > 1, m > 0 and f : R + → R + be a Lipschitz continuous function satisfying assumption (F). Suppose that there exists a positive C 2 (B c r 0 ) function u satisfying

-∆u + m|∇u| q -f (u) ≥ 0 in B c r 0 , (2.16) 
then there exists a positive radial function v ∈ C 2 (B c r 0 ), asymptotically monotone and smaller than u satisfying -∆v

+ m|∇v| q -f (v) = 0 in B c r 0 , (2.17) 
such that:

1-v(r 0 ) = min |x|=r 0 u(x) and lim r→∞ v(r) = ∞, when lim |x|→∞ u(x) = ∞. 2-0 < v(r 0 ) = a ≤ min |x|=r 0 u(x)
and lim r→∞ v(r) = 0, when lim inf |x|→∞ u(x) = 0, under the additional condition when q > 2, a < Θ := q(N -1) -N m(q -1)

1 q-1 r 2-N 0 τ r 0 1 t 1-N 1 -t N -q(N -1) -1 q-1 dt. (2.18)
Proof. The proof is based upon an iterative process reminiscent of a method used in [START_REF] Bidaut-Véron | Local and global behaviour of solutions of quasilinear elliptic equations of Emden-Fowler type[END_REF]. However the technicalities are much more involved and developed in the Appendix. By Lemma 2.3 a positive supersolution u in an exterior domain either tends to ∞ at ∞ or satisfies lim inf

|x|→∞ u(x) = 0.
Moreover the asymptotic monotonicity statement follows from Lemma 2.2.

For τ > r 0 we set b0 = inf 

-∆v k,τ + m|∇v k,τ | q = f (v k-1,τ ) in B τ ∩ B c r 0 v k,τ = b in ∂B τ v k,τ = a in ∂B r 0 . (2.19) If 1 < q ≤ 2,
v 1,τ ≤ v 2,τ ≤ u.
Note that this function is unique by the maximum principle. We introduce there the spherical coordinates (r,

θ) ∈ R + × S N -1 in R N . Let v2,τ (r) be the spherical average of v 2,τ (r, .) on S N -1 . Since f (v 1,τ ) is radial, by convexity, v2,τ satisfies -∆v 2,τ + m|∇v 2,τ | q ≤ f (v 1,τ ) in B τ ∩ B c r 0 v2,τ = b in ∂B τ v2,τ = a in ∂B r 0 .
By the maximum principle we have v2,τ (r) ≤ v 2,τ (r, θ) for any r and any θ, which implies that v2,τ = v 2,τ , hence v 2,τ is spherically symmetric. Iterating this process, we construct the increasing the sequence {v k,τ } k∈N of positive spherically symmetric solutions of (2.19) dominated by

u in B τ ∩ B c r 0 . For k ≥ 2 the function v k,τ cannot have a local minimum, hence if a ≤ b it is monotone increasing (as a function of |x|) in a neighbourhood of r 0 and if a > b, it is decreasing for |x| close to τ . Since the sequence {v k,τ } k∈N is increasing and v k,τ ≤ u, it converges to some radial positive function v ∞,τ := v τ by Ascoli theorem and v τ is a positive C 2 solution of -∆v τ + m|∇v τ | q = f (v τ ) in B τ ∩ B c r 0 v τ = b in ∂B τ v τ = a in ∂B r 0 . (2.20) If a ≥ b then necessarily v k,τ ≤ v k,τ in B τ ∩ B c r 0 otherwise v k,τ would have a local minimum in B τ ∩ B r 0 . Assertion 1. Here µ(r) → ∞ when r → ∞. Let r 1 > r 0 such that b τ > min |x|=r 0 u(x) for all τ ≥ r 1 .
Let v ∞,τ := v τ be the solution of (2.20) with a = min |x|=r 0 u(x) and b = β r 1 and τ > τ * if q > 2, which is not a restriction since we aim to let τ → ∞. Since v τ cannot have any local minimum in

B τ ∩ B c r 0 , we have a ≤ v τ (|x|) ≤ u(x) for all x ∈ B τ ∩ B c r 0 . By standard ODE techniques, for any T > r 1 , v τ is bounded in C 3 (B T ∩ B c
r 0 ) uniformly with respect to τ ≥ T + 1. Hence there exists a sequence {τ n } tending to infinity and a radially symmetric positive function v ∈ C 2 B c r 0 such that

-∆v + m|∇v| q = f (v) in B c r 0 v = a in ∂B r 0 . (2.21) Furthermore a ≤ v ≤ u. By Lemma 2.3 v(r) → ∞ when r → ∞ which proves 1.
Assertion 2. We solve (2.20) with b = 0 and a ≤ min |x|=r 0 u(x) with the additional condition a < Θ if q > 2 and we set v ∞,τ := v τ . Then 0 ≤ v τ ≤ a and since the function v τ cannot have a local minimum in (r 0 , τ ), we have also that

v τ (|x|) ≤ v τ (|x|) ≤ u(x) for all τ > τ and x ∈ B τ ∩ B c r 0 .
Letting τ → ∞ we obtain that v τ converges in the local C 2 (B c r 0 )-topology to some v ∈ C 2 (B c r 0 ), which satisfies (2.21) and v(|x|) ≤ u(x) for x ∈ B c r 0 . Therefore v(r) → 0 as r → ∞ and we complete the proof of 2.

Corollary 2.5 Let N ≥ 2, m > 0, q > N N -1 and f be as in Theorem 2.4. Then any positive

C 2 (B c r 0 ) function u verifying (2.16) satisfies u(x) ≥ c|x| 2-N for all x ∈ B c r 0 (2.22)
for some c > 0.

Proof. For r 0 < τ , we introduced the function v 1,τ which satisfies

-v 1,τ - N -1 r v 1,τ + m|v 1,τ | q = 0 in (r 0 , τ ) v 1,τ (r 0 ) = a v 1,τ (τ ) = 0 with 0 < a ≤ min |x|=r 0 u(x). We have seen therein that v 1,τ (|x|) ≤ u(x) for x ∈ B τ \ B ρ . If q > 2 we choose a ≤ Θ. When τ → ∞, v 1,τ ↑ v 1,∞ and v := v 1,∞ (|x|) ≤ u(x) in B c r 0 . Since v ≤ 0, we have v + v p = m|v | q - N -1 r v ≥ 0. then E(r) := v (r) 2 2 + v(r) p+1 p + 1 ≤ 0.
Therefore E(r) admits a limit when r → ∞. Because v(r) → 0 ≥ 0, this implies that v (r) admits also a limit ≤ 0 when r → ∞ and this, limit is necessarily 0 since v is bounded. Set w(r) = -r N -1 v , then w ≥ 0 and w + mr (1-q)(n-1) w q ≥ 0.

Integrating this equation as it is done in Appendix, we obtain

(w 1-q ) (r) + m(q -1) q(N -1) -N m(r (N -q(N -1) ) ≤ 0,
which implies by integration

w 1-q (r) -w 1-q (r 1 ) ≤ m(q -1) q(N -1) -N r N -q(N -1) 1 -r N -q(N -1) . Therefore w(r) ≥ c 1 > 0 and v (r) ≥ -c 1 r 1-N and thus v(r) ≥ c 1 N -2 r 2-N . Because u(x) ≥ v(r) for |x| = r ≥ r 0 this yields (2.22).
Remark. As a consequence we recover Theorem C-(1) in the case q > N N -1 . Indeed, suppose that f (s) ≥ Cs p near s = 0 and 1 < p ≤ N N -2 . Then if there exists a positive supersolution of (2.6) which is bounded at infinity, then lim inf |x|→∞ u(x) = 0 by Lemma 2.3. Since u is a supersolution of

-∆u + m|∇u| q = Cu q in B c r 1
for some r 1 > r 0 , by Theorem 1.1 and Corollary 2.5 there exists a positive radially symmetric solution v of the above equation such that

u(x) ≥ v(|x|) ≥ c|x| 2-N for all x ∈ B c r 1 .
By Theorem 1.1 we have also µ(|x|

) ≤ C|x| -α in B c r 1 . This is a contradiction when p < N N -2 . When p = N N -2 we set v(r) = r 2-N X(t) with t = ln r. Then c 1 ≤ X(t) ≤ c 2 for t ≥ t 1 = ln r 1 . Hence X is a bounded solution of X -(N -2)X + CX p -me (N -q(N -1))t |(N -2)X -X | q = 0,
and it is straightforward to verify that the ω-limit set of the trajectory

T + [v] = t≥t 1 {X(t)} is reduced to {0}, which is still a contradiction.
2.4 Dichotomy result when q ≥ p. Proof of Theorem 1.2

In this Section we suppose q ≥ p > 1. Then there exist supersolutions of (1.1) such that lim

|x|→∞ u(x) = ∞, e.g. u(x) = e λ|x| for any λ > 0 if q > p or λ large enough if q = p.
Proof of Theorem 1.2. Our proof is based upon Theorem 2.4 with f (u) = u p . Let u be a positive supersolution of (1.1). From Lemma 2.3, either u(x) → ∞ or µ(|x|) → 0 when |x| → ∞.

(i) Suppose that lim |x|→∞ u(x) = ∞. By Theorem 2.4 there exists a radial and increasing function

v below u in B c r 1 satisfying -v - N -1 r v + mv q = v p in (r 1 , ∞) v(r 1 ) = min |x|=r 1 u(x) lim r→∞ v(r) = ∞.
(2.23)

For > 0 we set F (r) = v p (r) -(1 + )m(v (r)) q .
This type of function introduced by [START_REF] Serrin | Existence and non-existence results for ground states of quasilinear elliptic equations[END_REF] is fundamental in the study of radial soutions. Then

F (r) = pv v p-1 -q(1 + )mv v q-1 = pv v p-1 + q(1 + )mv q-1 N -1 r v + v p -mv q .
If there exists some r 2 > r 1 such that F (r 2 ) = 0, then

F (r 2 ) = pv v p-1 + q(1 + )mv q-1 N -1 r 2 v + mv q > 0.
This implies that F (r) > 0 for all r > r 2 . As a consequence, F (r) has a constant sign for r large enough.

When N ≥ 3 we can take = 0. If

F 0 ≤ 0 for r > r 2 > r 0 , then v p (r) ≤ m(v (r)) q which implies v(r) ≥ (m|γ| q ) 1 p-q (r -r 2 ) |γ| for all r > r 2 , (2.24) 
in the case q > p and

v(r) ≥ v(r 2 )e m -1 m (r-r 2 ) for all r > r 2 , (2.25) 
when q = p. This yields (1.15). If F 0 ≥ 0 for r > r 2 > r 0 , then ∆v ≤ 0 if |x| > r 2 , and the function r

N -1 v r) is nonincreasing on [r 2 , ∞), thus v (r) ≤ cr 1-N . If N ≥ 3, it implies that v(r)
remains bounded, which is a contradiction.

When N = 2 we take = 1. If F 1 (r 3 ) = 0 for some r 3 , then either F 1 is positive for r ≥ r 3 , which implies

-2v = 1 r v + v p + F 2 (r) ≥ v p for r ≥ r 2 .
In such a case, we deduce by multiplying by v ≥ 0 that the function r

→ v 2 + v p+1 p+1 (r) is nonincreasing, hence bounded, contradiction. If this does not hold, then F 1 is nonpositive for r ≥ r 3 , which yields v(r) ≥    (2m|γ| q ) 1 p-q (r -r 2 ) -γ if r ≥ r 2 when N ≥ 3 v(r 2 )e (2m) -1 2m (r-r 2 ) if r ≥ r 2 when N = 2.
(2.26) (2.26). Therefore F 0 (r) ≤ 0 which again implies that (1.15) holds. 3 Estimates on solutions

If we have now F 0 (r) > 0, then v (r) ≤ cr -1 which implies v(r) ≤ c ln r + d, which is not compatible with

General estimates

A major tool for proving a priori estimates either near an isolated singularity or at infinity is the Keller-Osserman combined with Bernstein method applied to the function z = |∇u| 2 . We recall the variant of Keller-Osserman a priori estimate that we proved in [START_REF] Bidaut-Véron | A priori estimates for elliptic equations with reaction terms involving the function and its gradient[END_REF].

Lemma 3.1 Let q > 1 d ≥ 0 and P and Q two continuous functions defined in B ρ (a) such that inf{P (y) : y ∈ B ρ (a)} > 0 and sup{Q(y) : y ∈ B ρ (a)} < ∞. If z is a positive C 1 function defined in B ρ (a)
and such that

-∆z + P (y)z q ≤ Q(y) + d |∇z| 2 z in B ρ (a), (3.1) 
then there exists a positive constant

C = C(N, q, d) > 0 such that z(x) ≤ C      1 ρ 2 1 inf Bρ(a) P   1 q-1 + sup Bρ(a) Q P 1 q    for all x ∈ B ρ 2 (a). (3.2)
In the next statement we show how an upper estimate on u(x) by a power of |x| implies a precise estimate on |∇u(x)|. Theorem 3.2 Let p, q > 1, m > 0 and r 0 > 0.

1-If u is a positive solution of (1.1) in B r 0 \ {0} where it satisfies

|x| λ u(x) ≤ c (3.3)
for some constant c > 0 and some exponent λ > 0, then there exists

c 1 = c 1 (N, p, q, λ, c) > 0 such that |∇u(x)| ≤ c 1 |x| -1 q-1 + |x| -λp q + |x| - λ(p-1) 2(q-1) for all x ∈ B r 0 2 \ {0}. (3.4)
Furthermore, when 1 < q ≤ 2, one has an improvement of (3.4) under the form

|∇u(x)| ≤ c 1 |x| -(λ+1) for all x ∈ B r 0 2 \ {0}, (3.5) 
for any λ > 0 such that λ ≤ min{α, β}. If u satisfies (3.3) in B c r 0 for some c > 0 and λ > 0, then there exists c 1 := c 1 (N, p, q, λ, c) > 0 such that

2-If u is a positive solution of (1.1) in B c r 0 , then lim sup |x|→∞ u(x) < ∞ =⇒ lim sup |x|→∞ |∇u(x)| < ∞, (3.6) 
|∇u(x)| ≤ c 1 |x| -1 q-1 + |x| -λp q + |x| - λ(p-1) 2(q-1) for all x ∈ B c 2r 0 . (3.8) 
Furthermore, if 1 < q ≤ 2, one has an improvement of (3.8) under the form

|∇u(x)| ≤ c 2 |x| -(λ+1) for all x ∈ B c 2r 0 , (3.9) 
for c 2 := c 2 (N, p, q, λ, c) > 0 for any λ ≥ max{α, β}.

Proof. We use Bernstein method, setting z(x) = |∇u(x)| 2 and Weitzenböck's formula

- 1 2 ∆z = |D 2 u| 2 + ∇(∆u), ∇u .
Using the inequality |D 2 u| 2 ≥ 1 N (∆u) 2 and the equation satisfied by u we obtain

- 1 2 ∆z + 1 N (mz q 2 -u p ) 2 + ∇(mz q 2 -u p ), ∇u ≤ 0.
Developing this inequality yields

- 1 2 ∆z + m 2 N z q + 1 N u 2p ≤ 2m N u p z q 2 + pu p-1 z + mq 2 z q 2 -1 ∇z, ∇u . Now for > 0 z q 2 -1 ∇z, ∇u = z q 2 -1 2 ∇z √ z , ∇u ≤ z q 2 |∇z| √ z ≤ z q + 1 |∇z| 2 z , u p-1 z ≤ z q + -1 q-1 u q(p-1)
q-1 , and

u p z q 2 ≤ z q + 1 u 2p .
We choose small enough and get

-∆z + m 2 N z q ≤ c 3 |∇z| 2 z + c 4 u 2p + c 5 u q(p-1) q-1 (3.10)
where c i = c i (N, p, q, m) > 0, i = 3, 4, 5. We Apply Lemma 3.

1 in B 2ρ (a), with B 2ρ (a) ⊂ B r 0 \{0} in case 1, or B 2ρ (a) ⊂ B c
r 0 in case 2, we obtain for some positive constant c 6 := c 6 (N, q, m) > 0, sup

Bρ(a) z(y) ≤ c 6 ρ -2 q-1 + sup B 2ρ (a) u 2p + u q(p-1) q-1 1 q , (3.11) 
which is equivalent to sup

Bρ(a) |∇u(z)| ≤ c 7 ρ -1 q-1 + sup B 2ρ (a) u p q + u p-1 2(q-1) , (3.12) 
where c 7 = c 7 (N, q, m, c 6 ) > 0.

1-Next we assume that u(x) ≤ c 8 |x| -λ in B r 0 \ {0}. Then (3.12) yields exactely (3.4) with c 9 = c 9 (N, m, p, q, λ, c 8 ) > 0.

In some cases we can obtain a different estimate which requires 1 < q ≤ 2. For k > 0 we set

u k (x) = k λ u(kx).
Then u k satisfies

-∆u k + mk λ+2-q(λ+1) |∇u k | q -k λ+2-λp u p k = 0 in B k -1 r 0 . (3.13)
The function u k is uniformly bounded in the spherical shell Γ r 0 8 , 2r 0 3

:= x : r 0 8 ≤ |x| ≤ r 0 2 . If we assume that λ + 2 -q(λ + 1) ≥ 0 ⇐⇒ λ ≤ 2-q q-1 = β and λ + 2 -λp ≥ 0 ⇐⇒ λ ≤ 2 p-1 = α, (3.14) 
then we deduce from standard regularity estimates [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF] (this is why we need 1 < q ≤ 2) that

|∇u k (x)| ≤ c 9 ⇐⇒ |∇u(kx)| ≤ c 9 k -λ-1 for all x ∈ Γ r 0 4 , r 0 2 . (3.15)
This implies in particular

|∇u(x)| ≤ c 9 |x| -λ-1 for all x ∈ B r 0 4 \ {0}. (3.16)
Now, this estimate is better than the one in (3.4) if and only if λ ≤ min{α, β} and

λ + 1 ≤ max 1 q -1 , λp q , λ(p -1) 2(q -1) , (3.17) 
that means λ ≤ β, or (q < p and λ > γ) , or q < p+1 2 and λ > 2(q-1) p+1-2q .

(3.18)

Hence it is an improvement for any λ ≤ min{α, β}.

2-We apply (3.12) for |a| > ρ/2 with ρ = |a| 4 , then we get

|∇u(a)| ≤ c 10 |a| -1 q-1 + max |x|≥ |a| 2 u p q + u p-1 2(q-1)
.

Clearly (3.6) and (3.7) follow. Next we assume 1 < q ≤ 2 and u(x) ≤ c 10 |x| -λ in B c r 0 , then (3.12) yields precisely (3.8). Again the function u k defined previously is uniformly bounded in the spherical shell Γ 3r 0 2 ,4r 0 . In order to apply the standard elliptic equations regularity results to (3.13), we need again 1 < q ≤ 2 and

λ + 2 -q(λ + 1) ≤ 0 ⇐⇒ λ ≥ β and λ + 2 -λp ≤ 0 ⇐⇒ λ ≥ α, (3.19) 
This yields

|∇u(x)| ≤ c 11 |x| -λ-1 for all x ∈ B c 2r 0 . (3.20)
This estimate is an improvement of (3.8) if λ ≥ max{α, β} and

λ + 1 ≥ min 1 q -1 , λp q , λ(p -1) 2(q -1) . (3.21) 
That means λ ≤ β, or (q ≥ p and λ ≤ γ) , or q < p+1 2 and λ(p+1-2q)

2(q-1) < 1 . (3.22)
Hence it is an improvement for any λ ≥ max{α, β}.

3.2 Upper estimates on solutions when q > p. Proof of Theorem 1.3

Proof of Theorem 1.3. We apply Lemma 3.1.

1-Proof of 1-By change of scale we can assume that r 0 = 1. For 0 < θ < 1 4 we set Ω θ = B 1-θ \B θ . For 0 < < 1 2 , we have by (3.12) max

Ω θ |∇u| ≤ C   1 θ 1 q-1 + max Ω θ 1+ u p q + u p-1 2(q-1)   , (3.23) 
and u p-1 2(q-1) ≤ u p q + 1 since q > 2p p+1 . Hence max

Ω θ |∇u| ≤ c 1   1 θ 1 q-1 + 1 + max Ω θ 1+ u p q   .
Next we estimate u in function of its gradient: for any

x ∈ Ω θ 1+ , u(x) ≤ u (1 -θ) x |x| + x -(1 -θ) x |x| max y∈[x,(1-θ) x |x| ] |∇u(y)|.
Therefore max

Ω θ 1+ u ≤ max B 1 \B 1 2 u + max Ω θ 1+ |∇u| ≤ c 1 + max Ω θ 1+ |∇u|. Since 1 ≤ 1 θ , we deduce max Ω θ |∇u| ≤ c 2   (θ ) -1 q-1 +   max Ω θ 1+ |∇u|   p q    .
We set

A(θ) = θ 1 q-1 max Ω θ |∇u|, then A( θ 1+ ) ≤ A((1 -2 )θ) since , θ ≤ 1 2 , hence A(θ) ≤ c 4 -1 q-1 + θ q-p q(q-1) (1 + ) p q(q-1) A((1 -2 )θ) p q
.

If we set F (θ) = 1 + A(θ) there holds

F (θ) ≤ c 5 -1 q-1 F p q (A(1 -2 )θ), (3.24) 
and we can apply the bootstrap result of Lemma 2.1 with Φ = 1, h = 1 q-1 and d = p q . We deduce that F is bounded, hence max

Ω θ |∇u| ≤ c 6 θ -1 q-1 . (3.25)
Thus (1.17) holds.

2-Proof of 2-By change of scale we assume again that r 0 = 1. For T > 3 and 0

< < 1/2 we set Ω T = B T \ B 1 and Ω T, = B T (1-) \ B 1+ .
By (3.12), for any ρ > 0 and x ∈ B c 1+2ρ we have

|∇u(x)| ≤ c 7 ρ -1 q-1 + 1 + max B 2ρ (x) u p q
.

Taking ρ = 2 we get max

Ω T, |∇u| ≤ c 8 -1 q-1 + 1 + max Ω T u p q . (3.26)
It is clear that max

Ω T u ≤ max |x|=1 u(x) + T max Ω T |∇u|.
reporting this inequality in (3.26) we obtain that for any T ≥ 1,

1 + max Ω T, |∇u| ≤ c 9 -1 q-1 T p q 1 + max Ω T |∇u| p q . (3.27)
We set F (T ) = 1 + max Ω T |∇u|, then

F (T (1 -)) ≤ 1 + max 1≤|x|≤1+ |∇u(x)| + max Ω T, |∇u| ≤ 1 + max 1≤|x|≤2 |∇u(x)| + + max Ω T, |∇u| ≤ c 10 -1 q-1 + 1 + max |x|=1 u(x) + T max Ω T |∇u| p q ≤ c 11 -1 q-1 T p q F p q (T ). (3.28) 
Using again the bootstrap result of Lemma 2.1 with d = p q we obtain in particular for T ≥ 2, 

F (T ) ≤ c 12 T p q 1 1- p q = c 12 T p q-p . ( 3 
Ω T u ≤ max |x|=1 u(x) + T max Ω T |∇u| ≤ c 14 T 1+ p q-p = c 14 T q q-p , which leads to u(x) ≤ c 14 |x| q q-p for all x ∈ B c 3 . (3.31)
By integrating the inequalities (1.17) and (1.18), we obtain:

Corollary 3.
3 Under the assumption of Theorem 1.3, any nonnegative solution u of (1.1) in G satisfies: Up to modifying θ it is possible to reduce that domain of dependance of the constant with respect to u to sup

1-If G = B r 0 \ {0}. 1-(i) If q > max{2, p}, then u can be extended as a continuous function in B r 0 . 1-(ii) If q = 2 > p, then there exists a constant C 1 > 0 such that u(x) ≤ C 1 (| ln |x|| + 1) for all x ∈ B r 0 2 \ {0}. (3.32) 1-(iii) If 2 > q > p, then there exists a constant C 2 > 0 such that u(x) ≤ C 2 |x| -2-q q-1 for all x ∈ B r 0 2 \ {0}. (3.33) 2-If G = B c r 0 , then there exists a constant C 3 > 0 such that u(x) ≤ C 3 |x| q q-p for all x ∈ B c 2r 0 \ {0}. ( 3 
Br 0 \B (1-τ )r 0 u(y) (resp. sup B (1+τ )r 0 \Br 0 u(y)
for any τ ∈ (0, 1).

3.3 Upper estimates on solutions when q < p. Proof of Theorem 1.4

We recall the doubling Lemma [START_REF] Hu | Remarks on the blow-up estimate for solutions of the heat equation with a nonlinear boundary condition[END_REF], [START_REF] Polacik | Singularity and decay estimates in superlinear problems via Liouville-type theorems[END_REF].

Theorem 3.4 Let (X, d) be a complete metric space, D a non-empty subset of X, Σ a closed subset of X containing D and Γ = Σ \ D. Let M : D → (0, ∞) be a map which is bounded on compact subsets of D and let k > 0 be a real number. If y ∈ D is such that

M (y)dist (y, Γ) > 2k,
there exists x ∈ D such that

M (x)dist (x, Γ) > 2k M (x) ≥ M (y) M (z) ≤ 2M (x) for all z ∈ D s.t. d(z, x) ≤ k M (x) .
Proof of Theorem 1.4-(1). We can assume that r 0 = 1. By (3.7), (1.21) 

implies that |∇u(x)| → 0 when |x| → ∞. The estimate (1.20) is equivalent to u(x) ≤ C|x| -q p-q = C|x| -γ (3.35)
for all x ∈ B c 2 by (3.4), hence also to

u 1 γ x) + |∇u(x)| 1 γ+1 ≤ C |x| (3.36)
for all x ∈ B c 2 . We set M (x) := u 

|x n |M (x n ) > (|x n | -2)M (x n ) > 2n M (x n ) ≥ M (y n ) M (z) ≤ 2M (x n ) for all z ∈ B c 2 s.t. |z -x n | ≤ n M (x n ) . (3.38)
Clearly {x n } is unbounded since M is bounded on bounded subsets of B c 2 and, up to extracting a sequence, we can assume that |x n | → ∞ as n → ∞. We now define

u n (x) = u(z(x, n)) M γ (x n ) with z(x, n) = x n + x M (x n ) . (3.39) Then u n (0) = 1 and u n (x) ≤ 2 γ for x ∈ B n . (3.40)
The main point is to use estimate (3.12) in order to obtain a uniform estimate on ∇u n . We apply this inequality in

B n M (xn) (x n ) which yields max z∈B n 2M (xn) (xn) |∇u(z)| ≤ c 7   n 2M (x n ) -1 q-1 + max z∈B n M (xn) (xn) u p q (z) + u p-1 2(q-1) (z)   (3.41) Furthermore z ∈ B n M (xn) (x n ) is equivalent to |x| ≤ n. Similarly, z ∈ B n 2M (xn) (x n ) is equivalent to |x| ≤ n 2 .
If u n is defined by (3.39), then

∇u n (x) = ∇u(z(x, n)) M γ+1 (x n ) .
We have that p q < p-1 2(q-1) since q < 2p p+1 . Combined with the decay estimate (1. [START_REF] Chipot | On the elliptic problem ∆u -|∇u| q + λu p = 0, Nonlinear diffusion equations and their equilibrium states[END_REF]) we infer that max

z∈B n M (xn) (xn) u p q (z) + u p-1 2(q-1) (z) ≤ c 8 max z∈B n M (xn) (xn) u p q (z). ( 3 

.42)

We now replace u(z) and ∇u(z) by their respective value with respect to u n (x) and ∇u n (x) and we get max

|x|≤ n 2 |∇u n (x)| ≤ c 9 n -1 q-1 (M (x n )) 1 q-1 -γ-1 + max |x|≤n u p q n (x) . (3.43) Because 1 < q < 2p p+1 , 1 q-1 -γ -1 > 0. Since M (x n ) → 0 when n → ∞ it follows that |∇u n (x)| ≤ c 10 for all x ∈ B n 2 . (3.44)
Therefore the new constraints are

u 1 γ n 0) = 1 and u n (x) + |∇u n (x)| ≤ 2 γ + c 10 for x ∈ B n 2 .
(3.45)

We have also

-∆u n (x) = - ∆u(z(x, n)) M γ+2 (x n ) , hence -∆u n (x) = u p (z(x, n)) -m|∇u(z(x, n))| M γ+2 (x n ) = M γp (x n )u p n (x) -mM (γ+1)q (x n )|∇u n (x)| M γ+2 (x n ) = M γ(p-1)-2 (x n )u p n -mM (γ(q-1)-2+q)q (x n )|∇u n (x)| q . There holds γ(p -1) -2 = γ(q -1) -2 + q = σ p -q ,
and by assumption, σ < 0. Therefore u n satisfies where we have set

-n ∆u n (x) = u p n -m|∇u n | q with n = M -σ p-q (x n ) → 0 as n → ∞. ( 3 
M (x) = u 1 γ (x).
There exists a sequence This assumption implies that in the proof of Theorem 1.4-2), M (x n ) → ∞ independently of u.

{x n } ⊂ B 1 \ {0} such that |x n |M (x n ) > 2n M (x n ) ≥ M (y n ) M (z) ≤ 2M n (x n ) for all z ∈ B n M (xn) (x n ). ( 3 
z ∈ B n M (xn) (x n ) , we have |z| ≤ |x n | + |z -x n | ≤ |x n | + n M (xn) which tends to 0 as n → ∞. If we replace u(z) by u n (x) = u(z(x,n)) M γ (xn) , (3.41) becomes max |x|≤ n 2 |∇u n (x)| ≤ c 11 n -1 q-1 (M (x n )) 1 q-1 -γ-1 + max |x|≤n u p q n (x) + (M (x n )) - σ 2(q-1)(p-q) u p-1 2(q-1) n (x) . (3.50) Notice that M (x n ) → ∞ and 1 q-1 -γ -1 = -σ (q-1)(p-q) < 0.
3.4 Asymptotic estimates on decaying solutions in the case q > 2p p+1

Using Theorem 3.4, we prove Theorem 1.5.

Proof of Theorem 1.5. We can assume that r 0 = 1. By (3. Clearly {x n } is unbounded since M is bounded on bounded subset of B c 2 and, up to extracting a sequence, we can assume that |x n | → ∞ as n → ∞. We set 

u n (x) = u(z(x, n) M α (x n ) with z(x, n) = x n + x M (x n ) . ( 3 
M (z(n, x)) = u p-1 2 (z(n, x) + |∇u| p-1 p+1 (z(n, x) ≤ 2M (x n ). (3.55) Then ∇u n (x) = ∇u(z(x, n)) M α+1 (x n ) , ∆u n (x) = ∆u(z(x, n)) M α+2 (x n ) , which implies ∆u n (x) = u p (z(x, n)) -m|∇u| q (z(x, n)) M α+2 (x n ) = M α+2 (x n )u n (x) -mM (α+1)q (x n )|∇u(z(x, n))| q M α+2 (x n ) . Hence u n satisfies -∆u n = u p n -m(M (x n )) (α+1)q-αp |∇u n | q in B n , with the additional condition u p-1 2 n (0) + |∇u n (0)| p-1 p+1 = 1.
Observe that

(α + 1)q -αp = (p + 1)q -2p p -1 ≥ 0,
with equality if q = 2p p+1 and strict inequality otherwise. Furthermore

u p-1 2 n (x) + |∇u n (x)| p-1 p+1 ≤ 2 for all x ∈ B n .
By standard elliptic equations regularity results [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF], the sequence {u n } is eventually locally compact in the C 1 loc (R N )-topology, thus, up to extracting a subsequence, {u n } converges in this topology to some nonnegative C 1 (R N ) function v which satisfies

-∆v = v p in R N (3.56) if q > 2p p+1 since M (x n ) → 0 as n → ∞, and 
-∆v + m|∇v| q = v p in R N (3.57) if q = 2p p+1 . Furthermore v p-1 2 (0) + |∇v(0)| p-1 p+1 = 1. Since 1 < p < N +2 N -2
, by Gidas and Spruck result [START_REF] Gidas | Local and global behaviour of positive solutions of nonlinear elliptic equations[END_REF] The function u n defined by (3.54) satisfies the same equation (1.1) as u and the limit v also. We end the proof as in Theorem 1.5.

.

Removable singularities

In this Section we give partial extensions to (1.1) of previous results dealing with removability of singularities for equations -∆u + m|∇u| q = 0 and -∆u + m|∇u| 2 -u p ≤ 0, obtained respectively in [START_REF] Nguyen | Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations[END_REF] and [START_REF] Brezis | Removable singularities for nonlinear elliptic equations[END_REF].

4.1 Removable isolated singularities. Proof of Theorem 1.6

Proof of Theorem 1.6. We can assume that B r 0 ⊂ Ω with r 0 ≥ 1 and a = 0. Since (1.17) holds we have

|∇u(x)| ≤ c|x| -1 q-1 and u(x) ≤ c 1 + c 2 |x| q-2 q-1 if q > 2 | ln |x|| if q = 2 for 0 < |x| ≤ r 0 . (4.1) 
Since q > p and q ≥ N N -1 , we have that ∇u ∈ L p (B r 0 ), which implies u p ∈ L 1 (B r 0 ).

Step 1: We claim that ∇u ∈ L q (B r 0 ) and the equation holds in

D (B r 0 ). Let η n ∈ C ∞ 0 (B r 0 \ {0}) such that η n = 1 on B r 0 /2 \ B 1/n , η n = 0 if |x| ≤ 1/2n and if |x| ≥ 2r 0 /3 and 0 ≤ η n ≤ 1. We construct η n such that |∇η n | ≤ cn1 B 1/n \B 1/2n . Then Br 0 ∇u.∇η n dx + m Br 0 |∇u| q η n dx = Br 0 u p η n dx.
By Holder's inequality and using (1.17) there holds with q = q q-1 ,

Br 0 ∇u.∇η n dx = B 1/n \B 1/2n ∇u.∇η n dx ≤ c 2 n q -N .
Since q ≥ N N -1 , then q -N ≤ 0, and the right-hand side is bounded, hence Since

|∇u| q ∈ L 1 (B r 0 
Br 0 ζ∇u.∇η n dx ≤ c 3 n 1-N q ζ L ∞ B 1/n \B 1/2n |∇u| q 1 q , ( 4.2) 
and the left-hand side tends to 0 as n → ∞, we conclude by the dominated convergence theorem that

Br 0 ∇u.∇ζdx + m Br 0 |∇u| q ζdx = B R u p ζdx,
which proves the second statement.

Step 2: u is bounded. For proving the boundedness assertion we can assume that N N -1 ≤ q < 2. As a test function we take ζ = η q n , then

q Br 0 η q-1 n ∇u.∇η n dx + m Br 0 η q n |∇u| q dx = Br 0 η q n u p dx.
We have

Br 0 η q n |∇u| q dx = Br 0 |η n ∇u| q dx = Br 0 |∇(η n u) -u∇η n | q dx ≥ 2 1-q Br 0 |∇(η n u)| q dx - Br 0 u q |∇η n | q dx.
By (4.1)

Br 0 u q |∇η n | q dx ≤ c 4 n q -N ≤ c
as we have already seen it and, from (4.2) there holds

Br 0 η q-1 n ∇u.∇η n dx → 0 as n → ∞.
It follows that ∇(η n u) is bounded in L q (B r 0 ) independently of n, and by Sobolev inequality,

η n u L q * (Br 0 ) ≤ c with q * = N q N -q ,
which in turn implies that u L q * (Br 0 ) ≤ c 1 . Set

r 1 = N q N -q -p. (4.3) 
Taking η q+r 1 n (T k (u)) r 1 as a test function, where T k (r) = min{r, k} for r, k > 0, we obtain

r 1 Br 0 ∩{u<k} (T k (u)) r 1 -1 η q+r 1 n |∇u| 2 dx + (q + r 1 ) Br 0 (T k (u)) r 1 η q+r 1 -1 n ∇η n .∇udx + m Br 0 T k (u r 1 )|∇u| q η q+r 1 n dx = Br 0 T k (u r 1 )u p η q+r 1 n dx.
From Step 1 |∇u| ∈ L q (B r 0 ), thus

Br 0 (T k (u)) r 1 η q+r 1 -1 n ∇η n .∇udx → 0 as n → ∞, hence o(1) + m Br 0 T k (u r 1 )|∇u| q η q+r 1 n dx ≤ Br 0 T k (u r 1 )u p η q+r 1 n dx.
Letting successively n → ∞ and k → ∞, we deduce by Fatou's lemma and the monotone convergence theorem that

m Br 0 u r 1 |∇u| q ηq+r 1 dx ≤ Br 0 u N q N -q ηq+r 1 dx, (4.4) 
where ηq+r 1 = lim n→∞ η q+r 1 n belongs to C ∞ 0 (B r 0 ) and takes value 1 in B r 0 2 and 0 ≤ η ≤ 1. Since

Br 0 u r 1 |∇u| q ηq+r 1 dx = q q + r 1 q Br 0 |η 1+ r 1 q ∇(u 1+ r 1 q )| q dx ≥ q r 1 + q q 2 1-q Br 0 |∇(ηu) 1+ r 1 q | q dx - q r 1 + q q Br 0 u q+r 1 |∇η| q dx ≥ c N,q q r 1 + q q Br 0 (ηu) N (q+r 1 ) N -q dx N -q N -K 1 q r 1 + q q , where K 1 = r 0 N u q+r 1 L ∞ (Br 0 \B r 0 2 ) ∇η q L ∞ (Br 0 ) .
This leads to the following inequality mc N,q q r 1 + q q ηu q+r 1 L N (q+r 1 )

N -q (Br 0 ) -mK 1 q r 1 + q q ≤ η (N -q)(q+r 1 ) N q u N q N -q L N q N -q (Br 0 ) ≤ ηu N q N -q L N q N -q (Br 0 ) , (4.5) 
since (N -q)(q+r 1 )

N q > 1 from (4.3) and q > p combined with the fact that η ≤ 1. Next we proceed by induction, setting

r j+1 = N (q + r j ) N -q -p for j ≥ 1, (4.6) 
with explicit value Note that for the right-hand side we have used q + r j+1 ≥ N (q+r j ) N -q and η ≤ 1. Moreover

r j+1 = N N -q j+1 -1 (N -q)r 1 q . ( 4 
Br 0 u r j+1 |∇u| q ηq+r j+1 dx ≥ q r j+1 + q q Br 0 |η 1+ r j+1 q ∇(u 1+ r j+1 q )| q dx. (4.9) Writing η1+ r j+1 q ∇(u 1+ r j+1 q ) = ∇(ηu) 1+ r j+1 q - q + r j+1 q u 1+ r j+1 q η r j+1 q ∇η,
we have, since η = 1 in B r 0 2 and 0 ≤ η ≤ 1, and using Sobolev inequality, η1+ r j+1 q ∇(u 

1+ r j+1 q ) L q (Br 0 ) ≥ ∇(ηu) 1+ r j+1 q L q (Br 0 ) - q + r j+1 q ∇η L ∞ u 1+ r j+1 q L q (Br 0 \B r 0 2 ) ≥ c N,q ηu q+r j+1 q L N (q+r j+1 ) N -q (Br 0 ) - q + r j+1 q ∇η L ∞ u q+r j+1 q L q+r j+1 (Br 0 \B r 0 2 ) . ( 4 
(Br 0 ) = ∞, (4.11) 
and there exists j 0 ≥ 1 such that for any j ≥ j 0 , ηu

L N (q+r j+1 ) N -q (Br 0 ) ≥ 2 ∇η q q+r j+1 L ∞ u L q+r j+1 (Br 0 \B r 0 2 ) ; (4.12)
as a consequence the right-hand side of (4.10) is bounded from below by

c q -2 - q+r j+1 q q + r j+1 q ηu q+r j+1 q L N (q+r j+1 ) N -q (Br 0 ) ≥ c N,q 2 ηu q+r j+1 q L N (q+r j+1 ) N -q (Br 0 ) (4.13)
for j ≥ j 1 ≥ j 0 . Combining (4.8), (4.9) and (4.13) we derive

1 m Br 0 (ηu) N (q+r j ) N -q dx ≥ qc N,q 2(r j+1 + q q ηu q+r j+1 L N (q+r j+1 ) N -q (Br 0 ) . (4.14) 
We obtain finally ηu

L N (q+r j+1 ) N -q (Br 0 ) ≤ 2(r j+1 + q) qc N,q m 1 q q q+r j+1 ηu N (q+r j ) (N -q)(q+r j+1 ) L N (q+r j ) N -q (Br 0 ) . (4.15) 
Put

X j = ln ηu L N (q+r j ) N -q (Br 0 ) . Since N (q + r j ) (N -q)(q + r j+1 ) = p + r j+1 q + r j+1 < 1, (4.16) 
we deduce

X j+1 ≤ q q + r j+1 ln 2(r j+1 + q) qc q m 1 q + X j , (4.17) 
which implies that

ln u L ∞ (B r 0 2 ) ≤ lim sup j→∞ X j+1 ≤ X 1 + q ∞ j=1 1 q + r j+1 ln 2(r j+1 + q) qc q m 1 q < ∞, (4.18) 
by (4.7). This is a contradiction with (4.11), which ends the proof.

Removable singular sets

In the following theorem we combine the technique of Theorem 1.6 with the geometric approach based upon the construction of tubular neighbourhoods used in [START_REF] Véron | Singularités éliminables d'équations elliptiques non linéaires[END_REF] to prove the removability of singular sets contained into a smooth submanifold. The next result proves and completes Theorem 1.7.

Theorem 4.1 Let Ω ⊂ R N be a bounded smooth domain with N ≥ 3 and Σ ⊂ Ω be a kdimensional compact complete smooth submanifold with 1 ≤ k ≤ N -2. If 1 ≤ p < q and q ≥ N -k N -1-k , any nonnegative solution u ∈ C 2 (Ω \ Σ) of (1.1) in Ω \ Σ can be extended as a weak solution of the same equation in Ω which belongs to L ∞ loc (Ω) ∩ W 1,q loc (Ω) ∩ H 1 loc (Ω).

Proof.

Step 1: We claim that there exists r 0 > 0 and C = C(N, p, q, m, r 0 , Σ) > 0 such that

|∇u(x)| ≤ C(dist (x, Σ)) -1 q-1 for all x s.t. dist (x, Σ) ≤ r 0 . (4.19) 
For δ > 0 we set

T U B δ (Σ) = {x ∈ R N : dist (x, Σ) < δ}. If δ ≤ inf{dist(x, Σ) : x ∈ Ω c }, we have that T U B δ (Σ) ⊂ Ω.
Since Σ is smooth with no boundary, there exixts δ 0 > 0 such that the sets ∂T U B δ (Σ) = {x ∈ Ω : dist (x, Σ) = δ} are k-dimensional compact complete smooth submanifolds of Ω. We use the ideas of the proof of Theorem 1.3 adapting it to the peculiar geometric configuration. By rescaling we can assume that δ 0 = 1 and for 0 < θ < 1 4 , we set Θ θ = T U B 1-θ (Σ) \ T U B θ (Σ). For any 0 < < 1 2 we have by (3.23), max

Θ θ |∇u| ≤ c 1   ( θ) -1 q-1 + max Θ θ 1+ u p + u p-1 2(q-1) 1 q   ≤ c 2   ( θ) -1 q-1 + 1 + max Θ θ 1+ u p q   . (4.20)
In order to obtain an upper bound on u(x) for x ∈ Θ θ

1+

, we join it to some x ∈ ∂T U B 1 (Σ) by a smooth curve ω such that ω(0) = x, ω(1) = x . We can choose ω such that |ω (t)| ≤ 2 for all t ∈ [0, 1] and

2 -1 dist (tx + (1 -t)x , Σ) ≤ dist (ω(t), Σ) ≤ 2dist (tx + (1 -t)x , Σ). Then u(x) ≤ u(x ) + 1 0 ∇u(ω(t)).ω (t)dt ≤ u(x ) + 2 1 0 |∇u(ω(t))|dt ≤ u L ∞ (T U B 1 (Σ)\T U B 1 2 (Σ)) + 2 max Ω θ 1+ |∇u|. (4.21) Therefore max Θ θ 1+ u p q ≤ c 3   u p q L ∞ (T U B 1 (Σ)\T U B 1 2 (Σ)) + max Θ θ 1+ |∇u| p q   ≤ c 3 u p q L ∞ (T U B 1 (Σ)\T U B 1 2 (Σ)) + max Θ (1-)θ |∇u| p q . (4.22)
We put

B(θ) = max Θ θ θ 1 q-1 |∇u(z)| and F (θ) = 1 + B(θ),
and we obtain from (4.20) and (4.22)

F (θ) ≤ c 4 -1 q-1 F p q ((1 -)θ), (4.23) 
where c 4 depends on the structural constants and of u L ∞ (T U B 1 (Σ)\T U B 1 2 (Σ)) . It follows from Lemma 2.1 that B(θ) is bounded independently of θ, which implies (4.19). In order to derive the upper estimate on u we set µ = sup{u(y) :

y ∈ ∂T U B 1 (Σ)}. If 0 < dist (x, Σ) = t ≤ 1 there exists z x ∈ Σ and ξ ∈ ∂T U B 1 (Σ) such that 2 -1 |tx + (1 -t)ξ -z x | ≤ dist (tx + (1 -t)ξ, Σ) ≤ 2|tx + (1 -t)ξ -z x |. Since dist (ξ, Σ) = 1, u(x) ≤ µ + c 5 1 0 |tx + (1 -t)ξ -z x | -1 q-1 dt ≤ µ + c 5 1 0 (tdist (x, Σ) + (1 -t)dist (ξ, Σ)) -1 q-1 = µ + c 5 1 0 (tdist (x, Σ) + 1 -t) -1 q-1 ≤ µ + c 5 q -1 2 -q (1 -dist (x, Σ)) (dist (x, Σ)) 2-q q-1 -1 , if q = 2
, with an obvious modification if q = 2. At end we deduce

u(x) ≤ c 6 (dist (x, Σ)) 2-q q-1 + C for all x ∈ T U B 1 (Σ) if q = 2 | ln(dist (x, Σ))| + C for all x ∈ T U B 1 (Σ) if q = 2.
(4.24)

Step 2: We claim that u ∈ L p (T U B 1 (Σ)) and |∇u| ∈ L q (T U B 1 (Σ)). For such a task we consider test functions

η n ∈ C ∞ 0 (T U B 1 (Σ)) with value in [0, 1] vanishing in T U B 1/(2n) (Σ) ∪ T U B c 2/3 (Σ), with value 1 in T U B 1/2 (Σ) \ T U B 1/n (Σ) and such that |∇η n (x)| ≤ c 7 n1 T U B 1/n (Σ)\T U B 1/2n (Σ) ,
where the constant c 7 > 0 depends on the geometry of Σ. If q > 2, u is bounded thus

u p ∈ L 1 (T U B 1 (Σ)). If N -k N -k-1 ≤ q ≤ 2 we have for 1 > > 1 n T U B (Σ) η n u p dx ≤ T U B (Σ)\T U B 1/2n (Σ) u p dx ≤ c 8 1/2n τ - (2-q)p q-1 d dτ V ol(T U B τ (Σ))dτ ≤ c 8 - (2-q)p q-1 V ol(T U B (Σ)) + c 8 (2 -q)p q -1 1/2n τ - (2-q)p q-1 -1 V ol(T U B τ (Σ))dτ.
By Weyl's formula [START_REF] Weyl | On the volume of tubes[END_REF] V ol(T U B τ (Σ)) =

[k/2] i=0 a i τ N -k+2i (4.25)
where the a i are smooth bounded functions near Σ and [k/2] is the integer part of k/2. Therefore

1/(2n) τ - (2-q)p q-1 d dτ V ol(T U B τ (Σ))dτ ≤ C( ) + c 9 n
(2-q)p q-1 -N +k .

Since (2-q)p q-1 < q q-1 ≤ N -k, we have that (2-q)p q-1 -N + k < 0. Letting n → ∞ we obtain that

u p ∈ L 1 (T U B 1 (Σ)).
For the second assertion we have with the same test function η n ,

T U B 1 (Σ) ∇u.∇η n dx + m T U B 1 (Σ) |∇u| q η n dx = T U B 1 (Σ) u p η n dx.
Using (4. [START_REF] Chipot | On the elliptic problem ∆u -|∇u| q + λu p = 0, Nonlinear diffusion equations and their equilibrium states[END_REF]) and (4.25),

T U B 1 (Σ) ∇u.∇η n dx ≤ Cn q q-1 V ol(T U B τ (1/n)) = C n q q-1 +k-N .
By assumption q q-1 ≤ N -k. Since u ∈ L p (T U B 1 (Σ)) we conclude that |∇u| ∈ L q (T U B 1 (Σ)) by Fatou's lemma.

Step 3: We claim that u ∈ L ∞ (T U B 1 (Σ)). The proof that u is a weak solution of (1.1) is similar to the one in Theorem 1.6. For obtaining that u ∈ L ∞ (T U B 1 (Σ)) we use the same test functions η n as in Step 2, the same sequence {r j } defined by (4.6) and derive (4.13) where B R is replaced by T U B 1 (Σ) under the assumption (4.11). And similarly (4.18), again replacing B R by T U B 1 (Σ) holds in the same way, we obtain a contradiction.

The next theorem extends a previous result of Brezis and Nirenberg [START_REF] Brezis | Removable singularities for nonlinear elliptic equations[END_REF] that they proved in the case q = 2. The technique is completely different from the one used in Theorem 4.1 and based upon capacity theory. Theorem 4.2 Let Ω ⊂ R N N ≥ 2, be a bounded smooth domain. Assume p and q are real numbers such that 0 < p ≤ max{2, p} ≤ q and m > 0. Let K ⊂ Ω be a compact set and u ∈ C 1 (Ω \ K) be a positive function satisfying

-∆u + m|∇u| q -u p ≤ 0 (4.26)
in Ω \ K and such that u ≥ δ > 0. If cap 1,q (K) = 0, then u ∈ L ∞ (Ω).

Proof. If cap 1,q (K) = 0, then |K| = 0 and there exists a sequence

{ζ k } ⊂ C ∞ c (Ω) such that 0 ≤ ζ k ≤ 1, ζ k = 1 in a neighborhoood of K such that lim k→∞ |∇ζ k | L q (Ω) = 0. (4.27) Furthermore ζ k → 0 a.e.
in Ω, and we set η k = 1-ζ k . For θ > 0 let j θ be a C ∞ (R) nondecreasing function with value 0 on (-∞, 0] and 1 on [θ, ∞). We set

λ(t) = meas{x ∈ Ω : u(x) ≥ t}
for t ≥ t 0 where t 0 = sup ∂Ω u ≥ δ. Taking η q k j θ (u -t)u -p as a test function, we have

q Ω η q -1 k j θ (u -t)u -p ∇u.∇η k dx + Ω j θ (u -t)u -p |∇u| 2 η q k dx -p Ω η q k j θ (u -t)u -p-1 |∇u| 2 dx + m Ω η q k j θ (u -t)u -p |∇u| q dx ≤ Ω η q k j θ (u -t)dx.
Since j θ ≥ 0, it follows

q Ω η q -1 k j θ (u -t)u -p ∇u.∇η k dx -p Ω η q k j θ (u -t)u -p-1 |∇u| 2 dx + m Ω η q k j θ (u -t)u -p |∇u| q dx ≤ Ω η q k j θ (u -t)dx ≤ λ(t).
(4.28)

Step 1: the basic inequality. We set

S(t) =    q q-p t q-p q if p < q ln t if p = q. (4.29) Then u -p |∇u| q = |∇S(u)| q and m Ω η q k j θ (u -t)|∇(S(u))| q dx ≤ λ(t) + q Ω η q -1 k j θ (u -t)u -p |∇u||∇η k |dx + p Ω η q k j θ (u -t)u -p-1 |∇u| 2 dx. (4.30) 
We take t ≥ t 1 ≥ t 0 for some t 1 to be fixed, then

q Ω η q -1 k j θ (u -t)u -p |∇u||∇η k |dx = q Ω η q -1 k j θ (u -t)u - p(q-1) q u -p q |∇u||∇η k |dx ≤ q t - p(q-1) q 1 Ω η q k j θ (u -t)|∇S(u)| |∇η k | η k dx ≤ q t - p(q-1) q 1 q q Ω η q k j θ (u -t)|∇S(u)| q dx + 1 q q Ω j θ (u -t)|∇η k | q dx . (4.31)
We recall that σ = (p + 1)q -2p. Since q ≥ 2 we have that σ ≥ 2, with strict inequality if q > 2. Therefore

p Ω η q k j θ (u -t)u -p-1 |∇u| 2 dx = p Ω η q k j θ (u -t)u -σ q u -2p q |∇u| 2 dx ≤ pt -σ q 1 Ω η q k j θ (u -t)|∇S(u)| 2 dx. (4.32)
We first consider the case q > 2. We have by Hölder's inequality,

p Ω j θ (u -t)u -p-1 |∇u| 2 η q k dx ≤ pt -σ q 1 2 q q Ω j θ (u -t)|∇S(u)| q η q k dx + q (q -2) q q-2 Ω j θ (u -t)η q k dx . (4.33)
We then deduce that m -q 2p q t

-σ q 1 + 1 q -1 t - p(q-1) q 1 Ω η q k j θ (u -t)|∇(S(u))| q dx ≤ 1 + pq (q -2) q q-2 λ(t) + t - p(q-1) q 1 q Ω j θ (u -t)|∇η k | q dx ≤ 1 + pq (q -2) q q-2 λ(t) + t - p(q-1) q 1 q Ω |∇η k | q dx.
(4.34)

Since cap 1,q (K) = 0 and η k → 1, we let k → ∞ and obtain m -q 2p q t

-σ q 1 + 1 q -1 t - p(q-1) q 1 Ω j θ (u -t)|∇(S(u))| q dx ≤ 1 + pq (q -2) q q-2 λ(t), (4.35) having fixed t 1 ≥ t 0 and > 0 small enough such that m -q 2p q t -σ q 1 + 1 q -1 t - p(q-1) q 1 ≥ m 2 .
We set ν(s) = meas{x ∈ Ω : S(u(x)) ≥ s}.

By letting θ → 0 we infer that there exists a constant C 1 > 0 such that, for s ≥ s 1 = S(t 1 ),

Ω |∇(S(u) -s) + | q dx ≤ C 1 ν(s). (4.36)
Before continuing on this inequality, we can look at the case q = 2 (which is actually the case considered by Brezis and Nirenberg [START_REF] Brezis | Removable singularities for nonlinear elliptic equations[END_REF]). Then σ = 2 and (4.34 ) is replaced by

m -2pt -1 1 -2 t -p 2 1 Ω η 2 k j θ (u -t)|∇(S(u))| 2 dx ≤ λ(t) + t -p 2 1 2 Ω |∇η k | 2 dx. (4.37)
By choosing and t 1 we obtain (4.36 ) with q = 2 and a specific constant C 1 .

Step 2: end of the proof. We set w = S(u) and by Hölder's inequality since q > 2,

Ω |∇(w -s) + | q dx ≤ Ω |∇(w -s) + | q dx q q
(meas {|∇(w -s) + > 0|})

1-q q ≤ c q q
1 (ν(s)) q q (meas {|∇(w -s) + > 0|})

1-q q ≤ c q q 1 ν(s), (4.38) 
since ∇(w -s) + = 0 a.e. on the set where (w -s) + = 0. This implies that, up to a set of zero measure, we have {|∇(w -s) + > 0|} ⊂ {(w -s) + > 0}, thus meas {|∇(w -s) + > 0|} ≤ ν(s).

Note that this also holds if q = 2. By Sobolev inequality, Ω (w -s) q * + dx q q * ≤ c(N, q)

Ω |∇(w -s) + | q dx with q * = N q N -q , (4.39) if q < N which is always satisfied except in the case q = 2 = N in which case the modifications are straightforward and left to the reader. Furthermore

Ω (w -s) + dx ≤ Ω (w -s) q * + dx 1 q * (ν(s)) 1-1 q * .
This yields

Ω (w -s) + dx ≤ c 2 ν(s)) 1+ 1 N for any s ≥ s 1 , (4.40) since 1 + 1 q -1 q * = 1 + 1 N . Set φ(s) = Ω (w -s) + dx = ∞ s ν(τ )dτ, hence -φ (s) = ν(s),
and (4.40 ) leads to φ(s) ≤ c 2 (-φ (s))

N +1 N and we finally obtain the following differential inequality

φ + c N N +1 2 φ N N +1 ≤ 0 on [s 1 , ∞). (4.41)
The solution is explicit:

φ(s) ≤      (φ(s 1 )) 1 N +1 - c N N +1 2 N (s -s 1 ) N +1 if s 1 ≤ s ≤ s 2 , 0 if s > s 2 (4.42)
where

s 2 = s 1 + N c -N N +1 2 (φ(s 1 )) 1 N +1 .
Hence (w -s) + = 0 if s ≥ s 2 which implies the claim.

Proof of Theorem 1.8. If u is a solution the assumption that u ≥ δ > 0 can be replaced by u ≥ 0 since u + δ is a subsolution. It is standard that if u is bounded and cap 1,q (K) is zero then it is a weak solution.

Motivated by the result of Theorem 1.6 when K is a single point, we have the following conjecture.

Conjecture.

Let Ω ⊂ R N be a bounded smooth domain. Assume p, q are such that 1 ≤ p ≤ q < 2 and m > 0. Let K ⊂ Ω be a compact set and u ∈ C 1 (Ω \ K) be a nonnegative solution of -∆u + m|∇u| q -u p = 0 (4.43)

in Ω \ K. If cap 1,q (K) = 0, then u is a weak solution of (4.43) in Ω and it belongs to L ∞ (Ω).

Asymptotics of solutions

The natural way for studying the singular or asymptotic behaviour of solutions of (1.1) is to use the spherical coordinates (r, θ) ∈ [0, ∞) × S N -1 . Denoting u(x) = u(r, θ), equation (1.1) endows the form

-u rr - N -1 r u r - 1 r 2 ∆ u + m u 2 r + 1 r 2 |∇ u| 2 q 2 -u p = 0, (5.1) 
where ∆ and ∇ represent respectively the Laplace Beltrami operator and the covariant gradient identified with the tangential derivative on the unit sphere. This equation admits separable solutions i.e. solutions under the form u(r, θ) = r -a ω(θ) if and only if q = 2p p+1 , in which case

a = α = β = γ.
Then ω is a nonnegative solution of

-∆ ω -α (α + 2 -N ) ω + m α 2 ω 2 + |∇ ω| 2 p p+1 -ω p = 0 in S N -1 .
(5.2)

When q = 2p p+1 , one nonlinear term could dominate the other thus the asymptotics can be described either by the separable solutions of the Lane-Emden equation (1.5) or the Riccatti equation (1.7). For the Lane-Emden equation the separable solutions have the form u(r, θ) = r -α ω(θ) where ω is a positive solution of

-∆ ω -α (α + 2 -N ) ω -ω p = 0 in S N -1 , (5.3) 
while for the Riccatti equation the separable solutions are under the form u(r, θ) = r -β ω(θ)

where ω is a positive solution of

-∆ ω -β (β + 2 -N ) ω + m β 2 φ 2 + |∇ ω| 2 q 2 = 0 in S N -1 . (5.4) 
Separable nonnegative solutions of the eikonal equation (1.8) have the form u(r, θ) = r -γ ω(θ) and ω satisfies

m γ 2 ω 2 + |∇ ω| 2 q 2 -ω p = 0 in S N -1 . (5.5) 
We recall below some results concerning these equations.

Theorem 5.1 Let N ≥ 2, p, q > 1 and m ≥ 0. (5.6)

1-Suppose q = 2p p+1 . 1-a If N ≥ 3, p ≥ N N -
2-There exist positive solutions to (5.3) if and only if p > N N -2 . Furthermore, if N N -2 < p < N +1 N -3 , the positive solutions are constant and therefore unique with value

ω 0 = (α(N -2 -α)) 1 p-1 = α (N -2)p -N p -1 1 p-1 .
(5.7)

3-If m > 0 and 1 < q < N N -1 there exists a unique positive solution to (5.4). This solution is constant with value

ξ m = 1 β (N -1)q -N m(q -1) 1 q-1 .
(5.8)

If q ≥ N N -1 there exists no positive solution to (5.4). 4-If m > 0 and p, q > 1, p = q, any positive solution to (5.5) is constant with value

X m = (m|γ| q ) 1 p-q .
(5.9)

Remark. Assertion 1 is proved in [8, Proposition 6.1], assertion 2 in [START_REF] Gidas | Local and global behaviour of positive solutions of nonlinear elliptic equations[END_REF], assertions 3 and 4 are easy consequences of the study of the extrema of a positive smooth solution.

Isolated singularities

In this Section we obtain the precise behaviour of positive singular solutions of (1.1) in B r 0 \ {0}.

Proof of Theorem 1.9

The proof is a delicate combination of various techniques, some new and some other already which have already been used by the authors in several different contexts. Up to change of scale we assume that r 0 = 1. Set u(r, θ) = r -α v(t, θ) with t = ln r, t ≤ 0.

(5.10)

The function v satisfies

v tt + (N -2 -2α)v t + α (α + 2 -N ) v + ∆ v -me -σt p-1 (v t -αv) 2 + |∇ v| 2 q 2 + v p = 0, (5.11) 
in (-∞, 0] × S N -1 , recalling that σ = (p + 1)q -2p. By Theorem B the functions v, v t and |∇ v| is bounded in (-∞, 0] × S N -1 . By standard regularity estimates and Ascoli-Arzela theorem the limit set at -∞ of the trajectory of v in C 2 (S N -1 ),

T -[v] = t≤0 {v(t, .)}, is a non-empty compact connected subset Γ -of C 2 (S N -1 ). Set E[v](t) = 1 2 S N -1 v 2 t -|∇ v| 2 + α (α + 2 -N ) v 2 + 2 p + 1 |v| p+1 dS, then d dt E[v](t) = -(N -2 -2α) S N -1 v 2 t dS -me -σt p-1 S N -1 (v t -αv) 2 + |∇ v| 2 q 2 v t dS.
Therefore, for any t < 0,

E[v](t) -E[v](0) = (N -2 -2α) 0 t S N -1 v 2 t dSdτ + m 0 t e -στ p-1 S N -1 (v t -αv) 2 + |∇ v| 2 q 2 v t dSdτ.
(5.12)

Since E[v](t) and (v t -αv) 2 + |∇ v| 2 q 2 are uniformly bounded, N -2-2α = 0 because p = N +2 N -2
and σ < 0, this implies that

0 -∞ S N -1 v 2 t dSdτ < ∞. (5.13) Since v t is uniformly continuous on (-∞, 0] × S N -1 , it implies in turn that lim t→-∞ S N -1 v 2 t (t)dS = 0.
Multiplying the equation (5.11) by v tt , using the C 2 estimate on v and (5.13) we obtain that

0 -∞ S N -1 v 2 tt dSdτ < ∞, (5.14) 
which implies in turn

lim t→-∞ S N -1 v 2 tt (t)dS = 0.
Letting t → -∞ in (5.11) we conclude that Γ -is a a non-empty compact connected subset of the set on nonnegative solutions of (5.3).

If 1 < p ≤ N N -2 we have lim t→-∞ v(t, .) = 0 uniformly on S N -1 .
(5.15)

If N N -2 < p < N +2 N -2 , either lim t→-∞ v(t, .) = 0 or lim t→-∞ v(t, .) = ω 0 uniformly on S N -1 . (5.16)
where ω 0 is defined by (5.7).

The remaining problem is to analyse the case where lim t→-∞ v(t, .) = 0. This is delicate and presented in the following lemmas.

Lemma 5.2 Let N ≥ 3, p ∈ (1, ∞) \ N N -2 , N +2 N -2 and 1 < q < 2p p+1 . If u is a nonnegative solution of (1.1) in B 2 \ {0}, such that lim x→0 |x| α u(x) = 0, (5.17) 
then there exists > 0 such that u(x) ≤ C|x| -α+ for all x ∈ B 1 \ {0}.

(5.18)

Furthermore |∇u(x)| ≤ C |x| -α-1+ for all x ∈ B 1 \ {0}. (5.19) 
Proof. The key point is the proof is that under the assumptions on p the coefficients α(α+2-N ) and N -2 -2α in the equation (5.11) satisfied by the function v defined before are not zero. We note that (5.18) is equivalent to

v(t, θ) ≤ Ce t for all (t, θ) ∈ (-∞, 0] × S N -1 . (5.20) 
If (5.20) does not hold we have that lim sup t→-∞ e -t ρ(t) = +∞ for all > 0, where ρ(t) = sup{v(t, θ) : θ ∈ S N -1 }. We use now a technique introduced in [18, Lemma 2.1]: it is proved that there exists a function η ∈ C ∞ (-∞, 0] such that

(i) η > 0, η > 0, lim t→-∞ η(t) = 0; (ii) 0 < lim sup t→-∞ ρ(t) η(t) < +∞; (iii) lim t→-∞ e -εt η(t) = +∞ for all ε > 0; (iv) η η , η η ∈ L 1 ((-∞, 0)); (v) lim t→-∞ η (t) η(t) = lim t→-∞ η (t) η(t) = 0. (5.21) 
We define ψ by v(t, •) = η(t)ψ(t, .), then

ψ tt + K 1 ψ t + K 2 ψ + ∆ ψ -me -σt p-1 η q-1 ψ t -α η t η ψ 2 + |∇ ψ| 2 q 2 + η p-1 ψ p = 0 in (-∞, 0] × S N -1 , (5.22) 
where

K 1 (t) = N -2 -2α + 2 η η and K 2 (t) = α(α + 2 -N ) + (N -2 -2α) η η + η η .
The function ψ is bounded and by standard regularity estimates it is uniformly bounded in the C 2 -topology of (-∞, 0] × S N -1 . We set

Ẽ[ψ](t) = 1 2 S N -1 ψ 2 t -|∇ ψ| 2 -α (α + 2 -N ) ψ 2 dS, then d dt Ẽ[ψ](t) = -N -2 -2α + 2 η η S N -1 ψ 2 t dS + (N -2 -2α) η η + η η S N -1 ψψ t dS -η p-1 S N -1 ψ p ψ t dS + me -σt p-1 η q-1 S N -1 ψ t -α η t η ψ 2 + |∇ ψ| 2 q 2
ψ t dS.

(5.23) We analyse the different terms in the right-hand side of (5.23):

S N -1 ψ p ψ t dS = 1 p + 1 d dt S N -1 ψ p+1 η p-1 - p -1 p + 1 η η p-2 S N -1 ψ p+1 dS.
By the mean value theorem, for any t < 0 there exists t * ∈ (t, 0) such that

0 t S N -1 η p-1 S N -1 ψ p ψ t dSdτ = 1 p + 1 S N -1 ψ p+1 η p-1 0 t - 1 p + 1 η p-1 (0) -η p-1 (t) S N -1 ψ p+1 (t * , .)dS,
and this expression is bounded independently of t < 0. Also

(N -2 -2α) η η + η η S N -1 ψψ t dS = 1 2 d dt (N -2 -2α) η η + η η S N -1 ψ 2 dS - 1 2 (N -2 -2α) η η + η η S N -1 ψ 2 dS.
The term involving the gradient is clearly integrable on (-∞, 0). Hence we obtain for any t < 0,

Ẽ[ψ](0) -Ẽ[ψ](t) = - 0 t N -2 -2α + 2 η η S N -1 ψ 2 t dSdτ + A(t) (5.24) 
where A(t) is bounded independently of t < 0. Because the left-hand side of (5.24) is bounded independently of t < 0, η η (τ ) → 0 when τ → -∞ and N -2 -2α = 0 as p = N +2 N -2 , we infer that

0 -∞ S N -1 ψ 2 t dSdτ < ∞. (5.25) 
By uniform continuity, this implies that ψ t (t) → 0 in L 2 (S N -1 ) when t → -∞. Multiplying the equation satisfied by ψ tt we obtain similarly, using the previous estimate and (5.21

)-(iv)-(v) that 0 -∞ S N -1 ψ 2 tt dSdτ < ∞; (5.26) 
in turn this implies that ψ tt (t) → 0 in L 2 (S N -1 ) when t → -∞. The limit set at -∞ of the trajectory T -[ψ] is a connected and compact subset of the set of nonnegative solutions of

α(α + 2 -N )ω + ∆ ω = 0 in S N -1 . (5.27) 
Since α(α + 2 -N ) is not an eigenvalue of -∆ in W 1,2 (S N -1 ), it follows that ω = 0, which contradicts the fact that by (5.21)-(ii) the limit set contains at least one non-zero positive element. Hence (5.18) holds, as for (5.19) it is a consequence of Theorem 3.2. This ends the proof.

Lemma 5.3 Let the assumptions of Theorem 1.9 hold, then 1-If N ≥ 3 and 1 < p < N N -2 (resp. N = 2 and p > 1) there exists k ≥ 0 such that |x| N -2 u(x)

(resp. -u(x)/ ln |x|) converges to k when x → 0. Furthermore u satisfies (1.23). 2-If N ≥ 3 and N N -2 < p < N +2 N -2 , 2-(i) either |x| α u(x) converges to ω 0 when x → 0, 2-(ii) or u is a classical solution of (1.1) in B r 0 .
Proof. Since |x| α u(x) + |x| α+1 |∇u(x)| remains bounded and q ≤ 2p p+1 , we have

|x| 2 u p-1 (x) + |x||∇u(x)| q-1 ≤ c 1 for all x ∈ B r 0 . (5.28) 
Hence Harnack inequality is valid uniformly on any sphere with center 0 (see e.g. [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]) in the sense that max |y|=r u(y) ≤ c 2 min |y|=r u(y) for all 0 < r ≤ r 0 2 .

(5.29)

Step 1: first estimate on the average of v. The second order linear equation

X + (N -2 -2α)X + α(α + 2 -N )X = 0 (5.30)
admits the two linearly independent solutions

X 1 (t) = e λ 1 t and X 2 (t) = e λ 2 t ,
where the λ j are the roots of

P (λ) = λ 2 + (N -2 -2α)λ + α(α + 2 -N ).
Note that these roots are explicit:

λ 1 = α > λ 2 = α + 2 -N, (5.31) 
and λ 2 > 0 (resp. where

λ 2 < 0) if 1 < p < N N -2 (resp. p > N N -2 ). We set H(t, .) = me -σt p-1 (v t -αv) 2 + |∇ v| 2 q 2 -v p . ( 5 
δ 1 = min p, q -σ p-1 , (5.34) 
and σ = (p + 1)q -2p < 0. Let v(t) and H(t) be the average respectively of v(t, .) and H(t, .)

on S N -1 . Then |H(t)| ≤ Ce δ 1 t . Since v + (N -2 -2α)v + α(α + 2 -N )v = H(t). (5.35) 
Assuming that δ 1 = λ 1 , λ 2 (which can always be assume up to changing ) the function v endows the general form v(t) = Ae λ 1 t + Be λ 2 t + C(t)e δ 1 t , (

for some constants A and B and for some particular solution C(t)e δ 1 t where C is bounded on (-∞, 0]. This can be checked by the so-called method of "the variation of constants". Therefore, since v(t, .) → 0 when t → -∞,

v(t) = Ae λ 1 t + Be λ 2 t + C(t)e δ 1 t if 1 < p < N N -2 Ae λ 1 t + C(t)e δ 1 t if p > N N -2 .
(5.37)

This leads us to the second decay estimate (besides the one given by Lemma 5.2)

v(t) ≤ c 4 e θ 1 t (5.38) 
where

θ 1 = min {λ 2 , δ 1 } if 1 < p < N N -2 and θ 1 = min {λ 1 , δ 1 } if p > N N -2 .
Step 2: first a priori estimate on v. The global estimate on v is obtained by using an iterative method based upon the integral representation of the solutions introduced in [START_REF] Bouhar | Integral representation of solutions of semilinear elliptic equations in cylinders and applications[END_REF]. We set

L = --∆ + (N -2) 2 4 I 1 2 ,
(5.39) and let S(t) = e tL be the semigroup of contraction generated by L in L 2 (S N -1 ). Introducing the standard Hilbertian decomposition of H 1 (S N -1 ) associated to the operator -∆ , it is classical that the space H = {φ ∈ L 2 (S N -1 ) : φ = 0} is invariant by L, since φ is the orthogonal projection in H 1 (S N -1 ) onto (ker(-∆ )

) ⊥ = H. Because inf σ(L H ) = N 2 4 ,
we have

S(t)φ L 2 (S N -1 ) ≤ e -N t 2 φ L 2 (S N -1
) for all t > 0 and φ ∈ H, (5.40)

and

S(t)φ L ∞ (S N -1 ) ≤ Ce -N t 2 φ L ∞ (S N -1
) for all t > 0 and φ ∈ H ∩ L ∞ (S N -1 ).

(5.41)

for some C > 0. Note that this last inequality is easily obtained by using the Hilbertian decomposition with spherical harmonics. The following representation formula for v * = v -v is proved in [START_REF] Bouhar | Integral representation of solutions of semilinear elliptic equations in cylinders and applications[END_REF]:

v * (t, .) = e 2α+2-N 2 
t S(-t)v * (0, .) -

0 t e 2α+2-N 2 s S(-s) 0 ∞ e N -2α-2 2 
τ S(-τ )H * (-t -τ + s, σ)dτ ds (5.42) where H * (t, .) = H(t, .) -H(t). Since

H * (t, .) L ∞ (S N -1 ) ≤ c 3 e δ 1 t
(5.43) by (5.33) where δ 1 is defined in (5.34), we get v * (t, .) L ∞ (S N -1 ) ≤ c 5 e (α+1)t + c 6 e δ 1 t for all t ≤ 0.

(5.44)

Writing v(t, .) = v(t) + v * (t, .) we deduce v(t, .) L ∞ (S N -1 ) ≤ c 7 e (α+1)t + c 8 e δ 1 t + c 9 e θ 1 t ≤ c 10 e θ 1 t for all t ≤ 0, (5.45) where we use the value of θ 1 defined in (5.38) and λ 1 , λ 2 given in (5.31). This leads us to an improvement of the decay estimate given by (5.20). Notice also that if

θ 1 = λ 2 = α + 2 -N (resp. θ 1 = λ 1 = α) when 1 < p < N N -2 (resp. N N -2 < p < N +2 N -2
) we deduce from the definition of v that the function u is smaller that c 10 |x| 2-N (resp. is bounded by c 10 ).

Step 3: a priori estimate on v by iterations. For the sake of understanding we will distinguish two cases according to the sign of p We assume first that there exists a largest integer n 0 such that θ n < λ 2 . Then θ 1 < θ 2 < ... < θ n < ...θ n 0 and θ n 0 +1 = λ 2 .

-N N -2 . (i) Let 1 < p < N N -2 . Since v(t,
If such a largest integer does not exist, then {θ n } is increasing with limit θ ∞ ≤ λ 2 . By (5.50), θ ∞ and λ 2 coincide. By (5.48)-(ii), {δ n } is increasing. For any > 0 there exists n ∈ N such that λ 2 -θ n < λ 2 for n ≥ n , hence

δ n > min p(λ 2 -), qλ 2 -) - σ p -1 > λ 2
if is small enough. This implies that θ n = λ 2 , contradiction. Therefore inequality (5.49) with n = n becomes v(t, .) L ∞ (S N -1 ) ≤ c 18 e (α+2-N )t for all t ≤ 0.

(5.51)

(ii) Let N N -2 < p < N +2 N -2 .
The proof differs from the previous one only with very little modifications. Since λ 2 < 0, (5.48) is replaced by

(i) δ 1 = min p , q -σ p-1
and

θ 1 = min{λ 1 , δ 1 } (ii) δ n = min pθ n-1 , qθ n-1 -σ p-1
and θ n = min{λ 1 , δ n }.

(5.52) Inequality (5.49) holds with the θ n defined above, and there exists an integer n such that θ n = λ 1 = α. Hence v(t, .) L ∞ (S N -1 ) ≤ c 19 e αt for all t ≤ 0.

(5.53)

Step 4: convergence. (i) When 1 < p < N N -2 , the function H defined (5.32) satisfies H(t, .) L ∞ (S N -1 ) ≤ c 20 e δt for all t ≤ 0.

(5.54) with δ = min{λ 2 p, λ 2 q -σ p-1 }. Hence |H(t)| satisfies the same estimate and v can be written as in (5.36) with new coefficients A, B and C(.) under the form v(t) = Ae λ 1 t + Be λ 2 t + C(t)e δt = Be λ 2 t + o(e λ 2 t ) as t → -∞.

( We set

δ 0 = -σ (N -2)(p -1) = 2p -q(p + 1) (N -2)(p -1) = N -q(N -1) N -2 ,
then 0 < δ 0 < 1 since 1 < q < N N -1 . We take 0 < δ < min δ 0 , N N -2 . Then there exists s 0 > 0 such that for 0 < s ≤ s 0 there holds Z 1 (s) < δ(1-δ) 2 s δ which implies

s 2 w ss + δ(1 -δ) 2 s δ + Z 2 (s) ≤ 0 in (0, s 0 ]. (5.74)
The function w is therefore concave. Since it vanishes for s = 0, it is increasing. We now adapt the proof of [3, Lemma 1] and integrate (5.74) on (s, s 0 ). Using the fact that Z 2 (s) ≥

1 (N -2) 2 z N N -2 (s), we obtain w s (s 0 ) = w s (s) + s 0 s w ss dτ ≤ w s (s) - s 0 s δ(1 -δ) 2 τ δ-2 + Z 2 (τ ) τ 2 dτ ≤ w s (s) - s 0 s δ(1 -δ) 2 τ δ-2 + z N N -2 (τ ) (N -2) 2 τ 2 dτ. (5.75) Since w N N -2 ≤ 2 2 N -2 z N N -2 + s N δ N -2
, we infer that

w s (s 0 ) ≤ w s (s) + 1 (N -2)(N -2 -N δ) s N δ N -2 -1 -s N δ N -2 -1 0 - 1 2 2 N -2 (N -2) 2 s 0 s w N N -2 (τ ) τ 2 dτ ≤ w s (s) -C 1 w N N -2 (s) s + C 2 s N δ N -2 -1 + C 1 w N N -2 (s) s 0 -C 2 s N δ N -2 -1 0 (5.76) for some C 1 , C 2 > 0.
We claim that

w s (s) -C 1 w N N -2 (s) s + C 2 s N δ N -2 -1 ≥ 0. (5.77)
Actually, if it were not true there would exist a sequence {s n } ⊂ (0, s 0 ] decreasing to 0 such that

w s (s n ) -C 1 w N N -2 (s n ) s n + C 2 s N δ N -2 -1 n < 0,
which would imply

w s (s 0 ) < C 1 w N N -2 (s n ) s 0 -C 2 s N δ N -2 -1 0 
.

(5.78) Since w(s n ) → 0, it would follow that w s (s 0 ) < 0, contradiction. Next we set ρ(s) = w(s) + cs

N δ N -2 ,
for some c > 0 which will be fixed later on. Then, from (5.77)

ρ s (s) ≥ C 1 w N N -2 (s) s + c N δ N -2 -C 2 s N δ N -2 -1 . Now ρ N N -2 (s) ≤ 2 2 N -2 w N N -2 (s) + c N N -2 s ( N N -2 ) 2 δ .
Therefore

ρ s (s) ≥ C 1 2 -2 N -2 ρ N N -2 (s) s + c N δ N -2 -C 2 s N δ N -2 -1 -C 1 2 -2 N -2 C N N -2 s ( N N -2 ) 2 δ-1 . Fixing c = 2C 2 N -2
N δ , we deduce that for s small enough,

ρ s (s) ≥ C 1 2 -2 N -2 ρ N N -2 (s) s , (5.79) 
which implies by integration, ρ(s) ≤ C 3 (-ln s) 

h tt + (N -2)(1 + t)) h t - 1 t h 2 N -2 - (N -2) 2 2 h + N (N -2) 4t 2 h -me σt p-1 (-t) (2-N )q 2 h t -(N -2) 1 + 1 t h 2 + |∇ h| 2 q 2 = 0. (5.81) Using methods introduced in [33], it is proved in [12, Corollary 4.2] that h(t, .) -h(t) L ∞ (S N -1 )
tends to 0 as t → ∞ and consequently that h(t, .) converges in C 2 (S N -1 ) to some limit and necessarily

∈ 0, N -2 √ 2 N -2 . 
(5.82)

This ends the proof of Lemma 5.4 and consequently of Theorem 1.9.

Remark 1. The convergence result 3 of Theorem 1.6 can be extended to the case p ∈

N N -2 , N +1 N -3 \ { N +2 N -2 } for every positive solution u such that |x| α u(x) is bounded. Remark 2. When p = N N -2
, the proof of the existence of solutions of (1.1) satisfying lim

x→0 |x| N -2 (-ln |x|) N -2 2 = N -2 √ 2 N -2
is obtained in the radial case in [START_REF] Bidaut-Véron | Radial singular and regular solutions of the Chipot-Weissler equation[END_REF] using techniques from dynamical systems theory such as the central manifold.

Remark 3. The description of the behaviour in the case q = 2p p+1 exhibits a remarkable complexity which appears out of reach in the general case. The treatment of radial solutions is performed in [START_REF] Bidaut-Véron | Radial solutions of scaling invariant nonlinear elliptic equations with mixed reaction terms[END_REF] and shows this complexity.

Proof of Theorem 1.10

Before proving the result we recall that if q ≥ N N -1 and 1 < p < q any nonnegative solution u of (1.1) in B r 0 \ {0} is a bounded weak solution of (1.1) in B r 0 by Theorem 1.6.

Proof. Next we assume p < q < N N -1 . By Theorem 1.3 u satisfies

|x|u(x) + |∇u(x)| ≤ c 1 |x| -1 q-1 , (5.83) 
for 0 < |x| ≤ r 0 . Since q > 2p p+1 , this implies that (5.28) holds and therefore u satisfies a uniform Harnack inequality in B r 0 2 in the sense that

u(x) ≤ c 2 u(y) for all x, y ∈ B r 0 2 \ {0} s.t. |x| = |y|. (5.84) 
Case 1. Assume that |x| N -2 u(x) is bounded. We cannot apply directly the result of Theorem 3.2 since q > 2p p+1 and we define u by u (x) = N -2 u( x) for > 0.

Then u k satisfies -∆u + m N -q(N -1) |∇u | q -N -p(N -2) u p = 0 in B r 0 .

Since q < N N -1 , N -q(N -1) > 0, therefore we deduce as in the proof of Theorem 3.2 that ∇u satisfies estimate (3.15) with k replaced by , which implies

|∇u(x)| ≤ c 3 |x| 1-N for all x ∈ B r 0 2 \ {0}. (5.85) then |∇u| q ∈ L N N -1 -(B r 0 ) and u p ∈ L 1 (B r 0 ),
for any > 0. By the Brezis-Lions Lemma [START_REF] Brezis | A note on isolated singularities for linear elliptic equations[END_REF] there exists k ≥ 0 such that u satisfies vanishing on ∂B r 0 (see [START_REF] Bidaut-Véron | Local and global properties of solutions of quasilinear Hamilton-Jacobi equations[END_REF]), we obtain by the maximum principle that u ≥ ũk . The solution u * k of (5.88) with r 0 = ∞ and vanishing at infinity is explicit and given in [START_REF] Bidaut-Véron | Local and global properties of solutions of quasilinear Hamilton-Jacobi equations[END_REF]Theorem 3.13] by

-∆u + m|∇u| q = u p + kδ 0 in D (B r 0 ). ( 5 
u * k (x) = ∞ |x| s 1-N q -1 N -q(N -1) s N -q(N -1) + c N k 1-q -1 q-1
ds.

(5.89)

Therefore we easily obtain that the solution u verifies

u * k (x) -C(r 0 ) ≤ ũk ≤ u(x) for all x ∈ B r 0 \ {0}, (5.90) 
for some constant C(r 0 ) > 0.

If k = 0, we proceed as in the proof of Lemma 

ξ m |x| -β -C(r 0 ) ≤ ũ∞ ≤ u(x) for all x ∈ B r 0 \ {0}, (5.91) 
where ξ m is expressed by (5.8); indeed it is proved in the above mentioned article that lim

k→∞ u * k := u * ∞ (x) = ξ m |x| -β . This yields lim inf x→0 |x| β u(x) ≥ ξ m .
(5.92)

In order to obtain the sharp estimate from above, we define, for > 0, S 

[u](x) = β u( x) = u (x) in B r 0 \ {0}, where u satisfies -∆u + m|∇u | q = β(p-1)-2 u p . ( 5 
|x|u n (x) + |∇u n (x)| ≤ c 4 |x| -1 q-1 if 0 < |x| ≤ r 0 2rn .
(5.95) Since q > p > 2p p+1 , we have 2 -β(p -1) > 0 and by standard regularity result (see e.g. [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]), there exists a subsequence, still denoted by {u rn }, and a C 2 function u * such that u rn → u * in the C 2 loc topology of R N \ {0}. The function u * is a nonnegative solution of the Riccatti equation (1.7) in R N \ {0} and it tends to 0 at ∞. By [7, Theorem 3.13], either u * ≡ 0, either there exists k > 0 such that u * verifies (5.87), or

u * (x) = ξ m |x| -β , (5.96) 
where ξ m is expressed by (5.8). Note that ξ m |x| -β is the maximal positive solution of (1.7) in R N \ {0} which tends to 0 at infinity. Since u * (1, σ * ) = φ * ≥ ξ m , we obtain that φ * = ξ m which implies lim

x→0 |x| β u(x) = ξ m .
(5.97)

Remark. The existence of solutions of (5.86) for any k > 0 is proved in the radial case in [START_REF] Bidaut-Véron | Radial singular and regular solutions of the Chipot-Weissler equation[END_REF].

We can observe that if k > 0 is small enough the existence is straightforward since there exists a solution ûk of -∆u -

u p = kδ 0 in D (B r 0 ) u = 0 in ∂B r 0 , (5.98) 
see [START_REF] Lions | Isolated singularities in semilinear problems[END_REF]. The function ûk is a supersolution of (1.1). Since the solution ũk of (5.88) is a subsolution, and both ûk and ũk are ordered and have the same behaviour at 0 given by (5.87) it follows that there exists a solution u k of (1.1) which vanishes on ∂B r 0 and satisfies ũk ≤ u k ≤ ûk . Hence it satisfies (5.87) and it is easy to check that it is a solution of (5.86).

Behaviour at infinity

The asymptotic behaviour of positive solutions of (1.1) in an exterior domain is obtained in some particular cases by using the energy method. Here we make more precise the results contained in Theorem 1.5.

Theorem 5.5 Let N ≥ 3, N N -2 < p < N -1 N +3 , p = N +2 N -2 , q > 2p p+1 and m > 0. If u is a positive solution of (1.1) in B c r 0 satisfying (1.22) the following alternative holds. (i) Either lim |x|→∞ |x| α u(x) = ω 0 (5.99)
where ω 0 is given by (5.7).

(ii) Or there exists k > 0 such that

lim |x|→∞ |x| N -2 u(x) = k.
(5.100)

Proof. We recall that estimate (1.22) holds when N N -2 < p < N +2 N -2 by the doubling method. As in the proof of Theorem 1.9 we set u(r, θ) = r α w(t, θ) with t = ln r > 0 (we can assume that r 0 < 1) and w is a bounded solution of (5.11) in (0, ∞) × S N -1 . Notice that σ > 0. The omega-limit set of the trajectory

T + [v] = t≥0 v(t, .)
is a non-empty compact connected subset Γ + of C 2 (S N -1 ). The energy method used in the proof of Theorem 1.9 applies because p

= N +2 N -2 , hence lim t→∞ v t (t, .) L 2 (S N -1 ) = lim t→∞ v tt (t, .) L 2 (S N -1 ) = 0.
This implies that Γ + is a compact and connected subset of the set of nonnegative solutions of (5.3). Since N N -2 < p < N +1 N -3 , Γ + = {0, X 0 } by [START_REF] Gidas | Local and global behaviour of positive solutions of nonlinear elliptic equations[END_REF], hence if X 0 ∈ Γ + , then (5.99) holds, otherwise lim |x|→∞ |x| α u(x) = 0.

(5.101)

In such a case, we obtain by changing t into -t as in the proof of Lemma 5.2, that there exists > 0 such that

v(t, θ) ≤ c 1 e -t in (0, ∞) × S N -1 =⇒ u(x) ≤ c 1 |x| -α-in B r 0 \ {0}. (5.102) 
The computations of Lemma 5.3 are still valid, but since t → ∞ the results therein have to be re-interpreted. Since the spherical average v(t) of v(t, .) satisfies (5.35), in this equation the right-hand side H(t) which satisfies H(t) ≤ c 2 e -δ 1 t and δ 1 expressed by (5.34). By the same standard method of "the variation of constants" the expression (5.36) which expressed all the solutions of under the form

v(t) = Ae λ 1 t + Be λ 2 t + C(t)e -δ 1 t , (5.103) 
where A and B are constant and C(t) is a bounded function. The exponents λ 1 and λ 2 are given by (5.31). It is important to notice that λ 2 < 0 < λ 1 . Thus, v(t) → 0 when t → ∞ implies A = 0 and v(t) ≤ c 3 e -δ 1 t for t > 0 τ S(τ )H * (t + τ -s, σ)dτ ds

(5.105) see [15, (1.14)], where H * (t, .) = me

-σt p-1 (v t -αv) 2 + |∇ v| 2 q 2 -v p - 1 |S N -1 | S N -1 me -σt p-1 (v t -αv) 2 + |∇ v| 2
q Since H(t, .) L ∞ (S N -1 ≤ c 4 e -δ 1 t , and (5.41) holds, we deduce that v * (t, .) L ∞ (S N -1 ) ≤ C 1 e -(N -α-1)t + C 2 e -δ 1 t for all t ≤ 0.

(5.106) Since v(t, .) = v(t) + v * (t, .) we deduce v(t, .) L ∞ (S N -1 ) ≤ C 1 e -(N -α-1)t + C 2 e -δ 1 t + C 3 e -θ 1 t ≤ C 4 e -θ 1 t for all t ≤ 0, (5.107) with θ 1 from (5.48)-(i). We iterate the process and, defining δ n and θ n by (5.48), we obtain, as long as θ n < λ 2 , v(t, .) L ∞ (S N -1 ) ≤ C 1 e -(N -α-1)t + C 2 e -δnt + C 3 e -θnt ≤ C 4 e -θnt for all t ≥ 0, (5.108)

Then there exists n * such that θ n * = λ 2 = α + 2 -N and this implies that v(t, .) ≤ C 5 e (α+2-N )t . Remark. The existence of radial solutions in B c r 0 satisfying (5.100 ) with k > 0 is proved in [START_REF] Alarcón | Nonexistence results for elliptic equations with gradient terms[END_REF]. The next result completes Theorem 1.4. q -1 N -q(N -1)

s N -q(N -1) + k 1-q µ -1 q-1 s N -1 ds. q -1 N -q(N -1)

s N -q(N -1) + k 1-q µ -1 q-1 s N -1 ds = ξ m , (5.116) actually this limit is independent of k µ , it follows that lim inf 

Appendix

In this Section we prove a technical result concerning the existence of positive radial solutions of -v -N -1 r v + m|v | q = 0 (6.1) on (r 0 , ∞) satisfying non-homogeneous Dirichlet conditions at r = r 0 and at infinity. Lemma 6.1 Let q > 1, 0 < r 0 < τ and a, b > 0. Then there exists a solution v of (6.1) on (r 0 , τ ) satisfying v(r 0 ) = a and v(τ ) = b if and only if a = b, or, if a = b:

1-When a < b, for any 1 < q ≤ 2 and τ > r 0 .

2-When a < b, for any q > 2 and τ ≥ τ * > r 0 where τ * depends on b -a.

3-When a > b, for any 1 < q ≤ 2 and τ > r 0 4-When a > b, for any q > 2 and τ > r 0 if and only if a -b < q(N -1) -N m(q -1)

1 q-1 r 2-N 0 τ r 0 1 t 1-N 1 -t N -q(N -1) -1 q-1 dt. (6.2) 
Proof. If a = b the constant function v ≡ a is a solution. If v 1 and v 2 are solutions of (2.17) and if there exists θ > r 0 such that v 1 (θ) = v 2 (θ), then v 1 = v 2 + v 1 (θ) -v 2 (θ) by the Cauchy-Lipschitz theorem. This implies in particular that if v 1 and v 2 are solution either on (r 0 , τ ) with v 1 (r 0 ) = v 2 (r 0 ) and v 1 (τ ) = v 2 (τ ), or on (r 0 , ∞) with v 1 (r 0 ) = v 2 (r 0 ) and lim r→∞ (v 1 (r) -v 2 (r)) = 0, then v 1 = v 2 . We first consider the problem on (r 0 , τ ) for some τ > r 0 and if a, b > 0 we denote by v := v a,b the solution of (6.1) on (r 0 , τ ) such that v(r 0 ) = a and v(τ ) = b. Solutions are explicit by setting w(r) = r N -1 v (r), then w -mr (1-q)((N -1)) |w| q = 0. (6.3)

Case 1: a < b. If a solution exists it is increasing and we can replace v by ṽ = v -a, thus ṽ(r 0 ) = 0 and ṽ (r) ≥ 0

r N -1 ṽ (r) =       
(r N -1 0 ṽ (r 0 )) 1-qm(q-1) N -q(N -1) r N -q(N -1) -r N -q(N -1) 0

-1 q-1 if q = N N -1
(r N -1 0 ṽ (r 0 )) 1-q -m(q -1) ln r r 0

-1 q-1 if q = N N -1 .
We set X := ṽ (r 0 ) and we study the mapping r → T X (r) defined by T X (r) = r r 0 s 1-N (r N -1 0 X) 1-qm(q -1) N -q(N -1)

s N -q(N -1) -r N -q(N -1) 0 -1 q-1 ds (6.4) if q = N N -1 , and T * X (r) = r r 0 s 1-N (r N -1 0 X) 1-q -m(q -1) ln r r 0 -1 q-1 ds (6.5) τ ≥ τ * there exists X ≤ X 0 such that T X (τ ) = b -a. We can explicit τ * by τ * = rX * where X * is characterized by C 2 (X * ) = b -a.

Case 2: a > b. Then v is decreasing and the method has to be slightly modified in order to obtain a positive solution of -v -N -1 r v + m|v | q = 0 on (r 0 , τ ) such that v(r 0 ) = a and v(τ ) = b. By replacing v by ṽ := v -b we look for a solution ṽ vanishing at τ and positive on (r 0 , τ ). Let X = ṽ (r 0 ) then -r N -1 ṽ (r) =      (-r N -1 0 X) 1-q + m(q-1)

N -q(N -1) r N -q(N -1) -r N -q(N -1) 0

-1 q-1 if q = N N -1
(-r N -1 0 X) 1-q + m(q -1) ln r r 0

-1 q-1 if q = N N -1 .
We study the mapping r → S X (r) defined by S X (r) = a -b -r r 0 s 1-N (-r N -1 0 X) 1-q + m(q -1) N -q(N -1)

s N -q(N -1) -r N -q(N -1) 0 -1 q-1 ds (6.11) if q = N N -1 and S * X (r) = a -b -r r 0 s 1-N (-r N -1 0 X) 1-q + m(q -1) ln s r 0 -1 q-1 ds (6.12)

if q = N N -1 . If q ≤ N N -1 , these two functions are defined on (r 0 , τ ). A solution ṽ satisfying the boundary conditions at r = r 0 and r = τ corresponds to the fact that S X (τ ) = 0 if q = N N -1 or S * X (τ ) = 0 if q = N N -1 . (i) If q < N N -1 we have lim X↑0 S X (τ ) = a -b and lim X→-∞ S X (τ ) = -∞, (6.13) because q < 2 implies that τ r 0 s 1-N m(q-1)

N -q(N -1) s N -q(N -1) -r N -q(N -1) 0 -1 q-1 ds = ∞.

(ii) If q = N N -1 we have also lim This implies that in these two cases for any τ > 0 there exists a unique X < 0 such that S X (τ ) = 0 or S * X (τ ) = 0. (iii) If q > N N -1 , S X (r) is defined for any X ≤ 0 and any r ∈ (r 0 , τ ). We write it under the form S X (τ ) = a -b -τ r 0 s 1-N (-r N -1 0 X) 1-q + m(q -1) q(N -1) -N r N -q(N -1) 0 -s N -q(N -1) -1 q-1 ds (6.15) We have that lim X↑0 S X (τ ) = a -b and lim X→-∞ S X (τ ) = -∞ if N N -1 < q ≤ 2; in such case there exists X τ < 0 such that S Xτ (τ ) = 0. On the contrary, if q > 2, we have lim X→-∞ S X (τ ) = a -b -q(N -1) -N m(q -1) 1 q-1 r 2-N 0 τ r 0 1 t 1-N 1 -t N -q(N -1) -1 q-1 dt. (6.16)

In that case we can find some X = X(τ ) < 0 (actually always unique) such that S Xτ (τ ) = 0 if and only if a -b < q(N -1) -N m(q -1) 1 q-1 r 2-N 0 τ r 0 1 t 1-N 1 -t N -q(N -1) -1 q-1 dt. (6.17)

Letting τ → ∞ we can find τ > r 0 such that (6.17 ) holds if and only if (6.2) holds.
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 14 Let p > 1, m > 0 and r 0 > 0. 1-Let 1 < q < 2p p+1 . If u is a positive solution of (1.1) in B c r

  since f is continuous and vanishes only at 0. If µ is unbounded, then lim r→∞ µ(r) = ∞ which implies lim |x|→∞ u(x) = ∞.

|x|=r 0 u

 0 (x) and b τ = inf |x|≥τ u(x). If 0 < a ≤ b0 and 0 ≤ b ≤ b τ we consider the sequence of radially symmetric functions defined in B τ ∩ B c r 0 functions {v k,τ } k∈N such that v 0,τ ≡ 0, and for k ≥ 1

(

  ii) Assume now that lim r→∞ µ(r) = 0. Inequality (1.16)-(a) follows from Theorem 1.1 (1-iii). Since q > p > N N -2 we have q > N N -1 . Thus (1.16)-(b) is a consequence of Corollary 2.5.

  lim |x|→∞ u(x) = 0 =⇒ lim |x|→∞ |∇u(x)| = 0. (3.7)

. 34 )

 34 Remark. The constants C i in (3.32)-(3.33) (resp. (3.34)) depend on sup Br 0 \B 3r 0 4 u(y) (resp. sup B 2r 0 \Br 0 u(y)).

1 γ 2 =

 12 (x). (3.37) Then M (x) → 0 when |x| → ∞. Let us assume that |x| γ u(x) is unbounded in B c 2r 0 . Then by Theorem 3.4 applied with Σ = B c 2 , D = B c 2 , thus Γ = B c 2 \ B c ∂B 2 , and k = n, there exists a sequence {y n } ⊂ B c 2 such that (|y n | -2)M (y n ) → ∞ when n → ∞. There exists a sequence {x n } ⊂ B c 2 such that

2 , D = B 1 2 \

 22 .46) Jointly with the conditions (3.45) there exists a subsequence of {u n } still denoted by {u n } and a function v ∈ W 1,∞ (R N ) such that u n converges to v locally uniformly in R N and ∇u n ∇v for the weak topology of L ∞ loc (R N ). By a classical viscosity result [21, Proposition IV.1], v is a bounded viscosity solution of m|∇v] q = v p in R N . (3.47) By [21, Proposition 4.3] (3.43) has a unique viscosity solution which is zero which is not compatible with v(0) = 1 by (3.45), which ends the proof. Proof of Theorem 1.4-(2). We can take that r 0 = 1. The proof is still based upon Theorem 3.4 with Σ = B 1 {0} and Γ = {0}. Thus we assume that there exists a solution u ∈ C(B 1 \ {0}), solution of (1.1) in B 1 \ {0} and a sequence of points {y n } ⊂ B 1 \ {0} such that |y n |M (y n ) ≥ 2n (3.48)

  .49) Clearly x n → 0 as n → ∞. We define u n by (3.39) and (3.40) holds. The gradient estimate (3.41) is verified and if

Using ( 3 .40) we obtain max |x|≤ n 2 |∇u

 32 n (x)| ≤ c 11 o(1) + 2 p p-q + o(1) ≤ c 12 . (3.51) Hence (3.45) holds with a new constant c 13 . Equation (3.46) is verified, but now σ > 0. Hence n → 0 as n → ∞. We conclude by the same argument as the one used in (1). Remark. In Theorem 1.4-(2) it is possible to prove that the constant C in estimate (1.20) is independent u provided all the functions under consideration are uniformly locally bounded from above in B r 0 \ {0} in the sense that for any > 0 there exists C > 0 independent of u such that u(x) ≤ C for all x ∈ B r 0 \ B . (3.52)

1 2 1 p+1≤

 11 7), ∇u(x) tends to 0 as |x| → ∞. Estimate (1.22) is equivalent to M (x) := u p-(x) + |∇u(x)| p-C|x| -1 for all x ∈ B c 2 . (3.53) Using (1.21) jointly with (3.7) we have that M (x) → 0 as |x| → ∞. Let us assume that for any C > 0 inequality (3.53) does not hold; then there exists a sequence {y n } ⊂ B c 2 such that lim n→∞ (|y n | -2)M (y n ) = ∞. There exists a sequence {x n } ⊂ B c 2 such that 3.38 holds.

  .54) Then we have M (x n )|x n | > 2n and for any x ∈ B n ,

  equation (3.56) admits no global positive solution. Concerning (3.57), if m ≤ 0 satisfies no global positive solution can exist by Theorem B. This ends the proof. Remark. In the case q = 2p p+1 , the assumption (1.21) can be relaxed and replaced by lim sup |x|→∞ u(x) < ∞. (3.58) Actually, if this holds we have by (3.6) lim sup |x|→∞ |∇u(x)| < ∞. (3.59)

2 )

 2 by Fatou's theorem and the first statement follows. Next consider ζ ∈ C ∞ 0 (B r 0 /2 ) and take ζη n as a test function, then Br 0 (ζ∇u.∇η n + η n ∇u.∇ζ) dx + m Br 0 |∇u| q ζη n dx = Br 0 u p ζη n dx.

T

  k (u r j+1 ) for test function and letting successively n → ∞ and k → ∞ we obtain m Br 0 u r j+1 |∇u| q ηq+r j+1 dx ≤

. 10 )

 10 Let us assume now that u / ∈ L ∞ (B r 0 ), otherwise the result follows, then lim j→∞ ηu L N (q+r j+1 ) N -q

2

 2 and m > 0 there exists a unique positive constant solution x m to (5.2). 1-b If N = 2 and p > 1, or N ≥ 3 and 1 < p < N N -2 there exists no positive constant solution to (5.2) if 0 ≤ m < µ * , a unique positive constant solution x µ * if m = µ * and two positive constant solutions x 1,m < x 2,m if m > µ * , where µ * := (p + 1) N -(N -2)p 2p p p+1.

(i) δ 1 = 1 and θ 1 = min{λ 2 , δ 1 }

 11121 min p , q -σ p-(ii) δ n = min pθ n-1 , qθ n-1 -σ p-1 and θ n = min{λ 2 , δ n }, (5.48) for all the integers n such that δ n < λ 2 . Then δ n , θ n > 0 and the function v satisfies v(t, .) L ∞ (S N -1 ) ≤ c 1,n e (α+1)t + c 2,n e δnt + c 3,n e θnt ≤ c 4,n e θnt for all t ≤ 0. (5.49) Furthermore θ n -θ n-1 = min λ 2 -θ n-1 , min (p -1)θ n-1 , (q -1)θ n-1 -

  .55) Since formulas (5.42), (5.43) and (5.44) holds with δ 1 replaced by δ we conclude that v * (t, .) L ∞ (S N -1 ) = o(e λ 2 t ) as t → -∞, (5.56) and finally lim t→-∞ e (N -2-α)t v(t, .) = B uniformly on S N -1 . (5.57) Equivalently lim x→0 |x| N -2 u(x) = B. (5.58)

  .86) Furthermore, u verifies lim r→0 r N -2 u(r, .) = c N k (5.87) in L 1 (S N -1) and actually uniformly. By comparing u with the radial solution ũk of the Riccatti equation (1.7) -∆u + m|∇u| q = kδ 0 in D (B r 0 ) (5.88)

  Let k > 0, since |x| N -2 ũk (x) = c N k, where ũk has been defined in (5.88), for r n ≤ r n k , one has ũk ≤ u in B r 0 \ B rn by the maximum principle, which implies that the same inequality holds in B r 0 \ {0}. Let k → ∞ implies that lim k→∞ ũk := ũ∞ ≤ u in B r 0 \ {0}. Since (5.90) still holds with k = ∞ and combining with[START_REF] Bidaut-Véron | Local and global properties of solutions of quasilinear Hamilton-Jacobi equations[END_REF] Theorem 3.13] we obtain that

  .93) Let φ * = lim sup |x|→0 |x| β u(x) = lim rn→0 r β n u(r n , θ n ),for some sequence {(r n , θ n )} → (0, θ * ) and set u n (x) := u rn (x). Then φ * ≥ ξ m by (5.92). The function u n satisfies -∆u n + m|∇u n | q = r 2-β(p-1)

(5.104) with δ 1

 1 given by (5.48)-(i). The representation formula (5.42 ) valid for v * = v -v is replaced by v * (t, .) = e

  Be λ 2 t (1 + o(1)) as t → ∞. Since v * (t, .) L ∞ (S N -1 ) := v(t, .) -v(t) L ∞ (S N -1 ) ≤ C 1 e -(N -α-1)t + C 2 e -δ n* t and δ n * = min pθ n * , qθ n * + σ p -1 > θ n * , we conclude that lim t→∞ e (N -2-α)t v(t, .) = B uniformly on S N -1 , (5.110) which is (5.100) with k = B. By Corollary 2.5 we have necessarily k > 0.

Theorem 5 . 6 2 - 1 q- 1 .

 56211 Let N ≥ 3, 1 < q < min{ 2p p+1 , N N -1 } and m > 0. Let u be a positive solution of(1.1) in B c r 0 . 1-Then lim inf |x|→∞ |x| β u(x) ≥ ξ m . (5.111) If |x| β u(x) is bounded, then lim |x|→∞ |x| β u(x) = ξ m .(5.112)Proof. For ≥ 1 the function u (x) = β u( x) satisfies (5.93) in B c r 0 and is bounded therein. Since q < 2p p+1 , β(p -1) -2 < 0, thus we deduce by regularity techniques that|x|u(x) + |∇u(x)| ≤ C|x| -(5.113) This implies that |x| 2 u p-1 (x) + |x||∇u(x)| q-1 ≤ C in B c r 0 ,and therefore Harnack inequality holds uniformly in B c r 0 in the sense that max |x|=r u(x) ≤ C min |x|=r u(x) for all r ≥ r 0 . (5.114) Set µ = min |z|=1 u(z) and define k µ by µ = u * kµ (1) = ∞ 1

  (5.115) Then for any > 0, u ≥ (u * k -) + which is a subsolution of the Riccatti equation inB c 1 . This implies that u ≥ u * kµ in B c 1 . Since lim |x|→∞ |x| β u * kµ (x) = lim |x|→∞ ∞ |x|

n→ 0 .

 0 |x|→∞ |x| β u(x) ≥ ξ m . This implies (5.112). Set ψ * = lim sup |x|→∞ |x| β u(x) = lim rn→∞ r β n u(r n , θ n ) where θ n ∈ S N -1 and we can assume that θ n → θ * ∈ S N -1 . Then ψ * ≥ ξ m . The function u rn : x → r β n u(r n x) satisfies -∆u rn + m|∇u rn | q = r 2-β(p-1) By the local regularity a priori estimates inherited from (5.113) implies that, up to a subsequence still denoted by {r n }, u rn converge in the C 2 -local topology of R N \ {0} to a positive solution w of -∆w + m|∇w| q = 0 in R N \ {0}. (5.118) Because of (5.113) and similarly to the proof of Theorem 1.10 we can use Arzela-Ascoli theorem to infer that up to a subsequence still denoted by {r n }, u rn converges in the C 2 loc topology of R N \ {0} to a positive solution of the Riccatti equation (1.7) in R N \ {0} which is a function u * k (0 < k ≤ ∞) given by the expression given by (5.89). Because ψ * = w(1) ≥ ξ m = lim k→∞ u * k (1). Hence ψ * = ξ m which conclude the proof.

  the function v 1,τ exists without any restriction on a and b. If q > 2 we have existence if a ≤ b provided τ ≥ τ * where τ * is defined in Lemma 6.

	1 (2), and
	if a > b the condition for existence is
	b < a < b + Θ.
	In both case, the function v 1,τ is positive, monotone. and dominated by u.
	Next for k = 2 we apply the extension [34, Corollary 1.4.5] of the classical result [14, Théorème
	2.

1]. The function v 1,τ satisfies equation (2.19) with right-hand side 0 instead of f (v k-1,τ ). By the maximum principle it is dominated by the supersolution u, thus f (u) ≥ f (v 1,τ ). Then there exists a function v 2,τ which satisfies (2.19) with k = 2 and

  .) ≤ c 10 e θ 1 t , then by Theorem 3.2 that v(t, .)+|∇v(t, .)| ≤ c 11 e θ 1 t . Therefore H(t, .) L ∞ (S N -1 ) ≤ c 12 e δ 2 t Ae λ 1 t + Be λ 2 t + C(t)e δ 2 t where A, B are constants and C is bounded which implies θ 2 = min{λ 2 , δ 2 }. Since (5.35) holds with H satisfying (5.33) with δ 1 replaced by δ 2 v(t) ≤ c 13 e θ 2 t , (5.46) with θ 2 = min{λ 1 , λ 2 , δ 2 } = min{λ 2 , δ 2 }. The integral representation (5.42) is satisfied by v * = v -v and we obtain as in the previous step that (5.44) holds with δ 1 replaced by δ 2 and finally v(t, .) L ∞ (S N -1 ) ≤ c 14 e (α+1)t + c 15 e δ 2 t + c 16 e θ 2 t ≤ c 17 e θ 2 t for all t ≤ 0. (5.47) If θ 2 = α + 2 -N we have the desired estimate, otherwise we iterate. We define the sequences

	with
	δ 2 = min θ 1 p, θ 1 q -σ p-1 .
	Since (5.35) holds with H satisfying (5.33) with δ 1 replaced by δ 2 , we deduce that
	v(t) =

  5.3-Step 4 with the same sequences { δn } and { θn }. With the notations therein, we obtain (5.65) and (5.66) and derive that u is a bounded regular solution. Case 2. Assume that |x| N -2 u(x) is unbounded near x = 0. Then there exists a sequence {r n } decreasing to 0 such that lim

Therefore u ∈ L p (B r 0 ). We use the same type of cut-off function η n used in the proof of Theorem 1.6, except that we assume also that |∆η n | ≤ cn 2 1 B 1/n \B 1/(2n) , and we obtain -Br 0 u∆η n dx + m Br 0 |∇u| q η n dx = Br 0 u p η n dx.

(5.59)

The right-hand side of (5.59) is bounded from above by u p L p (B 2r 0

3

) . We have also

By Fatou's lemma we deduce that ∇u ∈ L q (B 2r 0

3

). Therefore, by the Brezis-Lions Lemma [START_REF] Brezis | A note on isolated singularities for linear elliptic equations[END_REF] we conclude that there exists k such that (1.23) holds.

If k = 0, then B = 0 and (5.55) yields

with θ1 = min λ 1 , δ . Using again the representation (5.42) combined with (5.54) we obtain v(t, .) L ∞ (S N -1 ) ≤ c 24 e (α+1)t + c 25 e δt + c 26 e θ1 t ≤ c 27 e θ1 t for all t ≤ 0, (

We define now the sequence (i) δ1 := δ and θ1 = min{λ (5.66)

Using again the same type of cut-off function η n as in the proof of Theorem 1.6 we obtain successively that |∇u| ∈ L q (B r 0 ) and that u is a classical solution.

(ii) When N N -2 < p < N +2 N -2 , (5.54) is valid with δ = δ = min{λ 1 p, λ 1 q -σ p-1 }. Hence the proof of (i) when A = 0 applies and we obtain that u is a bounded classical solution.

Lemma 5.4 Let the assumptions of Theorem 1.9 holds with N ≥ 3 and p = N N -2 , then (i) either |x| N -2 (-ln |x|)

Proof. The proof is based upon a combination of several techniques introduced in [START_REF] Véron | Comportement asymptotique des solutions d'équations elliptiques semi-linéaires dans R N[END_REF] for analysing the exterior problem

and adapted in [START_REF] Aviles | Local behavior of solutions of some elliptic equations[END_REF] to characterise the isolated singularities of

(5.68)

(5.69)

for 0 < |x| ≤ r 1 where r 1 < min 1, r 0 2 . The function v which is defined by (5.10) with α = N -2 here is bounded and satisfies

in (-∞, 0] × S N -1 . By (5.15 ), v(t, .) → 0 uniformly when t → -∞. The average v satisfies

where

Set s = e (N -2)t , z(s, .) = v(t, .) and z(s) = v(t), then there holds

where

Using the energy method as in Lemma 5.2 and (5.15) we obtain that z(s, .) L ∞ (S N -1 ) + sz s (s, .) L ∞ (S N -1 ) → 0 as s → 0.

(5.72)

(iii) If N -q(N -1) < 0, T X is defined for any r ≥ r 0 if X ≤ X 0 := N (q-1)-N m(q-1)r 0 1 q-1 , and for

In case (i) (resp. (ii)), we fix τ > r 0 then the mapping X → T X (τ ) (resp. X → T * X (τ )) is continuous, increasing and defined provided τ < r X (resp. τ < r * X ), that is

τ N -q(N -1) -r N -q(N -1) 0

in case (i) and

in case (ii). Furthermore T 0 (τ ) = T * 0 (τ ) = 0 and lim X↑Xτ T X (τ ) = lim X↑X * τ T * X (τ ) = ∞ since q ≤ 2. As a consequence there exists a unique X ∈ (0, X τ ) (resp. X ∈ (0,

where C 2 (X) = q(N -1) -N m(q -1) 1 q-1 r q-2 q-1 X 1 r 0 rX t N -q(N -1) -1 -1 q-1 t 1-N dt.

(6.10)

For τ > r 0 , we introduce again the mapping X → T X (τ ). In view of the last relation in the case N N -1 < q ≤ 2 then for any b > a and τ > r 0 there exists a unique X > X 0 such that τ < r X and T X (τ ) = b -a.

If q > 2 and N ≥ 3, for any b > a there exists τ * > r 0 , depending on b -a, such that for any