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Local behaviour of the solutions of the
Chipot-Weissler equation

Marie-Francgoise Bidaut-Véron*
Laurent Véron f

Abstract We study the local properties of positive solutions of the equation —Au = u? — m |Vu|? in a
punctured domain Q\ {0} of RY or in a exterior domain R™ \ B, in the range min{p, q} > 1 and m > 0.
We prove a series of a priori estimates depending p and ¢, and of the sign of ¢ — % and ¢ — p. Using
various techniques we obtain removability results for singular sets and we give a precise description of
behaviour of solutions near an isolated singularity or at infinity in R¥.
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1 Introduction
The aim of this paper is to study the local properties of solutions of
Lonpqtt = —Au+m|Vu|? — [ulf~tu =0 in Q, (1.1)

where m is a nonnegative real number, p,q > 1 and 2 is either a punctured domain if we are
interested in isolated singularities, or an exterior domain if we study the asymptotic behaviour
of solutions. This equation has been introduced by Chipot and Weissler [19] in connection with
the associated evolution problem

O+ Loppqu="0  inQx(0,7T). (1.2)

Its study has been developed in the radial case in [20] and completed in [35]. A very deep
research of radial ground states has been carried on by Serrin and Zou in [30] and [31]. Several
non-existence results of positive, not necessarily radial, supersolutions in an exterior domain
have been obtained in [1] and [2].

The interest of the operator L, , 4 lies in the presence of two reaction terms which are acting
in opposite directions and are of a different nature. The following exponents play a key role in
the study of asymptotics of solutions of (1.1),

2 2—q q

o = 75: 7’}/:
p—1 qg—1 P—q

ifg#p and o= (p+1)qg—2p. (1.3)

When ¢ = 1% the equation (1.1) is invariant under the transformation 7, defined by

Tolu)(z) = (*u(lx). (1.4)

. .. . . . 2
This critical value of ¢ plays a fundamental role in the analysis of the solutions. If 1 < g < #’1,

the source term is dominant for large values of u e.g. near a singular point, and the behaviour
of singular solutions is modelled by the Lane-Emden equation

—Au—uP =0. (1.5)

If 1% < q < p, the diffusion is negligeable and the behaviour of singular solutions is modelled

by an etkonal equation
u? —m|Vul? = 0. (1.6)
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Notice that in this equation the sign of p — ¢ is fundamental and makes the distinction between
the existence or the non-existence of singular solutions. Another equation which plays a crucial
role is the Riccatti equation

—Au~+ m|Vul? = 0. (1.7)

For this equation the value of ¢ with respect to 2 is the key element. Finally, if ¢ = % no
reaction term is dominant and the value of m becomes fundamental as the followmg result

proved in [8] shows it:

Theorem A Let N > 2,1 <p< N+2 and q = %. Then there exist two positive constants

c = ¢(N,p) and mqy such that for any real number m verifying |m| < mq, any positive solution
u of (1.1) in Q satisfies

2

uw(z) + |Vu(z)|P+1 < ¢ (dist (x,00)) ™ for all x € Q. (1.8)

As a consequence there exists no positive solution (called ground state) in RY.

An a priori estimate holds by a perturbation method for positive solutions, for all values of
m whenever 1 < p < 222 and the following result is obtained in [29].

Theorem B Let N > 2, 1 <p< N+2 and 1 < g < p+ . For any m € R there exists a positive
constant ¢ = ¢(N,p,q, m) such that cmy positive solutzon u of (1.1) in Q satisfies

2

u(x) + |Vu(a)| 77T < c(1+ (dist (x,00)) ) for all z € Q. (1.9)

Up to now, these two results were the only ones known concerning a priori estimates for
general nonnegative solutions when m > 0. In the present article we prove new upper estimates
for positive solutions u of (1.1) either in a punctured domain B,, \ {0} or in an exterior domain
Q=B

The next statements extend previous results concerning positive supersolutions proved in [1].
If u is a positive continuous function defined either in B,, \ {0} or in By, we set

p(r) = inf u(x), (1.10)

|z|=r
and we prove the following estimates valid in the case 1 < ¢ < p.

Theorem 1.1 Let N > 1, p,q > 1 and m > 0.

1- Let u be a C? positive supersolution of (1.1) in By, then

1-(i) If 2 p+1 < q < p there exists C = C(N,p,q,u) > 0 such that
pu(r) < Cr=*  for all r > 2ry. (1.11)
1-(ii) If 1 < ¢ < 1% there exists C = C(N,p,q,u) > 0 such that

pu(r) < Cr=7  for all r> 2rg. (1.12)
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1-(iir) If 1 < p < q and p(|x|) is bounded, then (1.12) is still satisfied.
2- Let u be a positive supersolution of (1.1) in By, \ {0}, then
2-(i) If 1% < q < p there exists C = C(N,p,q,u) > 0 such that

p(r) <Cr™7 forall0 <r < 3. (1.13)
2-(i1) If 1 < ¢ < 1% there exists C = C(N,p,q,u) > 0 such that
p(r) <Cr~®  forall0 <r < 2. (1.14)

All the estimates on u(r) will play a crucial role for the study of radial solutions of (1.1) see [13].

In the case ¢ > p, the upper estimates are no more satisfied. The next result points out a
dichotomy for estimates of positive supersolutions in an exterior domain when g > p.

Theorem 1.2 Let N > 2 and 1 < p < q. If u is any positive supersolution of (1.1) in By , then
for any p > 1o there ezists c,, Cy, C,, C;] >0 such that, for |z| > p,

(i) either
_a_ C .
Xz (1 - & ifqg>p
u(z) > - (1-%), (1.15)
cpemim‘x‘ qu =D,
where X, = (m|7|‘1)ﬁ,
(i) or p > % and
a z]) < x|~
(a) p(|z]) < Cpla] (1.16)
(b) u(z) > O[],

When ¢ > p, the function U(z) = X,,,|z|I"! is a C! subsolution of (1.1) in RY, a fact which
shows the optimality of the lower estimate.

In the case ¢ > p we prove a series of new estimates of solutions, by a delicate combination
of Bernstein, Keller-Osserman methods and Moser iterative scheme. The general Bernstein
estimates will play a fundamental role in the description of the behaviour of positive solutions
near an isolated singularity or at infinity in RV,

Theorem 1.3 Let ¢ > p > 1, m > 0 and u be a nonnegative solution of (1.1) in a domain
G C RY. Then

1- If G = By, \ {0}, there exists ¢ > 0 depending on N,p,q and ”u”Lw(BTO\Bs_ZQ) such that

\Vu(e)| < elz| 7T for all 0 < |z| < %0 (1.17)
2- If G = B¢, there exists ¢ > 0 depending on N, p, ¢ and HUHL‘X’(BQTO\BT-O) such that

07

|Vu(z)| < c|x|ﬁ for all |z| > 2ry. (1.18)
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Note that in By, \ {0} the dominant effect comes from the Riccatti equation, while it comes
from the eikonal equation in By, . However it concerns solutions which may blow-up at infinity.
When ¢ < p, the eikonal equation plays a fundamental role in the proof of the next result which
uses all the previous techniques involved in the proof of Theorem 1.3 above combined with the
doubling Lemma method of [24].

Theorem 1.4 Letp> 1, m >0 and rg > 0.
1- Let1 < g < p+1 If u is a positive solution of (1.1) in By, satisfying
lim u(x) =0, (1.19)

|z| =00
then there exists a positive constant C = C(N,p,q,u,r9, m) such that
w(z) < Cla| 7 and |Vu(z)| < Clz| 73 (1.20)

for all x € BS, .

2- Let z% < q < p. Any u positive solution u of (1.1) in By, \ {0} satisfies (1.20) for all

= B%o \ {0} for some constant C = C'(N,p,q,u,r9, m) > 0.

In a forthcoming article [13] we prove the existence of infinitely many different radial solutions
satisfying the decay estimate (1.20) by a combination of ODE and dynamical systems approach.

The following result is the counterpart at infinity Theorems A and B.

Theorem 1.5 Let 1 < p < N+2, m >0 and u be a positive solution of (1.1) in By, (ro > 0)
satisfying
lim wu(z) = 0. (1.21)

|x|—o00
Assume
(i) ezther T < q <2 andm is arbitrary,
(ii) or q = m and m < €y for some €y > 0 depending on N and p.
Then there exists a positive constant C = C(N,p,q,u,r9,m) such that

u(z) < C]a:\_ﬁ and |Vu(z)| < C\x]_% for all x € B3, . (1.22)

Thanks to the estimates of Theorem 1.3 we can prove removability results for singularities
of positive solutions of (1.1).

Theorem 1.6 Let N > 2, Q ¢ RY be a bounded smooth domain containing 0. If 1 < p < q
and ¢ > &5, any nonnegative solution u € C2(Q\ {0}) of (1.1) in Q\ {0} can be extended as

a weak solution of the same equation in ) and it belongs to Ly (§2) N VVl}JCq(Q) NHL ().

This result admits extensions for removability of more general sets included in a domain
Q c RY in two completely different directions. Using a geometric construction as in [32] we
prove:
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Theorem 1.7 Let N > 3, Q@ C RY be a bounded domain, ¥ C Q a k-dimensional compact
complete submanifold (0 <k < N —2), m >0 and 1 < p < q such that ¢ > %. Then
any positive solution of (1.1) in Q\ X is locally bounded and can be extended as a weak solution

i €.

Using capacitary estimates we extend to the case ¢ > 2 a previous removability result due
to Brezis and Nirenberg [17] obtained in the case ¢ = 2.

Theorem 1.8 Assume p > 0, ¢ > max{2,p} and m > 0. If K is a compact subset of Q such
that cap; o (K) = 0, then any positive solution of (1.1) in Q\ K is locally bounded and can be
extended as a weak solution in €.

The last Section is devoted to the Study of asymptotics of positive solutions, either near a
singularity or at infinity. In the case q < > +1 the dominant equation for the study of isolated
singularity is the Lane-Emden one, and the techniques involved combine energy methods and
Fourier analysis. The description of the singular behaviour depends upon the value of p with
respect to % and %, and we obtain the complete classification of the possible behaviours
of a positive solution near an isolated singularity:

Theorem 1.9 Let N >2, m>0,1<p< N+2 and1 < q < i1 Afuisa nonnegatwe solution
of (1.1) in By, \ {0}, then either u is a classzcal solution of (1 1) in By, 0

1- when N > 3 and 1 < p < % (resp. N = 2 and p > 1) there exists k > 0 such that
|z|V~2u(x) (resp. —u(x)/In|z|) converges to k when x — 0. Furthermore u satisfies

—Au+ m|Vul? —uP = cxkdy  in D' (By,); (1.23)

_ N-2
2- when N >3 and p = 25, |z|V"2(—In ]w\)¥u(az) converges to (%) when x — 0;

1
3- when N >3 and 25 < p < 222, |z[*u(z) converges to wy := (aw_;#) "= when x — 0.
In the case ¢ > p the dominant equation near an isolated singularity is the Riccatti equation;
the removability result of Theorem 1.6 is no more valid if 1 < ¢ < %, and we mainly use a
scaling method.

Theorem 1.10 Let N >3, 1 <p<qg< %, m > 0 and u be a nonnegative solution of (1.1)
in By, \ {0}. Then either u is a classical solution,

1
(i) or |z|Pu(z) converges to &, := % (%) " when x — 0,

(ii) or there exists k > 0 such that |z|N"2u(|z|,.) — cnk in L*(SN™1) when x — 0 and u

satisfies
—Au~+ m|Vul? —uP = kd in D' (By,).
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The asymptotic behaviour of solutions in an exterior domain exhibits also the two types of
underlying dominant equations: either the Lane—Emden equation, or the eikonal equation. This
depends on the value of ¢ with respect to ﬁ, see Theorem 5.5, Theorem 5.6. The techniques
are similar to the ones used in the analysis of isolated singularities but the range of values
of g are reversed; a phenomenon which is easily understandable when considering the scaling

transformations leaving the underlying equations invariant.

2 Estimates on supersolutions

2.1 Some preliminary results

In the sequel we denote by ¢ or C a generic positive constant the value of which may vary from
one occurence to another. When needed we introduce the constants ¢;, C; with ¢ = 1,2, ..., in
particular within the development of the proof of a statement. If it is important we precise the
parameters (N, p, ¢, m etc.) on which the various constants depend. In the next result we
precise a bootstrap argument some variants of which have already been used in [11], [10] and [6].

Lemma 2.1 Letd, h € R with0 <d <1 andy, ® be two positive continuous functions defined
on (0,7q] (resp. [rg,00)). We assume that there ezist C*,M > 0 and ey € (0, 1] such that for
any € € (0,€0) and 0 <r < 2 (resp. any r > 2rg),

y(r) < C*e "o (r)yd(r(1 —e)) and £n<1ax O(1) < MP(r), (2.1)
277’§7’
respectively
y(r) < C*ehd(r)yd(r(1 4+ €) and max O(1) < MO(r). (2.2)

2
Then there exists c; = ¢1(C*, M,d, h,ey) > 0 such that

1

y(r) < e (®(r)) -4, (2.3)
in (0, %2] (resp. in [2rg,00)).

Proof. The result is obvious when A < 0, so we can suppose h > 0. Consider the sequence
€n = 27 "€p, n > 0. Then the series ) ¢, is convergent and

oo
= Zej S
j=1

For n > 1 we denote P, = (1 —€1)...(1 —¢€j)...(1 —€,) and @, = (1 +€1)...(1 + €j)...(1 + €).
Clearly the sequence {P,} is decreasing while the sequence {Q,} is increasing. Furthermore

[e.e]
H1+ej Q<e’<e

=

ST

<

N W
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. 1
Concerning P,,, we have 1 — ¢, > ST Therefore

n
Po>JJ+2e) > e ¥ > ez,
j=1

which implies 2 < P, < 1. Then , for any 7 € (0, %] (resp. r > 2r() we have that rP, € [5,7]

(resp. 7Qn € [r, 3]). First we assume (2.1) and use P,. Then
y(rP,_1) < coe, " ®(rPy_1)yt(rP,).

In particular
y(r) < coe; "0 (r)y'(rP1))
v (rPr) < ey (r Py (rPy))
ydnil(rpn—l) < anileghdnilq)dnil(TPn—l)yd (rPn)).
By the assumption on ®, this implies
2, gn—1 _ _ _hn— mn— m
y(r) < c§+d+d ++d €] he2 hd  ¢-hd 1<I>(r)¢d(rP1) et (rPo_1)y?" (rP,),
for any n > 2. Hence for any n > 2,
(C2€ah)1+d+"'+d"’1 2h(1+2d+...+nd"’1)q)(,r,)q)d(rpl)mq)d”*I (TPn—l)ydn (T‘Pn)

_ n—1 n—1 2 n—1 2 m—1
(CQEOh)1+d+ +d" oh(142d 4. And" 1) g rdd? . dn T gl bdtd? +d (r).

y(r)

<
- (2.4)
<

Letting n — oo and using the fact that P, — P > 0 and %" (rP,) — 1 as n — oo, since
0 < d < 1, we obtain

h
y(r) < (cac™) =120 M2 (B(r)) 0 (25)
If we assume (2.2), the proof of (2.3) in [2rp,c0) is similar. O

Next we recall and extend the monotony property dealing with supersolutions of Riccatti
equation proved in [1].

Lemma 2.2 Let N > 2, ¢ > 1 and u € C*(By,,\{0}) (resp. u € C*(B¢,)) be a positive function
such that
—Au+|Vul?>0 in By, \ {0} (resp. in By,).

Then the function p defined by (1.10) is nonincreasing on (0,7¢] (resp. there exists r1 > 1o such
that p is monotone on [ri,00)).

Proof. The case of an exterior domain is treated in [1, Lemma 5]. In the first case, then for
any r1 € (0,79) and § > 0 there exists r4 € (0,r1] such that for any 0 < r < rs such that
p(ry) < or?2=Nif N >3 or p(r) < d|Inr|if N =2. Let h(x) = u(r1) — 6|z|>~N if N > 3 (resp.
h(z) = p(r1) = d||In|z|| if N = 2). Then u > h on 0B,, UJB,. By the standard comparison
principle [1], [27], u > h in B, \ B,. If we let r — 0 we derive u > h in B,, \ {0}, and by letting
§ — 0 we finally obtain v > p(r1) in B,, \ {0}. In particular this inequality implies (1) > u(r1)
ifo<r<r. ]
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2.2 Estimates of the spherical minimum. Proof of Theorem 1.1

In this Section we consider non-necessarily radial supersolutions u of (1.1), either in a punctured
or in an exterior domain. We give estimates of the minimum of w on spheres with center 0
pu(r) = H"‘ii_n u(y).

We first consider supersolutions of the exterior problem

—Au+m|Vul? — f(u) =0 in Bf,

ro?

(2.6)

where m > 0 and f satisfies
(F) f 1is a continuous nondecreasing function on Ry verifying f(0) =0 and f > 0 on (0,00).
We recall the following result of [1, Theorems 1, 3, 4].

Theorem C (1) If iminfrPf(r) > 0 and 1 < p < %, q > 2 there exists no positive
r—0 p+1

supersolution u € C?*(Bg,) of (2.6) such that l|in|[1 inf u(z) < oco.
T|—00
(2) If lirginfr_pf(r) >0 and 1 < q < p, there exists no positive supersolution u € 02(37?0) of
T o
(2.6) such that lim wu(x) = oo.
—00

|z

Here we combine a technique developed in [1, Lemma 6] in order to prove Theorem 1.1 with
the bootstrap argument of Lemma 2.1.

Lemma 2.3 Let m > 0, N > 1, ¢ > 1 and f satisfying (F). Let u € 02(350) (resp u €
C?(By, \ {0})) be any positive function satisfying

—Au+m|Vul? > f(u) in By, (resp. in By, \ {0})). (2.7)

1- Then for any R > 2ry (resp. for any 0 < R < 22) and for any 0 < e < %,

min flu(r)) <a <“(R) + MR)) , (2.8)

(1—e)R<r<(1+€)R e2R?2  €1RY

where ¢1 = ¢1(N,q,m) > 0.
2- As a consequence, any positive C% supersolution u of (2.6) in By, satisfies
(i) either lim wu(x) = oo,
|z| =00

(#i) or liminf u(x) = 0.

|z| =00
Proof. 1- Let R > 2rg (resp. 0 < R < %0) and € € (0, 3]. Let ¢ be a smooth nonnegative radial
cut-off function defined on R, vanishing on [0,1 — €] U [1 4 ¢, 00) with value 1 on [1 — §,1+ 5],

]
such that |¢.| < €y, and |¢]| < E%Xfe where x, =[1—¢1—-§JU[1+5,1+¢]. We set

v(z) = u(z) — p(R)de ().
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There exists g such that |z | = R and u(xp,) = p(R), thus v(zge) = 0. If u is defined in
By, we have that v = u > 0 in (Brn—¢ N By,) U B4 I uis defined in By, \ {0}, then

v=u>0in (Bru_e \ {0}) U <Br0 N B}c%(1+5))' Then v achieves its nonpositive minimum at

some TR, € Br(14e N Fizu—e), where Vu(Zg,) = 0 and Av(Zg,) > 0. Since v(Tgr,) < 0 there
holds ju([Fr.l) < (R) and

fu(@re)) = —Av(@g,e) + m|Vo(Tre)|?
= —u(R)A (¢5)) +mut(R) |9 (o)) [

p(R) | p(R)
<
=a <€2R2 T aR )

where ¢; = ¢;(N,p,q,m) > 0. Because u(Tpc) > wu(r), (2.8) follows from the

> min
(1—e)R<r<(14€¢)R
monotonicity of f.

2- From Lemma 2.2, u(r) is monotone for large r.
If u is bounded, then

min_f(u(r) < cs (Ri n Ri) |

L<r<or

Hence Rlim min { f(u(£)), f(#(2R))} = 0 which implies that p(R) — 0 when R — oo, since f
—00

is continuous and vanishes only at 0.

If 4 is unbounded, then lgn wu(r) = oo which implies | 1|im u(z) = oo. O
T—00 T|—00

Now we assume that f(u) = uP, p > 1, and prove Theorem 1.1. We recall that the exponents
a, B and 7 have been defined at (1.3).

Proof of Theorem 1.1. Let p,q > 1 and u be a positive supersolution of (1.1) in By (resp.
By, \ {0}). Let R > 2rg (resp. 0 < R < &). From Lemma 2.3, we have that:

if pu is nonincreasing on [R — €, R + €], then u(R) > w(ZTr,) > p(|Tre|) > p(R(1 +€)), then

PP(R(1+¢€) <cq (52(11;) + Iﬁﬁ)) <cge <% + Mqéf?) with h = max{2,q}, (2.9)

if ;1 is nondecreasing on [R — €, R + €], then p(R) > w(ZTr,) > p(|Zr,e]) > w(R(1 —€)), then

_ R 1UR
pP(R(1 —€)) < cqe " ('u](#) + M]gq )> . (2.10)
Note that for any ¢, R > 0 there holds
q
'u]éf) < cujgj) <= u(R) < c_qfllR_B, (2.11)

since 8 = 2%.

I
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1- The exterior problem. From Lemma 2.2, u(r) is monotone for R > 1 > ro large enough, so
we assume R > 71, and either p is decreasing or it increases to co. In our cases, we claim that
1 is decreasing. It holds by assumption if ¢ > p. When ¢ < p and if u were increasing, then

(1~ OR) < ese 7 R77 ut (R),
and by Lemma 2.1,
h
w(R) < cgr r-a  for R > ro,

contradiction.
Hence p is decreasing and tends to 0 at infinity by (2.10). Furthermore (2.10) implies

P(1+€¢)R) < Ce_hR_i’,u(R) and thus p((1+¢)R) < Ce_%R_%,u%(R) (2.12)
with A = min{2, ¢}. Applying again Lemma 2.1 we deduce
W(R) < xR (2.13)

Note that if ¢ > 2, 1% = « and we obtain (1.11). If 1 < ¢ < 2, then h = ¢ and 1%1 = 1% and

we encounter two possibilities:
(a) if ;43 > B, then (1.13 ) implies

M(R) < CSR_B7
and by the equivalence in (2.11 )
piR) _ 1-gu(R)
Rq é 68 1 R2 9
which in turn implies
2 W(R)

PP(R(1+¢€)) < 2cge™ R

By Lemma 2.1 we obtain (1.11).
This holds in particular when 1 < p < ¢ < 2 which completes the proof of 1-(iii).
(b) Let Ag = ;47 < B. For any 0 < A < § and p(R) < coA™4 we have that

WP(2R) < e1o ( R(A+2) ¢ R—(A+1)q) — ¢ oR-(A+Da (1 i RA(q—1>—<2—q>) < 2¢0R~ AT,

(A+1)
so p(2R) < cpiR v " We define a sequence {A,} by Ap = ;47 and
A1 +1
A, = An1 + g for n > 1. (2.14)
p

Then, as long as A,,_1 < 3, we have
w(2"R) < C,R™An,

(

Furthermore A; — Ap = Z(;—:B and 4, — A,_1 = W. Therefore the sequence {4,} is

increasing.
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Proof of 1-(i). For q > 1% we have 8 < a < . If A,_1 < B for any n > 1 the sequence
{A} converges to v, contradiction. Therefore there exists ng > 1 such that A,,+1 > 3, so we

conclude as in case (a).
Proof of 1-(i7). If 1 < ¢ < p+1, then v < a < 8, and Ay < v < B since ¢ > 1. So the sequence
{A,,} is still increasing and it converges to . This implies that for any 6 > 0, there exists Cy
such that

w(R) < CyRT? for R > 2r.

Set g(r) = r~7, then

q
PR+ 0) < B < o

since v = p%q. Recalling that

PP(R(1+¢€)) < cqe <M(R) Mq(R)) ;

R? R4
and putting ¢(R) = max{g(R), u(R)} we obtain

1(R) (R) , oUR)\
) e (T )

P(R(1+¢€)) < crae? ( B + & B T

Because ¢(R) > g(R) > R as v < 3, we have ¢(R) ( ) hence

$(R(1+€)) < crae PR 797 (R).

It follows from Lemma 2.1-(2.3)-(2.16) that ¢(R) < c15R™". This is (1.12).

2- The problem in By, \ {0}. By Lemma 2.2, u is nonincreasing and (2.9) holds. If u is bounded,
then it admits a positive limit at 0 and the two estimates in 2 hold. Hence we assume that
pu(R) — 0o as R — 0. From (2.10)

where, we recall it, h = max{2, ¢}. We notice that if (2.11) holds, then

u((1+ €)R) < crgR ™7 v (R) = u(R) < C'R™,

which is the desired estimate in the case 1 < ¢ < 1%' We notice also that the fact that
w(R) — oo as R — 0 implies

11
pP(R(1 +€) < cqe™ < 7z + Rq) 9(R) < 2c4e "R7MpA(R),
which in turn yields
h
w(R) < cirR7 71 for 0 < R <1y <rg. (2.15)

Hence, if h = ¢, we obtain (1.13).
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Proof of 2-(i). Let 2 > q > 1%' Then 8 < a < 7, then we start with u(R) < R™4° with

Ag = ﬁ > . For any A > 0 larger than v and such that u(R) < c1sR=4, there holds
pP(F) < e 0HA,
as above since A > (. The sequence {A,} still defined by (2.14) satisfies
p(zh) < e

as long as A,,_1 > 8. We have A1 — Ay = % < 0. Since 4,41 — A, = %(An —Ap—1), the
sequence {A,} is decreasing and it converges to 7. We adapt the technique developed in 1-(i):
for any € > 0 there exists Cy > 0 such that

w(R) < CyR? for 0< R< %0.

Defining g(R) = R~ and ¢(R) = max{g(R), (R)}, then we obtain

) | R | )Y ¢ gon (SR 4UD)

72 ' R R 72 ' Re

PR - ) < expe™ (

Because v > 3 we have RP<R< ¢(R) for 0 < R < 1 which implies that (W;) < $1(R) and

R
P(R(1—€) < 2C216—h%.

It follows by Lemma 2.1 that ¢(R) < coR™7 and (1.13).

Proof of 2-(ii). If 1 < g < 1%' Then v < 8 < a. We proceed as in case 2-(i) with the same

sequence {A,}. We notice that Ag = p—zq > a > 7 since ¢ > 1. Then A; < Ap and as above
{A,} is nonincreasing and converges to 7. As in the proof of 1-(i) there exists an integer ng
such that A,,, < which in turn implies (2.11), and finally (1.14) holds. O

Remark. From Theorem 1.1 we recover easily the result of Theorem C-(2). Indeed, if f(r) > cr?
for ¢ > 0 and » > r; and 1 < ¢ < p, any positive supersolution u of (2.6) in By, such that

lim wu(x) = oo is a supersolution of
|x|—o0

—Au+ m|Vul? = cuP

in this domain. Then lgn w(r) = 0 from the upper estimates of Theorem 1.1, contradiction.
T—>00

2.3 Construction of radial minorant solutions in the exterior problems

The next result extends the construction of [5, Theorem 1.3] and brings precisions to [2, Lemma
4] that we recall below.

Assume N >2,q > 1 and let f : (0,00) — R be positive, nondecreasing and continuous. Suppose
there exists a positive supersolution u of problem (2.16) below. Then there exists a positive radial
supersolution v of (2.16). In addition, if u does not blow up at infinity, then v is bounded, while
if u blows up at infinity, v is bounded from below.

Our result is the following.
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Theorem 2.4 Letqg> 1, m > 0 and f : Ry — Ry be a Lipschitz continuous function satisfying
assumption (F). Suppose that there exists a positive C2(Bio) function u satisfying

—Au+m|Vu|?— f(u) >0 in By,

T0?

(2.16)

then there exists a positive radial and monotone function v € C? (Ejo) smaller than u satisfying

—Av+m|Vu|? = f(v) =0 in B,

ro?

(2.17)

such that:
1- v(rp) = min u(z) and lim v(r) = oo, when lim wu(z) = oco.
|z|=ro r—00 |x|—o00

2-0 <w(rg) =a < ‘H‘lin u(z) and lim v(r) = 0, when l|in|[1 infu(z) = 0, under the additional
x|=ro r—00 T|—00

condition when q > 2,

1 T
_(alN-1)=N ‘112—N/"0 =N (1 sN—g(N-1)\ 7T
a< 0= <—m(q 5 ol (1 t ) dt. (2.18)

Proof. The proof is based upon an iterative process reminiscent of a method used in [5]. However
the technicalities are much more involved and developed in the Appendix. By Lemma 2.3 a
positive supersolution u in an exterior domain either tends to co at co or satisfies llinln infu(z) = 0.
T|—00
For 7 > 1o we set by = ‘ i‘nf u(x) and b, = |i?>f u(z). If 0 < a < by and 0 < b < b, we consider
x|=ro x| =T

the sequence of radially symmetric functions defined in B; N By functions {vk + }ren such that
vor =0, and for k > 1

_Avkﬂ' + mlvvkﬂ"q = f(vk—l,T) in BT N Bﬁo
Vpr =10 in 0B, (2.19)
Uk,‘r =a in 8Br0.

If 1 < ¢ <2, the function vy, exists without any restriction on a and b.
If ¢ > 2 we have existence if a < b provided 7 > 7* where 7* is defined in Lemma 6.1 (2), and
if @ > b the condition for existence is

b<a<b+0O.

In both case, the function vy ; is positive, monotone. and dominated by u.

Next for k = 2 we apply the extension [34, Corollary 1.4.5] of the classical result [14, Théoréme
2.1]. The function vy . satisfies equation (2.19) with right-hand side 0 instead of f(vg_1,). By
the maximum principle it is dominated by the supersolution u, thus f(u) > f(vi ;). Then there
exists a function vy » which satisfies (2.19) with £ = 2 and

Ul,T é U2,T é u.

Note that this function is unique by the maximum principle. We introduce there the spherical
coordinates (r,6) € Ry x S¥~1in RY. Let ¥y ,(r) be the spherical average of vo - (r,.) on SNV =1.
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Since f(v1,r) is radial, by convexity, Ug , satisfies

—A'l_1277— + m|VZ_1277—|q < f(Ul,q—) in BN Bﬁo
Vo,r = b in 0B,
Var=a in 8Br0.

By the maximum principle we have 03 -(r) < wva,(r,6) for any r and any 0, which implies
that vy, = va,, hence vy~ is spherically symmetric. Iterating this process, we construct the
increasing the sequence {vy, ; }ren of positive spherically symmetric solutions of (2.19) dominated
by w in Br N By . For k > 2 the function vy ; cannot have a local minimum, hence if a < b it is
monotone increasing (as a function of |z|) and if a > b, it is decreasing for |z| close to 7.

Since the sequence {vy ;}ren is increasing and vy, < u, it converges to some radial positive
function v := vy by Ascoli theorem and v, is a positive C? solution of

—Av; +m|Vou | = f(v;) in BN By
vy =b in 0B, (2.20)
vy =a in 0B,,.

If a > b then necessarily vy ; < vg . in Br N By otherwise vy ,» would have a local minimum in
BN Bro-

Assertion 1. Here u(r) — oo when r — oco. Let r1 > ro such that b, > lnlain u(zx) for all 7 > rq.
z|=rg

Let veo 7 := v; be the solution of (2.20) with a = min|,—,, u(z) and b = §,, and 7 > 7" if ¢ > 2,
which is not a restriction since we aim to let 7 — co. Since v, cannot have any local minimum
in B; N By, we have

a < v (lz]) <u(z) foralze B, NBL.
By standard ODE techniques, for any T' > 71, v, is bounded in C*(Bp N BE,) uniformly with
respect to 7 > T + 1. Hence there exists a sequence {7,} tending to infinity and a radially
symmetric positive function v € C2Bf, such that

—Av+m|Vu|? = f(v) in By

v=a in 0B,,. (2:21)
Furthermore a < v < u. By Lemma 2.3 v(r) — oo when r — oo which proves 1.

Assertion 2. We solve (2.20) with b = 0 and a < minjg—,, u(z) with the additional condition
a < © if ¢ > 2 and we set v r := vr. Then 0 < v, < a and since the function v, cannot have a
local minimum in (rg,7), we have also that

vr(|z|) < vp(|z|) <u(z) forall 7' > 7 and z € B; N By,.

Letting 7 — oo we obtain that v, converges in the local C? (B, )-topology to some v € C? (By,),
which satisfies (2.21) and v(|z|) < u(x) for x € By,. Therefore v(r) — 0 as r — oo and we
complete the proof of 2. ([l

Corollary 2.5 Let N > 2, m > 0, ¢ > % and [ be as in Theorem 2./. Then any positive
02(§$O) function u verifying (2.16) satisfies

u(z) > clz|*™N  for all € By, (2.22)

for some ¢ > 0.
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Proof. For ro < 7, we introduced the function vy » which satisfies

N-—-1 .
o = vl g =0 in (r0,7)

v1,+(ro) = a
v1,+(1) =0
with 0 < a < ‘n‘lin u(x). We have seen therein that vy ,(|z|) < u(x) for x € B\ B,. If ¢ > 2
T|=ro
we choose a < ©. When 7 — 00, v17 T 1,00 and v := vy oo(|2]) < u(x) in By . Since v <0, we
have

N -1
"+ 0P =m|T - —" > 0.
r
then ) N
/ P+
E(r):= <U (r) + o(r) > <0.
2 p+1

Therefore F(r) admits a limit when r — oco. Because v(r) — 0 > 0, this implies that v/(r)
admits also a limit £ < 0 when r — oo and this, limit is necessarily 0 since v is bounded.
Set w(r) = —r¥ =1/, then w > 0 and

w' 4 mr(1700M=Dya >,
Integrating this equation as it is done in Appendix, we obtain

@)+ W ¥ (_ql_) - A

which implies by integration

=a(p) gl _ e ( N-aV-1) _ N-g(N-1)

Therefore w(r) > ¢ > 0 and v/(r) > —c17' ™ and thus v(r) > 257, Because u(z) > v(r)
for |x| = r > ro this yields (2.22). O

Remark. As a consequence we recover Theorem C-(1) in the case ¢ > % Indeed, suppose that

f(s) > CsP near s=0and 1 <p < % Then if there exists a positive supersolution of (2.6)

which is bounded at infinity, then llinln infu(z) = 0 by Lemma 2.3. Since u is a supersolution of
T|—00

—Au+m|Vul? = Cu? in By,
for some r1 > rg, by Theorem 1.1 and Corollary 2.5 there exists a positive radially symmetric
solution v of the above equation such that
u(z) > v(|z]) > clz|*™N for all v € BE,.
By Theorem 1.1 we have also u(|z|) < Clz[~ in By,. This is a contradiction when p > %

When p = 5 we set v(r) = 72" VX (¢) with t = Inr. Then ¢; < X(t) < ¢y for t > ¢; = Inr.
Hence X is a bounded solution of

X" — (N — Q)X/ +CXP — me(N—Q(N_l))t (|(N _ 2)X _ Xl|)q =0,
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and it is straightforward to verify that the w-limit set of the trajectory 7T [v] = U {X(t)} is
t>t1
reduced to {0}, which is still a contradiction.

2.4 Dichotomy result when ¢ > p. Proof of Theorem 1.2

In this Section we suppose ¢ > p > 1. Then there exist supersolutions of (1.1) such that
lim u(z) = oo, e.g. u(z) = eM*l for any A > 0if ¢ > p or A large enough if ¢ = p.

|z| =00

Proof of Theorem 1.2. Our proof is based upon Theorem 2.4 with f(u) = uP. Let u be a positive
supersolution of (1.1). From Lemma 2.3, either u(z) — oo or u(|z|) — 0 when |z| — oc.

(i) Suppose that | 1|im u(z) = co. By Theorem 2.4 there exists a radial and increasing function
Tr|—00

v below u in B[ satisfying

N-—-1
—v" — v+ mu' =P in (ry,o00)
v(ry) = min u(x) (2.23)
|z|=r1
lim v(r) = o0
r—00

For € > 0 we set F.(r) = vP(r) — (1 + e)m(v/(r))9. This type of function introduced by [30] is
fundamental in the study of radial soutions. Then

N-1
F!(r) = p'vP™t — g(1 4+ )mv" v/t = pu/vP™t + g(1 4 €)ma/d7! (—fu/ + P — m’u/q> :

€ r

If there exists some 79 > 71 such that F,(rq) = 0, then

N -1
F!(ro) = pv'vP~t 4+ (1 + e)m/77? (—v’ - emv’q> > 0.
T2
This implies that Fe(r) > 0 for all » > 7. As a consequence, F(r) has a constant sign for r
large enough.
When N > 3 we can take e = 0. If Fy <0 for r > ro > 7, then vP(r) < m(v/(r))? which implies

v(r) > (qu)ﬁ (r — 7‘2)‘7‘ for all r > rg, (2.24)

in the case ¢ > p and
1
v(r) > v(rg)e™ ") for all ¢ >y, (2.25)

when ¢ = p. This yields (1.15).

If Fy > 0 for r > 79 > rg, then Av < 0 if |z| > 79, and the function 7V~1v'r) is nonincreasing
on [rg,00), thus v'(r) < er'=N. If N > 3, it implies that v(r) remains bounded, which is a
contradiction.

When N = 2 we take e = 1. If Fj(r3) = 0 for some r3, then either F} is positive for r > rs,
which implies

1
—20" = V' + 0P + Fy(r) > oP for r > ro.
T



Chipot-Weissler equation 18

In such a case, we deduce by multiplying by v > 0 that the function r — (v’z + 11’:11 ) (r) is
nonincreasing, hence bounded, contradiction. If this does not hold, then F} is nonpositive for
r > rg, which yields
(2m\’y]4)ﬁ r—ry)” 7 if r > ry when N >3
v(r) = o (2.26)
v(rg)em) T (r=r2) if r > r9 when N = 2.

If we have now Fy(r) > 0, then v/(r) < c¢r~! which implies v(r) < cIlnr + d, which is not
compatible with (2.26). Therefore Fy(r) < 0 which again implies that (1.15) holds.

(ii) Assume now that li_>m p(r) = 0. Inequality (1.16)-(a) follows from Theorem 1.1 (1-iii). Since
q>p> % we have ¢ > % Thus (1.16)-(b) is a consequence of Corollary 2.5. O

3 Estimates on solutions

3.1 General estimates

A major tool for proving a priori estimates either near an isolated singularity or at infinity is
the Keller-Osserman combined with Bernstein method applied to the function z = |Vu|?. We
recall the variant of Keller-Osserman a priori estimate that we proved in [8].

Lemma 3.1 Let ¢ > 1 d > 0 and P and Q two continuous functions defined in B,(a) such
that inf{P(y) : y € By(a)} > 0 and sup{Q(y) : y € By(a)} < cco. If z is a positive C' function
defined in B,(a) and such that
Va2
—Az+ P(y)z? < Q(y) + d7 in By(a), (3.1)

then there exists a positive constant C = C(N,q,d) > 0 such that

o1\ Q\*
< - — . .
z(z) < C e Bin(f)P + (;;1(5) P> Jor all z € Bg(a) (3.2)
v(a

In the next statement we show how an upper estimate on u(z) by a power of |z| implies a
precise estimate on |Vu(z)].

Theorem 3.2 Let p,q > 1, m >0 and rg > 0.
1- If u is a positive solution of (1.1) in By, \ {0} where it satisfies
|z u(z) < e (3.3)

for some constant ¢ > 0 and some exponent A\ > 0, then there exists ¢y = c¢1(N,p,q,\,¢) > 0
such that

Ap

_Ap=D)
[Vu(z)] < ¢ <]a:\_f1Ll + |z| "7 + |z 2(51)> for all z € Bra \ {0}. (3.4)
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Furthermore, when 1 < q < 2, one has an improvement of (3.4) under the form
\Vu(z)| < c|z|~ AV forallz e Br \ {0}, (3.5)

for any A > 0 such that A < min{a, 5}.
2- If u is a positive solution of (1.1) in By, then

lim sup u(x) < oo = limsup |Vu(z)| < oo, (3.6)
lim u(z) =0= lim |Vu(z)| =0. (3.7)

If u satisfies (3.3) in By, for some ¢ > 0 and A > 0, then there exists c1 := c¢1(N,p,q,\,c) >0
such that

[Vu(z)| < 1 <|$|_ﬁ + |x|_% + |x|_;((§11))> for all x € By, . (3.8)
Furthermore, if 1 < q < 2, one has an improvement of (3.8) under the form
|Vu(z)| < colz|~ AV for all z € B3, (3.9)
for ca :==ca(N,p,q,\,¢) >0 for any A > max{a, 5}.
Proof. We use Bernstein method, setting z(x) = |Vu(x)|> and Weitzenbock’s formula

—%Az = |D*ul® + (V(Au), Vu).

Using the inequality |D?u|?> > +(Au)? and the equation satisfied by u we obtain

1 1
—50z+ N(mz% —uP)? 4+ (V(mz2 —uP), Vu) < 0.

Developing this inequality yields

1 2 1 2
—§Az + %zq + Nuzp < Wmupz% + puP 2 + %z%_%v,z, Vu).

Now for e >0

v \% 1|Vz|?

z%_1<Vz, Vu) = z%_%<—Z,Vu> < 25 V] < ezl + —‘ 2| ,
Vz vz € =z
1 g»-1)
WPl < ezl 4 ety a1

and

g 1 2

uPz2 < ez?4 —uP.
€
We choose ¢ small enough and get
2 \V4 2 (p—1)
—Az+ %zq < 03| | + cqu® + cE,uqqpfl (3.10)
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where ¢; = ¢;(N,p,q,m) > 0,i=3,4,5. We Apply Lemma 3.1 in By, (a), with Bs,(a) C By, \{0}
in case 1, or ng( a) C B in case 2, we obtain for some positive constant cg := cg(N,q, m) > 0,

__2 a(p—1) q
sup z(y) < cg (p =1 4+ sup < W4y a1 > ) , (3.11)
Bp(a) Bap(a)
which is equivalent to
-1 2 _p—1_
sup |Vu(z)| < ¢7 <p =1 + sup <uq —|—u2<q1>)> , (3.12)
Bp(a) Bz (a)

where ¢7 = ¢7(N, q, m, cg) > 0.
1- Next we assume that u(z) < cg|z|™ in B,, \ {0}. Then (3.12) yields exactely (3.4) with
Cg = Cg(N,m,p, q, A768) > 0.

In some cases we can obtain a different estimate which requires 1 < ¢ < 2. For k£ > 0 we set
up(z) = K u(kz).
Then u; satisfies
—Auy 4 mkA 2 IOFD |7y, |9 — MEAYP =0 in By, (3.13)

The function uy is uniformly bounded in the spherical shell T'ry 2ry = {z: % <[z < 2}, If
87 3

we assume that

A+2—qA+1) 206 A< =8 and A +2-p>0<=> A< 2 =a,  (3.14)

p

then we deduce from standard regularity estimates [23] (this is why we need 1 < ¢ < 2) that

|Vug(z)| < cg <= |Vu(kz)| < cgh ™1 forall z € I (3.15)

To ro
472
This implies in particular

\Vu(z)| < colz|™ 1 for all € B%o \ {0}. (3.16)

Now, this estimate is better than the one in (3.4) if and only if A < min{«, 8} and

L A(p—l)}
A—l—lﬁmax{ ,—, , 3.17
q—1"q 2(¢g—1) (3.17)

that means

A< B, or (g<pand A>~), or <q<p+1and)\> 2g=1) (3.18)

p+1— 2q>
Hence it is an improvement for any A < min{a, 5}.

2- We apply (3.12) for |a|] > p/2 with p = |a‘ , then we get

-1
|Vu(a)| < c1o <!a\ -1 4+ max (ug +u2<pq_1>)> _

||> 121
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Clearly (3.6) and (3.7) follow.

Next we assume 1 < ¢ < 2 and u(z) < cjolz|™ in B,

then (3.12) yields precisely (3.8).
Again the function wu defined previously is uniformly bounded in the spherical shell I'a-, dro’
2 K

In order to apply the standard elliptic equations regularity results to (3.13), we need again
1<qg<2and

A4+2—-gA+1)<0<= 1> and A+2-p <0< A >aq, (3.19)

This yields
|Vu(z)| < epp]e] 21 forall z e B3, (3.20)

This estimate is an improvement of (3.8) if A > max{«, f} and

A+1zmin{ L A(p_l)}. (3.21)

q—1"q’ 2(qg—1)
That means

A<pB,or (¢g>pand A <~), or <q<%ﬂand%<l>. (3.22)

Hence it is an improvement for any A > max{«, 5}. O

3.2 Upper estimates on solutions when ¢ > p. Proof of Theorem 1.3

Proof of Theorem 1.83. We apply Lemma 3.1.

1- Proof of 1- By change of scale we can assume that rg = 1. For 0 < 6 < % we set Qg = B1_g\ By.
For 0 < € < 1, we have by (3.12)

1 = P N

max |[Vu| < C | | — + max <uq + u2(fI*1)) , (3.23)
Q fe Q_

e

p—1 P X
and u26-D < ya + 1 since ¢ > 1%' Hence
1\e1 2
max |Vu| <¢ | [ — + 1+ max usa
€

Qg Q ¢
1+e

Next we estimate v in function of its gradient: for any 2 € Q o ,
1+€

x x
u(z) <u 1—9—>+x— 1—-0)— max Vu(y)|.
) <( )\x! ( )!w\ yE[r,(l—G)ﬁ]‘ W)
Therefore
maxu < max v+ max |Vu| < ¢ + max |Vul.
() B1\B1 Q 0
TFe 2 I+e I+e
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Since 1 < %, we deduce

P

q

1
max [Vu| < ey | (fe) a1 + | max |Vul

Qg Q ¢
I+e

We set )
A(f) = 69T max |[Vul,
Qg

then A(%E) < A((1—%)0) since €,6 < &, hence

1 _49=p _p P
A(0) < ¢y (e T 4 fala=1 (1 + e)a@D (A((1 - §)8)) q) :
If we set F'(§) = 1+ A(F) there holds
F(0) < cse T TFa(A(1 — £)0), (3.24)

and we can apply the bootstrap result of Lemma 2.1 with & =1, h = q—Ll and d = %. We
deduce that F' is bounded, hence

max |Va| < e -1, (3.25)
Qg

Thus (1.17) holds.

2- Proof of 2- By change of scale we assume again that rg = 1. For T'> 3 and 0 < € < 1/2 we
set
QT = BT \El and QT,E = BT—E \El-i-e'

By (3.12), for any p > 0 and x € Bf_,, we have

P
|Vu(z)| < ¢ p_qul + 1+ max u? |.
Bay(z)

€

Taking p = 5 we get

max |Vu| < cg <e_qll +1 +maxu§> . (3.26)
QT,E QT

It is clear that

maxu < max u(x) + T max |Vul.
QT ‘Z“:l QT

reporting this inequality in (3.26) we obtain that for any 7' > 1,

]

1+ max |Vu| < Cge_q%lTs <1 + max |Vu|> " (3.27)
Qe Qp
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We set F/(T') =1+ maxg,_ [Vul, then

F(T(1—-¢) <14+ max |Vu(z)|+max|Vu|
1§|SE|S1+€ QT,e
< 14 max)<jz)<2 [Vu(z)| + + maxg, |Vul
) ' p (3.28)
< ¢ <e_q_1 +1+ (max|m|:1 u(z) + T maxg, \Vu]) q)
__1 P _P
< cy1€ 71T aFa (T)

Using again the bootstrap result of Lemma 2.1 with d = 7 ve obtain in particular for T > 2,

p_ 1
F(T) < c12T* - = Clgqu;P. (3.29)
This implies
_p_
|Vu(z)| < erslz|ar. (3.30)
Using (3.30) we get
max u < maxu(z) + T max |Vu| < c14T1+q%p = 014T$,
Qr |z|=1 Qr
which leads to \
u(z) < cpalz|a—r  for all x € BS. (3.31)

By integrating the inequalities (1.17) and (1.18), we obtain:

Corollary 3.3 Under the assumption of Theorem 1.3, any nonnegative solution u of (1.1) in
G satisfies:

1- If G = By, \ {0}.

1-(i) If ¢ > max{2,p}, then u can be extended as a continuous function in By,.

1-(ii) If ¢ = 2 > p, then there exists a constant C; > 0 such that

u(z) < Ci(|nfzf| +1) for all x € Bry \ {0}. (3.32)
1-(iii) If 2 > q > p, then there exists a constant Cy > 0 such that
u(z) < Cg]a;\_ff%z for all x € B%o \ {0}. (3.33)

2- If G = B¢, then there exists a constant C3 > 0 such that

07

u(z) < C’3|:17|# for all x € By, \ {0}. (3.34)

Remark. The constants C; in (3.32)-(3.33) (resp. (3.34)) dependon  sup  u(y) (resp. sup u(y)).
Bry\B arg Barg \Brg
Up to modifying 6 it is possible to reduce that domain of dependance of the constant with respect

to u to sup  u(y) (resp. sup  u(y) for any 7 € (0,1).
Bro\B(1-7)rg B(14r)rg \Brg
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3.3 Upper estimates on solutions when ¢ < p. Proof of Theorem 1.4

We recall the doubling Lemma [24], [29].

Theorem 3.4 Let (X,d) be a complete metric space, D a non-empty subset of X, ¥ a closed
subset of X containing D and T' =X\ D. Let M : D — (0,00) be a map which is bounded on
compact subsets of D and let k > 0 be a real number. If y € D is such that

M (y)dist (y,T") > 2k,
there exists x € D such that
M (z)dist (z,T") > 2k
M(z) > M(y)

k
M(z) <2M(z) for all z € D s.t. d(z,x) <

Proof of Theorem 1.4-(1). We can assume that ro = 1. By (3.7), (1.21) implies that |Vu(z)| — 0
when |z| — co. The estimate (1.20) is equivalent to

u(z) < Cla| 71 = Cla| ™ (3.35)

for all € BS by (3.4), hence also to
(3.36)

for all z € BS. We set
1
M(z) == u7 (x). (3.37)
Then M(x) — 0 when |z| — oco. Let us assume that |z|7u(x) is unbounded in BS. . Then by
Theorem 3.4 applied with ¥ = BS§, D = E;, thus I' = BS \ Eg = 0B, and k = n, there exists

a sequence {y,} C By such that (|y,| — 2)M(y,) — co when n — co. There exists a sequence
{x,} C By such that

|zn| M (20,) > (|2n| — 2)M (2,) > 2n

M(zn) 2 M(yn) (3.38)

M(z) < 2M(z,) forall z € By s.t. |z — x,| < %

Clearly {z,} is unbounded since M is bounded on bounded subsets of B§ and, up to extracting
a sequence, we can assume that |z,| — oo as n — co. We now define

BPRNIRCICR)

o (3.39)

with z(z,n) =z, + M(xxn)

Then
up(0) =1 and u,(z) <27 for x € B,. (3.40)
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The main point is to use estimate (3.12) in order to obtain a uniform estimate on Vu,. We
apply this inequality in B (a:n) which yields

1

n Gt ] p=l_
max |Vu(z)] < ez <W> + Lop X o) (uq (2) + w20 (z)) (3.41)

) (@n) o)

zeB

Furthermore z € B . )(xn) is equivalent to |z| < n. Similarly, z € B xn) is equivalent

to |z| < 5. If uy, is defined by (3.39), then

SNI(z L>(

Vi () = Vu(z(z,n))

MY (zy,)
We have that ( 11) since ¢ < =7 . Combined with the decay estimate (1.19) we infer that
D p=1 B
max (uq (2) + w20 (z)> <e¢g max  ud(z). (3.42)
z€B 1(7; (wn) ZGBA{& (-’En)

We now replace u(z) and Vu(z) by their respective value with respect to u,(z) and Vu,(x) and

we get
P
|n|1g>7cl |V, (z)] < cg <n_qll (M(xn))q%l_y_l + |m|zix U (m)) . (3.43)
Because 1 < ¢ < ?, q%l —~—1>0. Since M(xy,) — 0 when n — oo it follows that
[Vup(z)| < c10 forall z € Bn. (3.44)

Therefore the new constraints are

1
un0) =1 and up(z) + [Vup(z)| <27 +c19  for x € Ba. (3.45)

We have also A
(o) — _Aule(am)

MY+2(x,)
hence P(2(,n)) = m|Vu(z(z,n))|
—Auy(x) = ) YT )
_M'Yp(a:n)uﬁ(x) mMOTVY(z,)|Vu, (2)]
M2 ()

= M2 VP — MO D240 (g )|V, (2)]7.
There holds

o
v(p—l)—2=7(q—1)—2+q=p—,
and by assumption, o < 0. Therefore u,, satisfies

—enAuy(x) = ub —m|Vu,|? with €, = M_ﬁ(:nn) — 0 asn — oo. (3.46)
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Jointly with the conditions (3.45) there exists a subsequence of {u,} still denoted by {u,} and
a function v € W1 (R¥) such that u, converges to v locally uniformly in RY and Vu,, — Vv
for the weak topology of L (RY). By a classical viscosity result [21, Proposition IV.1], v is a
bounded viscosity solution of

m|Vu]? =P in RY. (3.47)

By [21, Proposition 4.3] (3.43) has a unique viscosity solution which is zero which is not com-
patible with v(0) = 1 by (3.45), which ends the proof.

Proof of Theorem 1.4-(2). We can take that ro = 1. The proof is still based upon Theorem 3.4
with ¥ = B1, D = 31 \ {0} and I' = {0}. Thus we assume that there exists a solution

u € C(By\ {0}) solutlon of (1.1) in By \ {0} and a sequence of points {y,} C B1\ {0} such that
|yn|M(yn) > 2n (3.48)
where we have set )
M(z) = uv (x).
There exists a sequence {z,,} C By \ {0} such that

|zp| M () > 2n
M () > M(yn) (3.49)
M(z) < 2M,(x,) forall z € BM(n ().

Tn)
Clearly x,, — 0 as n — oo. We define u, by (3.39) and (3.40) holds. The gradient estimate
(3.41) is verified and if z € B_ (a:n) we have |z| < |z, |+ |z —xn| < |zp| + (s Which tends

to 0 as n — oo. If we replace u( ) by u,(z) = 15\(/125?962))), (3.41) becomes

p o _p—1_
s [V, o)) < s (777 (00()77 7 e () + (0 (0) 5T 00 ) ) ).
) (3.50)
Notice that M (x,) — oo and q_% -7 = 1= Gg=np=p <0. Using (3.40) we obtain
_p_
max Vun(2)| < e11 (0(1) + 250 + 0(1)) < o (3.51)

Hence (3.45) holds with a new constant c;3. Equation (3.46) is verified, but now ¢ > 0. Hence
€n, — 0 as n — oco. We conclude by the same argument as the one used in (1). O

Remark. In Theorem 1.4-(2) It is possible to obtain a constant C' in estimate (1.20) independent
u provided the functions under consideration are uniformly locally bounded from above in B, \
{0} in the sense that for any € > 0 there exists C. > 0 independent of u such that

u(z) < C. forall x € By, \ Be. (3.52)

This assumption implies that in the proof of Theorem 1.4-2), M(x,) — oo independently of w.
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3.4 Asymptotic estimates on decaying solutions in the case ¢ > 1%
Using Theorem 3.4, we prove Theorem 1.5.

Proof of Theorem 1.5. We can assume that rg = 1. By (3.7), Vu(x) tends to 0 as |z| — oo.
Estimate (1.22) is equivalent to

M(z) = "7 (z) + |Vu(@)| 7 < Clz|~" for all z € BS. (3.53)

Using (1.21) jointly with (3.7) we have that M(z) — 0 as |r| — oo. Let us assume that
for any C' > 0 inequality (3.53) does not hold; then there exists a sequence {y,} C B$ such
that 1m0 (|Yn| — 2)M (y,) = co. There exists a sequence {x,} C By such that 3.38 holds.
Clearly {x,} is unbounded since M is bounded on bounded subset of BS and, up to extracting
a sequence, we can assume that |z,| — oo as n — co. We set
u(z(x,n) x

up(xr) = ——"— with z(z,n) =z, + M)

e (3.54)

Then we have M(zy)|xy,| > 2n and for any = € B,
M(z(n,x)) = up_gl(z(n,:n) + |Vu|§%(z(n,x) < 2M (zy,). (3.55)

Then
~ Vu(z(z,n))

Au(z(x,n
V’U/n(x) - Ma+1(l'n) = ( ( ))

) Aun(x) - W(xn)’
which implies
w(:(2.n)) — m|Vul?(=(z,n))

Ma-i-?(xn)
_ MO (a)up(a) — mM OV (@, ) [Vu(z(z, n))|
Ma+2(xn) '

Auy(z) =

Hence u,, satisfies
—Auy, = ub, — m(M(x,)) TPV, |7 in By,

with the additional condition

Observe that

1)g—2
(a+1)g—ap = (p+1)g—2p >0,
p—1
with equality if ¢ = 1% and strict inequality otherwise. Furthermore

-1

p—1 _
up?® () + ]Vun(a:)]gTi <2 forall z € B,.

By standard elliptic equations regularity results [23], the sequence {u,} is eventually locally
compact in the CIIOC(RN )-topology, thus, up to extracting a subsequence, {u,} converges in this
topology to some nonnegative C'(R”) function v which satisfies

—Av =" inRY (3.56)
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ifq>% since M (z,,) — 0 as n — oo, and

—Av+m|Vu|? =vP in RY (3.57)
_ —1
if ¢ = %. Furthermore val(O) + ‘VU(O)’% = 1. Since 1 < p < {2, by Gidas and Spruck
result [22] equation (3.56) admits no global positive solution. Concerning (3.57), if m < ¢
satisfies no global positive solution can exist by Theorem B. This ends the proof. (]
Remark. In the case g = 1%’ the assumption (1.21) can be relaxed and replaced by
lim sup u(z) < oco. (3.58)
|z| =00

Actually, if this holds we have by (3.6)
lim sup |Vu(z)| < oo. (3.59)

|z|—o00

The function wu,, defined by (3.54) satisfies the same equation (1.1) as u and the limit v also. We
end the proof as in Theorem 1.5.

4 Removable singularities

In this Section we give partial extensions to (1.1) of previous results dealing with removability
of singularities for equations
—Au~+m|Vul? =0

and
—Au+m|Vul? —uP <0,

obtained respectively in [28] and [17].

4.1 Removable isolated singularities. Proof of Theorem 1.6

Proof of Theorem 1.6. We can assume that B,, C Q with ro > 1 and a = 0. Since (1.17) holds
we have
q—2
1 o1 if g > 2
|Vu(z)| < c\x]_qil and u(x) <c1+c { 2] n for 0 < |z| < 7. (4.1)
|In|z|| ifqg=2

Since ¢ > p and ¢ > %, we have that Vu € LP(B,,), which implies u? € L'(B,,).

Step 1: We claim that Vu € L1(B,,) and the equation holds in D'(B,,). Let n, € C§°(By, \ {0})
such that 1, = 1 on B, /2 \ Bi/n, 1, = 0 if |2] < 1/2n and if [z > 2r¢/3 and 0 <, < 1. We
construct 7, such that |Vn,| < ¢nlp, , \B,, - Then

Vu.Vn,dzr +m |Vu|Tn,dr = / uPnpde.

Br, Br, Br,
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By Holder’s inequality and using (1.17) there holds with ¢ = q_il,

/ Vu.Vn,dx
Bl/n\Bl/Zn

Since q > %, then ¢ — N < 0, and the right-hand side is bounded, hence |Vu|? € L'(B:
Fatou’s theorem and the first statement follows.

Next consider ¢ € C§°(B,,/2) and take (7, as a test function, then

J

/
< cond N,

/ Vu.Vn,dx
B

70

) by

|3

(CVu N, + 0, Vu.V{) dx + m/ |Vu|?n,de = / uPCnpde.
By,

0 BT'O

Since

(Vu.Vn,dx
Br,

1- 0
< esn'™ 7 (¢ e / Vult ] (4.2)
B1/n\B1/2n

and the left-hand side tends to 0 as n — oo, we conclude by the dominated convergence theorem
that

|Vu|qu:17:/ uP(dx,

/ Vu.V{dx +m
Brg Br

Brg
which proves the second statement.

Step 2: w is bounded. For proving the boundedness assertion we can assume that % <g<2.
As a test function we take ¢ = i}, then

‘),
B,

n,‘{_IVu.Vnnda:—l—m/ ng\Vu]qu:/ niuPdz.
Bry

0 70

We have
/ nd |\ Vul?dx :/ [, Vu|ldz :/ IV (nnu) — uVn,|?dx
Bry Br, Br,
> 21-a |V (nnu)|?dx —/ u?|Vn,|%dx.
Bry Bry
By (4.1)

/ w9 |V, |%de < cun? N < ¢

70

as we have already seen it and, from (4.2) there holds

‘/ i IVu. Vn,dz| — 0 as n — oo.
By,

It follows that V(n,u) is bounded in LY(B,,) independently of n, and by Sobolev inequality,

Ngq
" . .
HnnUHLq*(BTO) <c with q = —N ,
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which in turn implies that |[ul| ;4= (Byy) < C1- Set
Taking 74 ™ (Tj(u))™ as a test function, where T} (r) = min{r, k} for r, k > 0, we obtain

r / (T (w)) Lt | V2 de + (¢ + 1) / (T (w) @t~ n, . Vudz
Bron{u<k} B

o
+m Tk(url)‘vu’qng{l‘h dr = / Tk(uﬁ)upng—l-rl dz.

B 0 BTO

From Step 1 |Vu| € LY(B,,), thus

/ (Ti(w)) 93t =1V, . Vudr — 0 as n — oo,
B

T0

hence
1)+m/ Ty (u™)|Vu| it dx §/ Ty, (u™ ) uPnd™ da.
B’I‘ TO
Letting successively n — oo and k& — oo, we deduce by Fatou’s lemma and the monotone
convergence theorem that

m/ u | V|79t da §/ uN-a it dy, (4.4)
Br :

B 0
where 797" = li_)rn Nt belongs to C§°(B,,) and takes value 1 in B%) and 0 <7 < 1. Since
n (o.]

q
/ u”|Vu|q17q+”dx:< q )/ Y () 9da
B, q+nr B

T0 T0

q \* 1471 q \?
> <—> 21_‘1/ |V(fu) " |9dx — < > / ult | Vi ldz
rL+q B 1 +q B

0o o
N—q
q N(g+r1) N q
(Y ([ ) T ()
rL+gq By, r+q

+
Kl = TON ”u”%o:(lBTO\BT ”vnHLw(BT

where

This leads to the following inequality

q (N—g)(a+r1) || N=
meN _9 ||77u||q+r1 , —mK; q < |7 N U ’
,q r _|_ q N(g+r1) r _|_ q Ngq
1 N—q (BTO) 1 LN—=¢q (Bf'o) (4‘5)
N
<l ™
-4 (Bro)
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since % > 1 from (4.3) and ¢ > p combined with the fact that 7 < 1.
Next we proceed by induction, setting

_ N(q+r;)
Tj+1_N7—q

Jj+1 — )
Tit1 = <<NA—[ q> _1) = qQ) s o

Taking nq+ I Ty (u"3+1) for test function and letting successively n — oo and k — oo we obtain

—p forj>1, (4.6)

with explicit value

N(g+ry) N(q+r;)
m u'IH V|7t i dr < / u N-a ity < / (qu) -4 dux. (4.8)
BTO BTO BT'O
Note that for the right-hand side we have used ¢ + 711 > 1\7(]37:3-) and 1 < 1. Moreover
q +1 Tit1
/ urj+1’vu‘q77,q+7‘j+ldx > <L> / ’~1+ L (u1+ Jq )‘qu. (4‘9)
By, ri+1+4/ JB,,
Writing
+1 +1 T rj il _Titl
PV = e - L R gy,

q
we have, since n =1 1in B u and 0 < 77 <1, and using Sobolev inequality,

Tit1 Tit1
e vt

> vau)””f

n
L9(Byy) L9(Byy)
q+7i41 |- 14 20tL
- — | Vil [ P
L%(Bry\Brg
atTit1 q+rin s
> N 1l wiger, — 2= IVilll poe llull o, :
LN(Q+7]q+1) (Boo) L g+1(B,.O\B%O)
(4.10)
Let us assume now that u ¢ L°°(B,,), otherwise the result follows, then
Jim, 7l vetrsn = 00, (4.11)
L N=a  (By,)
and there exists jo > 1 such that for any 5 > jo,
9
~ “+r
[|77| N(g+7jq1) > 2 ”vn”q o ”u”Lq“jﬂ(BT \Brg)’ (4.12)
L™ N=a  (By) 0
as a consequence the right-hand side of (4.10) is bounded from below by
T g 41 T cw, q+fg+1
(-2 D il oy 2 Bl (413)
K LT =0 (Bry) L™= (Byy)
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for j > j1 > jo. Combining (4.8), (4.9) and (4.13) we derive

1 N(q+rj) c q )
= a0 e () g, (4.19
m JB,, j+1 T4 LT N=0  (By,)
We obtain finally
PP N(g+r;)
B 2rj1+q) \ T oD
l7ull ~eatr < (M) (| 7wl JYV(Z;;]“ ) (4.15)
L N-g Bry) qCN,qM 1 L N=a (By,)
Put
Xj=1In (HﬁUH N(a+r)) ) :
L N-14 (B;,)
0
Since N
(q+rj) _ptrjin <1, (4.16)
(N=ag)g+7j41)  qg+rjm
we deduce
2 .
Xjn<—L m (ry1+a) + X, (4.17)
q+ 7+ qegma

which implies that

o0

1 2(r;
In <”U’HLOO(B%Q)> < hnl)supXjﬂ <Xi+gq In < i tq)) < o0, (4.18)
J o0

S 4T gcgma

by (4.7). This is a contradiction with (4.11), which ends the proof. O

4.2 Removable singular sets

In the following theorem we combine the technique of Theorem 1.6 with the geometric approach
based upon the construction of tubular neighbourhoods used in [32] to prove the removability
of singular sets contained into a smooth submanifold. The next result proves and completes
Theorem 1.7.

Theorem 4.1 Let Q@ C RY be a bounded smooth domain with N > 3 and ¥ C Q be a k-
dimensional compact complete smooth submanifold with 1 < k < N —2. If 1 < p < q and
q> %, any nonnegative solution u € C*(Q\ X) of (1.1) in Q\ X can be extended as a weak

solution of the same equation in 2 which belongs to LS (§2) N I/Vllocq(Q) NHL.(Q).
Proof. Step 1: We claim that there exists 1o > 0 and C = C(N,p,q,m,ro,%) > 0 such that
|Vu(z)| < C(dist (3:,2))71%1 for all x s.t. dist (z, %) < 7. (4.19)

For § > 0 we set
TUB;s(X) = {z € RY : dist (2, %) < 6}.
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If § < inf{dist(z,%) : x € Q°}, we have that TUBs(X) C Q. Since ¥ is smooth with no
boundary, there exixts dg > 0 such that the sets 0TUB;(X) = {x € Q : dist (z,X) = 0} are
k-dimensional compact complete smooth submanifolds of €. We use the ideas of the proof of
Theorem 1.3 adapting it to the peculiar geometric configuration. By rescaling we can assume
that 6 = 1 and for 0 < 6 < 1, we set O = TUB;_¢(X) \ TUBy(X). For any 0 < € < 3 we have
by (3.23),

1
_ 1 _p=1 N7y _ 1 r
max [Vu| < ¢ [ (€6)” T 4+ max (up + u2<qfl>) | <ea | (0)7TT + 1+ maxua
Oy O 4 O ¢
T+e T+e€

(4.20)

In order to obtain an upper bound on u(z) for x € © s , we join it to some z, € 9TU B;(X) by
1+€

a smooth curve w such that w(0) = z, w(1) = z.. We can choose w such that |o’'(t)| < 2 for all
t €10,1] and

27 dist (tz + (1 — t)ze, X) < dist (w(t), ) < 2dist (tz + (1 — t)z, 2).

Then . .
u(z) < wu(wze) + /0 Vu(w(t)).w’(t)dt‘ < wu(ze) + 2/0 [Vu(w(t))|dt o)
< ullpee(rupsnrus, () +2 max [Val. '
Therefore
p L p
%nax us =63 HUHL""(TUBl(E)\TUB;(E)) + I@nax [Vt
e 2 ¥ (4.22)
b 2
< a3 (HUHZOO(TUBl(Z)\TUBl (=) + _max |VU| q) .
2 O(1-e)0
We put
1
B(6) = max 031 |Vu(z)| and F(0) =1+ B(6),
9
and we obtain from (4.20) and (4.22)
F(O) < e -1 Fi((1— €)9), (4.23)

where ¢4 depends on the structural constants and of ||ul| Loo(TU By (S\TU B, (x))- 1t follows from
2

Lemma 2.1 that B(6) is bounded independently of ¢, which implies (4.19).

In order to derive the upper estimate on u we set p = sup{u(y) : y € OTUBy(X)}. If 0 <
dist (z,X) =t < 1 there exists z, € 3 and £ € 9TU B1(X) such that

27t + (1 — )€ — 2| < dist (tz 4+ (1 — )€, %) < 2Jtw + (1 — )€ — 2.
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Since dist (£, %) =1,

1
u@ggﬂ+%/|m+u—ng—%r%Mt
0

1

1
§u+ca/(MEM%E)+Q-¢MEMQE»—J1:u+ca/(M$u@z)+1—w—£1
0 0

<u +c5g ! (1 —dist (z,%)) ((dist (m,E))g%{ - 1) ,

if ¢ # 2, with an obvious modification if ¢ = 2. At end we deduce

, :
(@) < co { (dist (z, E))q T+ forallze TUB(X) ifg#2 (4.24)

|In(dist (x,X))] + C’ for allz € TUBy(X) if ¢ =2.

Step 2: We claim that w € LP(TUB1(X)) and |Vu| € LY(TUB;(X)). For such a task we consider
test functions 1, € Cg°(TU B1(X)) with value in [0, 1] vanishing in TU By /(2,,) (%) U TUBQ/?)(Z)
with value 1 in TU By 5(X) \ TU By /,(¥) and such that

Vi (2)| < conlqus, , (SN\TUB, 2, ()

where the constant C7 > 0 depends on the geometry of . If ¢ > 2, u is bounded thus u? €
LY TUB,(%)). If & k 1 < q <2 wehave for 1 >¢e> -

/ nnupdg; < / uPdzx
TUB(X) TUBe(Z)\TUBy j2,(%)

€ eC-ap d
g%/ S Lo, (%)ir

1/2n
_(2—9q) 2 — _(2—9)
< cse qlﬁaﬂTUB42»+ch ?p/‘ T Wol(TU B, (S))dr.
- /2n
By Weyl’s formula [36]
[k/2)
Vol(TUB,( E:al —ht2 (4.25)

where the a; are smooth bounded functions near ¥ and [k/2] is the integer part of k/2. Therefore

€ _C-ap (2-9)
/ T (= iVol(TUB (X))dr < C(e) + cgn SN
1/(2n) dr

Since (2q op <7< N — k, we have that (2 q) — N + k < 0. Letting n — co we obtain that

upeL%TUBNZ»

For the second assertion we have with the same test function 7,,

/ Vu.Vn,dz +m |Vuln,de = / uPnpde.
TUB: (%) TUB: (%) TUB (%)
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Using (4.19) and (4.25),

/ Vu.Vn,dx
TUB; (%)

By assumption -4 < N — k. Since u € LP(TUB1(X)) we conclude that |[Vu| € LY(TUB: (X))

by Fatou’s lemma.

Step 3: We claim that w € L>®(TUB;(X)). The proof that u is a weak solution of (1.1) is
similar to the one in Theorem 1.6. For obtaining that v € L>(TUB1(X)) we use the same test
functions n,, as in Step 2, the same sequence {r;} defined by (4.6) and derive (4.13) where Br
is replaced by TU B1(X) under the assumption (4.11). And similarly (4.18), again replacing Bp
by TU B;(X) holds in the same way, we obtain a contradiction.

< CnaTVol(TUB,(1/n)) = C'nat F N,

0

The next theorem extends a previous result of Brezis and Nirenberg [17] that they proved
in the case ¢ = 2. The technique is completely different from the one used in Theorem 4.1 and
based upon capacity theory.

Theorem 4.2 Let @ C RN N > 2, be a bounded smooth domain. Assume p and q are real
numbers_such that 0 < p < max{2,p} < q and m > 0. Let K C Q be a compact set and
u € CH(Q\ K) be a positive function satisfying

—Au~+ m|Vul? —uP <0 (4.26)
in Q\ K and such that u> 6 > 0. If capy o (K) = 0, then u € L>().

Proof. 1f capy ¢ (K) = 0, then |K| = 0 and there exists a sequence {(;} C C°(f2) such that
0 < (. <1, (r=11in a neighborhoood of K such that

klinolo 11V ¢l ”Lq’(Q) =0. (4.27)

Furthermore (;, — 0 a.e. in 2, and we set g, = 1—(i. For § > 0 let jy be a C°°(R) nondecreasing
function with value 0 on (—o0,0] and 1 on [#, 00). We set

A(t) = meas{zx € Q:u(z) >t}
for t >ty where tg = supgq v > §. Taking n,‘i/jg(u —t)u~P as a test function, we have
q /Q ’I’]Z,_ljg(u — t)u"PVu.Vnpdr + /Qjé(u - t)u_p|Vu|2nZ,dx
- p/ﬂngljg(u — t)u P Vuldz + m /Q ng,jg(u —tu"P|Vulldx < /Q?]leg(u —t)dz.
Since jp > 0, it follows
o [ ool = 00wV mde = [l ou = OVl

(4.28)
+ m/ nt jo(u — t)uP|Vul|lde < / Nt jo(u —t)de < A(t).
Q Q
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Step 1: the basic inequality. We set
£ it <
Tt 1 UPp<(q
S(t) = r (4.29)
Int if p=gq.

Then uP|Vu|? = |VS(u)|? and

m/QnZ,je(u = D)IV(S(w)["dz < A() + Q'/Qngl_lje(u — u”P|Vul [V |de

(4.30)
—|—p/ﬂng Jo(u — t)u_p_l\Vu]2dx.
We take t > t1 > tg for some 1 to be fixed, then
/ q-1. —p ’ q—1. _plg=1) _p
q ; ng Jo(u — t)u P |Vul||Vn|de = q an Jolu—t)u~ @ wu ¢|Vu||Vng|dx
_plg=1) , \V4
<dqt, ° / 0t jo(u — t)\VS(u)\mda;
Q Mk
, _P((I(;l) Eq q/ . q 1 q
<q't 7 anjg(u—t)\VS( u) dx+ je(u—t)\vnk’ dx
(4.31)

We recall that o = (p+1)g — 2p. Since ¢ > 2 we have that o > 2, with strict inequality if ¢ > 2.
Therefore

’ / o 2
p/ i jo(u — tu P Vul?de = p/ ny jo(u — t)u_gu_Tp]VuFda:
Q Q

. (4.32)
<pt, * / ni jo(u — )| VS (u)|*dx.
Q
We first consider the case g > 2. We have by Holder’s inequality,
’ —2 [ 9¢4 ’
p/ Jo(u — t)u_p_l\VulznZ dx < pt, * <% / Jo(u — )|V S(u)|'n{ dx
Q Q
(4.33)
+% j@(u — t)T]g dz | .
(¢ —2)es—2 Ja
We then deduce that
2]? _p(g—1)
(m-e (2% + 2o ))/ ol — )|V (S(u)|d
p(q 1)
<1 + e ) Je(u — )| V|7 da (4.34)
q [e—
p(q 1)

() 0
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Since capy ¢ (K) = 0 and 1, — 1, we let & — oo and obtain

(m—er (27 + 56 [t - 19 (stiras < (1 N #) AW,

(4.35)
having fixed t; > to and € > 0 small enough such that

2p 1 _plg=1) m
m— el | £t —h ) z5
‘ (q vt ! ~ 2

We set
v(s) = meas{r € Q: S(u(x)) > s}.

By letting 6 — 0 we infer that there exists a constant Cy > 0 such that, for s > s; = S(t1),
/ V(S(u) — 5),|%dz < Cyv(s). (4.36)

Before continuing on this inequality, we can look at the case ¢ = 2 (which is actually the case
considered by Brezis and Nirenberg [17]). Then o = 2 and (4.34 ) is replaced by

(m— (2wt = @6%)) [ aintu— DIV (S()Pdo < Al (437)
Q
By choosing € and t; we obtain (4.36 ) with ¢ = 2 and a specific constant C.
Step 2: end of the proof. We set w = S(u) and by Holder’s inequality since ¢ > 2,
" )
[ 19—t < ( fiwe $)4ltde) " (meas (9w ). > 0!~
< o (v(s))" (meas {|V(w—s) > 0]}~ (4.38)
q
< Clq V(8)7

since V(w — s)4 = 0 a.e. on the set where (w — s)4+ = 0. This implies that, up to a set of zero
measure, we have {|V(w —s); > 0|} C {(w — s)+ > 0}, thus meas {|V(w —s)4+ > 0|} < v(s).
Note that this also holds if ¢ = 2. By Sobolev inequality,

q/
1% F , N /
/(w —s)? dx < ¢(N, q)/ V(w —s)4|Tde  with ¢* = 7(1, (4.39)
Q 0 N—¢

if ¢ < N which is always satisfied except in the case ¢ = 2 = N in which case the modifications
are straightforward and left to the reader. Furthermore

fio = ota < ([ ) " o)



Chipot- Weissler equation 38
This yields
/(w —8)ydx < 021/(3))”% for any s > sq, (4.40)
Q
. 1 1 1
since 1 + 7 — = =1+ 5. Set

o(s) = /Q(w — 8)pdx = /:O v(T)dr, hence — ¢'(s) = v(s),

N+1

and (4.40 ) leads to ¢(s) < ca(—¢'(s)) ~ and we finally obtain the following differential in-
equality

N
¢+ CQN“(bNLH <0 on [s1,00). (4.41)
The solution is explicit:
N N+1
T 02N+1 .
é(s) < <(¢(81)) T — 2o (s — 81)> if 51 <5< s9, (4.42)
0 if s > s9
where
__N_ 1
83 = 51+ Neg Y (B(s1)) FHT
Hence (w — s)4 = 0 if s > so which implies the claim. O

Proof of Theorem 1.8. If u is a solution the assumption that v > § > 0 can be replaced by u > 0
since u + 0 is a subsolution. It is standard that if « is bounded and cap; o (K) is zero then it is
a weak solution. g

Motivated by the result of Theorem 1.6 when K is a single point, we have the following
conjecture.

Conjecture. Let Q C RY be a bounded smooth domain. Assume p,q are such that1 <p < q < 2
and m > 0. Let K C Q be a compact set and u € C*(Q\ K) be a nonnegative solution of

—Au~+ m|Vul? —uP =0 (4.43)

in Q\ K. If capy ¢ (K) =0, then u is a weak solution of (4.43) in Q and it belongs to L>(12).

5 Asymptotics of solutions

The natural way for studying the singular or asymptotic behaviour of solutions of (1.1) is to use
the spherical coordinates (r,6) € [0,00) x SV ~1. Denoting u(z) = u(r, ), equation (1.1) endows
the form
N -1
r

_uTT —

q
1 1 2
Up — EA’u +m (u% + ﬁ|V’u|2> —uP =0, (5.1)
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where A’ and V'’ represent respectively the Laplace Beltrami operator and the covariant gradient
identified with the tangential derivative on the unit sphere. This equation admits separable

solutions i.e. solutions under the form wu(r,0) = r~%w(#) if and only if ¢ = 1%’ in which case
a=a=0=n.
Then w is a nonnegative solution of
~Aw—a(a+2—N)w+m (a2w2 + |V/w|2)”% —wP=0 inSN L (5.2)

When ¢q # psz, one nonlinear term could dominate the other thus the asymptotics can be
described either by the separable solutions of the Lane-Emden equation (1.5) or the Riccatti
equation (1.7). For the Lane-Emden equation the separable solutions have the form wu(r,0) =

r~%w(#) where w is a positive solution of
—ANw—-—a(@+2-N)w—wP=0 in SV, (5.3)

while for the Riccatti equation the separable solutions are under the form u(r,8) = r~Pw()
where w is a positive solution of

q
2

~ANw—-BB+2-N)w+m(B¢*+|Vw?2=0 inSV L (5.4)
Separable nonnegative solutions of the eikonal equation (1.8) have the form u(r,8) = r~7w(0)
and w satisfies .

2

m (V2w + |[Vwl?)? —wP =0 in SN 7L (5.5)
We recall below some results concerning these equations.

Theorem 5.1 Let N > 2, p,q > 1 and m > 0.

1- Suppose q = ]%.

1-aIf N >3, p> % and m > 0 there exists a unique positive constant solution x,, to (5.2).
I-bIfN=2andp>1,orN>3andl <p< % there exists mo positive constant solution to
(5.2) if 0 < m < p*, a unique positive constant solution x,~ if m = p* and two positive constant
solutions x1m < T2m if m > u*, where

P

* N — (N — 2)p P
= H{———= . .
phi=(p+1) < om (5.6)
2- There exist positive solutions to (5.3) if and only if p > % Furthermore, if% <p< %—J_r:l,),

the positive solutions are constant and therefore unique with value

wo = (a(N — 2 — )77 = @W) Fl. (5.7)
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S-Ifm>0andl1 <qg< % there exists a unique positive solution to (5.4). This solution is

constant with value )

1 ((N—-1)g—N\aT

Em = = (— . 5.8
"B\ mlg-1) (58)

If g > % there exists no positive solution to (5.4).

4- If m >0 and p,q > 1, p # q, any positive solution to (5.5) is constant with value

X = (mly|)7-7 . (5.9)

Remark. Assertion 1 is proved in [8, Proposition 6.1], assertion 2 in [22], assertions 3 and 4 are
easy consequences of the study of the extrema of a positive smooth solution.

5.1 Isolated singularities

In this Section we obtain the precise behaviour of positive singular solutions of (1.1) in B, \ {0}.

5.1.1 Proof of Theorem 1.9

The proof is a delicate combination of various techniques, some new and some other already
which have already been used by the authors in several different contexts.
Up to change of scale we assume that 7o = 1. Set

u(r,0) =r %v(t,0) witht=1Inr, t <O0. (5.10)

The function v satisfies

v+ (N —2—-20)v,+a(a+2—-N)v+ Av
(5.11)

_ ot

—me »1 ((vy — av)® + \V’vlz)% + 0P =0,
in (—o0,0] x SV~ recalling that 0 = (p+1)q —2p. By Theorem B the functions v, v; and |V'v|

is bounded in (—o0,0] x S¥~!. By standard regularity estimates and Ascoli-Arzela theorem the
limit set at —oo of the trajectory of v in C?(SN 1),

T-[o] = [ J{w(t, )},

<0

is a non-empty compact connected subset I'_ of C2(SV~1). Set

2
Efl(t) = 5/SNl (U? —|Vv?+a(a+2—N)v? _|_p+ 1|U|10—|r1> ds,

then

d
CEpIt) = (N ~2 - 2a)/

SN-1

v2dS — me T / (v — aw)® + \V/vlz)% vedS.

SN-1
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Therefore, for any ¢t < 0,

0
Ew](t) — Ev](0) = (N — 2 —2a) v2dSdr
/t /SNI (5.12)

0
+ m/ e p-1 / ((vy — aw)? + ]V'v[2)% v dSdr.
t SN—-1

Since E[v](t) and ((ve — aw)? + \V’UF)% are uniformly bounded, N —2—2a # 0 because p # 32
and o < 0, this implies that

0
/ / v2dSdr < oco. (5.13)
—oo JSN-1
Since v; is uniformly continuous on (—oo,0] x SN~1 it implies in turn that
. 2 _
t_l}l_noo v v (t)dS = 0.

Multiplying the equation (5.11) by vy, using the C? estimate on v and (5.13) we obtain that

0
/ / v3dSdr < oo, (5.14)
—o00 JSGN-1

lim v (t)dS = 0.

t——o00 SN-1

which implies in turn

Letting ¢ — —oo in (5.11) we conclude that I'_ is a a non-empty compact connected subset of
the set on nonnegative solutions of (5.3).
If1<p§%wehave

lim v(t,.) =0 uniformly on SV~ (5.15)

t——o0

N N+2
If v <P< 35

SN-1,

either tlim v(t,.)=0 or lim wv(t,.) =wp uniformly on (5.16)

——00 t——o00

where wy is defined by (5.7).

The remaining problem is to analyse the case where tlim v(t,.) = 0. This is delicate and
——00

presented in the following lemmas.

Lemma 5.2 Let N > 3, p € (1,00) \ {%,%} and 1 < q < 1%' If u is a nonnegative
solution of (1.1) in Bg \ {0}, such that

}:li)l%) |z|%u(x) = 0, (5.17)
then there exists € > 0 such that
u(x) < Olz|~**€ for all x € By \ {0}. (5.18)

Furthermore
\Vu(x)| < O]~ 1T for all z € By \ {0}. (5.19)
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Proof. The key point is the proof is that under the assumptions on p the coefficients a(a+2— N)
and N — 2 — 2« in the equation (5.11) satisfied by the function v defined before are not zero.
We note that (5.18) is equivalent to

v(t,0) < Ce for all (t,0) € (—oo,0] x SN7L. (5.20)
If (5.20) does not hold we have that

limsup e “p(t) = +oo for all € > 0,

t——o0

where p(t) = sup{v(t,0) : § € SN~1}. We use now a technique introduced in [18, Lemma 2.1]:
it is proved that there exists a function n € C’OO((—oo, 0]) such that

. / : — -
(4) n>0,1" >0, lim n(t)=0;

. : p(t)

1 0 < limsup —/—= < +o0;
(E) t—>—oop n(t)

. —et o .
(u3i) tl}r_nooe n(t) = 4oo for all € > 0; (5.21)
v —],[—) € L ((—00,0));
i (L) (L) eri-w0)
/ t ! t

(v) lim m(t) = lim 2 () =0.

t——00 77(75) t——o00 ’r](t)
We define ¢ by v(t,-) = n(t)i(t,.), then

g

2 2
Viu+ Kty + Kot + Al — me 717071 <<¢t - Q%ZZ’) T |V'1,Z)|2> (5.22)
+ PP =0 in (—o00,0] x SN,
where
,’7/ 7,]/ 77//
Ki(t)=N—-2-2a+2— and Kyt)=ala+2—-N)+ (N —-2—-2a)— 4+ —.
n n n

The function v is bounded and by standard regularity estimates it is uniformly bounded in the
C?-topology of (—o0,0] x SN~1. We set

E0 =5 [ W= IVUE —a(a+2-N)v)ds.

2

g (n_o_ U4 2 < oo™ 77_>
© EWl(1) = <N 5 2a+2n>/SletdS+ (v-2-20)L+1 /SlewtdS

, 2 g
—nP ! / YPiydS + me” -1yt / (wt—aﬂ > +|V'Y* | udS.
SN-1 SN—1 n
(5.23)
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We analyse the different terms in the right-hand side of (5.23):

1 d p—1
p dS - p+1, p—1 / —2/ p+1dS.
/5le & p+1dt 5N711/} 1 p+17777p 5N711/}

By the mean value theorem, for any ¢ < 0 there exists t* € (¢,0) such that

0 0
A A
t JgN-1 SN-1 p+1 |/ gn-1 ;

- ]% (np—l(o) - np_l(t)) /SNl ¢p+1<t*’ )dS,

and this expression is bounded independently of ¢ < 0. Also
/ 7 1 d / i
(N-2-2a)L 4+ / vpdS = =2 ((N—2-2a)L + 1 WS
n n GN—1 2 dt n n GN—1

o2 (2)) e

The term involving the gradient is clearly integrable on (—o0,0). Hence we obtain for any ¢ < 0,

~ /

0
E[](0) — E[(t) = — /t <N 990+ 2%) /SNl W2dSdr + A(t) (5.24)

where A(t) is bounded independently of ¢ < 0. Because the left-hand side of (5.24) is bounded

independently of t < 0, 777/(7') —0when7 — —ccand N —2—2a #0asp # %, we infer that

0
/ /S o YEdSdr < oc. (5.25)

By uniform continuity, this implies that t;(t) — 0 in L2(SV~!) when ¢ — —oo. Multiplying
the equation satisfied by vy we obtain similarly, using the previous estimate and (5.21)-(iv)-(v)

that 0
/ / YZdSdr < oo; (5.26)
oo JgN-1

in turn this implies that 1y (t) — 0 in L2(SV~1) when ¢t — —oco. The limit set at —oc of the
trajectory T_[¢] is a connected and compact subset of the set of nonnegative solutions of

ala+2-Nw+Aw=0 in SV (5.27)

Since a(a + 2 — N) is not an eigenvalue of —A’ in WH2(SN=1) it follows that w = 0, which
contradicts the fact that by (5.21)-(ii) the limit set contains at least one non-zero positive
element. Hence (5.18) holds, as for (5.19) it is a consequence of Theorem 3.2. This ends the
proof. O
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Lemma 5.3 Let the assumptions of Theorem 1.9 hold, then

1-IfN >3 and 1 <p < i (resp. N =2 and p > 1) there exists k > 0 such that |z|N~2u(x)
(resp. —u(x)/In|z|) converges to k when x — 0. Furthermore u satisfies (1.23).

2- If N >3 and 25 < p < 2,

2-(i) either |z|“u(x) converges to wy when x — 0,

2-(ii) or w is a classical solution of (1.1) in By,.

Proof. Since |z|%u(x) + |2|*"|Vu(x)| remains bounded and ¢ < 1%’ we have

lz[2uP ™ (z) + |z||Vu(z)|9t < ¢ for all z € By,. (5.28)

Hence Harnack inequality is valid uniformly on any sphere with center 0 (see e.g. [23]) in the

sense that
lm‘axu(y) < e In‘lin u(y) forall 0 <r <%, (5.29)
y|=r Yy|=r

Step 1: first estimate on the average of v. The second order linear equation
X"+ (N-2-20)X"+a(a+2-N)X =0 (5.30)
admits the two linearly independent solutions
X (t) =Mt and Xo(t) = e,

where the \; are the roots of P(A) = A2+ (N —2 —2a)A + a(a + 2 — N). Note that these roots
are explicit:
M=a>X=a+2-N, (5.31)

and Ay > 0 (resp. A2 < 0) if 1 <p < &5 (resp. p > 25). We set

at

H(t,.) =me #1 ((vy — av)* + |V’v|2)% — P (5.32)
Since [[v(t,.)|| ootsn—1) + [|[V'0(E,.)|| oo(sn—1) < Ce by (5.18)-(5.19), there holds
IH (t, )| oosn-1y < gt (5.33)

where
01 = min {ep, €q — p%l} , (5.34)

and 0 = (p+ 1)g — 2p < 0. Let 9(¢) and H(t) be the average respectively of v(¢,.) and H(t,.)
on SNL. Then [H(t)| < Cet. Since
"+ (N —2—-2a)t + ala+2—N)v=H(t). (5.35)

Assuming that d; # A1, A2 (which can always be assume up to changing €) the function ¥ endows

the general form
o(t) = AeMt + BeMt + O(t)ed, (5.36)
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for some constants A and B and for some particular solution C/(t)e’'* where C' is bounded on

(—00,0]. This can be checked by the so-called method of ”the variation of constants”. Therefore,
since v(t,.) — 0 when t — —o0,

AeMt 4 Betet + C(1)eh! if 1 <p< {5
ou(t) = N (5.37)
AeMt 4 C(t)eh?t if p> 5.
This leads us to the second decay estimate (besides the one given by Lemma 5.2)
o(t) < cqet (5.38)

where 01 = min {\y,01} if 1 <p < % and 6; = min{\y,6;} if p > %
Step 2: first a priori estimate on v. The global estimate on v is obtained by using an iterative
method based upon the integral representation of the solutions introduced in [15]. We set

1
L:_(_Aq%[)?’ (5.39)

and let S(t) = e’ be the semigroup of contraction generated by LL in L?(S™V~1). Introducing the
standard Hilbertian decomposition of H'(S™N~!) associated to the operator —A/, it is classical
that the space H = {¢ € L?(SN~1) : ¢ = 0} is invariant by L, since ¢ is the orthogonal
projection in H'(SN~1) onto (ker(—A’))* = H. Because

infa(]L{H) = —

we have N
HS(t)QbHLQ(SN*l) <e 2 ||¢HL2(SN*1) for all £ > 0 and qb € H, (540)

and
IS¢l oo g1y < Ce % [l oo (gn—1) forallt>0and ¢ € HN Le(SN-1), (5.41)

for some C' > 0. Note that this last inequality is easily obtained by using the Hilbertian
decomposition with spherical harmonics. The following representation formula for v* = v — v is
proved in [15]:

0 0
v*(t,.) = eMtS(—t)v*(O, ) - / eWSS(—s)/ eNizzaizTS(—T)H*(—t — 7+ s,0)drds
t

> (5.42)
where H*(t,.) = H(t,.) — H(t). Since

[H* (¢, )l poo(sn-1y < cge’! (5.43)
by (5.33) where 0; is defined in (5.34), we get

[0" (&, ) oo (gv-1) < esel @Dt L cedt for all ¢ < 0. (5.44)
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Writing v(¢,.) = 0(t) + v*(t,.) we deduce

(O!-i-l)t 01t 01t

[v(t, ) poo(gn-1) < cre + et + coeftt < et for all t <0, (5.45)

where we use the value of #; defined in (5.38) and Ay, Ay given in (5.31). This leads us to an
improvement of the decay estimate given by (5.20). Notice also that if 6 = g = a+2 - N
(resp. 01 = A1 = @) when 1 < p < % (resp. % <p< %) we deduce from the definition
of v that the function u is smaller that cio|z|>~" (resp. is bounded by cig).

Step 3: a priori estimate on v by iterations. For the sake of understanding we will distinguish
. . N

two cases according to the sign of p — .

(i) Let 1 < p < 5. Since v(t,.) < ci0e?t, then by Theorem 3.2 that v(t,.)+|Vo(t,.)| < ci1e?tt.

Therefore

| H(t, -)HLoo(stl) < 1%

with
6 = min {01p, 010 — ;%1 }
Since (5.35) holds with H satisfying (5.33) with §; replaced by d2, we deduce that
o(t) = AeM! + B2 + C(t)e!

where A, B are constants and C' is bounded which implies #; = min{ Az, d2}. Since (5.35) holds
with H satisfying (5.33) with 6; replaced by dy

o(t) < 613662t, (5.46)

with 02 = min{\1, A2,d2} = min{)e,d2}. The integral representation (5.42) is satisfied by

*

v* = v — v and we obtain as in the previous step that (5.44) holds with ¢; replaced by d, and
finally

o, Il oo (sn-1) < 140V et 4 eige®t < e7e®! for all ¢ < 0. (5.47)

If 05 = a4+ 2 — N we have the desired estimate, otherwise we iterate. We define the sequences

(1) 01 = min {pe, qe — 1%} and 01 = min{)\y, 61} (5.48)
) 0p, = min {p@n_l,qﬁn_l — p%l} and 6,, = min{\y, 0, }, .
for all the integers n such that §,, < Ay. Then §,,6,, > 0 and the function v satisfies
[v(t, )l poo(sn-1y < 1@V 4y et 4 g et < ey et for all ¢ < 0. (5.49)
Furthermore
0, — 0,1 = min {)\2 — 0p—1, min {(p —1)0p—1,(q —1)0p—1 — . i | }} . (5.50)

We assume first that there exists a largest integer ng such that 6,, < As. Then 67 < 65 < ... <
0, < ...9n0 and 9n0+1 = Ag.
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If such a largest integer does not exist, then {6, } is increasing with limit 6., < A9. By (5.50),
0~ and Ao coincide. By (5.48)-(ii), {d,} is increasing. For any ¢ > 0 there exists n. € N such
that Ay — €6, < Ao for n > n,, hence

On, > min {p(Az —€),q\2 —€) — pL} > A2

if € is small enough. This implies that 6,,, = A2, contradiction. Therefore inequality (5.49) with
n = n. becomes
[v(t, )l poo(sn-1y < 182Nt for all ¢ < 0. (5.51)

(ii) Let % <p< % The proof differs from the previous one only with very little modifica-

tions. Since Ay < 0, (5.48) is replaced by
(1) 01 = min {pe,qe — 1%} and 6, = min{\, 01}

(5.52)
(17) 0, = min {p@n_l,qen_l — p%l} and 6, = min{\y, d, }.

Inequality (5.49) holds with the 6,, defined above, and there exists an integer m. such that
0,, = \{ = a. Hence
[v(t, )l oo (sn-1y < cige™  for all ¢ < 0. (5.53)

Step 4: convergence. (1) When 1 < p < %, the function H defined (5.32) satisfies

I (£, )| oo (sn-1y < c20€” for all ¢ <0. (5.54)

with & = min{Aap, Aag — 577} Hence |H (t)| satisfies the same estimate and © can be written as
in (5.36) with new coefficients A, B and C(.) under the form

o(t) = AeMt + BeM! 4 C(t)egt = BeM! 4 o(e™!) as t — —o0. (5.55)

Since formulas (5.42), (5.43) and (5.44) holds with d; replaced by ¢ we conclude that

[v* (&, M oo (sv-1) = o(e*!) ast — —oo, (5.56)
and finally
tlim eWN=2=9)y(t,.) = B uniformly on SV, (5.57)
——00
Equivalently
lim lz|N2u(z) = B. (5.58)
T—

Therefore u € LP(B,,). We use the same type of cut-off function 7, used in the proof of
Theorem 1.6, except that we assume also that |An,| < en?1 By/n\By ) (2n) and we obtain

s

uAn,dx —I—m/ |Vulin,dz = / uPn,dx. (5.59)
By,

70 70



Chipot-Weissler equation 48

The right-hand side of (5.59) is bounded from above by |[ull}, (Bar, ) WVE have also

0
3

< eqn? VTN <y,

/ uAn,dx
B

70

By Fatou’s lemma we deduce that Vu € LY(Bzr, ). Therefore, by the Brezis-Lions Lemma [16]

3

we conclude that there exists k such that (1.23) holds.
If k=0, then B =0 and (5.55) yields

(1) < cogeltt, (5.60)

with 6, = min {/\1, 6 } Using again the representation (5.42) combined with (5.54) we obtain

[v(t, )l poo(sn-1y < cogel@t Dt 4 6256& + C26€élt < Cg7€6~1t for all ¢ <0, (5.61)

We define now the sequence

(1) 61 :=dand 0, = min{\;,d;}
- - - - - 5.62
1 O0p =min< phy_1,q0,_1 — - ¢ and 6,, = min{A1, 9, }, ( )
p—1
and we have )
[v(t, )l oo (sn-1y < Cet forall t <0. (5.63)

By the construction of Step 3-(ii) there exists n* such that 6,, = A1 which means that inequality
(5.53) holds and © satisfies

o(t) = BeM! + C(t)egn*t) = BeM! 4 o(eM)  ast — —oo0, (5.64)

and
[0 () oo sty = 0(€M) as t = —oc, (5.65)

Hence

lim e °v(t,.) = A uniformly on SV~!
t——o00

, equivalently lir% u(z) = A. (5.66)
T—

Using again the same type of cut-off function 7, as in the proof of Theorem 1.6 we obtain
successively that |Vu| € LY(B,,) and that u is a classical solution.

(i) When &5 < p < {22, (5.54) is valid with § = 6 = min{\p, \1q — 577} Hence the proof
of (i) when A = 0 applies and we obtain that u is a bounded classical solution.

O
Lemma 5.4 Let the assumptions of Theorem 1.9 holds with N > 3 and p = %, then
_ N—2
(i) either |z|N=2(—In |x|)¥u(x) converges to <%) when x — 0,

(i) or w is a classical solution of (1.1) in By,.
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Proof. The proof is based upon a combination of several techniques introduced in [33] for
analysing the exterior problem

—Au+ |u|%u =0 in By, (5.67)
and adapted in [4] to characterise the isolated singularities of
~Au = u¥-z, (5.68)
1- We claim that u satisfies
2-N 2=N
u(z) < Clz| " (—In|x|) 2 (5.69)
for 0 <|z| < ry where ry <min {1,%2}.
The function v which is defined by (5.10) with & = N — 2 here is bounded and satisfies
o 1
v+ (2 = N)o + Alv — me 51 (v + (2= N)v)? + |V'0]*)? +v¥2 =0 (5.70)

in (—o0,0] x SN~1. By (5.15 ), v(t,.) — 0 uniformly when ¢ — —oco. The average ¥ satisfies
Uy + (2 - N)Z_Jt — H(t) =0,

where
1

TSN Jgna

Set s = W=t 2(s,.) = v(t,.) and Z(s) = ©(t), then there holds

H() (me_zf%tl ((Ut+(2—N)fu)2+\V’u]2)% _Um) ds.

§%Z5s — Z1(8) + Zo(s) =0 in (0,627 N) (5.71)
where .
ms @P-DH(N-2) q
_ N —2)%(s2, — 2)2 /1213
Z1(s) NV = 2)7155 1] oy [( )?(s2s — 2)° + |V'2[*]? dS
and

1
(N = 22[SN=1] Jgn—

Using the energy method as in Lemma 5.2 and (5.15) we obtain that

N
Zs(s) = zN=2d8.

12(8, M poo (sv-1) + lI825(s, )l poo(gn-1y = 0 as s = 0. (5.72)
If 0 < § < 1 the function s — w(s) := 2(s) + s% satisfies
§PWes = 8% Zgs +0(8 — 1)8° = Z1(s) — Za(s) + 0(5 — 1)s°. (5.73)

Weset 5o — —o _ 2p—alp+1) _N—-gN-1)
T WN-2p-1) (N-2)p-1) N-2
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then 0 < §p < 1 since 1 < ¢ < % We take 0 < § < min{éo, %} Then there exists sg > 0

such that for 0 < s < s there holds Z;(s) < 6(12—_6)35 which implies

)S + Z5(s) <0 in (0, sg]. (5.74)

The function w is therefore concave. Since it vanishes for s = 0, it is increasing. We now
adapt the proof of [3, Lemma 1] and integrate (5.74) on (s,sp). Using the fact that Z(s) >

1 LA .
e (s), we obtain
S0 S0 _
'ws(S()) = ws(s) —|—/ WeedT < ws(s) _ / (5(12 (5) 7_6—2 + Zj_(;-)> dr
880 5(1 5) 82% (T) (575)
< _ — 6—2 .
< ws(s) /s < 2 * (N — 2)2T2> dr
Since

we infer that

N
1 50 oy N=2
S / 2 2(7) dr (5.76)
ONI(N—2)2Js T
W (s) N5 w2 (s) N6 g
< ws(s) — C’lf + CysN-27" + 0187 — Casy 2
0
for some Cq,Cy > 0.
We claim that N
ws(s) — clw 4 Cysn-271 >, (5.77)
s

Actually, if it were not true there would exist a sequence {s,} C (0, so] decreasing to 0 such that

N

N—2 _Né__

wS(Sn) - Clw s (Sn) + 023711,\772 ! < 0,
which would imply
N
wN=2(sp,) 7251
ws(so) < 0187 — 0280 . (5.78)
0

Since w(sy) — 0, it would follow that ws(sg) < 0, contradiction.

Next we set s

pls) = w(s) + es™°2,
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for some ¢ > 0 which will be fixed later on. Then, from (5.77)
N
Nz
m@ZCﬂ’J$+< )9.
Now
2
pmqﬁngQM%@+N&4mgg_
Therefore

N
pN=2 2 2

2(s) 4 <c]\],v_52 _ 02) siE—l_ o waovag(as) ot

ps(s) > Cr2 7 2e

s

Fixing ¢ = 20, =2 N 6 , we deduce that for s small enough,

N
N2
puls) > Crz = 20, (5.79)
which implies by integration,
p(s) < Cy (—lns)% on (0, s1]. (5.80)

2- End of the proof. Set h(t,.) = (—t) 2 wv(t,.), then h is bounded and it satisfies

meN_mu+wwH_%@f%_gg;f>h+g%%£%

— merT (=) <<ht (N —2) <1+ %) h>2 + |V’h|2> —0.

Using methods introduced in [33], it is proved in [12, Corollary 4.2] that Hh(t, )—h t)HLoo(stl)

tends to 0 as t — oo and consequently that h(,.) converges in C?(SV~!) to some limit £ and

(5.81)

N

necessarily
N 92\ N2
e, <—> . (5.82)
V2
This ends the proof of Lemma 5.4 and consequently of Theorem 1.9. O
Remark 1. The convergence result 3 of Theorem 1.6 can be extended to the case p € (%, N—fé)\

N N£2} for every posmve solution u such that |z|%u(x) is bounded.

Remark 2. When p = N 5, the proof of the existence of solutions of (1.1) satisfying

N-2
lim [2[¥2 (= In |2]) 7 = <M>
x—0 \/5

is obtained in the radial case in [13] using techniques from dynamical systems theory such as
the central manifold.

Remark 3. The description of the behaviour in the case ¢ = 1% exhibits a remarkable complexity
which appears out of reach in the general case. The treatment of radial solutions is performed
in [9] and shows this complexity.
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5.1.2 Proof of Theorem 1.10

Before proving the result we recall that if ¢ > 1 and 1 < p < ¢ any nonnegative solution u of
(1.1) in By, \ {0} is a bounded weak solution of (1.1) in B,, by Theorem 1.6.

Proof. Next we assume p < q < % By Theorem 1.3 wu satisfies
1
[afu(z) + [Vu(@)| < eufo| 77, (5.89)

for 0 < |z| < rg. Since ¢ > +1, this implies that (5.28) holds and therefore u satisfies a uniform
Harnack inequality in B ul in the sense that

u(z) < couly) for all z,y € B%l \ {0} s.t. |z| =]yl (5.84)

Case 1. Assume that |z|V~2u(z) is bounded. We cannot apply directly the result of Theorem 3.2
since ¢ > 5 1 and we define uy by

ug(x) = N 2u(lx) for £ > 0.
Then u; satisfies

—Aug 4+ mN IV |7y, |7 — KN_p(N_Q)uif =0 in BTTO.

Since ¢ < %, N —g(N —1) > 0, therefore we deduce as in the proof of Theorem 3.2 that Vuy
satisfies estimate (3.15) with k replaced by ¢, which implies

[Vu(z)| < eslz|t™N  forallz e By \ {0}. (5.85)

then N
|Vu|? € L¥1%(B,,) and u” € LY(B,,),

for any € > 0. By the Brezis-Lions Lemma [16] there exists k£ > 0 such that u satisfies

—Au+m|Vul? = uP + kS in D'(B,,). (5.86)
Furthermore, u verifies
lim 7V 2u(r,.) = enk (5.87)
r—0

in L'(SN1) and actually uniformly. By comparing v with the radial solution @ of the Riccatti
equation (1.7)
—Au+m|Vul?=kéy  in D'(By,) (5.88)

vanishing on 0By, (see [7]), we obtain by the maximum principle that « > 4. The solution u}
of (5.88) with 7y = oo and vanishing at infinity is explicit and given in [7, Theorem 3.13] by

1

con_ [T N q—1 N—q(N-1) 1-¢) ' 5.89
uz‘z(ﬂﬁ)—/m| s <—N—q(N—1)S +cnk ds. (5.89)
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Therefore we easily obtain that the solution u verifies
up(x) — C(ro) < <wu(x) forall z € By, \ {0}, (5.90)

for some constant C(rg) > 0.
If kK = 0, we proceed as in the proof of Lemma 5.3-Step 4 with the same sequences {Sn} and
{6,}. With the notations therein, we obtain (5.65) and (5.66) and derive that u is a bounded
regular solution.
Case 2. Assume that |z|™V ~2u(z) is unbounded near x = 0. Then there exists a sequence {r,}
decreasing to 0 such that

lim sup r 2u(z) = oco.

rn—0 |z|=rn
By (5.84) there holds

lim inf Tﬁ”u(m) = 00.

rn—0 |z|=r)
Let k > 0, since |z|Y 24y (x) = exk, where @, has been defined in (5.88), for r, < ry, , one has
Uy, < win By, \ By, by the maximum principle, which implies that the same inequality holds in
By, \ {0}. Let k — oo implies that

lim 1= oo <u in By, \ {0}.
k—00

Since (5.90) still holds with k£ = co and combining with [7, Theorem 3.13] we obtain that
Emlz| 7P — C(r0) < fioo < u(z) for all z € B, \ {0}, (5.91)

where &, is expressed by (5.8); indeed it is proved in the above mentioned article that klim up, =

— 00
ul (z) = &p|x| ™. This yields

o0

h;n_}gf |z|Pu(z) > &n. (5.92)

In order to obtain the sharp estimate from above, we define, for £ > 0, Sy[u](z) = (Pu(lx) = ue(x)
in BrTo \ {0}, where u, satisfies

—Aug 4+ m|Vug|? = £PP=D=22, (5.93)

Let
¢* = limsup |z|°u(z) = lim rPu(r,,6,),
|| -0 rn—0
for some sequence {(ry,0,)} — (0,0.) and set uy,(z) := u,, (x). Then ¢* > &, by (5.92). The
function wu,, satisfies
—Auy, + m|Vuy|? = r27AP=Dyp (5.94)

in Bro \ {0} and

([ (@) + [Vun(2)] < cala| 7T 30 < o] < £2. (5.95)

Since ¢ > p > %, we have 2 — B(p — 1) > 0 and by standard regularity result (see e.g. [23]),

there exists a subsequence, still denoted by {u,, }, and a C? function u* such that w,, — u* in
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the 0120 . topology of RN\ {0}. The function u* is a nonnegative solution of the Riccatti equation
(1.7) in RV \ {0} and it tends to 0 at co. By [7, Theorem 3.13], either u* = 0, either there exists

k > 0 such that u* verifies (5.87), or
u*(x) = Emlz| 77, (5.96)

where &, is expressed by (5.8). Note that &,,|z|~? is the maximal positive solution of (1.7) in
RN\ {0} which tends to 0 at infinity. Since u*(1,0.) = ¢* > &,,, we obtain that ¢* = &, which
implies

i B —

ili% |z|Pu(z) = &m- (5.97)

O

Remark. The existence of solutions of (5.86) for any k& > 0 is proved in the radial case in [13].
We can observe that if £ > 0 is small enough the existence is straightforward since there exists
a solution uy of

—Au—uP =kdy in D'(By,)

u=20 in 0B,,, (5.98)

see [25]. The function 4 is a supersolution of (1.1). Since the solution 4y of (5.88) is a
subsolution, and both 4y, and 4y, are ordered and have the same behaviour at 0 given by (5.87) it
follows that there exists a solution uy, of (1.1) which vanishes on 0B, and satisfies @, < uy < .
Hence it satisfies (5.87) and it is easy to check that it is a solution of (5.86).

5.2 Behaviour at infinity

The asymptotic behaviour of positive solutions of (1.1) in an exterior domain is obtained in some
particular cases by using the energy method. Here we make more precise the results contained
in Theorem 1.5.

Theorem 5.5 Let N > 3, % <p< %—4—_;’, p# %, q > 1% and m > 0. If u is a positive
solution of (1.1) in By, satisfying (1.22) the following alternative holds.

(i) Either
lim |z|%u(z) = wo (5.99)
|z| =00
where wq is given by (5.7).
(ii) Or there exists k > 0 such that
‘l‘im 2N 2u(z) = k. (5.100)
T|—00

Proof. We recall that estimate (1.22) holds when % <p< % by the doubling method.
As in the proof of Theorem 1.9 we set u(r,0) = r®w(t,0) with t = Inr > 0 (we can assume
that 79 < 1) and w is a bounded solution of (5.11) in (0,00) x SN~!. Notice that o > 0. The

omega-limit set of the trajectory
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is a non-empty compact connected subset I'y of C?(S™V~1). The energy method used in the

proof of Theorem 1.9 applies because p # %, hence

tli}I?o l|lve (2, ')”L2(SN*1) - tIHEO [[vee (2, ')”LQ(SNfl) =0

This implies that 'y is a compact and connected subset of the set of nonnegative solutions
of (5.3). Since 5 < p < 4, 'y = {0,Xo} by [22], hence if Xy € I';, then (5.99) holds,
otherwise
lim |z|%u(z) = 0. (5.101)
|x|—o00
In such a case, we obtain by changing ¢ into —t as in the proof of Lemma 5.2, that there exists
€ > 0 such that

v(t,0) < cre” in (0,00) x SN = wu(z) < e1|z|7*7¢ in By, \ {0}. (5.102)

The computations of Lemma 5.3 are still valid, but since ¢ — oo the results therein have to
be re-interpreted. Since the spherical average v(t) of v(t,.) satisfies (5.35), in this equation the
right-hand side H(t) which satisfies H(t) < coe™®? and 1 expressed by (5.34). By the same
standard method of ”the variation of constants” the expression (5.36) which expressed all the
solutions of under the form

o(t) = AeMt + BeMt + O(t)e 01, (5.103)

where A and B are constant and C(¢) is a bounded function. The exponents A; and g are given
by (5.31). It is important to notice that Ao < 0 < Ay. Thus, 9(t) — 0 when ¢t — oo implies
A =0 and

B(t) < czet for t >0 (5.104)

with 6; given by (5.48)-(i). The representation formula (5.42 ) valid for v* = v — v is replaced
by

t

v(t,.) = eth(t)v*(O, ) - / eMSS(s)/ eNizzaizTS(T)H*(t + 7 —s,0)drds
0

’ (5.105)
see [15, (1.14)], where
H*(t,.) = me” T ((ve — av)? + |V'v|2)% —oP
1 _ ot a
— W (me p—1 ((Ut — 0471)2 + ’V/'UP)g — Up> dS
gN-1

Since
”H(t, ')”Loo(SN—l < 046_61t7

and (5.41) holds, we deduce that

[0 ()| oo (srv-1) < Cre” N7 Coe™ for all ¢ < 0. (5.106)
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Since v(t,.) = v(t) + v*(t,.) we deduce
[v(t, )l oo (sn-1y < Cre~W=a=t 4 Chem0t 4 Cye™t < Cue™t forall ¢t <0, (5.107)

with 6, from (5.48)-(i). We iterate the process and, defining d,, and 6,, by (5.48), we obtain, as
long as 6, < Ao,

[v(t, )l oo (sn-1y < Cre~W=a=Dt 4 Chem0nt 4 Oyt < Cue ™t forall t >0,  (5.108)
Then there exists n* such that 6, = Ay = o+ 2 — N and this implies that
v(t,.) < Cgelot?=N)t, (5.109)

This implies
5(t) = Be*(1+0(1)) ast — oco.

Since
[0 (8, | oo g1y = 0(E,.) = ()| oo (grv—1) < Cre” N=07DE - Chem0n*?

and §,+ = min {p@n*,an* + Ll} > 0+, we conclude that
p —

tlim e(N_Z_O‘)tv(t, .) =B uniformly on SV, (5.110)
—00
which is (5.100) with £k = B. By Corollary 2.5 we have necessarily k > 0. g

Remark. The existence of radial solutions in By satisfying (5.100 ) with & > 0 is proved in [2].

The next result completes Theorem 1.4.

Theorem 5.6 Let N > 3,1 < q < min{%, %} and m > 0. Let u be a positive solution of
(1.1) in By,.

1- Then
llirln inf |zPu(x) > &,. (5.111)
T|—0o0

2- If |x|Pu(x) is bounded, then
|1|im zPu(z) = &n. (5.112)
T|—00

Proof. For £ > 1 the function uy(x) = (Pu(fz) satisfies (5.93) in B, and is bounded therein.
3
Since q¢ < 1%’ B(p—1) —2 < 0, thus we deduce by regularity techniques that

|z|u(x) + |Vu(z)| < C\x]_q%. (5.113)

This implies that |z[?uP~!(z) + |z||[Vu(z)|?! < C in BE, and therefore Harnack inequality
holds uniformly in By, in the sense that

max u(x) < C min u(z) for all r > ry. (5.114)

|z|=r |z|=r
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Set p = min u(z) and define k, by

|z|=1

1

. > q—1 N—q(N-1) | 11—q) ' N-1
= 1) = - 4 k¢ ds. A1
p=ug, (1) /1 (N—q(N—l)S + kK, s s (5.115)

Then for any € > 0, u > (uj — €)4 which is a subsolution of the Riccatti equation in Bf. This
implies that u > uj ~in Bf. Since

1

. * . > g—1 N—g(N-1 1-¢) ' N-1
1 p =1 aN=1) 4 fl=a ds =&, 11
|m|1m |z| uku(az) Mlm . <N o(N 1)3 m > s s =&m, (5.116)

actually this limit is independent of k,,, it follows that

lim inf |z|%u(z) > &n.

|z| =00
This implies (5.112).
Set

¢* =limsup |z[Pu(z) = lim rPu(r,,6,)
|z| =00 Tn—00

where 6,, € S¥~1 and we can assume that 6,, — 6* € SN~ Then ¢* > &,,. The function
Uy, T - rhu(r,x) satisfies

el

—Auy,, +m|Vu,, |1 =12 PP Dyl =i (5.117)

in B%, . Since o < 0, we have that 0. By the local regularity a priori estimates inherited

™

from (5.113) implies that, up to a subsequence still denoted by {r,}, u,, converge in the C?>-local
topology of R \ {0} to a positive solution w of

—Aw+m|Vw|?=0  inRY\ {0}. (5.118)

Because of (5.113) and similarly to the proof of Theorem 1.10 we can use Arzela-Ascoli theorem
to infer that up to a subsequence still denoted by {r,}, u,, converges in the Cfoc topology of
RN\ {0} to a positive solution of the Riccatti equation (1.7) in R™ \ {0} which is a function u}
(0 < k < o0) given by the expression given by (5.89). Because ¢* = w(l) > &, = kh—>n;o ug(1).

Hence ¢* = £,,, which conclude the proof. O

6 Appendix

In this Section we prove a technical result concerning the existence of positive radial solutions
of

N -1
- — . v +m|v|9=0 (6.1)

on (rg,00) satisfying non-homogeneous Dirichlet conditions at = ry and at infinity.
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Lemma 6.1 Let ¢ > 1, 0 < r9 < 7 and a,b > 0. Then there exists a solution v of (6.1) on
(ro,7) satisfying v(rg) = a and v(1) = b if and only if a = b, or, if a # b:
1- Whena <b, forany1 < q <2 and 7 > rop.

2- When a < b, for any q > 2 and 7 > 7 > ro where T depends on b — a.
3- When a > b, forany 1 < q¢<2and 1 >1g

4- When a > b, for any q > 2 and 7 > r¢ if and only if

g(N—-1) - N\ 12 N/"TO 1-N N—g(N—1) =
— _ t 1 -1 . .2
a b<< o p— U . ( ) dt (6.2)

Proof. If a = b the constant function v = a is a solution. If v; and v9 are solutions of (2.17) and if
there exists 6 > 7o such that v} (0) = v4(0), then v1 = vy +v1(0) — v2(6) by the Cauchy-Lipschitz
theorem. This implies in particular that if v; and vy are solution either on (rg,7) with vy (rg) =
va(ro) and v1(7) = vo(7T), or on (rg,o00) with v1(rg) = va(rg) and lim, o (vi(r) — ve(r)) = 0,
then v; = v9. We first consider the problem on (rg, 7) for some 7 > ry and if a,b > 0 we denote
by v := v, the solution of (6.1) on (rg,7) such that v(rg) = a and v(r) = b. Solutions are
explicit by setting w(r) = rN~1/(r), then

W — = O(V=1) g — ¢ (6.3)

Case 1: a < b. If a solution exists it is increasing and we can replace v by ¥ = v — a, thus
0(rg) =0 and ¢'(r) > 0

1
m(g— _ _ N—q(N— T q— .
[ N— 1/ —q _ N—((]%Nl—)l) (TN q(N 1)_700 q( 1))} a1 1fq75%
N—1~1 _
r '(r) = .
[ N—-1~ / l —q _ (q—l)ln%] g—1 lfq:—Njil

We set X := ¥/(rg) and we study the mapping r — Tx(r) defined by

Tx(r) = / st=N [(Tév_lX)l_q - NT(;(]:[l_) 1) <3N_q(N_1) - rév_q(N_l))} o ds (6.4)

ifq;é%,and

r “T
Tx(r) :/ st=N [(Tév 1X) —m(g—1)In L} " ds (6.5)
0 To
¢= 5oy 1
) IfN—g(N—-1) >0, Tx is defined for ro < r < ry := [%( N_lX)l_q + rév_q(N_l)} Mratv=l
(rg’ ' X))t

1

iii) If N —¢(N — 1) <0, Tx is defined for any r > ro if X < X := [M] 7 and for

(
(i) If ¢ = &5, 7*(X) is defined for ro < r < 1% = Toem(q D
( m(g—=1)ro

r<ryxy:=|1-—

g(N—-1)—N ]_q(NlnN

m(q— 1)ro X1 "o
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if X > X.

In case (i) (resp. (ii)), we fix 7 > ro then the mapping X — Tx(7) (resp. X — TF(7)) is
continuous, increasing and defined provided 7 < rx (resp. 7 < r%), that is

1

_ . 1-N m(g—1) N—g(N-1) _  N—g(N-1) et
X <X;:i=mr, [—N TN =) (T Ty > ) (6.6)
in case (i) and
T _q%l
X< Xfi=r)" [m(q —1)In r—} (6.7)
0

in case (ii). Furthermore To(7) = 75°(7) = 0 and limx+x, Tx(7) = limxyxx T¥(7) = oo since
q < 2. As a consequence there exists a unique X € (0, X,) (resp. X € (0,X*)) such that
Tx(7)) =b—a (resp. TZ(7)) =b—a).

In case (iii) we have in the case X < X,

00 iHfN=2

lim Tx(r) =

. (6.8)
roee Oy (X) = 1oX {1— (Xio)q } LN >3

Since C1(0) = 0 and C1(X) — oo when X 1 Xy, C is a continuous increasing function from
[0, Xo] onto [0,00]. If X > X,

o0 if 7= <q<2
lim Tx(r) = (6.9)
rofx Cy(X) if ¢> 2,
where )
(g —1) = N\at N f/l NegN—1) _ {7 1N
Oy(X) = (—m e > N (t 1) =N gt (6.10)

For 7 > rp, we introduce again the mapping X — Tx (7). In view of the last relation in the case
% < ¢ < 2 then for any b > a and 7 > r there exists a unique X > Xj such that 7 < r¢ + and
Tx(r)=b—a.

If ¢ >2and N > 3, for any b > a there exists 7" > 1y, depending on b — a, such that for any
T > 7* there exists X < X such that Tx(7) = b— a. We can explicit 7* by 7* = 7x» where X*
is characterized by Co(X*) = b — a.

Case 2: a > b. Then v is decreasing and the method has to be slightly modified in order to
obtain a positive solution of —v” — &=L/ + m[v/|9 = 0 on (ro,7) such that v(rg) = a and
v(T) = b. By replacing v by v := v — b we look for a solution ¢ vanishing at 7 and positive on
(ro,7). Let X = 9'(rg) then

1
m — _ N—q(N— Tg—1 .
oy [ Iy (o ]
—r v'(r) = e
{(—rév_lX)l_q +m(qg—1)In %} . if g = —NZXI.
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We study the mapping r — Sx (r) defined by

1

S R e B T S C it I U SR R S S MY B
Sx(r)=a—"b /TO s [( rd X)) 4 N V1) (s ro ) ds
(6.11)

ifq;é%and

1

T g1
si=N [(—rév_lX)l_q +m(g—1)In ri} " ds (6.12)
0

S}}(T):a—b—/T

To

if g = % If ¢ < %, these two functions are defined on (rg, 7). A solution ¢ satisfying the

boundary conditions at r = ¢ and r = 7 corresponds to the fact that Sx(7) =0 if ¢ # % or
Sx(r) =0if g = 5%

(i) If ¢ < s we have

%I%(I)S)((T) =a—b and Xl_l)ll_looS)((T) = —00, (6.13)

T 1

because ¢ < 2 implies that / st=N [% (sN_q(N_l) - rév_q(N_l)ﬂ ! ds = oo.
ro

(i) If ¢ = 5 we have also

%I%(I)SX(T) =a—b and Xl_l)ll_looSX(T) = —00. (6.14)

This implies that in these two cases for any 7 > 0 there exists a unique X < 0 such that
Sx(r) =0o0r Sx(r) =0.
(iii) If ¢ > &5, Sx(r) is defined for any X < 0 and any r € (rg, 7). We write it under the form

1

[T AN [ N—1yy1g m(q—1) N—q(N-1) _ N-q(N-1DY)| "
Sx(t)=a—0b /m s [( rg X)) 1+ dN-—T =N (7‘0 s ) ds
(6.15)

We have that g%SX(T) =a— b and Xlim Sx (1) = —o0 if % < q < 2; in such case there
——00
exists X, < 0 such that Sx_(7) = 0. On the contrary, if ¢ > 2, we have
1 .
. _ gN-1)—-N ‘”2—N/T0 1-N ( N—q(N—l))_qll
Xl_l}ll_looS)((T) =a—-0» < P 0 . t 1—t dt. (6.16)

In that case we can find some X = X (7) < 0 (actually always unique) such that Sx, (1) = 0 if
and only if

1 ,
q(N—-1)—-N ‘”2—N/"0 1-N N_g(N—1) 7T
- EAS A t 1 — ¢V-a(v-1) ) 1
a b<< P U . ( ) dt (6.17)

Letting 7 — oo we can find 7 > 7 such that (6.17 ) holds if and only if (6.2) holds. O
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