
HAL Id: hal-04027048
https://hal.science/hal-04027048

Submitted on 13 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An enhanced worst-case end-to-end evaluation method
for SpaceWire networks

Thomas Ferrandiz, Fabrice Frances, Christian Fraboul

To cite this version:
Thomas Ferrandiz, Fabrice Frances, Christian Fraboul. An enhanced worst-case end-to-end evaluation
method for SpaceWire networks. 22nd Euromicro Conference on Real-Time Systems (ECRTS 2010),
Jul 2010, Bruxelles, Belgium. pp.1-4. �hal-04027048�

https://hal.science/hal-04027048
https://hal.archives-ouvertes.fr

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 4131

To cite this document: FERRANDIZ Thomas, FRANCES Fabrice, FRABOUL
Christian. An enhanced worst-case end-to-end evaluation method for SpaceWire
networks. In: 22nd Euromicro Conference on Real-Time Systems - ECRTS10, 06-09 Juil
2010, Bruxelles, Belgique.

Any correspondence concerning this service should be sent to the repository
administrator: staff-oatao@inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/
mailto:staff-oatao@inp-toulouse.fr

An enhanced worst-case end-to-end evaluation
method for SpaceWire networks

Thomas Ferrandiz
Univ. of Toulouse, ISAE

Email: thomas.ferrandiz@isae.fr

Fabrice Frances
Univ. of Toulouse, ISAE

Email: fabrice.frances@isae.fr

Christian Fraboul
Univ. of Toulouse, IRIT/ENSEEIHT-INPT

Email: christian.fraboul@enseeiht.fr

Abstract—The SpaceWire network is scheduled to be
used as the sole on-board network for future ESA satellites.
However, at the moment, network designers do not have
tools to ensure that critical temporal deadlines are met
when using best-effort wormhole networks like SpaceWire.
In a previous paper, we have presented a first method
to compute an upper-bound on the worst-case end-to-
end delay of flows traversing such networks. However, its
scope was limited by restrictive assumptions on the traffic
patterns. Thus, in this paper, we propose a new network
model that removes those limitations and allows worst-
case delay analysis on SpaceWire networks with any traffic
pattern.

I. INTRODUCTION

End-to-end (ETE) transmission delays vary a lot in
a wormhole network and are very hard to predict. This
raises a problem when trying to use a wormhole network
to transmit traffics with hard temporal constraints. Sev-
eral mechanisms have been studied to make wormhole
networks more suitable for real-time communications
like virtual channels [1] and preemptive priorities. How-
ever, those mechanisms increase memory consumption
and cannot always be employed.

For instance, the SpaceWire standard [2],[3] that the
European Space Agency plans to use for on-board real-
time communications in its future satellites is a best-
effort wormhole network and does not include such
mechanisms.

Since delays cannot be determined analytically, an-
other good metric is to use an upper-bound on the worst-
case ETE transmission delay. We proposed a first method
to compute such a bound in [4]. However, our method
required some restrictions on the traffic model. First,
it made the assumptions that data packets were long
enough not to be entirely stored inside the switches
buffer which are only 64-byte large. Second, it could
not model a situation where two packets of the same
flow were present in the network at the same time and
interfering with each other. As a consequence, it was too
specific to cover every pertinent cases.

Network-On-Chips (NoCs) are another area where
a similar need emerged. Those networks also have to
transmit real-time traffic while keeping memory and
power consumption low. Several papers deal with this
problem (for instance [5] and [6]) but only offer partial
solution at the moment. In [7], the authors present a
model called RTB-HB (Real-Time Bound for High-
Bandwidth traffic) that allows them to compute worst-
case latency bounds for best-effort wormhole NoCs. This
model does not require assumptions on the traffic model
but assumes a synchronous network and is optimized for
small packet sizes.

Based on our previous work and the RTB-HB model,
we present a new network model that does not re-
quire assumptions on the traffic pattern anymore. It lets
terminals send data at any time and works for any
packet sizes. The first step in the model is to break
down wormhole switches in elementary components as
shown in Section II. We then show in Section III how
to determine delay bounds for those components and
compose them to derive worst-case ETE delays. Finally,
we conclude in Section IV and present future topics for
research.

II. MODEL OF A SPACEWIRE SWITCH

SpaceWire [2],[3] was designed by the European
Space Agency and the University of Dundee as a high-
speed on-board network for satellites. It uses point-
to-point links and wormhole switches to interconnect
terminals. Wormhole routing allows switches to use a
very small amount of memory but, as shown in [4], it is
subject to blockings that create large variations in delays.
In this Section, we present an analysis of the different
type of blockings and a model that simplifies the analysis
of their impact.

Figure 1 shows a 8x8 SpaceWire switch with 8 inde-
pendent ports. Since the input and output of each port
work independently of each other, we will separate them
in the model. Each input port is connected to a FIFO
input buffer. Typically, SpaceWire switches use 64-byte

input buffers. A switch matrix then connects the input
buffers to the output ports according to the destination
of the packet.

Figure 1. A 8x8 SpaceWire switch

A. Blocking types analysis

In such a switch, two kinds of delay can slow down
a packet. The first one is a delay when the packet tries
to access an output port. If a packet is already using it,
the switch matrix cannot connect the input port to the
output port. Thus the packet has to wait until the current
transmission is finished. Since the access to the output
port is managed with a Round-Robin mechanism, other
packets may also pass before the considered packet gets
access to the output port.

The second one occurs when a packet p gets blocked
behind a packet q in the FIFO buffer. Depending on the
size of q, its header can be in the same buffer, or in the
next switch or even farther in the network. Even if q
does not use the same output port as p, p will not be
able to access its output port as long as a part of q is in
the buffer.

These two kinds of blockings combined together mean
that the ETE delay of the packets of a given flow may
vary enormously across different transmissions. How-
ever, by breaking down a switch in elementary switches
and analyzing them individually, we will be able to get
a simpler model and to determine a bound on the ETE
delay.

B. The switch model

The model is based on the idea that, as far as delays
are concerned, a 64-byte FIFO buffer is identical to 64
successive wormhole switches with a one byte buffer,
connected by links of infinite capacity. The model is
shown on Figure 2.
DSk,l denotes the lth elementary switch (with l ∈

{1, . . . 64}) of the input buffer of port k, k ∈ {1, . . . 8}.
For each k, DSk,1 to DSk,62 have one input port and
one output port and a switching delay of 0 s.

Figure 2. Equivalent of a SpaceWire switch using elementary switches

DSk,63 and DSk,64 model the switching matrix of
the real switch. DSk,63 has one input port and 8 output
ports. Its switching delay is equal to the switching delay
of the real switch. It uses a routing table equivalent to
that of the real switch. Each DSk,63 is connected to each
of the DSk,64 to model the connections in the switch
matrix. The DSk,64 switches have 8 input ports and one
output port. Each input port has a one-byte input buffer.
This elementary switch model the access conflicts to the
output port of the real switch and arbitrates between the
different input ports with a Round-Robin mechanism.

To ensure that the model matches exactly the behavior
of a SpaceWire switch, we need to make one more
assumption. Since each DSk,64 has 8 one-byte input
buffers, it looks like there are more memory available
than in the real switch. However, this is not the case if
we make sure that at any time, only one DSk′,64, k

′ ∈
{1, . . . 8} can contain a character coming from a given
DSk,63. So the condition for a packet to move forward
from DSk,63 to a DSk′,64 is not only that the DSk′,64 it
wants to access is free, it is that all the DSk′,64 are free,
for all k′ ∈ {1, . . . 8}. With this condition, it is easy to
see that the character stream coming from a given input
port can never use more than 64 bytes.

We can now use this switch model to compute an
upper-bound on the worst-case ETE delay of each flow.

III. COMPUTING AN UPPER-BOUND ON THE
WORST-CASE END-TO-END DELAY

The computation takes place in two phases. Firstly,
it takes a description of a SpaceWire network as input
and creates an ”elementary network” composed only of
terminals and 1-byte elementary switches connected by
unidirectional links. Secondly, this ”elementary network”
is used to compute the worst-case delay for each flow by
adding up the delays caused by each of the elementary
switch crossed by the flow.

A. Assumptions

We consider that a SpaceWire network is composed of
terminals (that can each both emit and receive data) and

2

of switches that interconnect them through SpaceWire
links. We assume that a terminal has only one network
interface.

We do not make any assumptions on the emission
patterns of the terminals. This allows us to consider
terminals without input traffic regulations as is the case
for most terminal at the moment. Each terminal can try
to send a data packet at any time. We also assume that
at the beginning of the computation, all the input buffers
of all the switches are already full and that all the flows
are trying to emit at maximum speed. This allows us to
cover all the possible worst-case situations and find an
upper-bound on the worst-case delay.

A communication between a source and a destination
is modeled as a flow fi, i ∈ {1, . . . N}. Each flow fi has
a fixed packet size, noted Li. Each flow goes through a
set of links that form a path in the network between two
terminals.

We also make the following assumptions:
• the routing is static;
• all the links have the same capacity C;
• the destination of a packet is able to read it as fast

as the network can transmit it
• each terminal needs a constant delay dinj to inject

a packet in the network.
• each terminal needs a constant delay dej to eject a

packet from the network.

B. Generating the ”elementary network”

The first step is to replace every SpaceWire switch by
the equivalent set of elementary switches as explained
in II-B. Now each flow will follow a path of elementary
switches connected by unidirectional links. We will
note hi the number of those elementary switches and
SW j

i , j ∈ {1, . . . , hi} the jth switch in this path. Note
that hi only counts the elementary switches representing
the SpaceWire switches.

We then need to model the terminals. Each terminal
may play two roles: source and destination. Since we
use unidirectional links in the elementary network, those
roles must be modeled separately.

A source terminal injects packets from one or more
flows in the network at maximum speed. All the flows are
competing for access to the output link. This is arbitrated
through a Round-Robin mechanism. Therefore, we chose
to model a source terminal as a set of elementary sources
(one for each outgoing flow) connected to an elementary
switch arbitrating between the flows. The elementary
switch will be denoted SW 0

i .
Similarly, a destination terminal will receive packets

from the network from one or more flow and eject
them as they arrive. If we had modeled a destination

terminal as a single elementary block, when adding
up the delays in each crossed elementary switches, we
would only get the time needed for the header of the
packet to reach its destination. To obtain the transmission
delay of the whole packet, we chose to add Li − 1
elementary switches to the path of each flow fi after
SWhi

i . Thus we model a destination terminal as an
elementary switch receiving all the flows ending in this
terminal and dispatching them to an additional path of
Li − 2 elementary switches. Each path ends with an
elementary destination. Those elementary switches are
connected by infinite capacity links.

In the end, a packet from flow fi has to cross
hi+Li elementary switches (from SW 0

i to SWhi+Li−1
i)

to reach its elementary destination. We now have a
complete network of elementary blocks which we can
use to compute ETE delays.

C. Upper-bound computation

This method is inspired by the RTB-HB method from
[7] and we will use mostly similar notations. We note uj

i

the delay needed for a packet pi of flow fi to go from
the input buffer of switch SW j

i to the input buffer of
SW j+1

i . Given these notations, an Upper-Bound on the
ETE transmission delay of flow fi is given by

UBi = dinj + dej +
∑

j∈{0,...,hi+Li−1}

uj
i . (1)

Similarly, we can compute a Minimum Interval between
two packets of the same flow with

MIi = dinj +
∑

j∈{0,...,Li−1}

uj
i . (2)

MIi represents the minimum delay needed to completely
move a packet out of the source buffer. This metric can
be used to derive a maximum available bandwidth for
each flow and determine if a network is able to transmit
all the required traffic.

Let us now compute uj
i . The causes of delay in a

switch are twofold. On one hand, since we assume
that the network is completely filled with packets, the
downstream elementary switch SW j+1

i contains the last
character of another packet pi′ . So pi′ has to move
forward one hop before pi can go on. Since pi′ is Li′ -
byte long, its header is in SW

j+Li′
i′ . When the header

of pi′ moves one hop forward, all the packet will follow.
As a consequence, the delay before pi′ frees SW j+1

i is
u
j+Li′
i′ .
Let zc(i, j) be the number of flows in conflict with

fi in SW j
i . For elementary switches with only one

output link, zc(i, j) is obviously equal to the number of
flows entering the switch (excluding fi). For elementary

3

switches with several output links, as explained in Sec-
tion II-B, we must make sure that they are all free before
pi can move. As a consequence, we can also consider
that all the flows entering SW j

i are competing with fi
for access to the output port. In addition, pi′ may belong
to fi itself.

In the end, for every elementary switch,
the delay caused by pi′ in the worst case is
maxi′∈{1,...,zc(i,j)}(u

j+Li

i , u
j+Li′
i′).

On the other hand, delays can be caused by packets
coming from other input links and using the same output
link as fi. With wormhole routing, if another packet
is already using the output port, pi has to wait until
this packet has been completely transferred before it can
move forward. In addition, packets from other flows may
be already waiting for this port to be released and will
be transferred before pi.

However, as we showed in [4], because of the Round-
Robin mechanism, for a given input port, only one packet
may pass before pi. Thus, to get the worst-case delay,
for each input port, we will compute the delay that each
flow could cause and take the maximum of those delays.
We can then sum those delays for all the input links to
get the maximum delay endured by pi.

Furthermore, a packet pi′ entering SW j+1
i from a

different input link than pi must move forward Li′ hops
before it releases the output port. Therefore it causes a
delay equal to

∑Li′
k=1 u

j+k
i′ .

Let us denote Iji ={input links of SW j
i minus

the input link of fi} and F j
l ={flows entering SW j

i

through l}. The worst-case delay caused by all the
flows coming from other input ports than pi is given
by

∑
l∈Ij

i
(maxi′∈F j

l
{
∑Li′

k=1 u
j+k
i′ })

In the end, uj
i is given by

max
i′∈{1,...,zc(i,j)}

(uj+Li

i , u
j+Li′
i′) +

∑
l∈Ij

i

(max
i′∈F j

l

{
Li′∑
k=1

uj+k
i′ })

(3)
(3) can now be used to compute (1) and (2) recursively

for each flow fi. The computation ends when the packet
reaches its destination. Since SpaceWire characters are
10-bit long, we can write this so: ∀j > hi, u

j
i =

10
C .

IV. CONCLUSION

We have presented a new network model designed
to determine an upper-bound on the worst-case end-
to-end transmission delay of data packets traversing a
SpaceWire network. This model was inspired by works
on similar problems in wormhole switching Networks-
On-Chip. In our model, wormhole switches and termi-
nals are broken down in elementary switches that can

be easily analyzed to determine delay bounds. Those
bounds can then be composed to derive a bound on the
end-to-end delay of each flow.

Contrary to our previous work, this model does not
need strong assumptions on the traffic patterns. It works
for switches without dedicated real-time mechanisms and
does not require traffic regulation at the terminals.

A first implementation shows preliminary results that
are coherent with our previous work in configurations
where our first method was applicable. We also intend
to do a more complete comparison between our model
and the RTB-HB method [7] which inspired it in the
future.

We plan to develop our model in several directions.
A first direction will be to generalize it to support other
wormhole switching networks than SpaceWire. The first
step in this direction will be to support links with
different capacities throughout the network. This aspect
is crucial to make the method more general. The second
direction will be to model more functionalities specific
to the SpaceWire standard like switch-level priorities and
Group Adaptative Routing.

ACKNOWLEDGMENT

This work was supported by a PhD grant from the CNES and Thales
Alenia Space.

REFERENCES

[1] W. Dally, “Virtual-channel flow control,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 3, no. 2, pp. 194 – 205, Mar
1992.

[2] S. M. Parkes and P. Armbruster, “Spacewire: A spacecraft onboard
network for real-time communications,” IEEE-NPSS Real Time
Conference, no. 14, pp. 1–5, Feb 2005.

[3] ECSS, “Spacewire – links, nodes, routers and networks,” pp. 1–
129, Aug 2008.

[4] T. Ferrandiz, F. Frances, and C. Fraboul, “A method of com-
putation for worst-case delay analysis on spacewire networks,”
Industrial Embedded Systems, 2009. SIES ’09. IEEE International
Symposium on, pp. 19 – 27, 2009.

[5] Z. Shi and A. Burns, “Real-time communication analysis with
a priority share policy in on-chip networks,” Real-Time Systems,
2009. ECRTS ’09. 21st Euromicro Conference on, pp. 3 – 12, Jul
2009.

[6] Y. Qian, Z. Lu, and W. Dou, “Analysis of worst-case delay bounds
for best-effort communication in wormhole networks on chip,”
Proceedings of the 2009 3rd ACM/IEEE International Symposium
on Networks-on-Chip-Volume 00, pp. 44–53, 2009.

[7] D. Rahmati, S. Murali, L. Benini, F. Angiolini, G. D. Micheli,
and H. Sarbazi-Azad, “A method for calculating hard qos guar-
antees for networks-on-chip,” Computer-Aided Design - Digest of
Technical Papers, 2009. ICCAD 2009. IEEE/ACM International
Conference on DOI -, pp. 579–586, 2009.

4

