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An enhanced worst-case end-to-end evaluation method for SpaceWire networks

The SpaceWire network is scheduled to be used as the sole on-board network for future ESA satellites. However, at the moment, network designers do not have tools to ensure that critical temporal deadlines are met when using best-effort wormhole networks like SpaceWire. In a previous paper, we have presented a first method to compute an upper-bound on the worst-case end-toend delay of flows traversing such networks. However, its scope was limited by restrictive assumptions on the traffic patterns. Thus, in this paper, we propose a new network model that removes those limitations and allows worstcase delay analysis on SpaceWire networks with any traffic pattern.

I. INTRODUCTION

End-to-end (ETE) transmission delays vary a lot in a wormhole network and are very hard to predict. This raises a problem when trying to use a wormhole network to transmit traffics with hard temporal constraints. Several mechanisms have been studied to make wormhole networks more suitable for real-time communications like virtual channels [START_REF] Dally | Virtual-channel flow control[END_REF] and preemptive priorities. However, those mechanisms increase memory consumption and cannot always be employed.

For instance, the SpaceWire standard [START_REF] Parkes | Spacewire: A spacecraft onboard network for real-time communications[END_REF], [START_REF] Ecss | Spacewire -links, nodes, routers and networks[END_REF] that the European Space Agency plans to use for on-board realtime communications in its future satellites is a besteffort wormhole network and does not include such mechanisms.

Since delays cannot be determined analytically, another good metric is to use an upper-bound on the worstcase ETE transmission delay. We proposed a first method to compute such a bound in [START_REF] Ferrandiz | A method of computation for worst-case delay analysis on spacewire networks[END_REF]. However, our method required some restrictions on the traffic model. First, it made the assumptions that data packets were long enough not to be entirely stored inside the switches buffer which are only 64-byte large. Second, it could not model a situation where two packets of the same flow were present in the network at the same time and interfering with each other. As a consequence, it was too specific to cover every pertinent cases.

Network-On-Chips (NoCs) are another area where a similar need emerged. Those networks also have to transmit real-time traffic while keeping memory and power consumption low. Several papers deal with this problem (for instance [START_REF] Shi | Real-time communication analysis with a priority share policy in on-chip networks[END_REF] and [START_REF] Qian | Analysis of worst-case delay bounds for best-effort communication in wormhole networks on chip[END_REF]) but only offer partial solution at the moment. In [START_REF] Rahmati | A method for calculating hard qos guarantees for networks-on-chip[END_REF], the authors present a model called RTB-HB (Real-Time Bound for High-Bandwidth traffic) that allows them to compute worstcase latency bounds for best-effort wormhole NoCs. This model does not require assumptions on the traffic model but assumes a synchronous network and is optimized for small packet sizes.

Based on our previous work and the RTB-HB model, we present a new network model that does not require assumptions on the traffic pattern anymore. It lets terminals send data at any time and works for any packet sizes. The first step in the model is to break down wormhole switches in elementary components as shown in Section II. We then show in Section III how to determine delay bounds for those components and compose them to derive worst-case ETE delays. Finally, we conclude in Section IV and present future topics for research.

II. MODEL OF A SPACEWIRE SWITCH

SpaceWire [START_REF] Parkes | Spacewire: A spacecraft onboard network for real-time communications[END_REF], [START_REF] Ecss | Spacewire -links, nodes, routers and networks[END_REF] was designed by the European Space Agency and the University of Dundee as a highspeed on-board network for satellites. It uses pointto-point links and wormhole switches to interconnect terminals. Wormhole routing allows switches to use a very small amount of memory but, as shown in [START_REF] Ferrandiz | A method of computation for worst-case delay analysis on spacewire networks[END_REF], it is subject to blockings that create large variations in delays. In this Section, we present an analysis of the different type of blockings and a model that simplifies the analysis of their impact.

Figure 1 shows a 8x8 SpaceWire switch with 8 independent ports. Since the input and output of each port work independently of each other, we will separate them in the model. Each input port is connected to a FIFO input buffer. Typically, SpaceWire switches use 64-byte input buffers. A switch matrix then connects the input buffers to the output ports according to the destination of the packet. 

A. Blocking types analysis

In such a switch, two kinds of delay can slow down a packet. The first one is a delay when the packet tries to access an output port. If a packet is already using it, the switch matrix cannot connect the input port to the output port. Thus the packet has to wait until the current transmission is finished. Since the access to the output port is managed with a Round-Robin mechanism, other packets may also pass before the considered packet gets access to the output port.

The second one occurs when a packet p gets blocked behind a packet q in the FIFO buffer. Depending on the size of q, its header can be in the same buffer, or in the next switch or even farther in the network. Even if q does not use the same output port as p, p will not be able to access its output port as long as a part of q is in the buffer.

These two kinds of blockings combined together mean that the ETE delay of the packets of a given flow may vary enormously across different transmissions. However, by breaking down a switch in elementary switches and analyzing them individually, we will be able to get a simpler model and to determine a bound on the ETE delay.

B. The switch model

The model is based on the idea that, as far as delays are concerned, a 64-byte FIFO buffer is identical to 64 successive wormhole switches with a one byte buffer, connected by links of infinite capacity. The model is shown on Figure 2.

DS k,l denotes the l th elementary switch (with l ∈ {1, . . . 64}) of the input buffer of port k, k ∈ {1, . . . 8}. For each k, DS k,1 to DS k,62 have one input port and one output port and a switching delay of 0 s. To ensure that the model matches exactly the behavior of a SpaceWire switch, we need to make one more assumption. Since each DS k,64 has 8 one-byte input buffers, it looks like there are more memory available than in the real switch. However, this is not the case if we make sure that at any time, only one DS k ,64 , k ∈ {1, . . . 8} can contain a character coming from a given DS k,63 . So the condition for a packet to move forward from DS k,63 to a DS k ,64 is not only that the DS k ,64 it wants to access is free, it is that all the DS k ,64 are free, for all k ∈ {1, . . . 8}. With this condition, it is easy to see that the character stream coming from a given input port can never use more than 64 bytes.

We can now use this switch model to compute an upper-bound on the worst-case ETE delay of each flow.

III. COMPUTING AN UPPER-BOUND ON THE WORST-CASE END-TO-END DELAY

The computation takes place in two phases. Firstly, it takes a description of a SpaceWire network as input and creates an "elementary network" composed only of terminals and 1-byte elementary switches connected by unidirectional links. Secondly, this "elementary network" is used to compute the worst-case delay for each flow by adding up the delays caused by each of the elementary switch crossed by the flow.

A. Assumptions

We consider that a SpaceWire network is composed of terminals (that can each both emit and receive data) and of switches that interconnect them through SpaceWire links. We assume that a terminal has only one network interface.

We do not make any assumptions on the emission patterns of the terminals. This allows us to consider terminals without input traffic regulations as is the case for most terminal at the moment. Each terminal can try to send a data packet at any time. We also assume that at the beginning of the computation, all the input buffers of all the switches are already full and that all the flows are trying to emit at maximum speed. This allows us to cover all the possible worst-case situations and find an upper-bound on the worst-case delay.

A communication between a source and a destination is modeled as a flow f i , i ∈ {1, . . . N }. Each flow f i has a fixed packet size, noted L i . Each flow goes through a set of links that form a path in the network between two terminals.

We also make the following assumptions:

• the routing is static;

• all the links have the same capacity C;

• the destination of a packet is able to read it as fast as the network can transmit it • each terminal needs a constant delay d inj to inject a packet in the network.

• each terminal needs a constant delay d ej to eject a packet from the network.

B. Generating the "elementary network"

The first step is to replace every SpaceWire switch by the equivalent set of elementary switches as explained in II-B. Now each flow will follow a path of elementary switches connected by unidirectional links. We will note h i the number of those elementary switches and SW j i , j ∈ {1, . . . , h i } the j th switch in this path. Note that h i only counts the elementary switches representing the SpaceWire switches.

We then need to model the terminals. Each terminal may play two roles: source and destination. Since we use unidirectional links in the elementary network, those roles must be modeled separately.

A source terminal injects packets from one or more flows in the network at maximum speed. All the flows are competing for access to the output link. This is arbitrated through a Round-Robin mechanism. Therefore, we chose to model a source terminal as a set of elementary sources (one for each outgoing flow) connected to an elementary switch arbitrating between the flows. The elementary switch will be denoted SW 0 i . Similarly, a destination terminal will receive packets from the network from one or more flow and eject them as they arrive. If we had modeled a destination terminal as a single elementary block, when adding up the delays in each crossed elementary switches, we would only get the time needed for the header of the packet to reach its destination. To obtain the transmission delay of the whole packet, we chose to add L i -1 elementary switches to the path of each flow f i after SW hi i . Thus we model a destination terminal as an elementary switch receiving all the flows ending in this terminal and dispatching them to an additional path of L i -2 elementary switches. Each path ends with an elementary destination. Those elementary switches are connected by infinite capacity links.

In the end, a packet from flow f i has to cross h i +L i elementary switches (from SW 0 i to SW hi+Li-1 i ) to reach its elementary destination. We now have a complete network of elementary blocks which we can use to compute ETE delays.

C. Upper-bound computation

This method is inspired by the RTB-HB method from [START_REF] Rahmati | A method for calculating hard qos guarantees for networks-on-chip[END_REF] and we will use mostly similar notations. We note u j i the delay needed for a packet p i of flow f i to go from the input buffer of switch SW j i to the input buffer of SW j+1 i . Given these notations, an Upper-Bound on the ETE transmission delay of flow f i is given by

U B i = d inj + d ej + j∈{0,...,hi+Li-1} u j i . (1) 
Similarly, we can compute a Minimum Interval between two packets of the same flow with

M I i = d inj + j∈{0,...,Li-1} u j i . (2) 
M I i represents the minimum delay needed to completely move a packet out of the source buffer. This metric can be used to derive a maximum available bandwidth for each flow and determine if a network is able to transmit all the required traffic.

Let us now compute u j i . The causes of delay in a switch are twofold. On one hand, since we assume that the network is completely filled with packets, the downstream elementary switch SW j+1 i contains the last character of another packet p i . So p i has to move forward one hop before p i can go on. Since p i is L ibyte long, its header is in SW

j+L i i
. When the header of p i moves one hop forward, all the packet will follow. As a consequence, the delay before p i frees SW j+1 i is u

j+L i i .
Let z c (i, j) be the number of flows in conflict with f i in SW j i . For elementary switches with only one output link, z c (i, j) is obviously equal to the number of flows entering the switch (excluding f i ). For elementary switches with several output links, as explained in Section II-B, we must make sure that they are all free before p i can move. As a consequence, we can also consider that all the flows entering SW j i are competing with f i for access to the output port. In addition, p i may belong to f i itself.

In the end, for every elementary switch, the delay caused by p i in the worst case is max i ∈{1,...,zc(i,j)} (u j+Li i , u

j+L i i
).

On the other hand, delays can be caused by packets coming from other input links and using the same output link as f i . With wormhole routing, if another packet is already using the output port, p i has to wait until this packet has been completely transferred before it can move forward. In addition, packets from other flows may be already waiting for this port to be released and will be transferred before p i .

However, as we showed in [START_REF] Ferrandiz | A method of computation for worst-case delay analysis on spacewire networks[END_REF], because of the Round-Robin mechanism, for a given input port, only one packet may pass before p i . Thus, to get the worst-case delay, for each input port, we will compute the delay that each flow could cause and take the maximum of those delays. We can then sum those delays for all the input links to get the maximum delay endured by p i . Furthermore, a packet p i entering SW j+1 i from a different input link than p i must move forward L i hops before it releases the output port. Therefore it causes a delay equal to

L i k=1 u j+k i .
Let us denote I j i ={input links of SW j i minus the input link of f i } and F j l ={flows entering SW j i through l}. The worst-case delay caused by all the flows coming from other input ports than p i is given by l∈I

j i (max i ∈F j l { L i k=1 u j+k i })
In the end, u j i is given by max i ∈{1,...,zc(i,j)} (u j+Li i , u

j+L i i ) + l∈I j i ( max i ∈F j l { L i k=1 u j+k i }) (3) 
(3) can now be used to compute (1) and ( 2) recursively for each flow f i . The computation ends when the packet reaches its destination. Since SpaceWire characters are 10-bit long, we can write this so: ∀j > h i , u j i = 10 C .

IV. CONCLUSION

We have presented a new network model designed to determine an upper-bound on the worst-case endto-end transmission delay of data packets traversing a SpaceWire network. This model was inspired by works on similar problems in wormhole switching Networks-On-Chip. In our model, wormhole switches and terminals are broken down in elementary switches that can be easily analyzed to determine delay bounds. Those bounds can then be composed to derive a bound on the end-to-end delay of each flow.

Contrary to our previous work, this model does not need strong assumptions on the traffic patterns. It works for switches without dedicated real-time mechanisms and does not require traffic regulation at the terminals.

A first implementation shows preliminary results that are coherent with our previous work in configurations where our first method was applicable. We also intend to do a more complete comparison between our model and the RTB-HB method [START_REF] Rahmati | A method for calculating hard qos guarantees for networks-on-chip[END_REF] which inspired it in the future.

We plan to develop our model in several directions. A first direction will be to generalize it to support other wormhole switching networks than SpaceWire. The first step in this direction will be to support links with different capacities throughout the network. This aspect is crucial to make the method more general. The second direction will be to model more functionalities specific to the SpaceWire standard like switch-level priorities and Group Adaptative Routing.
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 1 Figure 1. A 8x8 SpaceWire switch
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 2 Figure 2. Equivalent of a SpaceWire switch using elementary switches

ACKNOWLEDGMENT

This work was supported by a PhD grant from the CNES and Thales Alenia Space.