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Mastering formalism is key to learning university mathematics. It is particularly characterised by the consequent use of definitions. Specific difficulties may arise when dealing with borderline cases that satisfy a given definition although they do not look prototypical (e.g. a constant sequence). To work out the learning potential of such examples and difficulties for first-year university students, we conducted an exploratory study with 21 students investigating their coping with the borderline case of a constant sequence. We identified two major difficulties (symbolic representation and characterisation as a process) and four main strategies (change of representation, recall of known borderline cases, use of definition, use of previous content). Finally, we discuss how borderline cases can be usefully integrated into mathematics teaching.

Students often do not use definitions in their reasoning [START_REF] Edwards | The role of mathematical definitions in mathematics and in undergraduate mathematics courses. Making the Connection: Research and Teaching in Undergraduate Mathematics[END_REF]. Instead, they use justifications such as the sole use of examples or argumentation based on the intuition, even if tasks cannot be solved without definitions [START_REF] Alcock | Definitions: Dealing with categories mathematically[END_REF][START_REF] Holguin | Stages identified in university students' behavior using mathematical definitions[END_REF]. This is partly because students are often unaware of the role definitions play in argumentation [START_REF] Edwards | The role of mathematical definitions in mathematics and in undergraduate mathematics courses. Making the Connection: Research and Teaching in Undergraduate Mathematics[END_REF]. Thus, many of students' reasoning strategies are no longer valid in higher education [START_REF] Alcock | Definitions: Dealing with categories mathematically[END_REF]. Students may then struggle with the new ways of working, feel excluded from the new discourse, and significantly lose motivation (Liebendörfer, 2018, chapters 9.3 & 10.4).

One approach to understanding the difficulties with formal reasoning is to distinguish between the notions of "concept image" and "concept definition". According to [START_REF] Tall | Concept image and concept definition in mathematics with particular reference to limits and continuity[END_REF], the concept image is "the total cognitive structure that is associated with the concept, which includes all the mental pictures and associated properties and processes" (p. 152), while the concept definition is "a form of words used to specify that concept" (p. 152). The university discourse requires the concept definition to be used in argumentations, especially in cases where concept image and concept definition seem to contradict. However, students often only refer to their concept image when arguing, even if it does not fit the definition [START_REF] Edwards | The role of mathematical definitions in mathematics and in undergraduate mathematics courses. Making the Connection: Research and Teaching in Undergraduate Mathematics[END_REF].

Previous research has mainly focussed on helping students to enrich their concept images and strengthen the connections to the concept definition (e.g. [START_REF] Alcock | Interactions between defining, explaining and classifying: The case of increasing and decreasing sequences[END_REF]. However, it lacks insights into how students learn to generally argue formally using the concept definition. To better understand students' difficulties and strategies, we aim at analysing how students deal with concepts when their concept image does not fit the concept definition. This leads to the following research questions:

RQ1: What difficulties do students have in working with the constant sequence? RQ2: What strategies do students use to cope with these difficulties?

THEORETICAL BACKGROUND: STUDENTS' DIFFICULTIES WITH FORMAL DEFINITIONS

According to Tao (2007, p. 1), the transition from school mathematics to university mathematics includes a transition from the "pre-rigorous stage" of mathematical education to the "rigorous stage". In the "pre-rigorous" stage, which covers years at school, learning is informal and intuitive with a focus on examples and calculations. The "rigorous" stage, which is in Germany situated at the beginning of university studies, contains strongly theory-based mathematics that demands precise and formal ways of working. The "post-rigorous" stage is only attained in later years of study. When students are familiar with the rigorous mathematical ways of working, intuitive reasoning can again be increasingly used to support or guide the formal argumentations. Consequently, the initial studies is the stage in which the most rigorous mathematics is required in order to avoid common mistakes and eliminate misunderstandings right from the beginning. Rigorous work is intended to destroy false intuition and strengthen good intuition [START_REF] Tao | There's more to mathematics than rigour and proofs[END_REF]. Formal mathematics does not exclude intuition and visualisation for generating ideas, but must always consist of proofs in the end. Thus, in the "rigorous stage", students should learn what mathematically valid argumentation consists of, that is formal deductive reasoning based on definitions and axioms. [START_REF] Tall | The transition to formal thinking in mathematics[END_REF] adds a theoretical view on this transition given by "three worlds of mathematics" used to describe the development of mathematical thinking. The "conceptualembodied world" is based on the perception of objects and their properties in the real world. Mathematical thoughts arise from visual objects, patterns and experiments. Then, the "proceptual-symbolic world" arises from the embodied world by the use of symbols that develop through actions and represent "thinkable concepts", such as the concept of a number that arises from counting. The "axiomatic-formal world" refers to formal concepts based on set-theoretic definitions and logical reasoning using proofs based on axioms and definitions. While in school there is a transition from embodiment to symbolism, the transition to higher education marks the transition to formalism. At this point, students have to learn that argumentations that were still valid in symbolism are no longer so in formalism. Consequently, one of the learning goals at the beginning of the university is mastering between visualisation and the formal world of mathematics [START_REF] Nardi | Reflections on visualization in mathematics and in mathematics education[END_REF].

The very nature of formal argumentation based on definitions can be especially demonstrated by so-called "borderline cases" (also called "pathological" or "strange examples"; [START_REF] Mason | Mathematics teaching practice: Guide for university and college lecturers[END_REF]. These cases are examples of a given definition that violate some very typical properties that are central to the existing concept image. In borderline cases, the first intuition may no longer be certain or it may contradict the definition. [START_REF] Tall | Concept image and concept definition in mathematics with particular reference to limits and continuity[END_REF], for example, asked students whether the real function 𝑓(𝑥) = 1 𝑥 , 𝑥 ≠ 0 was continuous. Students often gave wrong, intuitive reasons, such as "the graph is not in one piece" or "the function is not defined at the origin" (p. 167) to argue that it was not continuous. A formal argumentation based on the definition of continuity would give the correct answer.

Similarly, borderline cases of sequences have been investigated. The concept image of some students includes that a convergent sequence is always either monotonically increasing or monotonically decreasing. Thus, an alternating convergent sequence is often not recognised as such. Moreover, the common idea that a sequence must not assume the limit leads to not accepting a constant or finally constant sequence as convergent [START_REF] Vinner | The role of definitions in the teaching and learning of mathematics[END_REF]. Some misconceptions also relate to the acceptance of a sequence as such. The concept image of many students only includes sequences that are defined by a single term with a variable, typically "n". As a result, sequences are not recognised as such if they are defined differently for even and odd indices or if they are constant [START_REF] Roh | College Students' Intuitive Understanding of The Concept of Limit and Their Level of Reverse Thinking[END_REF][START_REF] Tall | Concept image and concept definition in mathematics with particular reference to limits and continuity[END_REF]. Such sequences thus represent borderline cases, especially with regard to the definition of a sequence.

METHODS AND STUDY DESIGN

To explore students' difficulties (RQ1) and strategies (RQ2), we conducted a study with 21 students of a preliminary course for mathematics and computer science students and for preservice mathematics teachers for higher secondary schools. For this group, the intended study programme will build strongly on formal mathematics, which is why mastering formal reasoning is an important learning goal for them. Of the participants, 12 were female and 9 male, and they were between 18 and 23 years old. All participants of the preliminary course were invited and participation was possible on a voluntary basis either alone or in pairs. This resulted in 13 interviews.

The interviews took place via Zoom and were audio-and videographed. The screen of a participant was shared and captured in order to be able to follow the editing processes. Beforehand, an interview guideline was prepared and the three interviewers were introduced to the guideline, the mathematical content, and the aim of the study.

At the time of the study, in the third week of the preliminary course, basics of logic as well as sets and functions had already been worked on, as well as calculating with absolute values, inequalities and sums. After that, the students worked on a digital learning environment on the topic of sequences, in which the use of definitions was to be promoted. It was completed by all preliminary course participants instead of taking part in the synchronous online lecture and the tutorials. The students were to work independently on the learning environment, in which sequences were first introduced and defined. In doing so, they were to watch existing videos and explanations as well as solve some tasks provided. A sequence was defined in the learning environment as follows:

A sequence (of real numbers) is a function 𝑓: ℕ ⟶ ℝ, 𝑛 ↦ 𝑓(𝑛) ≔ 𝑎 𝑛 .

The values are called the elements of the sequence. The whole sequence is usually notated in a shorter form: (𝑎 𝑛 ) 𝑛∈ℕ .

After examining some examples of sequences and exploring possible representations of sequences (piecewise defined, recursive, etc.), the question was asked in the learning environment whether (𝑎 𝑛 ) 𝑛∈ℕ = (12) 𝑛∈ℕ correctly defines a sequence. Only after working on this task were they introduced to the definition of a constant sequence.

Once the students had completed these tasks, we conducted semi-structured guideline interviews were we reviewed the tasks and asked subject-specific questions about this section of the learning environment. This paper refers to the review of the task presented above. Students were asked how they had worked on the task. The correct answer was already known to the students at the time of the interview, so that it was a reflection on their own working process. If students did not explain their answers on their own, they were asked to clarify their difficulties in more detail.

The interviews were transcribed and then analysed using a structuring qualitative content analysis [START_REF] Kuckartz | Qualitative Inhaltsanalyse: Methoden[END_REF]. According to our research questions, the students' statements were first deductively coded for difficulties and strategies. The statements in these categories were then inductively categorised for emerging themes. The resulting codes were allowed to overlap, and in fact, several categories were recognised simultaneously in some statements.

RESULTS: STUDENTS' DIFFICULTIES AND STRATEGIES

We report the analysis of the part of the interview relating to the above task, which lasted no longer than three minutes each. All participants had worked the example in advance and most of them had reported difficulties or at least irritations when working the selected task. Inductive coding yielded two major problems and four main strategies, see figure 1. To answer the two research questions, we describe the subcategories and illustrate them with student utterances. The excerpts from the transcripts were translated from German, with some filler words omitted for better readability. We indicate the participants' numbers in brackets.

Difficulties in working with the constant sequence (RQ1)

The two main difficulties with the constant sequence were identified in terms of symbolic representation and in terms of the characterisation of a sequence as a process.

The first difficulty concerning the symbolic representation refers to students' uncertainty caused by the unfamiliar symbolic representation of the defining term. Whereas in the definition of a sequence and in all the examples presented before, the defining term included an "n", this was now no longer given, so that students were irritated: Before, we only had examples where n was somehow contained in the second part of the term. And that's why we somehow assumed that n always had to be integrated in it. (1)

Since the representation differed from the previous ones, the assumption was made that it was not a sequence: "In my head it was still, there has to be a variable, otherwise it can't fit." (13)

The second main difficulty describes the characterisation of a sequence as a process. In this case, students, similar to the understanding for functions, assumed a covariation of the sequence elements, so that they must differ from the previous one. This also leads to the sequence not being recognised as such: "And it is often the case that a function, depending on what value for x you insert, a different y comes out, and here it was more or less fixed." (6) As the values did not differ in the given example, there was also a contrast to the previous examples and the concepts built up through them: "Because I just thought, the next value must be different from the one before or/ [...] I just had that in my head, that there was a change. And has to happen." (4)

Strategies in working with the constant sequence (RQ2)

We identified four main strategies students used to address these challenges: the change of representation, the recall of known borderline cases, the use of definition, and the use of previous content.

The first strategy was the change of representation. In this case, a representation of the sequence was used, which differed from the defining term, to answer the question. We identified two representations that were used by the students. The first representation was the graph of a sequence: "I first thought about what such a graph could look like." (15) The second was the tabular representation to decide whether there is a sequence at hand: "So I first made a table for the different n's and then also for the corresponding values." (20)

The second strategy in this context was to refer to similar borderline cases in the same sense, thus violating the same properties. Their properties were then transferred to the current example to answer the question. First of all, the constant sequence can be compared to the constant function from which the students knew that this still represents a function:

So I just imagined a function that is simply like/ Well, we know f of x equals twelve, then twelve is simply assigned to every value of x. And that's how I imagined it for the sequence.

(5) Another borderline case that was familiar to the students was the sums in the sigmanotation without an indicating variable, for example ∑ 10 5 𝑘=1

. The fact, that the notation without this variable is still valid, was transferred to the example of the constant sequence: I think we've already had similar cases with the sums, where you have k equal to one to five and then the sum sign somehow just shows ten. [...] Yes, but I also transferred that to it, actually. (1)

The third strategy was the formalistic use of the definition of a sequence. This relates to the argumentation that the example represents a function, for example by stating that every natural number is assigned to twelve:

And then I thought to myself, okay, then I looked again briefly at the definition, and the definition was simply that a value is really assigned for each n, and in principle, that is because the value 12 is assigned for each value. And then I said, okay, then of course it's correct. ( 14)

The fourth category of strategies consists of the use of previous content to find the answer. This includes the content of the learning environment such as previous examples or explanations as well as content of the preliminary course or other sources. For example, some students compared the given task with previous examples and tasks in order to transfer them to the current example: "I first had a look at what this expression in brackets means and I looked at this illustration up here again, that is, in the previous task." (21) This strategy cannot be defined as narrowly as the three strategies before it. It can also directly merge into one of the strategies named before it. However, it did not always do so, so we consider it to be a strategy in its own right.

We identified some overlaps in the use of strategies as, for example, the comparison to functions and the graphical representation: "I always make the comparison to functions. I thought about it like just a straight line, it's also a function. " (14) In many cases, the definition was only applied after preliminary considerations had already been made, for example the graphical representation from above: "I first thought about what such a graph could look like, and then I looked at the definition, that an n is always assigned to a real number, that is, that it is always a function, and then it fit." (15)

The comparison with other borderline cases was also partly validated by definition. The student comparing the sequence to a constant function continues:

"And that's how I imagined it for the sequence. Yes, then the condition was that each n from the natural numbers should be assigned a concrete value. I then thought that the sequence is correctly defined." (5)

DISCUSSION

In an exploratory study, we confronted 21 students of a preliminary mathematics course with a constant sequence to answer the questions of what difficulties and strategies they show in reasoning whether this was actually a sequence. The analysis of the 13 interviews (mostly in pairs) resulted in two main difficulties (symbolic representation and characterisation as a process) and four strategies (change of representation, recall of known borderline cases, use of definition, use of previous content) to face them.

Limitations

The small sample yielded only a limited number of difficulties and strategies. As the excerpt presented was part of a larger interview, the focus of the interview was not only on this task, which is why no detailed follow-up questions had been prepared beforehand. It should also be noted that the results depend strongly on our choice of the example. For instance, the constant sequence is an example that targets notation and graphical representation, so there are corresponding difficulties here as well. So one should also look at examples, which are borderline cases of the definition in a different way.

Theoretical implications

Whereas the first difficulty is already known from the literature and was reproduced in this study, the second difficulty based on the dynamic notion of sequences seems new. Both difficulties relate to a contrast and apparent contradiction to students' previously constructed concept images. This creates uncertainty and thus the assumption that it is not a sequence, resulting in tensions between concept image and concept definition.

We propose not to conceptualise such tensions based on individual examples, but to categorise them in terms that are more general. In this particular case, we have already found two prototypical categories: The tensions due to familiarity with certain symbols and the tensions caused by process-based conceptions. In both respects, the object dealt with does not look like what is familiar. These categories fit into [START_REF] Tall | The transition to formal thinking in mathematics[END_REF] proceptual-symbolic world, as this world refers especially to symbols and processes. Future research could classify the main tensions between concept image and concept definition of objects from first-year mathematics to delineate a learning trajectory for a way into mastering formalism.

Concerning the strategies, we do not discuss the fourth strategy because it is not specific to our question. The other strategies can be classified according to [START_REF] Tall | Concept image and concept definition in mathematics with particular reference to limits and continuity[END_REF]. The first two strategies refer to the concept image that either had been built up about sequences themselves (several representations) or was present about other concepts (other borderline cases). These strategies help students to think about what the solution can be. They also serve to "revisit your intuitions on the subject" (Tao, 2007, p. 2) to get a personal conviction of the solution. The third strategy is based on concept definition and is the one that is finally formally accepted.

It is worth noting that many students first used one of the two strategies corresponding to the concept image and then moved on to the definition. This suggests that the change of representation and the search for analogies to known borderline cases may be helpful in finding a solution. Through these two strategies, students gain some conviction in what the solution will be. We may thus think of a three-step approach to answering questions that heavily rely on mathematical formalism. As students will most likely have some intuition from the beginning, the first step is to experience and become aware of the difficulties in form of tensions. Such an awareness seems to have to be developed in the transition to formal mathematics in general, for instance also when evaluating theorems. Once students start critical reflecting on the formal definition, their own intuition needs to be doubted and questioned in the second step. The third step is then the transition to formal reasoning in order to finally answer the question. The first two identified strategies (change of representation, recall of known borderline cases) relate to reasoning by analogy and are allowed and desired in the second step, but no longer in the third step, where only the third, formal strategy is allowed. However, the first two strategies help in the second step to distinguish between good and bad intuition in the sense of [START_REF] Tao | There's more to mathematics than rigour and proofs[END_REF].

Since we have already identified strategies to address such problems without concrete instructions to the students, it seems that "handling the formalism" can be seen as a competence of its own to resolve tensions between concept image and concept definition. This is a general competence that is not linked to concrete content. Thus, the learning goal of handling the mathematical formalism can be described more precisely in an overarching way and independent of content. That this learning goal is also relevant for teachers is shown by school-relevant borderline cases such as the question of whether 0, 9 equals 1. This question, which often leads to the intuitive answer that 0, 9 less than 1 (Tall & Vinner, 1991), can also be dealt with using the three-step approach described above, for example by changing the representation and using the number line in the second step.

Practical implications

Following the supposition that "handling the formalism" can be conceived as a general competence, university teachers have to decide whether they want to include fostering this competence as a learning goal in their lectures. This will depend on the teaching context. For example, this competence is probably less important in mathematics for engineering than in pure mathematics. [START_REF] Mason | Mathematics teaching practice: Guide for university and college lecturers[END_REF] writes: "There is considerable controversy between lecturers as to whether it is advisable to show students strange examples" (p. 25). Based on our findings concerning the three-step approach, which suggest that exactly such examples can be supportive in moving to formal reasoning, we suggest that the use of such examples is helpful in fostering this competence. They can help to establish learning strategies and to learn the distinction between good and bad intuition. This means that such examples should not be avoided, but should be used explicitly to correct false intuitions. It seems particularly helpful to use borderline cases when the content is still simple, as the strategies described can then be made comprehensible without many difficulties on the content. Especially the last strategy, the use of definitions, is new at the university and has to be taught to the students before they can apply it themselves. We therefore suggest creating borderline cases as early as possible, linking them directly to definitions, and explicitly making analogies to other examples in order to provide the students with this strategy.

The difficulties with mathematical formalism are a part of the difficulties in the transition from school to university. Many students struggle because they are required to prove theorems based on definition. Our research refers only to a first step, namely the coordination of concept image and concept definition. However, this step seems necessary before students can realize how important definitions are and that they should be used in proofs [START_REF] Alcock | Definitions: Dealing with categories mathematically[END_REF]. In particular, students are sometimes helpless because their known ways of argumentation based on analogy or visual reasoning are no longer accepted. Yet, we could see that strategies based on analogies and images may be valid and helpful to clarify students' own intuition. Only when they need to move to the formal argumentation, these strategies no longer help. It might thus help them to reflect on the roles of concept image and concept definitions in dealing with formalism.
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 1 Figure 1: Category system identified in the qualitative analysis.