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Mathis

Introduction and notations

Throughout this paper, the dimension of the problem d and α ∈ (1, 2) are fixed.

Scope of this paper

For a fixed T > 0, we study the formal SDE dX t = b(t, X t )dt + dZ t , X 0 = x, ∀t ∈ [0, T ],

(1.1)

where b ∈ L r ([0, T ], B β p,q (R d , R d )) = f : [0, T ] × R d : t → f (t, •) B β p,q L r ([0,T ])
< ∞ (see Subsection 3.2 for details on Besov spaces) and Z t is a symmetric non-degenerate d-dimensional α-stable process, whose spectral measure is absolutely continuous w.r.t. the Lebesgue measure on S d-1 (see Subsection 1.2 for detailed assumptions on the noise).

We call (1.1) "formal" equation because b can be a distribution when β < 0, in which case (1.1) is ill-defined as such. As there are multiple ways to define a solution to (1.1), each with its conditions on the parameters β, p, q, r and interpretation, we will go into details in Subsection 1.3.

The main idea behind the study of singular drift diffusions is that adding a noise regularizes ordinary differential equations, and helps restore existence and uniqueness in some appropriate sense. For example, in the case of a β-Hölder (β ∈ (0, 1)) drift, the noise gives an "impulse" which permits to exit singular spots (see e.g. [START_REF] Delarue | The transition point in the zero noise limit for a 1D Peano example[END_REF] in the Brownian case). Knowing that, one would expect that, the bigger the intensity of the noise, the stronger the regularizing effect, which we will see on the upcoming thresholds (see also [START_REF] De | Regularization effects of a noise propagating through a chain of differential equations: an almost sharp result[END_REF] and [START_REF] Marino | Weak well-posedness for degenerate SDEs driven by Lévy processes[END_REF]). We will investigate cases in which the noise is strong enough to restore uniqueness even for distributional drifts.

Let us first review the probabilistic results and associated techniques used in the case β ≥ 0, α ∈ (0, 2) to derive weak or strong well-posedness, when the drift is a function. In order to establish well-posedness, a natural condition appeared in the seminal article by Tanaka et al. [START_REF] Tanaka | Perturbation of drift-type for Lévy processes[END_REF] : β + α > 1. The authors consider therein the scalar case, and proved that strong uniqueness holds for bounded β-Hölder drifts under this condition, while giving a counter example when β + α < 1. The critical multidimensional case (i.e. α = 1) in a time-inhomogeneous setting was investigated in [START_REF] Komatsu | On the martingale problem for generators of stable processes with perturbations[END_REF], in which weak uniqueness is derived for a continuous drift with, again, the driving noise having absolutely continuous spectral measure w.r.t. the Lebesgue measure on the sphere. Having in mind that weak (or strong) well-posedness is often investigated through the corresponding parabolic PDE, recalling that the associated expected parabolic gain is β + α, the condition β + α > 1 coincides with the regularity required to define the gradient of the solution. The aforementioned regularity gain is often obtained through Schauder-type estimates. We can mention [START_REF] Mikulevicius | On the Cauchy problem for integrodifferential operators in Hölder classes and the uniqueness of the martingale problem[END_REF] (bounded drift, stable-like generators), [START_REF] De Raynal | Schauder estimates for drifted fractional operators in the supercritical case[END_REF] (unbounded drift, general stable generators including e.g. the cylindrical one). These estimates naturally lead to weak uniqueness in the multidimensional setting for (1.1) through the martingale problem, which precisely requires a control of the gradient of the solution of the PDE.

Going towards strong solutions requires additional constraints on the parameters. It was e.g. shown by Priola in [START_REF] Priola | Pathwise uniqueness for singular SDEs driven by stable processes[END_REF] that pathwise uniqueness holds in the multidimensional case for general non-degenerate stable generators with α ≥ 1 for time-homogeneous bounded β-Hölder drifts under the assumption β > 1 -α/2. Under the same assumption, [START_REF] Chen | Supercritical SDEs driven by multiplicative stable-like Lévy processes[END_REF] proved strong existence and uniqueness for any α ∈ (0, 2), as well as weak uniqueness whenever β + α > 1 for time-inhomogeneous drift with nontrivial diffusion coefficient. Those results are usually obtained using the Zvonkin transform (see [START_REF] Zvonkin | A transformation of the phase space of a diffusion process that will remove the drift[END_REF], [START_REF] Veretennikov | Strong solutions and explicit formulas for solutions of stochastic integral equations[END_REF]), which requires additional regularity on the underlying PDE, which again follow from Schaudertype estimates.

Once weak or strong well-posedness is established, a natural question concerns the behavior of the time marginal laws of the SDE. Such behavior is usually investigated through heat kernel estimates, which, in the stable setting, somehow forces to consider the stable-like case, i.e., the driving noise Z in (1.1) has a Lévy measure with smooth density w.r.t. to the isotropic α-stable measure (see Subsection 1.2 for detailed assumptions on the noise). In this setting, we can refer to the seminal work by Kolokoltsov [START_REF] Kolokoltsov | Symmetric stable laws and stable-like jump-diffusions[END_REF], who addressed the subcritical case α > 1 for smooth bounded drifts. This work was extended in various directions, although mostly for non-negative β (see [START_REF] Kulik | On weak uniqueness and distributional properties of a solution to an SDE with α-stable noise[END_REF], [START_REF] Chen | Hölder regularity and gradient estimates for SDEs driven by cylindrical α-stable processes[END_REF], [START_REF] Knopova | Parametrix construction of the transition probability density of the solution to an SDE driven by α-stable noise[END_REF]). In [START_REF] Menozzi | Heat kernel of supercritical nonlocal operators with unbounded drifts[END_REF], authors cover the whole range α ∈ (0, 2) with Hölder unbounded drift. In those works, the authors establish that the time marginal laws of the process have a density which is "equivalent" (i.e. bounded from above and below) to the density of the noise, and that the spatial gradients exhibit the same time singularities and decay rates (see Theorem 1 below in the current setting).

Going towards negative β brings additional difficulties. The first challenge is to specify what is intended with "solution" to (1.1). To this end, a key tool is the following PDE:

(∂ t + b • D + L α ) u(t, x) = f (t, x) on [0, T ) × R d , u(T, •) = g on R d (1.2)
for suitable sources f and final conditions g, and where L α is the generator of the noise Z. When studying (1.2), defining the gradient of the solution still requires α + β > 1, which now imposes α > 1. This is anyhow not sufficient: we also need to be able to define b • Du as a distribution. Roughly, since b has spatial regularity β, this imposes β

+ (β + α -1) > 0 ⇐⇒ β > 1-α 2
by usual paraproduct rules (note that this is the exact assumption we need if p = r = +∞). This threshold already appears in [START_REF] Bass | Stochastic differential equations for dirichlet processes[END_REF] in the diffusive setting (α = 2), where strong well-posedness is derived in the scalar case through Dirichlet forms techniques for specifically structured time-homogeneous drifts. The same threshold is exhibited in [START_REF] Flandoli | Multidimensional stochastic differential equations with distributional drift[END_REF], where the authors introduce the notion of virtual solutions to give a meaning to (1.1). Those solutions are defined through a Zvonkin-type transform formula, and, while not requiring any specific structure, do not yield a precise dynamics for the SDE. We can also refer to [START_REF] Zhang | Heat kernel and ergodicity of SDEs with distributional drifts[END_REF] and [START_REF] Athreya | Strong existence and uniqueness for stable stochastic differential equations with distributional drift[END_REF], who specified the meaning to be given to (1.1), in the sense that the drift therein is defined through smooth approximating sequences of the singular b along the solution. Importantly, the limit drift is a Dirichlet process, highlighting once again that (1.1) is a formal equation. A thorough description of this Dirichlet process was done in the Brownian scalar case in [START_REF] Delarue | Rough paths and 1d SDE with a time dependent distributional drift: application to polymers[END_REF] and extended in [START_REF] Cannizzaro | Multidimensional SDEs with singular drift and universal construction of the polymer measure with white noise potential[END_REF] for multidimensional SDEs. Assuming some additional structure on the drift, they manage to go beyond the above threshold and reach β > -2 3 (still with p = r = ∞). This work was extended in the multidimensional strictly stable case, still assuming a specific structure for the drift in [START_REF] Kremp | Multidimensional SDE with distributional drift and Lévy noise[END_REF], in which weak well-posedness is proved for β > 2-2α 3 . Without any structure on the drift, a similar and consistent description of the dynamics for the weak solutions of (1.1) in the multidimensional setting is obtained in [START_REF] De | On multidimensional stabledriven stochastic differential equations with Besov drift[END_REF] for β > 1-α 2 . The case of a non-trivial diffusion coefficient was investigated in [START_REF] Ling | Nonlocal elliptic equation in Hölder space and the martingale problem[END_REF] with the same thresholds. Note that, in the present work, we chose to work with a trivial diffusion coefficient as the most delicate issue is the handling of the singular drift (see Remark 15 in [START_REF] De | On multidimensional stabledriven stochastic differential equations with Besov drift[END_REF] for the handling of a non trivial diffusion coefficient in a Duhamel expansion). We do believe our approach would be robust enough to treat this case. Let us mention that [ABM20] also obtained strong uniqueness with this threshold in the scalar case. We emphasize that most of the aforementioned results heavily rely on the Schauder-type regularization properties of the PDE (1.2).

In the scope of singular drift heat kernels estimates, the sole result we were able to gather is [START_REF] Perkowski | Quantitative heat-kernel estimates for diffusions with distributional drift[END_REF]. Using the Littlewood-Paley characterization of Besov spaces, Perkowski and van Zuijlen managed to derive explicit two-sided heat kernel estimates as well as gradient estimates w.r.t. the backward variable for the solution in the Brownian, time-inhomogeneous setting with time-continuous drift in

B β ∞,1 , β > -1 2 .
The goal of the current paper is to establish heat kernel and gradient estimates for stable driven SDEs with drifts in L r -B β p,q and symmetric non-degenerate d-dimensional α-stable noise with absolutely continuous Lévy measure for β ∈

1-α+[ d p ]+[ α r ] 2
, 0 . As compared to the previous results, this represents a slight modification of the threshold, due to integrability concerns. For p = r = +∞, we work under the usual β > 1-α 2 assumption.

This paper is organized as follows. We first discuss the properties of the noise in Subsection 1.2. We then define the notions of martingale solutions for (1.1) and mild solutions for (1.2) along with required assumptions in Subsection 1.3. We state our main results in Subsection 2.1 and detail the dynamics of (1.1) in 2.2. Section 3 is a collection of technical lemmas specific to our paper and classical results in Besov spaces, which we use in the following Sections 4 and 5. Section 4 is dedicated to obtaining estimates on a mollified equation with smooth drift and Section 5 links those estimates back to the main SDE (1.1) through compactness arguments. Section 6 contains the proofs of all technical lemmas.

Driving noise and related density properties

Let us denote by L α the generator of the driving noise Z. In the case α = 2, L α is the usual Laplacian 1 2 ∆. When α ∈ (1, 2), in whole generality, the generator of a symmetric stable process writes, ∀φ ∈ C ∞ 0 (R d , R) (smooth compactly supported functions),

L α φ(x) = p.v R d [φ(x + z) -φ(x)] ν(dz) = p.v R+ S d-1 [φ(x + ρξ) -φ(x)] µ(dξ) dρ ρ 1+α
(see [START_REF] Sato | Lévy Processes and Infinitely divisible Distributions[END_REF] for the polar decomposition of the spectral measure) where µ is a non-degenerate measure on the unit sphere S d-1 , i.e. µ is symmetric and ∃κ ≥ 1 :

∀λ ∈ R d , κ -1 |λ| α ≤ S d-1 |λ • ξ| α µ(dξ) ≤ κ|λ| α ,
where "•" stands for the usual scalar product in R d . This general setting will not allow us to derive heat kernel estimates, because it does not lead to global estimates of the noise density. In [START_REF] Watanabe | Asymptotic estimates of multi-dimensional stable densities and their applications[END_REF], Watanabe investigates the behavior of the density of an αstable process in terms of properties fulfilled by the support of its spectral measure. From this work, we know that whenever the measure µ is not equivalent to the Lebesgue measure on the unit sphere, accurate estimates on the density of the stable process are delicate to obtain. However, Watanabe (see [START_REF] Watanabe | Asymptotic estimates of multi-dimensional stable densities and their applications[END_REF], Theorem 1.5) and Kolokoltsov ([Kol00], Propositions 2.1-2.5) showed that if C -1 m(dξ) ≤ µ(dξ) ≤ Cm(dξ) (where m is the uniform density on S d-1 ), the following estimates hold: there exists a constant C depending only on α, d,

s.t. ∀u ∈ R * + , z ∈ R d , C -1 u d α 1 1 + |z| u 1 α d+α ≤ p α (u, z) ≤ C u d α 1 1 + |z| u 1 α d+α .
As our approach heavily relies on these global bounds, we have to assume that µ is equivalent to the Lebesgue measure on the sphere and that α ∈ (1, 2).

Further properties related to the density of the driving noise are stated in Lemma 1 below.

Notations and definitions

We will use the following notations :

• a b if there exists a constant C, which depends only on α, d, β, r, p, q, such that a ≤ Cb.

• a ≍ b if there exists a constant C, which depends only on α, d, β, r, p, q, such that C -1 b ≤ a ≤ Cb.

• ⋆ denotes the spatial convolution.

• For f ∈ S ′ (R d ) (the dual of the Schwartz class S(R d )) and φ ∈ C ∞ 0 (R d ) such that φ(0) = 0, we set φ(D)f = F -1 (φ × F (f )) = F -1 (φ) ⋆ f
, where F denotes the Fourier transform.

• For p ∈ [1, +∞], we always denote by

p ′ ∈ [1, +∞] s.t. 1 p + 1 p ′ = 1 its conjugate.
For the rest of this paper, we will denote by pα the following density :

pα (v, z) = C α v d α 1 1 + |z| v 1 α d+α , v > 0, z ∈ R d , (1.3)
where C α is chosen so that ∀v > 0, pα (v, y)dy = 1.

We finally introduce the semi-group generated by L α : for any bounded Borel function φ,

P α t [φ](x) := R d
p α (t, y -x)φ(y)dy.

(1.4)

Martingale solutions

As we work with a distributional drift, we need to specify what we call a "solution" to (1.1). There are two ways to define a solution to (1.1) which we will investigate. We will first introduce the usual martingale solutions. Those are defined through the mild solutions of the underlying PDE and are the ones that require the least regularity. Importantly, they are sufficient to state Theorem 1. In Subsection 2.2, we will then give details about weak solutions, as defined in [START_REF] De | On multidimensional stabledriven stochastic differential equations with Besov drift[END_REF] in order to give a concrete dynamics for the solution.

Although our results are proved for martingale solutions (in which case they can be understood as a formal discussion on the density of the process), they are mainly useful in the scope of weak solutions, as those introduce a dynamics and could be a starting point to establish numerical schemes for those equations.

Let us now fix p, q, r ≥ 1. For the definition of a martingale solution to (1.1), we need the following conditions on α, β, which we call a good relation (GR) :

α ∈ 1 + [ d p ] 1 -[ 1 r ] , 2 β ∈ 1 -α + [ d p ] + [ α r ] 2 , 0 (GR) 
and we will denote

θ := β + α - d p - α r , (1.5) 
which corresponds to the parabolic bootstrap induced by the drift. As explained in [START_REF] De | On multidimensional stabledriven stochastic differential equations with Besov drift[END_REF], this choice of θ implies that

(t, x) → T t P α s-t [G • v](s, x)ds is well defined and belongs to C 0,1 b ([0, T ] × R d , R) as soon as G ∈ L r ([0, T ], B β p,q (R d , R d )) and v ∈ L ∞ ([0, T ], B θ-1-ε ∞,∞ (R d , R d )) for some 0 ≤ ε ≪ 1.
Remark 1. Note that, here, we are only trying to give a meaning to the distributional product G • v.

Roughly speaking, for p = r = +∞, by Bony's paraproduct rule, the total regularity of

G • v is β + θ -1 -ε,
which we need to be positive. This is only possible if α and β satisfy (GR), hence the definition of the latter. The additional d p + α r corresponds to the lack of global boundedness of the drift b.

This allows us to give the definition of mild solution to a PDE:

Definition 1. Mild solution of the underlying PDE. Let α ∈ (1, 2), f ∈ R + × R d → R and g ∈ R d → R. For a given T > 0, we say that u : [0, T ] × R d → R is a mild solution of the formal Cauchy problem C(b, L α , f, g, T ) (∂ t + b • D + L α ) u(t, x) = f (t, x) on [0, T ) × R d , u(T, •) = g on R d , if it belongs to C 0,1 ([0, T ] × R d , R) with Du ∈ C 0 b ([0, T ], B θ-1-ε ∞,∞ ) for any 0 < ε ≪ 1 and θ = β + α -d p -α r , and if it satisfies ∀(t, x) ∈ [0, T ] × R d , u(t, x) = P α T -t [g](x) - T t P α s-t [f -b • Du](s, x)ds. (1.6)
In [START_REF] De | On multidimensional stabledriven stochastic differential equations with Besov drift[END_REF], Chaudru de Raynal and Menozzi proved existence and uniqueness of such solutions under (GR), and also give information on their time regularity. Let us now introduce the notion of martingale problem (introduced in [SV97] and then generalized in [START_REF] Ethier | Markov Processes: Characterization and Convergence[END_REF]).

Definition 2. Solution of the martingale problem Let Ω = D([0, T ], R d ) (the Skorokhod space of càdlàg functions). We say that a probability measure P on Ω equipped with its canonical filtration is a solution of the martingale problem associated with (b, L α , x) for x ∈ R d if, denoting by (x t ) t∈[0,T ] the associated canonical process,

(i) P(x 0 = x) = 1, (ii) ∀f ∈ C([0, T ], S(R d , R)), g ∈ C 1 (R d , R) with Dg ∈ B θ-1 ∞,∞ (R d , R d ), u(t, x t ) - t 0 f (s, x s )ds -u(0, x)
0≤t≤T is a martingale under P where u is the mild solution of the Cauchy problem C(b, L α , f, g, T ).

Remark 2. The choice of the class of f (here, C([0, T ], S(R d , R))) is not critical. We only need it to be rich enough to characterize marginal laws, i.e. a class of functions Φ is sufficient if whenever two probability measures µ 1 and µ 2 satisfy

φdµ 1 = φdµ 2 , ∀φ ∈ Φ, then µ 1 = µ 2 .
Again, in [START_REF] De | On multidimensional stabledriven stochastic differential equations with Besov drift[END_REF], it is proved that there exists a unique solution to the martingale problem in the sense of the previous definition. We will call "martingale solution to (1.1)" the associated canonical process.

Main results

Main theorem

Theorem 1. Fix T > 0, take b ∈ L r ([0, T ], B β p,q (R d )) and assume (GR). Consider the solution P to the martingale problem associated with (b, L α , x) starting at time s and denote (x t ) t∈[s,T ] the associated canonical process. For all t ∈ (s, T ], x t admits a density p(s, t, x,

•), i.e. ∀A ∈ B(R d ) (Borel σ-field of R d ) P(x t ∈ A) = A p(s, t, x, y)dy s.t. ∃C := C(T, b) ≥ 1 : ∀(x, y) ∈ R d , C -1 pα (t -s, y -x) ≤ p(s, t, x, y) ≤ C pα (t -s, y -x),
(2.1)

|∇ x p(s, t, x, y)| ≤ C (t -s) 1 α pα (t -s, y -x), (2.2) ∀(y, y ′ ) ∈ R d , |p(s, t, x, y) -p(s, t, x, y ′ )| ≤ C|y -y ′ | ρ (t -s) ρ α (p α (t -s, y -x) + pα (t -s, y ′ -x)) , (2.3) ∀(y, y ′ ) ∈ R d , |∇ x p(s, t, x, y) -∇ x p(s, t, x, y ′ )| ≤ C|y -y ′ | ρ (t -s) ρ+1 α (p α (t -s, x -y) + pα (t -s, x -y ′ )) , (2.4) 
for any ρ ∈ (-β, γ -β), where γ := β -

1-α+ α r + d p 2
is the "gap to singularity".

Remark 3 (Logarithmic gradient estimates.). Note that, in the current strictly stable regime (α ∈ (1, 2)) and given the previous theorem, one can easily compute global logarithmic gradient estimates for p:

|∇ x log p(s, t, x, y)| = |∇ x p(s, t, x, y)| p(s, t, x, y) ≤ C (t -s) 1 α
.

The sketch of the proof of Theorem 1 is as follows:

• Take a smooth b m ∈ C ∞ b to approach b and consider the mollified equation

dX m t = b m (t, X m t )dt + dZ t .
(2.5)

• Compute estimates on the density of (X m t ) which are uniform in m, using a Duhamel expansion and a normalization method first introduced by [MPZ21] (Brownian setting with unbounded Hölder drift) and then exploited in [START_REF] Jourdain | Convergence Rate of the Euler-Maruyama Scheme Applied to Diffusion Processes with L q -L ρ Drift Coefficient and Additive Noise[END_REF] (Brownian setting with L q -L p drift) and [START_REF] Menozzi | Heat kernel of supercritical nonlocal operators with unbounded drifts[END_REF] (unbounded drift, stable driven with multiplicative isotropic noise).

• Conclude with a compactness argument.

Weak solutions

Although mild solutions allow for a formal discussion on the density of the underlying process in the SDE (1.1), they do not exhibit anything about its dynamics nor about its SDE interpretation. In order to build the dynamics of the equation, [START_REF] De | On multidimensional stabledriven stochastic differential equations with Besov drift[END_REF] introduced a weak formulation of the problem. To such end, they used the notion of L ℓ stochastic Young integral, in the sense of the definition first introduced by [CG16] and [START_REF] Delarue | Rough paths and 1d SDE with a time dependent distributional drift: application to polymers[END_REF].

In order to define the upcoming notion of solution, we need slightly stronger assumptions on α, β. We say that α, β satisfy a good relation for the dynamics (GRD) if the following holds:

α ∈ 1 + [ d p ] 1 -[ 1 r ] , 2 β ∈ 1 -α + [ 2d p ] + [ 2α r ] 2 , 0 . (GRD)
This stronger condition is required in order for the following definition to make sense: Definition 3. We call weak solution of the formal SDE (1.1) a pair (Y, Z) of adapted processes on a filtered space (Ω, F , {F T } t≥0 , P) such that Z is an {F T } t≥0 α-stable process and (Y, Z) satisfies

Y t = x + t 0 B(s, Y s , ds) + Z t , P-a.s., E t 0 B(s, Y s , ds) < ∞ (2.6) for any t ∈ [0, T ],
where

B : (v, x, h) → h 0 dr R d p α (h -r, x -y)b(v + r, y)dy (2.7)
and where the integral in (2.6) is understood as an L 1 stochastic Young integral and imposes the stronger (GRD) condition.

With this explicit definition, it becomes fathomable to develop numerical schemes for the SDE. In particular, as Theorem 1 is proved under (GR), it is valid under the stronger (GRD) conditions and thus holds for the density of weak solutions.

Technical results and Besov spaces 3.1 A few useful lemmas

In this section, we introduce a few lemmas that will be used in our proofs, and which we prove in Section 6. The following Lemma 1 will be profusely used. It indicates how p α and pα can be bounded, and specifies the relationship between the time and space scales for α-stable densities.

Lemma 1 (Bounds and L p estimates for the noise density).

• Time scales for spatial moments

∀α ∈ (1, 2), ζ ∈ (0, α), ∃C > 0 : ∀t > 0, R d pα (t, y)|y| ζ dy ≤ Ct ζ α . (3.1)
• Bounds for space and time derivatives of the α-stable kernel.

∀ℓ ∈ {1, 2}, ∀t > 0, ∀y ∈ R d , D ℓ y p α (t, y) 1 t ℓ α pα (t, y), (3.2) • Distortion ∀t ∈ R + , ∀ℓ ≥ 1, pα (t, •) L ℓ ′ t -d αℓ . (3.3) • Convolution ∀x, y ∈ R d , ∀0 ≤ s ≤ u ≤ t, ∀ℓ ≥ 1, pα (t -u, • -y)p α (u -s, x -•) L ℓ ′ 1 (t -u) d αℓ + 1 (u -s) d αℓ pα (t -s, x -y). (3.4) Remark 4. If ℓ ′ = 1, (3.4) reads pα (t -u, z -y)p α (u -s, x -z)dz pα (t -s, x -y),
and in this case, the proof is simply based on the fact that pα ≍ p α and the convolution properties of p α . For ℓ ′ > 1, singularities with the same scale as in (3.3) appear.

Lemma 2 (Taylor-Laplace for stable densities). For all

x, w, z ∈ R d , t > 0 s.t. |w -z| t 1/α , ∀ℓ ∈ {0, 1}, ∀ζ ∈ (0, 1],
• Bounds for the stable density

|D ℓ p α (t, x -w) -D ℓ p α (t, x -z)| |z -w| ζ t ℓ+ζ α pα (t, x -w).
(3.5)

• Bounds for pα

|D ℓ pα (t, x -w) -D ℓ pα (t, x -z)| |z -w| ζ t ℓ+ζ α pα (t, x -w). (3.6) Remark 5. From the definiton of pα (t, x) = Cα t d α 1 1+ |x| t 1 α
d+α , one can gather the following:

Let x ∈ R d and t > 0. • If |x| ≥ t 1 α (off-diagonal regime), pα (t, x) ≍ t |x| d+α .
(3.7)

• If |x| ≤ t 1 α (diagonal regime), pα (t, x) ≍ 1 t d α
.

(3.8) Remark 6. Those two regimes will be central in our proofs. The scales which we consider for these regimes is that of the auto-similarity of the noise (see Remark 11 below for the handling of those regimes in our proofs).

Lemma 3 (Besov estimates for pα ).

• ∀0 ≤ s ≤ u ≤ t, ∀(x, y) ∈ R d , ∀ζ ∈ (-β, 1], ∀j, k ∈ {0, 1}, ∇ j pα (u -s, x -•)∇ k p α (t -u, y -•) B -β p ′ ,q ′ pα (t -s, x -y) (u -s) j α (t -u) k α (t -s) β α 1 (t -u) d αp + 1 (u -s) d αp (t -s) ζ α 1 (t -u) ζ α + 1 (u -s) ζ α + 1 .
(3.9)

• ∀0 ≤ s ≤ u ≤ t, ∀(x, y, w) ∈ R d , ∀ζ ∈ (-β, 1], pα (u -s, x -•) ∇p α (t -u, w -•) pα (t -s, w -x) - ∇p α (t -u, y -•) pα (t -s, y -x) B -β p ′ ,q ′ |w -y| ζ (t -u) ζ+1 α (t -s) β α 1 (t -u) d αp + 1 (u -s) d αp (t -s) ζ α 1 (t -u) ζ α + 1 (u -s) ζ α + 1 .
(3.10) Note that, in (3.9) and (3.10), the additional term (t -s)

ζ α 1 (t-u) ζ α + 1 (u-s) ζ α
will disappear though time integration and is mainly due to technical considerations related to the thermic characterizations of the Besov spaces considered for the above norms.

For the rest of this paper, we will use the notation

L(u, s, t, ζ) := (t -s) β α (t -u) 1 α 1 (t -u) d αp + 1 (u -s) d αp (t -s) ζ α 1 (t -u) ζ α + 1 (u -s) ζ α + 1 , (3.11) so that, for (j, k) = (0, 1), (3.9) reads pα (u -s, x -•)∇p α (t -u, y -•) B -β p ′ ,q ′ pα (t -s, x -y)L(u, s, t, ζ).

Results in Besov spaces

Thermic characterization of Besov spaces

From the work of Triebel [START_REF] Triebel | Characterizations of Besov-Hardy-Sobolev spaces: a unified approach[END_REF], we can use the following thermic characterization of Besov spaces:

Proposition 1. For ϑ ∈ R, m ∈ (0, +∞], ℓ ∈ (0, ∞], B ϑ ℓ,m (R d ) = f ∈ S ′ (R d ) : f H ϑ ℓ,m , α < ∞ , where: f H ϑ ℓ,m , α := φ(D)f L ℓ +          1 0 dv v v (n-ϑ α )m ∂ n v p α(v, •) ⋆ f m L ℓ 1 m , m < ∞, sup v∈(0,1] v n-ϑ α ∂ n v p α(v, •) ⋆ f L ℓ , m = ∞, =: φ(D)f L ℓ + T ϑ ℓ,m [f ]. (3.12)
We call T ϑ ℓ,m [f ] the thermic part due to it involving a convolution with a heat kernel p α. By default, φ(D)f L ℓ will thus be denoted by "non-thermic part". Here, the choice of φ, α and n are free so long as they satisfy n -ϑ α > 0.

Choice of α: Triebel suggested using this characterization with Poisson (α = 1) kernel or Gaussian (α = 2) kernel, but [START_REF] Triebel | Characterizations of Besov-Hardy-Sobolev spaces: a unified approach[END_REF] also includes any α ∈ (1, 2). In the following, we will use this with α = α. This characterization is very convenient when working with Besov norms of stable densities (or, for that matter, the approximations pα of such densities) because of the convolution properties they enjoy.

Choice of φ: as mentioned, since we will be applying this characterization with densities, it would be wise to choose φ so that the L ℓ part is not too dissimilar to the L ℓ norm of the thermic part. In fact, the choice of φ is not so critical, because the most delicate part is the thermic part, where time singularities appear. We will work with φ ∈ S s.t. φ(0) = 0.

Choice of n: in our case, ϑ/α < 1, so any integer n will work. We will see that in our computations, taking n = 1 allows to use cancellation arguments and is sufficient to ensure the thermic part in (3.12) is a convergent integral.

Useful inequalities in Besov spaces

• From [LR02], Proposition 3.6, we have the following duality inequality: ∀m, ℓ, ϑ, with m ′ and ℓ ′ respective conjugates of m and ℓ, and (f,

g) ∈ B ϑ ℓ,m × B -ϑ ℓ ′ ,m ′ , f (y)g(y)dy ≤ f B ϑ ℓ,m g B -ϑ ℓ ′ ,m ′ .
(3.13)

• From [START_REF] Sawano | Theory of Besov spaces[END_REF], Theorem 4.37, we have the following Hölder inequality (product rule):

∀p, q, s and ∀ρ > max s,

d 1 p -1 + -s , ∀(f, g) ∈ B ρ ∞,∞ × B s p,q , f • g B s p,q f B ρ ∞,∞ g B s p,q . (3.14)
In our setting, as p ≥ 1 and β < 0, the above condition on ρ reads ρ > -β.

As explained before, our approach consists in approximating the drift with a sequence of smooth functions on which to perform computations. In the next proposition, we explicit how such approximation works: the sole sensitive case is when r = +∞. Namely, we can state the following, which is proved in [START_REF] De Raynal | Multidimensional stable driven mckean-vlasov sdes with distributional interaction kernel -a regularization by noise perspective[END_REF] (see also [START_REF] Issoglio | Forward-backward SDEs with distributional coefficients[END_REF] for drifts in

L ∞ ([0, T ], H β q )) : Proposition 2. [Smooth approximation of the drift] Let b ∈ L r -B β p,q with β ∈ (-1, 0], 1 ≤ p, q ≤ ∞. There exists a time-space sequence of smooth bounded functions (b m ) m∈N s.t. b -b m L r -B β p,q -→ m→∞ 0, ∀ β < β,
with r = r if r < ∞ and for any r < ∞ otherwise. Moreover, ∃κ ≥ 1 :

sup m∈N b m L r -B β p,q ≤ κ b L r-B β p,q . (3.15)
Note that this approximation induces a slight loss in space regularity. For this paper, this is of no concern as Theorem 1 does not hold for ρ = γ -β.

Estimates on the mollified SDE

In this section, we only consider the mollified SDE

dX m t = b m (t, X m t )dt + dZ t , (4.1) 
where (b m ) m∈N ∈ C ∞ b is an approximating sequence of the drift, as given by Proposition 2. As thus, this SDE is a classical one, and we have strong well-posedness and uniqueness. In this setting, it is known that the density of (X m t ) t≥s exists for t > s (see e.g. [START_REF] Kolokoltsov | Symmetric stable laws and stable-like jump-diffusions[END_REF] or [START_REF] Leandre | Régularité de processus de sauts dégénérés[END_REF] for a more general additive noise). We will prove the following theorem: Theorem 2. Fix T > 0 and assume (GR). For any m, consider the solution P m to the martingale problem associated with (b m , L α , x) starting at time s and denote (x m t ) t∈[s,T ] the associated canonical process. For all t ∈ (s, T ], x m t admits a density p m (s, t, x,

•) s.t. ∃C := C(T, b) ≥ 1 : ∀(x, y) ∈ R d , C -1 pα (t -s, y -x) ≤ p m (s, t, x, y) ≤ C pα (t -s, y -x), (4.2) |∇ x p m (s, t, x, y)| ≤ C (t -s) 1 α pα (t -s, y -x), (4.3) ∀(y, y ′ ) ∈ R d , |p m (s, t, x, y) -p m (s, t, x, y ′ )| ≤ C|y -y ′ | ρ (t -s) ρ α (p α (t -s, y -x) + pα (t -s, y ′ -x)) , (4.4) 
∀(y, y ′ ) ∈ R d , |∇ x p m (s, t, x, y) -∇ x p m (s, t, x, y ′ )| ≤ C|y -y ′ | ρ (t -s) ρ+1 α (p α (t -s, x -y) + pα (t -s, x -y ′ )) , (4.5) 
for any ρ ∈ (-β, γ -β), where γ := β -

1-α+ α r + d p 2
is the "gap to singularity". Note that, in the current mollified setting, X m t = x m t is the strong solution to (4.1).

Remark 7. We insist that, in the context of Proposition 2, this statement is uniform in m as C does not depend on m. We will see in the proof that this is made possible by (3.15). We could in fact already obtain those bounds from [START_REF] Kolokoltsov | Symmetric stable laws and stable-like jump-diffusions[END_REF], but they would not be uniform in m.

Remark 8. As previously mentioned, when using Proposition 2, the approximating sequence does not exactly have the same regularity and integrability indexes as the original drift. However, we chose to state Theorem 2 with the original r and β because, as we do not obtain large inequalities but strict ones (ρ ∈ (-β, γ -β)), the final result remains the same.

Proof. We will prove Theorem 2 for T ∈ (0, 1). To extend this proof to any T > 0, it suffices to use the Chapman-Kolmogorov property of p α .

As equation (4.1) can be understood in a classical way, we can perform a Duhamel expansion on the density of the solution (see e.g. [START_REF] Menozzi | Heat kernel of supercritical nonlocal operators with unbounded drifts[END_REF]). Namely,

∀0 ≤ s < t ≤ T, ∀(x, y) ∈ R d , p m (s, t, x, y) = p α (t -s, y -x) + t s p m (s, u, x, z)b m (u, z)∇ z p α (t -u, y -z)dzdu.
(4.6)

Let us now denote, for fixed (s, x)

∈ [0, 1] × R d , h m s,x (t, y) := p m (s, t, x, y) pα (t -s, y -x)
.

For the sake of clarity, until the end of this section we will omit the m in the previous h m s,x , and denote h s,x = h m s,x .

We already know that p α ≍ pα , hence we can write:

h s,x (t, y) ≤ C + 1 pα (t -s, y -x) t s p m (s, u, x, z) pα (u -s, z -x) b m (u, z)p α (u -s, z -x)∇p α (t -u, y -z)dzdu 1 + 1 pα (s, t, x, y) t s h s,x (u, z)b m (u, z)p α (s, u, x, z)∇p α (t -u, y -z)dz du.
From this point, our goal is to use a Gronwall-Volterra lemma on this expansion. This will give us bounds on h, which we need to be uniform in m. In our case, we do not know much about b m , and the most we might be able to rely on is that b m -b L r -B β p,q → 0. On the flipside, we know a lot about pα , p α and their derivatives. In particular, it is very smooth, and we should be able to control its Besov norm rather well. Hence we will use the duality inequality (3.13) to derive:

h s,x (t, y) 1 + 1 pα (t -s, y -x) t s h s,x (u, •)b m (u, •) B β p,q pα (u -s, • -x)∇p α (t -u, y -•) B -β p ′ ,q ′ du 1 + 1 pα (t -s, y -x) t s h s,x (u, •) B ρ ∞,∞ b m (u, •) B β p,q pα (u -s, • -x)∇p α (t -u, y -•) B -β p ′ ,q ′ du,
where the last inequality was obtained using (3.14), with any ρ > max β, d 1 p -1

+ -β = -β.
Using Lemma 3, we get

h s,x (t, y) 1 + t s h s,x (u, •) B ρ ∞,∞ b m (u, •) B β p,q L(u, s, t, ρ)du. (4.7) 
We now need to retrieve h s,x (u, •) B ρ ∞,∞ on the l.h.s. to use a Gronwall-Volterra lemma.

h s,x (t, •) B ρ ∞,∞ = h s,x (t, •) L ∞ + sup v∈(0,1] v 1-ρ α ∂ v p α (v, •) ⋆ h s,x (t, •) L ∞ = h s,x (t, •) L ∞ + T ρ ∞,∞ [h s,x (t, •)].
The non-thermic part can already be estimated from (4.7). For the thermic part, we introduce the following technical lemma, whose proof is postponed to Section 6:

Lemma 4 (Thermic part of h s,x (u, •) B ρ ∞,∞ ). ∀0 ≤ s ≤ t, ∀x ∈ R d , ∀ρ ∈ (-β, 1), T ρ ∞,∞ [h s,x (t, •)] 1 (t -s) ρ α 1 + t s h s,x (u, •) B ρ ∞,∞ b m (u, •) B β p,q L(u, s, t, ρ) (t -s) ρ α (t -u) ρ α + 1 du .
This lemma indicates that the thermic part of h s,x (u, •) B ρ ∞,∞ is not homogeneous to its non-thermic part. We therefore introduce a normalized version of h s,x (u, •) B ρ ∞,∞ on which to perform a Gronwall-Volterra lemma, accounting for the right time singularity. Let

g(s, x, t) := g m (s, x, t) := h m s,x (t, •) L ∞ + (t -s) ρ α T ρ ∞,∞ [h m s,x (t, •)] = h s,x (t, •) L ∞ + (t -s) ρ α T ρ ∞,∞ [h s,x (t, •)]. (4.8)
With the previous lemma, we can write

g(s, x, t) 1 + t s h s,x (u, •) B ρ ∞,∞ b m (u, •) B β p,q L(u, s, t, ρ) (t -s) ρ α (t -u) ρ α + 1 du. (4.9) Notice that, because (u -s) ≤ (t -s) ≤ 1, (u -s) ρ α h s,x (u, •) B ρ ∞,∞ = (u -s) ρ α h s,x (u, •) L ∞ + (u -s) ρ α T ρ ∞,∞ [h s,x (u, •)] ≤ g(s, x, u).
Because of this, (4.9) yields

g(s, x, t) 1 + t s g(s, x, u) (u -s) ρ α b m (u, •) B β p,q L(u, s, t, ρ) (t -s) ρ α (t -u) ρ α + 1 du.
We now apply a Gronwall-Volterra lemma:

g(s, x, t) 1 + t s b m (u, •) B β p,q (u -s) ρ α L(u, s, t, ρ) (t -s) ρ α (t -u) ρ α + 1 exp t u b m (v, •) B β p,q (v -s) ρ α L(v, s, t, ρ) (t -s) ρ α (t -v) ρ α + 1 dv du. (4.10)
Let us first focus on the integral in v. We first treat b m (v, •) B β p,q using Hölder's inequality:

t u b m (v, •) B β p,q (v -s) ρ α L(v, s, t, ρ) (t -s) ρ α (t -v) ρ α + 1 dv ≤ b m L r -B β p,q t u L(v, s, t, ρ) r ′ (v -s) ρr ′ α (t -s) ρ α (t -v) ρ α + 1 r ′ dv 1 r ′
.

Here, we want to specify the conditions under which this integral converges. Let us first make it explicit:

t u L(v, s, t, ρ) r ′ (v -s) ρr ′ α (t -s) ρ α (t -v) ρ α + 1 r ′ dv = t u 1 (v -s) ρr ′ α (t -s) r ′ β α (t -v) r ′ α 1 (t -v) d αp + 1 (v -s) d αp r ′ × (t -s) ρ α (t -v) ρ α + (t -s) ρ α (v -s) ρ α + 1 r ′ (t -s) ρ α (t -v) ρ α + 1 r ′ dv.
As 0 ≤ s ≤ u ≤ v ≤ t, singularities appear for v → s and v → t, and it is sufficient to prove that the following integral is convergent:

t s L(v, s, t, ρ) r ′ (v -s) ρr ′ α (t -s) ρ α (t -v) ρ α + 1 r ′ dv. (4.11)
Setting v = (t -s)λ + s and accounting only for the most singular terms in (4.11), we get

t s L(v, s, t, ρ) r ′ (v -s) ρr ′ α (t -s) ρ α (t -v) ρ α + 1 r ′ dv (t -s) r ′ α (β-ρ-1-d p )+1 1 0 1 λ r ′ α (2ρ+ d p ) (1 -λ) r ′ α + 1 λ ρr ′ α (1 -λ) r ′ α (1+ d p +2ρ)
dλ. (4.12)

This integral converges if and only if

r ′ α (1 + d p + 2ρ) < 1. Denote ε = ρ + β > 0. Then, r ′ α 1 + d p + 2ρ < 1 ⇐⇒ ε < β - 1 -α + α r + d p 2 = γ, (4.13) 
and as we work under (GR), the r.h.s. γ of (4.13) is positive.

Again, under (GR), the exponent of (t -s)

r ′ α (β-ρ-1-d p )
+1 in (4.12) is greater than γ, and in particular, it is positive, meaning there are no singularities in (t -s) in (4.12). Hence ∀ε ∈ (0, γ) (i.e. ∀ρ ∈ (-β, γ -β)),

t u b m (v, •) B β p,q (v -s) ρ α L(v, s, t, ρ) (t -s) ρ α (t -v) ρ α + 1 dv b m L r -B β p,q .
Remark 9. We see here that the threshold ρ < γ -β is due to integrability of (4.12), while the constraint ρ > -β comes from the above use of a duality inequality.

Notice that, in (4.10), the same computations and conditions yield that g(s, x, t) is bounded by a constant C which depends only on T and b m L r -B β p,q in a non-decreasing way. Using (3.15), we obtain the uniform boundedness of g, which in turn yields

T ρ ∞,∞ [h s,x (t, •)] 1 (t-s) ρ α
. From the definition of h s,x (t, •) and (4.7), we obtain the upper bound of (4.2) and (4.4). To obtain the lower bound of (4.2), it suffices to write:

h s,x (t, y) ≥ C - 1 pα (t -s, y -x) t s p m (u -s, z -x) pα (u -s, z -x) b m (u, z)p α (u -s, z -x)∇p α (t -u, y -z)dzdu 1 - t s h s,x (u, •) B ρ ∞,∞ b m (u, •) B β p,q L(u, s, t, ρ) (t -s) ρ α (t -u) ρ α + 1 du. (4.14)
and the result follows from the control which we have already performed on h s,x (u, •) B ρ ∞,∞ under (GR): namely, the integral on the r.h.s. of (4.14) is a o((t -s) ρ/α ). For items (4.3) and (4.5), it suffices to notice that the whole proof remains the same if we add a derivative w.r.t. the initial value x, and using (3.2) to account for the gradient at the end. Namely, we would get the Duhamel expansion

∇ x p m (s, t, x, y) = ∇ x p α (t -s, y -x) + t s ∇ x p m (s, u, x, z)b m (u, z)∇ z p α (t -u, y -z)dzdu.
In turn, this means we have to study H m s,x (t, y) := (t -s)

1 α
∇ x p m (s, t, x, y) pα (t -s, y -x) .

Computations then remain the same as in this section, up to a factor (t-s) 1/α (u-s) 1/α that will disappear through time integration when using the Gronwall-Volterra lemma. To be precise, it exactly adds r ′ /α to the exponent of λ in (4.12). Importantly, the condition (4.13) allowing the integral (4.12) to converge remains the same. Denoting G m (s, x, t)

:= H m s,x (t, •) L ∞ + (t -s) ρ α T ρ ∞,∞ [H m s,x (t, •)],
this means we obtain the boundedness of G m (s, x, t), hence (4.3) and, in turn, (4.5).

5 From the smooth approximation to the actual SDE By Proposition 2, let (b m ) m∈N be a sequence of smooth bounded functions s.

t. b -b m L r -B β p,q -→ m→∞ 0, ∀ β < β,
with r = r if r < ∞ and for any r < ∞ otherwise and let κ ≥ 1 :

sup m∈N b m L r -B β p,q ≤ κ b L r-B β p,q .
The following was already discussed in [START_REF] De | On multidimensional stabledriven stochastic differential equations with Besov drift[END_REF], but we reproduce it here for the sake of completeness.

Tightness of the sequence of probability measures (P m ) m∈N

Notice that when considering the mollified equation (4.1), for every m, the martingale problem associated with (b m , L α , x) is well posed (see [START_REF] De | On multidimensional stabledriven stochastic differential equations with Besov drift[END_REF]). Let us denote by P m its solution and by (x m t ) t≥0 the associated canonical process. Let u m = (u 1 m , ..., u d m ) where, ∀i, u i m is a mild solution of the classical Cauchy problem C(b m , L α , -b i m , 0, T ) (i.e. with terminal condition u i m (T, •) = 0 and source term -b i m , the i th component of b m ), so that

u m (t, x m t ) + t 0 b m (s, x m s )ds -u(0, x)
0≤t≤T is a P m -martingale, which we can express, through Itô' formula, as

M v,s (u m , x m ) := s v R d \{0} [u m (r, x m r -+ x) -u m (r, x m r -)] Ñ (dr, dx), ∀s ≥ v, (5.1)
where Ñ is the compensated Poisson measure. Itô's formula now writes

x m s -x m v = M v,s (u m , x m ) + Z s -Z v -[u m (s, x m s ) -u m (v, x m v )] .
(5.2)

We will use an Aldous criterion to prove the tightness of (P m ) m∈N , which means we need a control of the form

E[|X m s -X m v | p ] ≤ c(s -v) ζ
for some p > 0 and some ζ > 0 (see Proposition 34.9 from [START_REF] Bass | Stochastic Processes[END_REF]). Since ∀i, u i m is the mild solution of the Cauchy problem C(b m , L α , -b i m , 0, T ), we can write

|u m (v, x m v ) -u m (s, x m s )| ≤ |u m (v, x m v ) -u m (v, x m s )| + |u m (v, x m s ) -u m (s, x m s )|, (5.3) 
and use Proposition 9 from [START_REF] De | On multidimensional stabledriven stochastic differential equations with Besov drift[END_REF] to get the required space and time controls. Namely, for the spatial part, ∃C T s.t.

C T → 0 as T → 0 and |u m (v, x m v ) -u m (v, x m s )| < C T |x m v -x m s |.
For the time part, we use the Hölder continuity in time of u m . For M v,s (u m , x m ), the control follows from the Burkholder-Davis-Gundy inequality and, finally, for Z s -Z v , it follows from (3.1) and the stationarity of Z.

Limit probability measure

We will now prove that any limit probability measure P is a martingale solution to (1.1) in the sense of Definition 2. Let

f ∈ C([0, T ], S(R d , R)), g ∈ C 1 (R d , R) with Dg ∈ B θ-1 ∞,∞ (R d , R d ). Let u m ∈ C 0,1 ([0, T ] × R d ) be the classical solution of the mollified Cauchy problem C(b m , L α , f, g, T ), with Du m ∈ C 0 b ([0, T ], B θ-1-ε ∞,∞
) for some 0 < ε ≪ 1. By Theorem 2, we have a uniform control of the modulus of continuity of u m and Du m . By the Arzelà-Ascoli Theorem, we can extract a subsequence (u

m k , Du m k ) k s.t. (u m k ) k and (Du m k ) k converge uniformly on every compact subsets of [0, T ] × R d to some functions u ∈ C 0,1 ([0, T ] × R d ) and Du ∈ C 0 b ([0, T ], B θ-1-ǫ ∞,∞
), ∀ǫ ∈ (0, ε) respectively (Du being the space-derivative of u). Because of this uniform convergence, (1.6) holds for the limit, i.e.

∀(t, x) ∈ [0, T ] × R d , u(t, x) = P α T -t [g](x) - T t P α s-t [f -b • Du](s, x)ds, (5.4)
hence u is a mild solution to C(b, L α , f, g, T ) (see again Remark 8 for the handling of the space regularity). Together with a control of the moments of X m (which we already obtained in the last paragraph), we deduce that

u(t, x t ) + t 0 f (s, x s )ds -u(0, x 0 )
0≤t≤T is a P-martingale.

Uniqueness of the limit probability measure

Let P and P be two solution of the martingale problem associated with (b, L α , x 0 ) for some

x 0 ∈ R d . Thus, ∀f ∈ C([0, T ], S(R d , R)), taking g = 0, u(0, x 0 ) = E P T 0 f (s, x s )ds = E P T 0 f (s, x s )ds ,
which is sufficient to prove uniqueness in law (see e.g. [START_REF] Ethier | Markov Processes: Characterization and Convergence[END_REF]).

Since X m t = x m t , p m is the density of the canonical process under P m . From the Arzelà-Ascoli theorem which can be applied from the estimates derived in Theorem 2, we can extract a subsequence (p m k , ∇ x p m k ) k s.t. (p m k ) k and (∇ x p m k ) k converge uniformly on every compact subset to some functions p and ∇ x p (∇ x p being the derivative of p). By the uniqueness results from [START_REF] De | On multidimensional stabledriven stochastic differential equations with Besov drift[END_REF], p is the time marginal of P, and enjoys the estimates of Theorem 1.

Proofs

Proof of Lemma 1 (Bounds and L p estimates for the noise density). The first item about spatial moments (3.1) is plain from the definition. The second item (3.2) stating bounds for space-time derivatives of p α is proved in [START_REF] De | On multidimensional stabledriven stochastic differential equations with Besov drift[END_REF], although in a more general setting (see also [START_REF] Kolokoltsov | Symmetric stable laws and stable-like jump-diffusions[END_REF], Proposition 2.5 for the current absolutely continuous setting).

For the distortion part

(3.3), if ℓ ′ = ∞, it suffices to write pα (v, •) ℓ ′ L ℓ ′ = 1 v dℓ ′ α 1 1 + |x| v 1 α ℓ ′ (d+α) dx = v -d α (ℓ ′ -1) 1 v d α 1 1 + |x| v 1 α ℓ ′ (d+α) dx v -d α (ℓ ′ -1) .
For ℓ = +∞, the result is plain from the definition of pα .

Let us now prove the convolution part (3.4). Denote

I := pα (t -u, • -y)p α (u -s, x -•) ℓ ′ L ℓ ′ 1 (t -u) dℓ ′ α 1 1 + |z-y| (t-u) 1 α (d+α)ℓ ′ 1 (u -s) dℓ ′ α 1 1 + |x-z| (u-s) 1 α (d+α)ℓ ′ dz. • Diagonal case: |x -y| < (t -s) 1/α In this case, either (t -u) ≥ 1 2 (t -s) or (u -s) ≥ 1 2 (t -s),
i.e. one of the two contributions in I is in the diagonal regime, allowing us to use (3.8).

-

If (t -u) ≥ 1 2 (t -s), I 1 (t -u) dℓ ′ α 1 1 + |z-y| (t-u) 1 α (d+α)ℓ ′ 1 (u -s) dℓ ′ α 1 1 + |x-z| (u-s) 1 α (d+α)ℓ ′ dz 1 (t -u) dℓ ′ α 1 (u -s) d α (ℓ ′ -1) 1 (u -s) d α 1 1 + |x-z| (u-s) 1 α (d+α)ℓ ′ dz 1 (t -u) dℓ ′ α 1 (u -s) d α (ℓ ′ -1)
.

Since (t -u) ≥ 1 2 (t -s), 1 (t -u) d α 1 (t -s) d α ≍ pα (t -s, y -x), hence I pα (t -s, x -y) ℓ ′ 1 (u -s) d α (ℓ ′ -1)
.

-If (u -s) ≥ 1 2 (t -s), the same computations give, when swapping the roles of u -s and t -u,

I pα (t -s, x -y) ℓ ′ 1 (t -u) d α (ℓ ′ -1)
.

• Off-diagonal case: |x -y| ≥ (t -s) 1/α
In this case, either |x -z| ≥ 1 2 |x -y| or |z -y| > 1 2 |x -y|, i.e. one of the two contributions in I is in the off-diagonal regime, allowing us to use (3.7).

-

If |x -z| ≥ 1 2 |x -y| > 1 2 (t -s) 1/α , I 1 (u -s) dℓ ′ α 1 1 + |x-y| (u-s) 1 α (d+α)ℓ ′ 1 (t -u) dℓ ′ α 1 1 + |z-y| (t-u) 1 α (d+α)ℓ ′ 1 |x-z|≥ 1 2 |x-y| dz pα (u -s, x -y) ℓ ′ 1 (t -u) d α (ℓ ′ -1) 1 (t -u) d α 1 1 + |z-y| (t-u) 1 α (d+α)ℓ ′ 1 |x-z|≥ 1 2 |x-y| dz Since |x -y| > (u -s) 1/α , pα (u -s, x -y) ≍ u -s |x -y| d+α ≤ t -s |x -y| d+α ≍ pα (t -s, x -y), hence I pα (t -s, x -y) ℓ ′ 1 (t -u) d α (ℓ ′ -1)
.

I pα (t -s, x -y) ℓ ′ 1 (t -u) d α (ℓ ′ -1) 1 (t -u) d α 1 1 + |z-y| (t-u) 1 α (d+α)ℓ ′ 1 |x-z|≥ 1 2 |x-y| dz -If |z -y| > 1 2 |x -y| > 1 2 (t -s) 1/α
, the same computations give, when swapping the roles of |x -z| and |y -z|,

I pα (t -s, x -y) ℓ ′ 1 (u -s) d α (ℓ ′ -1)
. (6.1)

In each case, we have

pα (t -u, • -y)p α (u -s, x -•) L ℓ ′ = I 1 ℓ ′ 1 (t -u) d α ℓ ′ -1 ℓ ′ + 1 (u -s) d α ℓ ′ -1 ℓ ′ pα (t -s, x -y) 1 (t -u) d αℓ + 1 (u -s) d αℓ pα (t -s, x -y).
Which concludes the proof of Lemma 1.

Proof of Lemma 2 (Taylor-Laplace for stable densities). We will only prove (3.5) as (3.6) follows from the same proof. Since we are working in the diagonal case |z -w| t 1/α , it makes sense to use a Taylor formula:

|D ℓ p α (t, x -w) -D ℓ p α (t, x -z)| ≤ 1 0 D ℓ+1 p α (t, x + λ(z -w) -z) • (z -w) dλ |z -w| t ℓ+1 α 1 0 |p α (t, x + λ(z -w) -z)| dλ |z -w| ζ t ℓ+ζ α 1 0 pα (t, x + λ(z -w) -z)dλ,
where, in the last inequality, we introduced a free exponent

ζ ∈ (0, 1]. Notice that |w -x| ≤ |x + λ(z -w) -z| + (1 -λ)|z -w|.
We therefore deduce that in the current diagonal regime, |w-x|

t 1/α |x+λ(z-w)-z| t 1/α + (1 -λ), hence pα (t, w -x) t -d α 1 + (1 -λ) + |x + λ(z -w) -z| t 1 α -d-α t -d α 1 + |x + λ(z -w) -z| t 1 α -d-α
, which in turn yields

1 0 pα (t, x + λ(z -w) -z)dλ pα (t, w -x),
thus concluding the proof.

Proof of Lemma 3 (Besov estimates for pα ). Let's begin with the proof of item (3.9), of which (3.10) is a consequence. We will use the thermic characterization of the Besov norm introduced in section 3:

∇ j pα (u -s, • -x)∇ k p α (t -u, y -•) B -β p ′ ,q ′ = φ(D)q L p ′ + T -β p ′ ,q ′ [q(•)],
where q(•) := q s,x,t,u,y (•) = ∇ j pα (u -s, x -•)∇ k p α (t -u, • -y).

Thermic part

Recall the definition of the thermic part:

T -β p ′ ,q ′ [q] q ′ = 1 0 dv v v (1+ β α )q ′ ∂ v p α (v, •) ⋆ q(•) q ′ L p ′ = 1 0 dv v v (1+ β α )q ′ ∂ v p α (v, •) ⋆ ∇ j pα (u -s, x -•)∇ k p α (t -u, • -y) q ′ L p ′ ,
and let us now split this integral over (0, 1) into two parts (0, a) and (a, 1), where a is a real number in (0, 1) to be specified later, which will allow us to balance the contributions of each part of the integral.

In the upper part, as v is distinct from 0, no singularities appear and we can simply use convolution inequalities and Lemma 1.

T -β,(a,1) p ′ ,q ′ [q] := 1 a dv v v (1+ β α )q ′ ∂ v p α (v, •) ⋆ ∇ j pα (u -s, x -•)∇ k p α (t -u, • -y) q ′ L p ′ 1 a dv v v (1+ β α )q ′ 1 v pα (v, •) ⋆ 1 (u -s) j α pα (u -s, x -•) 1 (t -u) k α pα (t -u, • -y) q ′ L p ′ 1 (u -s) jq ′ α (t -u) kq ′ α 1 a v (1+ β α -1)q ′ -1 pα (v, •) q ′ L 1 pα (u -s, x -•)p α (t -u, • -y) q ′ L p ′ dv 1 (u -s) jq ′ α (t -u) kq ′ α 1 a v βq ′ α -1 1 (t -u) dq ′ αp + 1 (u -s) dq ′ αp pq ′ α (t -s, x -y)dv pq ′ α (t -s, x -y) (u -s) jq ′ α (t -u) kq ′ α 1 (t -u) dq ′ αp + 1 (u -s) dq ′ αp a βq ′ α . (6.2)
Remark 10. Pay attention to the fact that T -β,(a,1) p ′ ,q ′ is not homogeneous to T -β p ′ ,q ′ [q] as we omitted the exponent q ′ in order to avoid young inequalities down the line.

Now with the lower part:

T -β,(0,a) p ′ ,q ′ [q] := a 0 dv v v (1+ β α )q ′ ∂ v p α (v, •) ⋆ ∇ j pα (u -s, x -•)∇ k p α (t -u, • -y) q ′ L p ′ . (6.3) 
Let us write

∂ v p α (v, •) ⋆ ∇ j pα (u -s, x -•)∇ k p α (t -u, • -y) q ′ L p ′ = ∂ v p α (v, z -w)∇ j pα (u -s, x -w)∇ k p α (t -u, w -y)dw p ′ dz q ′ p ′ = ∂ v p α (v, z -w)[∇ j pα (u -s, x -w)∇ k p α (t -u, w -y) -∇ j pα (u -s, x -z)∇ k p α (t -u, z -y)]dw p ′ dz q ′ p ′ , (6.4) 
where, for the last equality, we have used the cancellation argument:

∂ v p α (v, z -w)∇ j pα (u -s, x -z)∇ k p α (t -u, z -y)dw = 0.
The point of this cancellation is to compensate singularities in v -1+ β α q ′ through a control involving |z-w| ϑ for some ϑ > β and the regularization properties of the thermic kernel, (3.1). In order to control the function inside the integral in (6.4), we now write:

|∇ j pα (u -s, x -w)∇ k p α (t -u, w -y) -∇ j pα (u -s, x -z)∇ k p α (t -u, z -y)| ≤ |∇ j pα (u -s, x -w)∇ k p α (t -u, w -y) -∇ j pα (u -s, x -z)∇ k p α (t -u, w -y)| + |∇ j pα (u -s, x -z)∇ k p α (t -u, w -y) -∇ j pα (u -s, x -z)∇ k p α (t -u, z -y)| = |∇ j pα (u -s, x -w) -∇ j pα (u -s, x -z)||∇ k p α (t -u, w -y)| + |∇ j pα (u -s, x -z)||∇ k p α (t -u, w -y) -∇ k p α (t -u, z -y)|.
(6.5)

We will treat those two terms separately, although they both appeal to similar arguments. Let us start with the first one, |∇ j pα (u -s, x -w) -∇ j pα (u -s, x -z)||∇ k p α (t -u, w -y)|. Here, we want to control this term with pα (u -s, w -x) in order to use the convolution properties of the pα w.r.t. the variable w. This will come at the price of singularities in time appearing, a price that will have an impact later on when using a Gronwall lemma, and will impose the constraints (GR) on the parameters. This approach will guide the computations for the thermic part of q.

• Diagonal case: |w -z| < 1 2 (u -s) 1/α . We use Lemma 2 to write

|∇ j pα (u -s, x -w) -∇ j pα (u -s, x -z)| |z -w| ζ (u -s) ζ+j α pα (u -s, w -x), (6.6) 
where we introduced a free exponent ζ ∈ (0, 1] (throughout this proof, ζ does not denote the gap to singularity). This control will turn out to be useful when using Lemma 1 in order to compensate time singularities in v.

• Off-diagonal case: |w -z| ≥ 1 2 (u -s) 1/α This inequality indicates that, essentially, pα (u -s, x -w) and pα (u -s, x -z) are not so alike, meaning there is no point using a Taylor formula. We can however write

|∇ j pα (u -s, x -w) -∇ j pα (u -s, x -z)| ≤ 2 |w -z| (u -s) 1 α ζ pα (u -s, x -w) (u -s) j α + pα (u -s, x -z) (u -s) j α
.

(6.7)

Notice that we only introduced |w-z| (u-s)

1 α
for the term in x -w. This term will be later treated alongside that of the diagonal case. The second term involving pα (u -s, x -z) will be handled separately, and, in particular, when |x-y| |w-y|, we will see that we cannot use the regularization properties of the stable kernel, meaning that adding a singularity in (u -s) would be worthless.

Combining equations (6.6) and (6.7) and Lemma 1, we get, for the first term on the r.h.s. of (6.5),

|∇ j pα (u -s, x -w) -∇ j pα (u -s, x -z)||∇ k p α (t -u, w -y)| pα (t -u, w -y) (u -s) j α (t -u) k α |w -z| ζ (u -s) ζ α pα (u -s, x -w) + pα (u -s, x -z)1 |w-z|≥ 1 2 (u-s) 1 α . (6.8)
Remark 11. This way of treating diagonal (using Taylor expansions) and off-diagonal (using a triangular inequality and the fact that |w-z|

(u-s) 1/α
1 to introduce a free exponent) cases will be reiterated throughout this paper. It reflects the self-similarity properties of the noise.

Let us now bound the second term on the r.h.s. of (6.5).

• Diagonal case: |w -z| < 1 2 (t -u) 1/α . We use Lemma (2) to obtain:

|∇ k p α (t -u, w -y) -∇ k p α (t -u, z -y)| |w -z| ζ (t -u) k+ζ α
pα (t -u, y -z). (6.9)

• Off-diagonal case: |w -z| ≥ 1 2 (t -u) 1/α The same computations as before yield

|∇ k p α (t -u, w -y) -∇ k p α (t -u, z -y)| ≤ 2 |w -z| (t -u) 1 α ζ pα (t -u, y -z) (t -u) k α + pα (t -u, w -y) (t -u) k α .
(6.10) Once again, combining (6.9) and (6.10), we obtain:

|∇ j pα (u -s, x -z)||∇ k p α (t -u, w -y) -∇ k p α (t -u, z -y)| pα (u -s, x -z) (u -s) j α (t -u) k α |w -z| ζ (t -u) ζ α pα (t -u, y -z) + pα (t -u, w -y)1 |w-z|≥ 1 2 (t-u) 1 α . (6.11)
Going back to (6.4), we get, using (6.5), (6.8) and (6.11),

∂ v p α (v, •) ⋆ ∇ j pα (u -s, x -•)∇ k p α (t -u, • -y) q ′ L p ′   |∂ v p α (v, z -w)| pα (t -u, w -y) (u -s) j α (t -u) k α |w -z| ζ (u -s) ζ α pα (u -s, x -w)dw p ′ dz   q ′ p ′ +   |∂ v p α (v, z -w)| pα (t -u, w -y) (u -s) j α (t -u) k α pα (u -s, x -z)1 |w-z|≥ 1 2 (u-s) 1 α dw p ′ dz   q ′ p ′ +   |∂ v p α (v, z -w)| pα (u -s, x -z) (u -s) j α (t -u) k α |w -z| ζ (t -u) ζ α pα (t -u, y -z)dw p ′ dz   q ′ p ′ +   |∂ v p α (v, z -w)| pα (u -s, x -z) (u -s) j α (t -u) k α pα (t -u, w -y)1 |w-z|≥ 1 2 (t-u) 1 α dw p ′ dz   q ′ p ′ =: I 1 + I 2 + I 3 + I 4 .
I 1 and I 3 are treated in the same way: we derive a smoothing effect in v by isolating an integral of the form

|∂ v p α (v, z -w)||z -w| ζ dx,
where x denotes z for I 1 and w for I 3 . We can directly see such form for I 3 , whereas in the case of I 1 , we first need to use the L 1 -L p ′ convolution inequality. This allows us to use (3.1), and then retrieve pα (t -s, x -y) using convolution properties. Indeed, we obtain the following :

I 1 v ζ α -1 (u -s) ζ+j α (t -u) k α q ′ pα (t -u, • -y)p α (u -s, x -•) q ′ p ′ , I 3 v ζ α -1 (u -s) j α (t -u) ζ+k α q ′ pα (t -u, • -y)p α (u -s, x -•) q ′ p ′ .
Using now (3.4),

I 1 v ζ α -1 (u -s) ζ+j α (t -u) k α q ′ 1 (t -u) dq ′ αp + 1 (u -s) dq ′ αp pq ′ α (t -s, x -y), I 3 v ζ α -1 (u -s) j α (t -u) ζ+k α q ′ 1 (t -u) dq ′ αp + 1 (u -s) dq ′ αp pq ′ α (t -s, x -y).
Let us now consider I 2 , which is the most delicate to handle.

• Diagonal case: |x -y| ≤ (t -s) 1/α . Furthermore, either t -u > (t -s)/2 or u -s > (t -s)/2.

-If t -u > (t -s)/2:

pα (t -u, w -y) 1 (t -u) 1 α 1 (t -s) 1 α ≍ pα (t -s, x -y),
which in turn yields, along with Lemma 1,

I 2 =   |∂ v p α (v, z -w)| pα (t -u, w -y) (u -s) j α (t -u) k α pα (u -s, x -z)1 |w-z|≥ 1 2 (u-s) 1 α dw p ′ dz   q ′ p ′ pα (t -s, x -y) (u -s) j α (t -u) k α q ′ ×   1 v pα (v, z -w) |w -z| ζ (u -s) ζ α pα (u -s, x -z)1 |w-z|≥ 1 2 (u-s) 1 α dw p ′ dz   q ′ p ′ pα (t -s, x -y) v(u -s) ζ+j α (t -u) k α q ′ pα (u -s, x -z) pα (v, z -w)|w -z| ζ dw p ′ dz q ′ p ′ (3.1) pα (t -s, x -y) v(u -s) ζ+j α (t -u) k α q ′ pα (u -s, x -z)v ζ α p ′ dz q ′ p ′ (3.3) pα (t -s, x -y) (u -s) ζ+j α (t -u) k α q ′ v q ′ ( ζ α -1) 1 (u -s) dq ′ αp . (6.12) 
-If u -s > (t -s)/2, we now have pα (u -s, x -z) 1 (u -s)

1 α 1 (t -s) 1 α
≍ pα (t -s, x -y).

The computations will be similar to the previous case, only, this time, an additional convolution inequality will be used due to the order of integration. Namely,

I 2 =   |∂ v p α (v, z -w)| pα (t -u, w -y) (u -s) j α (t -u) k α pα (u -s, x -z)1 |w-z|≥ 1 2 (u-s) 1 α dw p ′ dz   q ′ p ′ pα (t -s, x -y) (u -s) j α (t -u) k α q ′ ×   1 v pα (v, z -w) |w -z| ζ (u -s) ζ α pα (t -u, w -y)1 |w-z|≥ 1 2 (u-s) 1 α dw p ′ dz   q ′ p ′ pα (t -s, x -y) v(u -s) ζ+j α (t -u) k α q ′ pα (v, z -w)|w -z| ζ pα (t -u, w -y)dw p ′ dz q ′ p ′ pα (t -s, x -y) v(u -s) ζ+j α (t -u) k α q ′ pα (v, •) × | • | ζ L 1 pα (t -u, • -y) L p ′ q ′ pα (t -s, x -y) v(u -s) ζ+j α (t -u) k α q ′ v ζ α 1 (t -u) d αp q ′ pα (t -s, x -y) (u -s) ζ+j α (t -u) k α q ′ v q ′ ( ζ α -1) 1 (t -u) dq ′ αp . (6.13)
We obtain the same level of time singularity as in the previous case, although this time the singularity is in (t -u) instead of (u -s), which was to be expected given the current regime.

• Off-diagonal case: |x -y| > (t -s) 1/α . We will now set the overall value for a = t -s, so that v < t -s.

-

If |w -z| > 1 4 |x -y| (> 1 4 (t -s) 1/α > 1 4 v 1/α in the current regime) pα (v, z -w) ≍ v |z -w| d+α ≤ 4 v t -s t -s |x -y| d+α ≍ v t -s pα (t -s, x -y),
which yields

I [1] 2 := |∂ v p α (v, z -w)| pα (t -u, w -y) (u -s) j α (t -u) k α pα (u -s, x -z)× 1 |w-z|> 1 4 |x-y| 1 |w-z|≥ 1 2 (u-s) 1 α dw p ′ dz q ′ p ′ 1 v pα (v, z -w) pα (t -u, w -y) (u -s) j α (t -u) k α pα (u -s, x -z)× 1 |w-z|> 1 4 |x-y| 1 |w-z|≥ 1 2 (u-s) 1 α dw p ′ dz q ′ p ′ pα (t -s, x -y) (u -s) j α (t -u) k α (t -s) q ′ pα (u -s, x -z) pα (t -u, w -y)dw p ′ dz q ′ p ′ pα (t -s, x -y) (u -s) j α (t -u) k α (t -s) q ′ pp ′ α (u -s, x -z)dz q ′ p ′   pα (t -s, x -y) (u -s) j α + dq ′ αp (t-u) k α (t -s)   q ′ .
Pay attention that, here, we got rid of the singularity in v coming from |∂ v p α (v, •)| by swapping it for a contribution in (t-s). As we will integrate for v ∈ (s, t) down the line, this contribution is however homogeneous to the previous ones. For convenience, we will write

I [1] 2 pα (t -s, x -y) (u -s) j α (t -u) k α (t -s) q ′ 1 (u -s) dq ′ αp + 1 (t -u) dq ′ αp . -If |w -z| ≤ 1 4 |x-y|, since |x-y| ≤ |x-z|+ |z -y|, then either |x-z| > |x-y| 2 or |z -y| ≥ |x-y| 2 . * If |x -z| > |x-y| 2 , pα (u -s, x -z) ≍ u -s |z -x| d+α t -s |x -y| d+α ≍ pα (t -s, x -y).
We are therefore doing the same computations as in (6.13), which yield

I [2.1] 2 := |∂ v p α (v, z -w)| pα (t -u, w -y) (u -s) j α (t -u) k α pα (u -s, x -z)× 1 |w-z|≤ 1 4 |x-y| 1 |x-z|> |x-y| 2 1 |w-z|< 1 2 (u-s) 1 α dw p ′ dz q ′ p ′ pα (t -s, x -y) (u -s) ζ+j α (t -u) k α q ′ v q ′ ( ζ α -1) 1 (t -u) dq ′ αp . * If |z -y| ≥ |x-y| 2 , |y -w| ≥ |y -z| -|z -w| ≥ |x -y| 2 - |x -y| 4 = |x -y| =⇒ pα (t -u, w -y) ≍ t -u |y -w| d+α t -s |y -x| d+α ≍ pα (t -s, x -y).
We are therefore doing the same computations as in (6.12), which yield

I [2.2] 2 := |∂ v p α (v, z -w)| pα (t -u, w -y) (u -s) j α (t -u) k α pα (u -s, x -z)× 1 |w-z|≤ 1 4 |x-y| 1 |z-y|≥ |x-y| 2 1 |w-z|< 1 2 (u-s) 1 α dw p ′ dz q ′ p ′ pα (t -s, x -y) (u -s) ζ+j α (t -u) k α q ′ v q ′ ( ζ α -1) 1 (u -s) dq ′ αp .
We are done with I 2 , for which we found the overall bound

I 2 = I [1] 2 + I [2.1] 2 + I [2.2] 2 pα (t -s, x -y) (u -s) j α (t -u) k α q ′ 1 (t -s) q ′ + v q ′ ( ζ α -1) (u -s) ζ α 1 (u -s) dq ′ αp + 1 (t -u) dq ′ αp .
I 4 is treated just like I 2 , yielding, by symmetry,

I 4 pα (t -s, x -y) (u -s) j α (t -u) k α q ′ 1 (t -s) q ′ + v q ′ ( ζ α -1) (t -u) ζ α 1 (u -s) dq ′ αp + 1 (t -u) dq ′ αp .
Gathering the estimates on I 1,2,3,4 , we derive the following:

∂ v p α (v, •) ⋆ pα (u -s, x -•)∇p α (t -u, • -y) q ′ L p ′ pq ′ α (t -s, x -y) (u -s) jq ′ α (t -u) kq ′ α v q ′ ( ζ α -1) 1 (t -u) ζq ′ α + 1 (u -s) ζq ′ α + 1 (t -s) q ′ 1 (t -u) dq ′ αp + 1 (u -s) dq ′ αp .
Going back to (6.3),

T -β,(0,a) p ′ ,q ′ [q] := a 0 dv v v (1+ β α )q ′ ∂ v p α (v, •) ⋆ ∇ j pα (u -s, x -•)∇ k p α (t -u, • -y) q ′ L p ′ pq ′ α (t -s, x -y) (u -s) jq ′ α (t -u) kq ′ α 1 (t -u) dq ′ αp + 1 (u -s) dq ′ αp × a 0 dv v v (1+ β α )q ′ v q ′ ( ζ α -1) 1 (t -u) ζq ′ α + 1 (u -s) ζq ′ α + 1 (t -s) q ′ pq ′ α (t -s, x -y) (u -s) jq ′ α (t -u) kq ′ α 1 (t -u) dq ′ αp + 1 (u -s) dq ′ αp a q ′ ζ+β α 1 (t -u) ζq ′ α + 1 (u -s) ζq ′ α + a q ′ (1+ β α ) (t -s) q ′ ,
where we set ζ > -β so that the integral converges. Recalling that we set a = t -s, we managed to obtain:

T -β p ′ ,q ′ [q] = T -β,(0,t-s) p ′ ,q ′ [q] + T -β,(t-s,1) p ′ ,q ′ [q] 1 q ′ pα (t -s, x -y) (u -s) j α (t -u) k α 1 (t -u) d αp + 1 (u -s) d αp (t -s) ζ+β α 1 (t -u) ζ α + 1 (u -s) ζ α + (t -s) β α pα (t -s, x -y) (u -s) j α (t -u) k α (t -s) β α 1 (t -u) d αp + 1 (u -s) d αp (t -s) ζ α 1 (t -u) ζ α + 1 (u -s) ζ α + 1 .

Non-thermic part

For the non-thermic part, let us write

F (φ) ⋆ ∇ j pα (u -s,x -•)∇ k p α (t -u, y -•) L p ′ ≤ F (φ) L 1 ∇ j pα (u -s, x -•)∇ k p α (t -u, y -•) L p ′ pα (t -s, y -x) (u -s) j α (t -u) k α 1 (t -u) d αp + 1 (u -s) d αp T -β p ′ ,q ′ [q].
Which concludes the proof of the first item of Lemma 3.

In order to prove the second item (3.10), we will bound cleverly ∇pα(t-u,w-z) pα(t-s,x-w) -∇pα(t-u,y-z) pα(t-s,x-y) and then use the previous result to conclude. Notice that, in (3.10), the time-space scale we are looking at is (t -u) 1/α compared to |w -y|, hence we will need to treat split the discussion into diagonal and off-diagonal cases at this local time scale. Let z ∈ R d .

• If |w -y| ≥ (t -u) 1/α , as usual, we use a triangular inequality and the fact that (3.10) then follows from using (3.9) twice.

Proof of Lemma 4 (Thermic part of h s,x (u, •) B ρ ∞,∞ ). Recall the definition of the thermic part (choosing n = 1)

T ρ ∞,∞ [h s,x (t, •)] = sup v∈(0,1] v 1-ρ α ∂ v p α (v, •) ⋆ h s,x (t, •) L ∞ .
Let y ∈ R d . We use the cancellation argument As in the proof of Lemma 3, we will treat the diagonal and off-diagonal cases separately. This time, those regimes are to be considered w.r.t. the time increment (t -s) and the spatial increment |y -w|.

∂ v p α (v
• Off-diagonal case: |w -y| ≥ (t -s) where the last inequality was obtained using (4.7).

• Diagonal case: |w -y| ≤ (t -s) 



  pα (u -s, x -•) pα (t -u, w -•) pα (t -s, w -x) B -β p ′ ,q ′ + pα (u -s, x -•) pα (t -u, y -•) pα (t -s, y -x) B -β p ′ ,q ′   .

  |w-y| ζ -s, y -x) |∇p α (t -u, w -z) -∇p α (t -u, y -z)| -s, x -•) ∇p α (t -u, w -•) pα (t -s, w -x) -∇p α (t -u, y -•) pα (t -s, y -x)

	hence				
	pα (u B -β p ′ ,q ′
	|w -y| ζ				
						(t-u)	α ζ	≥ 1.
			1 pα (t -s, w -x)	-	1 pα (t -s, y -x)
	+	1 pα (t -s, y -x) |∇p 1 α pα (t -s, w -x) 1	-	1 pα (t -s, y -x)
	+ pα (t |w -y| ζ (t -u) ζ+1 α	1 pα (t -u, w -z) pα (t -s, w -x)	+	pα (t -u, y -z) pα (t -s, y -x)	.
	In both cases,				
	∇p ζ+1 α	pα (t -u, w -z) pα (t -s, w -x)	+	pα (t -u, y -z) pα (t -s, y -x)	, (6.14)

∇p α (t -u, w -z) pα (t -s, w -x) -∇p α (t -u, y -z) pα (t -s, y -x) |w -y| ζ (t -u) ζ α |∇p α (t -u, w -z)| pα (t -s, w -x) + |∇p α (t -u, y -z)| pα (t -s, y -x) .

• If |w -y| ≤ (t -u) 1/α , we use the Taylor of expansion of Lemma 2:

∇p α (t -u, w -z) pα (t -s, w -x) -∇p α (t -u, y -z) pα (t -s, y -x) = ∇p α (t -u, w -z) pα (t -s, w -x) ± ∇p α (t -u, w -z) pα (t -s, y -x) -∇p α (t -u, y -z) pα (t -s, y -x) |∇p α (t -u, w -z)| α (t -u, w -z) -∇p α (t -u, y -z)| pα (t -u, w -z) (t -u) α (t -u, w -z) pα (t -s, x -w) -∇p α (t -u, y -z) pα (t -s, x -y) |w -y| ζ (t -u)

  s,x (t, w) -h s,x (t, y)| = |∆ 1 (s, t, x, w, y) + ∆ 2 (s, t, x, w, y)|. Let us first bound ∆ 1 :|∆ 1 | ≤ p α (t -s, w -x) -p α (t -s, y -x) pα (t -s, w -x) + p α (t -s, y -x) 1 pα (t -s, w -x) -1 pα (t -s, y -x) ≤ p α (t -s, w -x) -p α (t -s, y -x) pα (t -s, w -x) + pα (t -s, y -x) -pα (t -s, w -x) pα (t -s, w -x) .Let us now treat ∆ 2 . Using the same inequalities as in Section 4, we can write |∆ 2 (s, t, x, w, y)| := Now, for D 2 , we integrate in w first:D 2 = |∂ v p α (v, y -w)||∆ 2 (s, t, x, w, y)|1Combining (6.15) and (6.22), we get the overall bound|∂ v p α (v, y) ⋆ h s,x (t, y)| v (u, •) B ρ ∞,∞ b m (u,•) B β p,q L(u, s, t, ρ)

		ρ α -1 (t -s)	ρ α	1 +	s	t	h s,x (t -s) (t -u)	ρ α α ρ	+ 1 du ,
	hence							
	1/α . Let p α (t -s, w -x) pα (t -s, w -x) h s,x (u, •) B ρ ∆ 1 (s, t, x, w, y) := t s ∞,∞ b m (u, •) B β -p α (t -s, y -x) pα (t -s, y -x) p,q × pα (u -s, x -•) ∇p α (t -u, w -•) pα (t -s, w -x) Using now (3.10), we obtain |∆ 2 (s, t, x, w, y)| |w -y| ρ t s h s,x (u, •) B ρ ∞,∞ b m (u, •) B β -∇p α (t -u, y -•) pα (t -s, y -x) p,q L(u, s, t, ρ) (t -u) ρ α du. |w-y|<(t-s) 1 α dw =: D 1 + D 2 . Let us start with D 1 : D 1 |∂ v p α (v, y -w)| |w -y| ρ (t -s) ρ α dw v -1 (t -s) ρ α pα (v, y -w)|w -y| ρ dw v ρ α -1 (t -s) ρ α . |w-y|<(t-s) 1 α dw v -1 t s h s,x (u, •) B ρ ∞,∞ b m (u, •) B β p,q L(u, s, t, ρ) (t -u) ρ α |p α (v, y -w)||w -y| ρ dwdu B -β p ′ ,q ′ (6.16) du. (6.19) (6.20) (6.21) v ρ α -1 (t -s) ρ α t s h s,x (u, •) B ρ ∞,∞ b m (u, •) B β p,q L(u, s, t, ρ) (t -s) ρ α (t -u) ρ α du, ∆ We now use Lemma 2 twice to obtain, ∀ρ ∈ (0, 1], |∆ 1 (s, t, x, w, y)| |w -y| ρ α (t -s) ρ . (6.18) T ρ ∞,∞ [h s,x (t, •)] 1 (t -s) ρ α 1 + t s h s,x (u, •) B ρ ∞,∞ b m (u, •) B β p,q L(u, s, t, ρ) ρ (t -s) α α (t -u) ρ + 1 du .
	P 2	v (t -s) ρ α -1	α ρ	1 +				α ρ	du .	(6.22)

2 (s, t, x, w, y)

:= t s p m (u -s, z -x) pα (u -s, z -x) b m (u, z)p α (s, u, x, z) × ∇p α (t -u, w -z) pα (t -s, w -x) -∇p α (t -u, y -z) pα (t -s, y -x)

dzdu, (6.17) so that |h

We can now use the bounds from (6.18) and (6.19) to write

P 2 := ∂ v p α (v, y -w)(h s,x (t, w) -h s,x (t, y))1 |w-y|<(t-s) 1 α dw |∂ v p α (v, y -w)||∆ 1 (s, t, x, w, y)|1

|w-y|<(t-s)

1 α dw + |∂ v p α (v, y -w)||∆ 2 (s, t, x, w, y)|1

hence, for the diagonal case |w -y| ≤ (t -s) 1/α , we obtain

t s h s,x (u, •) B ρ ∞,∞ b m (u, •) B β p,q L(u, s, t, ρ) (t -s) ρ α (t -u)
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