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Abstract: Battery lifetime is an important parameter in the life cycle assessment (LCA) of a plug-
in hybrid-electric vehicle (PHEV). This paper aims to study the impact of various parameters on
the battery aging of a PHEV. For this purpose, model-based use cases are generated, the outputs
of which are the daily driven distances for a period of one year, recharge scenarios, and battery
temperature. A combined aging model (calendar and cycling aging) is used to calculate the capacity
lost by the battery at the end of one year of use. The thermal model of the battery is using an electro-
thermal coupling equation, for which the ambient temperature is modeled using daily minimum and
maximum temperature data varying throughout the year for different cities. Finally, a sensitivity
analysis is carried out using the conditioned variance method to identify the most important input
parameters which largely affect the output of this study. The results of this study show that battery
size, annual mileage, external temperature, and charging behavior are the most important parameters
to be considered in the aging study of the battery of a PHEV personal car.

Keywords: battery aging; plug-in hybrid vehicle; sensitivity analysis; use case scenarios

1. Introduction

Due to new regulations and to mitigate the CO2 emissions of vehicles, the sales and
developments of Plug-in Hybrid Electric Vehicles (PHEV) have increased drastically in
the past years. In Europe, if emitting less than 50 g/km of CO2, a PHEV is placed in
the category called Zero and Low Emission Vehicle regarding the European regulation
on manufacturer’s fleet mean emission [1]. This leads to an increase in the all-electric
range and therefore in the battery size. As batteries are not environmentally neutral, the
environmental impacts of PHEVs over their lifetime could increase with the battery size.

The consideration of the entire life cycle of a PHEV is important to assess the envi-
ronmental benefits or drawbacks of PHEVs. It is strongly dependent on the use of the
vehicle and also strongly linked to battery aging, which could increase when the size of the
battery increases.

It is, therefore, necessary to develop tools to be able to optimize PHEVs to reduce their
environmental impact. The first model to dispose of is thus a validated model of battery
aging depending on the use of the battery itself. This use depends on the vehicle usage and
the battery recharge scenario. Several parameters are thus involved in such a model. These
parameters include vehicle use, recharge scenarios, external temperature, battery aging
model formulation, and also the method to generate the use case scenarios.

In literature, many studies address one or some of these points separately. Sensitiv-
ity analyses linked to parameterized formulation are seldom performed and in a really
incomplete manner considering all the parameters linked to battery aging in a PHEV.

Energies 2023, 16, 1749. https://doi.org/10.3390/en16041749 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16041749
https://doi.org/10.3390/en16041749
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-9337-1350
https://orcid.org/0000-0002-2148-5129
https://orcid.org/0000-0003-0219-7057
https://orcid.org/0000-0002-8366-6769
https://doi.org/10.3390/en16041749
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16041749?type=check_update&version=1


Energies 2023, 16, 1749 2 of 17

In the case of a PHEV, the vehicle’s use is usually assessed considering no daily mileage
variability, while the daily mileage to consider cannot be a constant for each day of the
year considering a mean value. Doing that, the vehicle could operate every time in an
electrical mode leading to zero fuel consumption, or be operated more in hybrid mode than
in reality. This can affect the Life Cycle Assessment (LCA) results and the battery aging
leading to a non-representative State of Charge (SOC) profile. For example, Smith et al. [2]
studied battery calendar aging on various geographical environments and cycling aging
using charge/discharge profiles. Although this work studies the effect of temperature and
SOC on battery aging, the analysis neglects variability in daily travel.

Even when the daily mileage is not a constant based on real-world measurement, it is
not parameterized and studies commonly use only one use case scenario throughout the
year. In [3], the effect of thermal management, driving conditions, regional climate, and
vehicle system design on the battery life of a PHEV with an air-cooled battery pack are
studied. One year-long hypothetical usage scenario (considering daily driving, charging,
and rest) is created using Global Positioning System (GPS) sample data from the Atlanta
Regional Commission (ARC) regional travel survey. A sensitivity analysis was conducted
on the driving cycle pattern using Urban Dynamometer Driving Schedule (UDDS) urban
conditions and real driving patterns generated with GPS data. In [4], a driving scenario is
also generated over one year based on different typical days with a succession of driving
cycles and charging conditions. This approach allows the generation of a realistic charging
and discharging scenario over one year. Two types of recharge scenarios are considered:
after each trip or once a day after the last trip.

In most studies, daily mileage is either considered as a constant or is deduced from
real driving data generally generating one use scenario along a typical year [3–5]. The
use case and recharge scenarios were not parameterized, and the sensitivity analysis did
not include parameters related to use case generation, battery aging, thermal models, and
recharge scenarios either. To tackle this issue, in our work, some model-based scenarios
based on daily mileage assessment are developed. They depend, for example, on annual
mileage or place of residence and are based on a statistical analysis of displacement. These
scenarios represent the mean driving habit of classes of the population performing a certain
number of kilometers (km) per year.

The battery recharge scenario also needs to be parameterized, simulating different
possibilities or habits, and the charging strategy is also a parameter that can potentially
have a great influence on battery life. Many authors propose to study the influence of
this strategy or to optimize battery recharge. A comparison of the influence of different
charging strategies considering electricity and battery aging costs is performed in [6]. From
the German Mobility Panel 2008, the time of departure and arrival was extracted. The
recharge was done at home after the final trip (the times of which can vary). However,
these use cases did not consider the variability of charging scenarios, nor the variation in
temperature in aging models.

Optimal charging strategies are considered in many studies. An optimal charging
strategy for a fleet of electric buses optimizing the cost of energy and battery aging is pro-
posed in [7]. In [8], the authors proposed an optimal control strategy based on Pontryagin
Minimum Principle (PMP) to reduce battery capacity degradation during charging. A
charging algorithm is proposed in [9] for a fleet of vehicles using different battery electrical
models to maximize the average SOC for each vehicle. An online, coordinated approach
(developed using offline optimization) is performed to minimize the total cost of energy
consumption and battery degradation for electric buses in [10]. All these studies focus on
the recharge strategies themselves but the recharge scenario (time of recharge, controlled
recharge, etc.) is usually not taken into account or is not parameterized. We adopted a
different approach, where the objective was not to search for the best recharge strategy,
but rather to assess the parameters which have the most important impact on the battery
lifetime. An optimal recharge strategy can be developed in further studies if this point is
found to be sensitive.
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During battery recharge, the temperature of the battery also needs to be considered, at
least to assess its sensitivity. The effect of external temperature as well as the assessment
of the battery’s internal temperature, using a more or less accurate thermal model, need
to be parameterized to analyze their effect on battery lifetime. In [3], a 1D thermal model
is used for each battery cell during the use phase considering a temperature of 24 °C
and an ON/OFF thermal management. A 1D thermal model is also used for EV buses
in [7], but the external temperature has no daily variation. Some authors consider a cabin
thermal model [8,11,12] including solar variation to assess the external battery temperature.
In [10], the temperature is assumed to be constant during cycling (considering a “perfect”
cooling system). During recharge, external temperature is sometimes used [10]. In our
study, we propose to use an external temperature model (corresponding to different cities)
and develop a battery thermal model to assess the sensitivity of the battery aging to their
parameters in the case of a PHEV.

The management during cycling phases could also be considered. Different authors
proposed to optimize or improve battery management during these phases. This will be
particularly important in buses [13] where the cycling phases represent a large part of the
time during the life of a bus. Both cycling and calendar aging are considered for battery
management in [10,12,14]. In our study, during cycling, we considered optimal manage-
ment strategies during charge-sustaining operations minimizing only fuel consumption. As
the in-use time of a personal PHEV is relatively small (less than 5%) it can be a reasonable
assumption to not optimize conjointly the battery aging and fuel consumption during
use phases. However, our model allows such an optimization, and it can be a point of
improvement in the future.

All of the previously cited studies allowed us to assess the effect of different parameters
on battery lifetime. However, no studies were found performing a complete sensitivity
analysis for model-based PHEV use scenarios. In [3], the effect of the driving cycle is
compared considering two cases: real GPS condition or UDDS. Two recharge scenarios
are used in [4]. For sensitivity analysis, the auxiliary power of the bus and passenger
inflow is considered in [12]. A fidelity analysis of the battery model is performed in [11].
The authors used six different battery models from a simple model (only Open Circuit
Voltage—OCV) to a complex (two-RC-network) model with parameters depending or not
on the SOC. The impact of the battery model on battery aging is presented for different
battery models on two types of driving cycles, i.e., UDDS and the Highway Fuel Economy
Test (HWFET). Only the simple battery model (considering only OCV) presents no accurate
results concerning battery aging.

Considering these different aspects (uses and recharge scenario, battery model, etc.),
the number of parameters that possibly affect battery aging could easily reach some tens.
A sensitivity analysis on the battery aging model dedicated to PHEV is then necessary to
discriminate the parameters with a high effect on aging from those with low or no effect.
This will lead to a drastic reduction in the number of scenarios to be studied, for example,
in optimal sizing of PHEVs or comparison of different types of vehicles like Hybrid Electric
Vehicle (HEV), Electric Vehicle (EV), and conventional vehicles.

In our study, we considered several parameters, which represent vehicle use, recharge
scenario, and external temperature to assess the most relevant parameters. We also take
into account parameters concerning the thermal and electrical models of the battery and
their accuracy to find if a complex battery model is necessary or not.

This paper focuses on the battery aging of a PHEV depending on model-based use
scenarios. The battery aging model considers calendar and in-use aging phenomena and
has been previously developed and validated in our laboratory [15,16]. Section 2 explains
the different models used in this study. In Section 2.1, the battery aging model previously
developed is presented. Section 2.2 presents the generation of use cases (daily mileage
generation Section 2.2.1 and battery recharge scenarios generation Section 2.2.2) and how
they are parameterized. Section 2.3 presents the thermal model of the battery. Then,
Section 3 deals with the model integration and sensitivity analysis method used to assess
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the influence of different parameters using conditional variance calculation. Section 4
presents the results of such analysis for a PHEV on the most important parameters and the
methodology part. The final Section 5 presents the conclusions and future work.

2. Methodological Approach

Figure 1 presents the flow chart of the model setup. Based on use case generation
(daily mileage model, recharge scenario model, and battery size (battsize parameter), the
SOC is deduced. Then, the battery current ibatt along one complete year at a step time of
one minute is obtained. From the external or city temperature model and battery thermal
model, the temperature of the battery is assessed along the year at the same sampling
period, by calculating joule losses in the battery model using the variable battery current.
From the SOC profile, battery current, and battery temperature, the aging model of the
battery is used to assess the loss of capacity during one year of vehicle use. Using this
complete aging model, a sensitivity analysis is performed (see Section 3). The following
section presents in a detailed manner the different models used and developed for battery
aging (see Section 2.1), uses case generation (see Section 2.2), and electrical and thermal
model of the battery (see Section 2.3).

Daily mileage model

Recharge scenario model

Battery thermal model

City temperature model

Use-case generation
Battery aging

      model

Sensitivity 

  analysis
Ibat

SOC

Tbat

Capacity

    loss

Most important 

   parameters

Input
Output

23 parameters

Ibat

Figure 1. Model setup.

2.1. Battery Aging Model

Battery performance degrades over time due to battery aging. This performance
degradation is caused by a loss of capacity and/or an impedance rise depending mainly on
three factors: temperature, SOC, and current. Battery aging is classified into calendar aging
and cycling aging. Calendar aging is the degradation during rest times (current, I = 0),
whereas cycling aging is the degradation induced by charging and discharging the battery
(I 6= 0).

In this work, we used a combined multi-mechanism aging model based on Eyring
laws, which was previously used and validated by [15–17]. The capacity loss rate dQL/dt
is divided into the calendar, cycling at cold temperature and hot temperature. The formula
used is:

dQL
dt

=
dQL,cal

dt
+

dQL,cyc,cold

dt
+

dQL,cyc,hot

dt
(1)

with:
dQL,cal

dt
= Acal · e

(
−Ea,cal

kT +Bcal ·SOC
)
· f (QL) (2)

dQL,cyc,cold

dt
= Ac · e

(−Ea,c+Cc ·I
k(To−T) +Bc ·SOC

)
· f (QL) (3)
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dQL,cyc,hot

dt
= Ah · e

(
−Ea,h+Ch ·I

kT +Bh ·SOC
)
· f (QL) (4)

f (QL) =

(
1

1 + b ·Qc
L

)
(5)

In each Eyring law from Equations (2) to (4), Ai is the pre-exponential term in
p.u.day−1, Ea,i is the activation energy in eV, Bi is the SOC influence parameter in p.u−1,
and Ci is the current influence parameter in hour.p.u−1 (with index i = cal, h, c for the
calendar, hot cycling, and cold cycling, respectively). k is the Boltzmann constant in eV.K−1,
T is the battery temperature in K, To is the reference temperature in K, I is the current in
A, and QL is the capacity loss at time t in p.u. Equation (5) represents the dependence
of QL in dQL

dt . This equation induces a decrease in capacity loss rate as the battery ages,
as it was found in preceding studies [18,19]. The values of all identified parameters (in
Equations (2)–(5)) were calibrated to experimental results and data for different SOC and
temperatures [15] to fit experimental results of calendar [16] and cycling aging tests [20].
Therefore, we assume here that this model is accurate enough to reproduce correctly the
sensitivity to the studied parameters which is the main objective of our study. Hence, the
parameters of the aging model itself are not considered in our sensitivity analysis. The only
parameter considered for the battery aging model is the refreshing rate of capacity loss. To
study the sensitivity analysis for the battery aging model, we vary the parameter QLre f ,
where capacity loss QL refreshes as follows:

• qlcst: QL is assumed to be a constant;
• qlmin: QL refreshes its value every minute;
• qlday: QL refreshes its value every day.

The model used comes from previous works in our laboratory and it was developed
using many experimental data at different SOC and different temperatures. Therefore, we
assume here that this model is accurate enough to reproduce correctly the sensitivity to the
studied parameters which is the main objective of our study.

It must be noted that the refreshing of QL need not match the time step to assess the
aging (which is minutes in our study). This parameter can be important regarding the time
of calculation because if it is greater than the step of time, it allows vectorizing the process
which leads to a huge gain in computing efforts.

2.2. Use Cases Model Generation

The objective of the study is to analyze the impact of different parameters on battery
aging, including annual mileage and place of residence. Parameterized use case scenarios
are thus developed to generate driving and recharge scenarios. In our case, a German mobil-
ity survey [21] providing detailed information on travel patterns is used as the data source.
A statistical approach based on logarithmic normal distribution is then applied to generate
daily mileage. When some data are not available or when the accuracy is questionable, we
try to parameterize the phenomenon to assess its sensitivity to battery aging.

2.2.1. Vehicle Uses

The statistical frequency of daily mileage is defined by a logarithmic normal
distribution [22,23]:

Dm =
1√

2πσD
exp
−(log D− µ)2

2σ2 · 100 (6)

where D is the daily mileage in kilometers (km), Dm is the occurrence of this mileage in
%. µ and σ represent the mean value and standard deviation of daily mileage log_norm
distribution and depend on the annual mileage. They are interpolated using Table 1 and have
been assessed using the least square method for German cases [24]. As the value of these two
parameters, µ and σ, can change for other countries, the daily mileage generated will not be
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for Germany but can represent other countries that have other values for µ and σ. Hence, we
applied two multiplier coefficients coe fσ and coe fµ on σ and µ. These two coefficients are also
parameters of our sensitivity analysis. Their effect can be seen in Figure 2, which shows the
frequency of daily mileage for three sets of parameters µ and σ. The second and third sets are
obtained by multiplying µ and σ, respectively, with 0.8 and 1.2.

Figure 2. Daily mileage frequency for different values of µ and σ.

Table 1. Mean value µ and standard deviation σ of daily mileage log_norm distribution.

Annual Mileage 2500 7500 12,500 17,500 25,000 30,000

µ 2.57 2.86 3.11 3.3 3.54 3.72

σ 1.05 1.05 1.06 1.03 1 1.18

Using Equation (6), the cumulative frequency distribution of daily driving distance
can be assessed to generate classes of equal percentages. From each of these classes, the
mean daily mileage can be calculated. Assuming a certain number of days per month
Ntravelmonth when the vehicle is used (certain days may be off), the daily mileage for each of
these Ntravelmonth is evaluated. The number of classes (equal to the number of days with
trips) can be chosen differently for each month of the year. This is parameterized in our
study by the parameter monthtype by considering all months to be identical or different
months during the summer period.

Based on the daily mileage, information on the number of trips per day and speed
will be necessary to assess the battery energy consumption (and fuel consumption). As
it is difficult to have such information, the following assumptions are made linked to
different parameters:

• Concerning the number of trips per day, it is assumed that under a certain daily
mileage Dmin, it corresponds to a short trip (for example, a shopping trip), with a
quick return, and can thus be considered as a single trip;

• Above a certain daily mileage Dmax, it is also considered as a single trip, for example,
to go on holidays or long professional displacement;

• Between these two values, the daily mileage is separated into two trips assuming
home-to-work and vice versa travel. In this case, the first travel takes place at time f t
and the second at timest.
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The mean speed of this travel depends on the driving distance and Place of Residence
(PoR). It is also assessed using statistical data coming from [24]. Figure 3 represents the
mean speed of travel depending on its mileage for urban, extra-urban, and rural places of
residence. The main difference between the places of residence appears for low to medium
distances when the driving conditions differ. The mean speeds tend to equalize for long
distances (>60 km), corresponding to highway conditions suggesting that driving style
does not depend on the place of residence.
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Figure 3. Average speed depending on the place of residence.

After acquiring the daily driving mileage and mean speed, the electric consumption
(and fuel consumption) are assessed using three different driving cycles in urban, rural,
and motorway conditions. From these cycles, the SOC variation (discharge) per kilometer
can be calculated, which can then be used to obtain the SOC discharge profile. For the
battery SOC management during the trip, we assume the following discharge strategy: the
PHEV operates in an all-electric mode until a certain state of charge SoCsust. When this
state of charge is reached the vehicle operates in charge-sustaining mode, and for battery
aging consideration, the SOC is assumed to be constant in this mode.

The consumption of each driving cycle is calculated using VEHLIB Software [25]
library. Each trip in a day is then described by a certain share of urban, rural, and motorway
to respect the mean speed of the trip. The sharing on the driving cycle part is performed
with the following rules:

• if Vtrip < Vurban,
all the travel is supposed to be urban.

• if Vurban < Vtrip < Vextra,

urbanpart =
Vextra −Vtrip

Vextra −Vurban
; extrapart = 1− urbanpart

• if Vextra < Vtrip < Vmotorway,

extrapart =
Vmotorway −Vtrip

Vmotorway −Vextra
; motorwaypart = 1− extrapart

• if Vtrip > Vmotorway,
all the travel is supposed to be on motorway,

where V represents the velocity in km/h.
To study the sensitivity of this sharing method and consumption assessment, different

families of driving cycles are used:
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• One corresponds to the Worldwide harmonized Light-duty vehicles Test Cycles (WLTC)
which is separated into three parts: urban, rural, and motorway, Figure 4;

• One is composed of the Artemis cycle which represents real driving conditions in
urban, rural, and highway cases;

• One is composed of the Hyzem driving cycle [26] which has been specially developed
to simulate and evaluate hybrid vehicles.

0 200 400 600 800 1000 1200 1400 1600 1800
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Figure 4. WLTC cycle and driving condition.

Table 2 presents a summary of all the parameters taken into account in the sensitivity
analysis arranged by the type of models (battery, aging model, vehicle’s use, recharge
scenarios, and thermal model).

Table 2. Parameters of the sensitivity analysis.

Families Parameters Definition

Battery battsize battery size

Aging model QLre f capacity loss refreshment

Vehicle’s use

km number of kms per year
PoR place of residence

Ntravelmonth number of days with trips per month
time f t time of first trip
timest time of second trip
Dmin max distance for short trip
Dmax min distance for long trip
f amcin family of driving cycle
coe fµ mean value of daily mileage
coe fσ standard deviation of daily mileage

SoCsust SOC sustaining threshold
monthtype all months identical or not

Recharge scenarios

crate charging rate
timerec time of recharge
modrech charging models

rechsoc−min minimum SOC threshold
distpred predict distance on the next day

Thermal model

modtherm thermal model
city city of dwelling

h heat transfer coefficient
Cth specific thermal capacity

2.2.2. Recharge Scenario

These scenarios are created to study the effect of different charging times and strategies
on the aging of the battery. Four different charging scenarios are created to define the
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parameter modrech. A sensitivity analysis is also performed for these models with values of
modrech: rechtrip, rechnight, rechsoc−trip, and rechsoc−night.

In the rechtrip model, the battery is recharged after every single trip. Whereas, in the
rechnight model, the battery is charged at a fixed time every night. In this study, the charging
time is fixed by the parameter timerec.

The other two models are based on the minimum SOC threshold. The first model in
this case is rechsoc−trip, in which the battery is recharged when the SOC passes below a
minimum SOC threshold (rechsoc−min), which can be possible either after the first or the
second trip. The other model is rechsoc−night, in which the battery is charged when the SOC
is below the minimum threshold, but only at night.

We add a parameter to take into account a driver anticipating his next trip. If it is predicted
that the distance to be covered in the next trip is greater than a certain value (distpred), the
battery is recharged before this trip using rechsoc−trip or at night using rechsoc−night models.

2.3. Electrical and Thermal Model of the Battery

We used an equivalent electrical circuit (OCV connected to an internal resistance)
for the electrical battery model. The Equivalent electric Circuit Model (ECM) equation is
presented below:

Ubat = OCV − Req · Ibat (7)

where Ibat is the battery current (positive when discharging) in A, Ubat is the battery voltage
in V, OCV is the open circuit voltage in V, Req is the internal resistance of the battery (in
ohms) which has been calibrated with respect to a complex 2RC equivalent circuit model,
by minimizing the difference in the output voltages of the two models (complex 2RC ECM
and simple ECM) on a WLTC cycle.

The thermal model of the battery is based on a simple electro-thermal coupling
equation as presented below:

Cth ·
dTbat

dt
=

Ibat(Ubat −OCV)

Wt
−

h · Apack(Tbat − Tamb)

Wt
(8)

Equation (7) in (8) gives:

Cth ·
dTbat

dt
=

I2
bat · Req

Wt
−

h · Apack(Tbat − Tamb)

Wt
(9)

where Tbat is the battery temperature in K, Tamb is the ambient temperature in K, h is
the heat transfer coefficient in W/(m2·K), OCV is the open circuit voltage in V, Cth is the
specific thermal capacity of the battery in J/(Kg·K), Apack is the surface area of the battery
pack in m2, and Wt is the weight of the battery pack in Kg. As the parameters h and
Cth are really difficult to assess precisely, they are also considered as parameters in our
sensitivity analysis.

The ambient temperature is modeled using daily minimum (Tmin) and maximum
temperatures (Tmax) varying throughout the year for different cities. The maximum tem-
perature is assumed to occur at 5 p.m.

Tamb =
Tmax + Tmin

2
+ cos(2 · pi ·

tday − 17 · 24
Nmd

) · Tmax − Tmin
2

(10)

where Nmd is the number of minutes in a day and tday is the time in minutes. To study the
sensitivity of the variation of external temperature on battery aging, temperature models
of three different cities—Abu Dhabi, Lyon, and Reykjavik—are created as examples for
the analysis of temperature influence, to cover extremely hot, mean, and cold conditions,
respectively. The data for daily minimum and maximum temperature come from [27] for
the year 2021. The temperature profiles for Abu Dhabi, Lyon, and Reykjavik over a year
are represented in Figure 5.
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Figure 5. External temperature along the year 2021 for different cities.

The thermal model of the battery as a parameter modtherm is also studied with the
sensitivity analysis of which the values differ as follows:

• modtherm = Tamb; in this case, it is assumed that the battery temperature is equal to the
external temperature;

• modtherm = mod1D−Rcst; we use the thermal model of the battery but the resistance
does not depend on the temperature but only on the SOC of the battery;

• modtherm = mod1D−cpl ; we use the thermal model of the battery, and the resistance
depends on both the temperature and SOC of the battery.

The most accurate model is the one with resistance depending on the temperature.
It leads to large computational time as the resistance has to be assessed at each step of
the time.

Taking into account all the parameters involved in the above-defined models, a sensi-
tivity analysis to identify the most influencing parameters is performed which is explained
in the following section.

3. Model Integration and Sensitivity Analysis

Using the previously presented and developed models, a sensitivity analysis of battery
aging for model-based PHEV use scenarios is performed. A SOC profile is obtained from
daily mileage and recharge scenarios for one year. Figure 6 shows a typical SOC profile
over a year on the left of the figure and zoom on the right for the month of January. This
profile is obtained for one set of parameters and can be highly different for another set of
parameters. For example, with higher annual mileage and other recharge parameters, the
SOC can be below 50% for more than two days. A one-year profile was chosen to consider all
the temperature variations during this period. From a sensitivity analysis point of view, this
period seems relevant. It is difficult to reduce this period (except if the temperature has a low
effect), but this duration can easily be increased in our model if we wish to consider thermal
variation for a long-term and potential effect of previous capacity losses along the complete
battery life. In the first approach, we considered that the battery aging is the same every year
at least for its use in vehicles (capacity loss between 20 and 30%).

All the previously mentioned models have many different parameters which can
influence the output, i.e., the capacity lost by the battery. For this reason, it becomes
imperative to identify the most important input parameters which strongly influence the
output. For that, a sensitivity analysis is performed.

In our study, we first chose 23 parameters (Table 2). In the first approach, each of these
parameters can have between two and four values (generally three) chosen to represent
extreme and mean values. This leads to a 8.4× 1010 set of parameters. It is then impossible
to perform the simulation of the battery aging for all sets of parameters. For the first time,
a “statistical approach” is performed to assess the conditional variance of each parameter
and make the first discrimination of the most sensitive parameters. Then, as this approach
can possess some statistical bias, a second analysis is performed on the most sensitive
parameters with all the possible combinations.
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Figure 6. Battery state of charge over a year (left) and over a month (right).

In this statistical approach, the conditional variance is assessed for each parameter,
using a sample of randomly chosen sets of parameters. For each parameter, pi of our study,
a sample of 3000 sets of parameters is randomly selected by the Monte Carlo method. In
the random sampling process, the parameter pi is not involved the first time. The sample
is then triplicated for each value of the parameter pi, leading to a sample of 9000 sets of
parameters (if pi possesses three values).

This leads to a reasonable computing time of around 1 h per parameter in a computer
with an Intel Xeon CPU—3.50 GHz with 2 processors, 8 cores, and 64GB RAM—by paral-
leling the processes. The complete sensitivity analysis is thus performed in around 1 day.
The computing time to asses the battery aging for one set of a parameter depends on the
parameter itself, especially on the thermal battery model modtherm and on the capacity loss
refreshment QLre f . It takes, on average, around 3 s for one assessment.

The conditional variance of the battery capacity losses is then assessed for each
parameter pi:

var(QL|pi) = E([QL −E(QL|pi)]
2)|pi) (11)

where QL is the loss of capacity, pi the ith parameter; E(X) is the mathematical expectation,
i.e., the weighted average of X. var(QL|pi) represents the conditional expectation of QL,
given pi. It is then the expectation given pi of the square deviation between QL and its
conditional expectation given pi. Assuming that we only focus on the simple “effect” of pi
on QL variance, and higher-order effect (for example, variance due to “coupling ” between
two parameters) are neglected, var(QL|pi) is the part of the total variance of QL explained
by pi. For the clarity of the result, it can be explained as the percentage of the total variance
of QL assessed by the sum of each conditional variance.

In the first approach, this conditional variance is only assessed on a sample of a
randomly chosen set of parameters. In the second approach, to avoid statistical bias, the
number of parameters is drastically reduced. The values of the non-sensitive parameter
are fixed to a “mean” or “typical” value. The conditional variance of all parameters is
assessed again with the same formula, but considering all the possible combinations of the
selected parameters.

4. Results and Discussion
4.1. Use Cases

For the presented use cases, a Golf-GTE PHEV vehicle is modeled to assess the electric
(and fuel) consumption along different driving cycles. The battery characteristics also
correspond to this car. The main data are presented in Table 3. The vehicle is simulated
on VEHLIB Library ([25,28]), using the classical longitudinal forces model. The simulated
consumption is validated with measurement on the WLTC cycle and shows less than
5% error. Currently, we do not use a thermal model of the cabin as performed in some
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studies [8,11,12]. The use of extra energy for air conditioning and heating is taken into
account using a mean value. The auxiliary power is the sum of the power of “classical”
accessories plus a mean value of the power required by air conditioning and heater. The
value comes from an experimental campaign on a Golf-GTE instrumented in the city
of Stuttgart [29].

Using the conditional variance approach, recall Section 3, a first study including all
the parameters of our model is presented in Table 4.

Table 3. PHEV—Golf GTE main characteristics.

Components Characteristics Values

Vehicle
weight 1480 kg

aerodynamic coefficient S · Cx 0.0305 N·(m/s)−2

rolling resistance Crr 134 N

Battery

Capacity 24 Ah
nominal voltage 345 V

heat transfer coefficient 5 W/(m2·K)
specific thermal capacity 900 J/(Kg·K)

technology Lithium ion

Engine Max power 150 kW @ 5000–6000 rpm
Max Torque 250 N.m @ 1600–3500 rpm

Electrical machine Max power 75 kW
Maximum torque 250 N.m

Auxiliary power mean power 611 W

Table 4. Value of the parameter and sensitivity on battery aging.

Families Parameters Values Sensitivity in%

Battery battsize 12–24–36 Ah 32.4

Aging model QLre f minute–days 0.01

Vehicle’s use

km 7500–14,000–35,000 km 20
PoR urban–extra-urban–rural 0.08

Ntravelmonth 20–26–29 2.9
time f t 6–8–10 a.m. 0.03
timest 3–5–7 p.m. 0.004
Dmin 2–5–10 km 0.002
Dmax 80–100–200 km 0.8
f amcin WLTC–Artemis–Hyzem 0.8
coe fµ 0.8–1–1.2 0.8
coe fσ 0.8–1–1.2 0.6

SoCsust 30–40–50% 1.6
monthtype ident–summer 0.02

Recharge scenarios

crate 1/2–1/4–1/6 0.8
timerec 9–10–11 p.m. 0.03
modrech trip–night–soc_trip–soc_night 17.2

rechsoc−min 35–50–80% 1.12
distpred 0–50–100 km 0.01

Thermal model

modtherm text–Rcst–Rcpl 0.08
city Abu Dhabi–Lyon–Reykjavik 19.6

h 2–5–8 W/(m2·K) 0.04
Cth 500–900–1500 J/(Kg·K) 0.01
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The discrete values used for each parameter correspond to typical minimum, maxi-
mum, and mean values:

• battsize: 24 Ah is the existing battery pack of Golf GTE, an electric range of 80 km,
depending on the driving conditions, can then be expected. Three values of battery
sizes were studied, corresponding to 0.5, 1, and 1.5 times the reference value (24 Ah)
to match the minimum and maximum autonomy of existing PHEV cars.

• QLre f : Two values of capacity loss refreshing rate are included in this study: minute
or day.

• km: The mean value of km per year, corresponding to the average annual mileage of
German drivers [21].

• crate value of 1/4 is a classical value corresponding to a full battery recharge in 4 h.
• city: Abu Dhabi and Reykjavik are chosen to represent extremely hot and cold climates,

whereas Lyon represents average climatic conditions.
• h and Cth have mean values corresponding to the experimental value determined in [7].
• f amcin: WLTC, Artemis, and Hyzem driving cycles are studied.
• monthtype: Two cases are studied, one where the daily mileage is the same for each

month of the year, this seems reasonable regarding [21]. A case with different driving
behavior in summer, trying to consider holiday trips, was added.

• SoCsust: In the Golf GTE (and other PHEVs), the SOC strategies often discharge the
batteries to a low SOC threshold and then operate the vehicle in charge-sustaining
mode. From an energetic point of view, and aiming to transfer a maximum of fuel
consumption to electricity, the minimum SOC threshold has to be as low as allowable
by the battery. We nevertheless study two cases at 40 and 50% to assess their effect on
battery aging.

For other parameters, the values are chosen to be coherent with our model (for example,
time of the first travel has to remain before the time of the second travel, Dmin has to remain
inferior to Dmax). The aim is often to verify that these parameters do not affect aging.

4.2. Results

The main sensitive parameters (Table 4) in decreasing order are: the battery size
battsize, the number of kilometers per year km, the external temperature represented by a
city city, the recharge strategy modrech, and on a second order, the number of trips per month
Ntravelmonth, SOC sustaining threshold SoCsust, and the minimum SOC when recharging
below a threshold rechsoc−min. Other parameters have no impact on the battery aging (less
than 1%). This sensitivity is discussed in Section 4.3.

To avoid statistical bias, a second analysis is performed, only on these seven parameters
assessing all the set of variables. The conditional variances are presented in Table 5. The
values of these seven parameters are the same as in the first analysis. For the sixteen other
parameters, mean values are retained. This leads to 2916 assessments of our model and
represents less than 1 h of computational time. The sensitivity results are presented in
Table 5. These results have close values compared to the results from the first analysis,
proving that a sample of 3000 sets of parameters does not quite have a statistical bias.

In this analysis, the aging varies from a minimum value of 1.16% loss of capacity to
a maximum loss of 5.36% in one year. The mean loss value is 2.65%. The parameters for
min and max losses of capacity are presented in Table 6. On the one hand, the minimum
aging occurs in cold conditions (Reykjavik) for the large-sized battery, recharging only at
night if the SOC is below 35% and for minimum travel per month. On the other hand, the
maximum aging occurs in hot conditions (Abu Dhabi), for a small-sized battery, recharging
after each travel and traveling 29 days per month. In the two cases, the SOC sustaining
threshold is 30%.
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Table 5. Sensitivity value for selected parameters.

Families Parameters Values Sensitivity in%

battery battsize 12–24–36 Ah 36.3

Vehicle’s use
km 7500–14,000–35,000 km 15.8

Ntravelmonth 20–26–29 3.9
SoCsust 30–40–50% 1.7

Recharge scenarios modrech tra–night–soctra–socnight 20.3
rechsoc−min 35–50–80% 1.4

Thermal model city Abu Dhabi–Lyon–Reykjavik 20.6

Table 6. Value of parameters for min and max capacity loss.

QL battsize km Ntravelmonth SoCsust modrech rechsoc−min city

1.16% 36 Ah 7500 km 20 30% soc_night 35% Reykjavik

5.36% 12Ah 35,000 km 29 30% tra 35% Abu Dhabi

4.3. Discussion

The two previous analyses (Tables 4 and 5) provide important information on the
sensitivity of different parameters on the battery aging of PHEV considering model-based
use case scenario generation. As a first goal of this study, many parameters of our models
can be neglected in future studies as they have no impact on battery aging. In future studies,
for example, focusing on environmental impacts or battery sizing, a mean value can then
be adapted. This is the case for:

• The aging refreshment, which can be fixed to one day (refreshing QL each day) and
thus reduces the computational effort;

• The place of residence, at least in the manner we modeled it, i.e., a modification of the
mean speed of travel (see Section 2.2);

• The family of driving cycles does not quite have an effect as this only changes the rate
of discharge of the battery and does not drastically affect the SOC profile. For battery
aging, it has no effect but can be sensitive in LCA as it will change the electrical (and
thus fuel) consumption;

• The parameters linked to daily mileage generation (coe fµ, coe fσ, monthtype,) and the
sharing between one or two trips (Dmin, Dmax). This tends to prove that a daily mileage
statistical approach is accurate enough for battery aging consideration;

• The parameters to assess the SOC profile that depends on the time of travel (time f t, timest);
• The thermal model parameters (modtherm), and thus the thermal model, do not quite

have an impact. It was found in the first complete sensitivity analysis that this
parameter has an impact of 0.08% which means that using either a simple model or an
accurate one has no effect on the battery aging in our case. Therefore, we use a simple
model to reduce the computational burden and in our case, the battery temperature
can be considered to be equal to the external temperature. This can be explained by
the fact that in our scenarios, the car is used for a really small part of the time (less than
5% of the time for 14,000 km annual mileage). Thus, the temperatures are relatively
identical whether we consider the thermal model or not. This conclusion will not be
acceptable for other uses of vehicles—public transport, vehicle sharing—where the
battery usage affect its internal temperature (Joules losses);

• The battery recharge rate crate has no effect, or second-order effect, probably because
the SOC profiles are not very affected by this parameter. However, fast recharge has
not been considered here and the conclusion is only valid for slow recharge;

• The time of recharge timerec (in case of night recharge) is also non-sensitive (or its
variation is too small);
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• The predictive distance parameter (distprev) does not quite have an effect either as
it does not change the global SOC profile (it acts only on a few days per year for
our scenario).

If some parameters used to generate the recharge scenario do not quite have an effect,
some parameters are highly sensitive to battery aging. The recharge scenario (modrech),
is one of them. This can be explained by the fact that it highly changes the SOC pro-
file, especially if the battery is recharged only when the SOC reaches a certain threshold
(modrech = soctrip or socnight). Depending on the daily mileage, the battery can be recharged
only after a couple of days instead of after each travel or each day, thus, the SOC remains
possibly relatively small for several days.

The manner of generating the charging scenarios is thus really sensitive and has to be
further investigated. The order of travel linked to the variability of daily mileage (which
cannot be considered constant) can surely influence the results (succession of days with
small or no travel, for example). Special attention thus has to be paid to future studies on
these parameters. It is also possible to complete this study by adding other parameters to
generate other scenarios and show the most sensitive parameters and phenomena.

The external temperature also has an important influence on our model even if the
battery thermal model itself is not sensitive. This point could also be further investigated
using a more precise model of air-conditioning and heating (cabin thermal model for
instance). The auxiliary power can then fluctuate with time and will depend on the external
temperature. This can affect the SOC and thus the aging. The external temperature, which
is already a sensitive parameter, may then be more important.

The other sensitive parameters are battery size (battsize), the annual mileage (km), and
the SOC sustaining threshold (SoCsust), all of which have a high influence on the battery
SOC profile and thus on the aging. The number of travels per month Ntravelmonth have a
second-order influence (around ten times less than other parameters).

5. Conclusions

A sensitivity analysis on the battery aging of a PHEV was performed. It is based on
parameters allowing the generation of statistical model-based PHEV use case scenarios and
using a pre-validated battery aging model.

It shows that the most important parameters to be considered for battery aging are:
battery size, external temperature, annual mileage, and the parameters describing recharge
scenarios. The driving cycle’s use for electric and fuel consumption assessment and battery
thermal model seems to have a small effect on battery aging for personal car usage. The
number of parameters to be considered in the battery aging study has thus been drastically
reduced and the sensitivity analysis proves that some parameters will have close to no
effect on the battery aging (slow charging rate, place of residence, etc.)

However, further investigation has to be performed considering battery recharge
scenarios and their link to daily mileage variability generation. The non-sensitivity of the
battery thermal model is also questionable for the case of vehicles that are in use for a large
part of the time. As the generation of scenarios is based on statistical data, the vehicles’ use
is representative of the mean behavior of drivers traveling a certain mileage per year. The
sensitivity and the battery aging could then be different in some specific cases where the
driving behavior is very different from the ones noted in the statistical data.

This study provides important leads on the parameters to be considered in future
work on complete LCA assessment including battery aging and optimal sizing of PHEV.
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