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ABSTRACT

Due to multi-layer encoding and Inter-layer prediction, Spa-
tial Scalable High-Efficiency Video Coding (SSHVC) has
extremely high coding complexity. It is very crucial to im-
prove its coding speed so as to promote widespread and
cost-effective SSHVC applications. In this paper, we have
proposed a novel Mode Selection-Based Fast Intra Prediction
algorithm for SSHVC. We reveal the RD costs of Inter-layer
Reference (ILR) mode and Intra mode have a significant dif-
ference, and the RD costs of these two modes follow Gaussian
distribution. Based on this observation, we propose to apply
the classic Gaussian Mixture Model and Expectation Maxi-
mization in machine learning to determine whether ILR is the
best mode so as to skip the Intra mode. Experimental results
demonstrate that the proposed algorithm can significantly
improve the coding speed with negligible coding efficiency
loss.

Index Terms— SHVC, ILR mode, rate distortion costs,
GMM-EM

1. INTRODUCTION

VIDEO applications, such as digital TV broadcasting, video
conferencing, wireless video streaming, and smartphone
communications, are more and more widely used in our
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daily life. At the same time, more and more new terminal
devices with different spatial resolutions are emerging. This
requires that video streaming must be adaptive to different
screen resolutions. Scalable High-Efficiency Video Coding
(SHVC) is an efficient solution to this requirement. In or-
der to adapt to different screen resolutions, Spatial SHVC
(SSHVC) encodes different layers with different spatial reso-
lutions. By selecting an appropriate layer, SSHVC can adapt
to different screen resolutions.

SSHVC consists of a base layer (BL) and one and more
enhancement layers (ELs). A BL only has Intra-layer predic-
tion, while an EL further includes Inter-layer prediction. The
coding process of Intra-layer prediction is the same as that of
HEVC. Since the contents between BL and EL are the same
except for their different resolutions, a coding unit (CU) in
BL can be up-sampled to predict the co-located CU in EL.
This prediction process is denoted as Inter-layer prediction,
and its prediction mode is called Inter-layer Reference (ILR)
mode. The SSHVC encoding process is very complex [1],
which definitely restricts its wide applications, especially for
wireless and real-time applications. Therefore, it is crucial to
accelerate its encoding speed.

For this purpose, in this paper, we propose a novel
fast intra prediction algorithm based on Mode Selection for
SSHVC.

2. RELATED WORK

In SHVC [1], each CU contains both ILR mode and Intra
mode which includes 35 DMs. By checking both modes to
select the best one, SHVC can obtain the best coding effi-
ciency. However, doing so can result in a very complicated



coding process. In order to improve coding speed, a number
of algorithms have been developed, which are reviewed and
discussed below.

Generally speaking, the current CU and its relevant CUs
are very similar, so relevant CUs can be used to predict candi-
date coding modes. Tohidypour et al. [2–4] use relevant CUs
to predict likelihood modes and skip unlikely modes in EL.
Wang et al. [5], [6] and [7] first check ILR mode and merge
mode, and then compare the difference of their RD costs to
early terminate mode selection. The above algorithms are pro-
posed based on correlations only. Lu et al. [8] and [9] jointly
use texture complexity and spatio-temporal correlation to pre-
dict candidate modes.

If a mode is predicted very well, its residual coefficients
should be very small and follow the Gaussian distribution [10]
or the Laplacian distribution [11]. The research in [7] also
first checks ILR mode and then calculates its part-zero block
based on the distribution of its residual coefficients to early
terminate mode selection. Wang et al. [12] first check ILR
mode and then decide whether its residual coefficients follow
Gaussian distribution so as to early skip Intra mode. Pan et
al. [13] combine depth correlation and all-zero block to early
terminate mode selection. Obviously, a mode’s probability of
being selected as the best mode is strongly related to mode
selection. Wang et al. [14] combine probabilities of ILR mode
with its residual coefficients to early skip Intra mode.

Although all the above algorithms can improve coding
speed, the underlying mechanisms of mode selection have
not yet been investigated, which hinders the further improve-
ment of SSHVC coding speed. Therefore, we develop a novel
mode-distribution-based fast Intra prediction algorithm for
SSHVC.

3. JUSTIFICATION OF THE PROPOSED MODE
SELECTION ALGORITHM

In order to improve the coding speed, we have conducted ex-
tensive experiments to investigate Intra coding in SSHVC. In
order to ensure the generality of features and rules, different
types of sequences, including motion and texture from simple
to complex, are selected. More specifically, we use Blue-sky,
Ducks, Park Joy, Pedestrian, Tractor, Town and Station2 in
our experiments. According to common SHM test conditions
(CSTC) [15], QPs set in BL and In EL are set as (22, 26, 30,
34) and (24, 28, 32, 36) in conducting experiments, respec-
tively.

We can obtain the RD costs of ILR mode and Intra mode,
which are listed in Table 1.

From Table 1, we can observe that the average values of
the RD costs of ILR mode at depths from 0 to 2 are signifi-
cantly larger than those of Intra mode. In contrast, for depth
3, the average value of the RD costs of ILR mode is smaller
than that of Intra mode, but not very significantly.

In addition to the RD cost relationships of ILR mode and

Table 1. The RD Costs of ILR Mode and Intra Mode in All
Depths

Sequence
Depth 0 Depth 1 Depth 2 Depth 3

ILR Intra ILR Intra ILR Intra ILR Intra
Blue sky 49801 11074 12172 3198 3039 1523 778 946

Ducks 140109 49873 34478 13686 8701 5732 2247 2444
Park Joy 166607 21382 41191 5616 10308 3066 1888 2621

Pedestrian 37458 26252 9333 7063 2351 2189 609 763
Tractor 57344 22816 14445 5734 3719 2433 988 1189
Town 108752 63737 27495 16467 6875 4908 1721 1981

Station2 44750 12625 11201 4611 2839 2300 742 901
Average 86403 29680 21474 8054 5405 3164 1282 1549

Intra mode, we further investigate their RD cost distribution.
We have conducted extensive experiments on the RD cost dis-
tribution of ILR mode and Intra mode. In Fig. 1, the horizon-
tal axis represents RD cost, and the vertical axis represents
the histograms, i.e., the corresponding number of CUs in each
bin. Fig. 1 (a) and Fig. 1 (b) show the RD cost distribution of
ILR mode for sequence “Blue sky” in depth 2 and depth 3,
respectively. From Fig. 1, we can observe that both the RD
costs of ILR in depths 2 and 3 follow the Gaussian distribu-
tion. Our extensive experimental results have demonstrated
that the RD cost distribution of both ILR mode and Intra mode
in all sequences follows Gaussian distribution.

(a) Depth 2                             (b) Depth 3 

Fig. 1. The RD cost distribution of ILR mode for sequence
“Blue sky”

The RD cost distributions for both the ILR mode and the
Intra mode at coding depths [0, 2] and coding depth of 3 are
shown in Fig. 2 (a) and Fig. 2 (b), respectively.

4. GMM-EM-BASED MODE SELECTION

It is observed from Fig. 2 that, despite the different average
RD costs, the distribution for the ILR mode overlaps with that
for the Intra mode. Therefore, it is impossible to directly de-
cide which is the better choice. GMM-EM is very suitable for
classifying the data that follow the Gaussian distribution but
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Fig. 2. RD cost distributions of ILR and Intra modes at dif-
ferent depth levels.

have significantly different average values.
GMM-EM is a widely used machine learning algorithm

for clustering. It uses mixed Gaussian distribution as the para-
metric model and utilizes the maximum Expectation (EM) al-
gorithm for training. Since the average value of RD costs of
both ILR mode and Intra mode follow Gaussian distribution,
we add them into a mixed Gaussian distribution model. Based
on the model, the probability of sample i belonging to each
part can be derived based on the currently available mixture
parameters. Then, the mixture parameters are refined. Re-
peating the process until converge, then the probabilities of
all samples belonging to each part can be obtained.

Since ILR mode is more likely to be selected as the best
mode [7] [12], we encode the current CU using ILR mode
first and then use GMM-EM to determine whether ILR mode
is the best mode based on its RD cost. In the affirmative,
we can early terminate mode selection; otherwise, we need to
further check Intra mode.

U2 U3 U4

U1 U0

U7 U8 U9

U6 U5

(a) previous frame (b) current frame

Fig. 3. The current CU and its relevant CUs

As shown in Fig. 3, U0 represents the current CU, U1, U2,
U3 and U4 are the neighbouring CUs of the current CU, U5,
U6, U7, U8 and U9 are the co-located CUs of U0, U1, U2, U3

and U4 in the previous frame. Since there are only two parts,
i.e., ILR mode and Intra mode, let part one represent ILR
mode, and part two indicates Intra mode. The corresponding
Gaussian Mixture Model can be written as:

p (rd|π, µ,Σ) = π1N (rd|µ1,Σ1) + π2N (rd|µ2,Σ2) , (1)

where rd is the RD cost of a CU, π1 is the probability of
relevant CUs using ILR mode, µ1 and Σ1 are respectively the
expected value and the variance of the RD costs of these CUs
selecting ILR mode as the best mode; and π2 is the probability
of relevant CUs using Intra mode, µ2 and Σ2 are respectively

the expected value and the variance of RD costs of these CUs
selecting Intra mode as the best mode.

In order to obtain these six parameters, based on Eq. (1),
the corresponding maximum likelihood estimation function
is:

f =
M∏
i=1

p (rd|π, µ,Σ) =
M∏
i=1

(π1N (rd|µ1,Σ1) + π2N (rd|µ2,Σ2)),

(2)
where M is the number of the current CU and its relative

CUs, and it is equal to 10.
The logarithm of the maximum likelihood function is:

log (f) =

M∑
i=1

log (π1N (rdi|µ1,Σ1) + π2N (rdi|µ2,Σ2)),

(3)
where πk, µk and Σk (k=1 or 2) can be calculated by:

∂ log (f)

∂πk
= 0,

∂ log (f)

∂µk
= 0,

∂ log (f)

∂Σk
= 0. (4)

We can derive:

µk =
1

Nk

N∑
i=1

γ (i, k)rdi,Σk =
1

Nk

N∑
i=1

γ (i, k) (rdi − µk) (rdi − µk) ,

(5)

where Nk =
N∑
i=1

γ (i, k), then we have:

πk =
Nk

N
. (6)

γ (i, k) is the probability that the i-th CU, denoted as Ui,
belongs to the k-th part, and it can be obtained by:

γ (i, k) =
πkN (xi|µk,Σk)

π1N (xi|µ1,Σ1) + π2N (xi|µ2,Σ2)
. (7)

In order to start iterations, we must obtain their initial
values first. For relative CUs selecting ILR mode as the best
mode, we calculate the expected value and variance of their
RD costs as initial µ1 and Σ1, and set the ratio between the
number of these CUs and that of all the relevant CUs as initial
π1. Using the same way, we can obtain initial µ2, Σ2 and π2.
After these six values are obtained, we use Eq. (7) to derive
initial γ (i, k). Repeat iterations (5), (6) and (7) until γ (i, k)
converges.

As mentioned above, the current CU is U0 and ILR mode
is part one, hence γ (0, 1) denotes the probability of the cur-
rent CU selecting ILR mode as the best one. We denote the
i-th iteration of γ (0, 1) as γi (0, 1). In order to avoid unneces-
sary iterations, if the absolute difference between γi−1 (0, 1)
and γi (0, 1) is small enough, we can terminate the iteration.
We empirically select 0.01 as the threshold, then we obtain
the early termination condition below:

|γi (0, k)−γi−1 (0, k) | ≤ 0.01. (8)



If condition (8) is met, we can terminate the iteration and
obtain the probability of the current CU selecting ILR mode
as the best mode. Since this probability is obtained based on
RD cost, we define it as the RD-based ILR probability.

Since relevant CUs are usually very similar, we can use
them to predict the probability of the current CU using ILR
mode. Obviously, if more relevant CUs use ILR mode, the
current CU is more likely to use this mode, and vice versa.
In other words, the probability of the current CU using ILR
mode is proportional to the number of relevant CUs using ILR
mode. As shown in Fig. 3, there are 9 relevant CUs, so we
simply set the possibility of the current CU using ILR mode
as k

9 , where k is the number of relevant CUs using ILR mode.
Since this probability is obtained based on the number of rel-
evant CUs using ILR mode, we define it as the number-based
ILR probability.

Since both the RD-based ILR probability and the number-
based ILR probability strongly relate to ILR mode selection,
we combine them to further predict the probability of the cur-
rent CU using ILR mode. Let p(A) and p(B) denote the RD-
based ILR probability and the number-based ILR probability,
respectively. Since both of them are independent, we further
derive the probability of the current CU selecting ILR mode
as the best mode, pr, by:

pr = p (A+B) = p(A) + p(B)− p(A)p(B). (9)

Theoretically, if pr ≥ 0.95, the current CU is very possi-
ble to use ILR mode. Therefore, we select 0.95 as the thresh-
old value for pr.

5. EXPERIMENTAL RESULTS

In order to assess the performance of the proposed Mode
Selection-based fast Intra prediction algorithm for SSHVC,
we use the reference software (SHM 11.0) and test the pro-
posed algorithm on a server with Intel (R) 2.0 GHz CPU
and 30 GB memory. The performances of algorithms are
evaluated by coding efficiency and coding speed. Coding
efficiency is measured by bitrate and visual quality together,
which is indicated by BDBR [16]. It refers to the bitrate
difference at an equal PSNR compared with the reference
software in EL. Coding speed improvement is denoted by TS,
which is the percentage of encoding run-time savings only in
EL.

In order to demonstrate the performance of the proposed
algorithm, we conduct a performance evaluation of our al-
gorithm with FIICA [9] and PBFIP [14]. To the best of our
knowledge, these two algorithms are the best and most re-
cent relative algorithms for SSHVC. For fair comparisons, all
algorithms are tested on the same computing platform. Ac-
cording to the CSTC [15], the QPs in the BL are set to (22,
26, 30, 34), and the corresponding QPs in the ELs are set to
(22, 26, 30, 34) and (24, 28, 32, 36), respectively. We denote

Table 2. Overall performance comparisons with case 1

Sequence
Proposed (%) FIICA(%) [9] PBFIP(%) [14]
BDBR TS BDBR TS BDBR TS

Traffic -0.04 58.21 0.41 36.37 0.08 44.61
PeopleOnStreet 0.23 55.44 0.10 39.43 0.03 40.30

Kimono -0.23 65.42 -0.13 60.27 -0.22 53.30
ParkScene -0.17 62.51 0.22 36.49 -0.16 32.32

Cactus 0.59 53.23 0.89 37.92 0.91 39.41
BasketballDrive 0.96 46.76 0.71 41.48 2.09 45.61

BQTerrace 1.18 33.95 0.50 43.56 1.30 33.30
Average 0.36 53.65 0.38 42.22 0.58 41.27

QP sets of (22, 26, 30, 34) and (24, 28, 32, 36) for EL as case
1 and case 2, respectively.

Table 3. Overall performance comparisons with case 2

Sequence
Proposed (%) FIICA(%) [9] PBFIP(%) [14]
BDBR TS BDBR TS BDBR TS

Traffic -0.18 64.02 -0.30 37.89 0.01 45.82
PeopleOnStreet -0.29 62.66 -0.23 40.15 -0.23 42.65

Kimono -0.30 66.29 0.19 60.18 -0.21 59.21
ParkScene -0.15 65.04 0.11 38.13 0.11 41.81

Cactus 0.41 60.33 0.70 39.29 0.52 48.09
BasketballDrive 0.96 54.42 1.72 42.74 1.72 50.45

BQTerrace 1.69 42.95 0.61 44.37 1.09 46.62
Average 0.31 59.39 0.40 43.25 0.43 47.81

In Table 2 (case 1), the average BDBRs of the proposed
algorithm, FIICA and PBFIP are 0.36%, 0.38 and 0.58%, re-
spectively. While the average TS of the proposed algorithm,
FIICA and PBFIP are 53.65%, 42.22% and 41.27% corre-
spondingly. In Table 3 (case 2), the average BDBRs of the
proposed algorithm, FIICA and PBFIP are 0.31%, 0.40% and
0.43%, respectively. While the average TS of the proposed al-
gorithm, FIICA and PBFIP are 59.39%, 43.25% and 47.81%
correspondingly. Compared with the other two algorithms,
we can observe that the average BDBRs of the proposed al-
gorithm are smaller, meanwhile, the average TSs of the pro-
posed algorithm are significantly faster in both cases.

6. CONCLUSION

In this paper, we fully investigate the special features of
SSHVC and propose a new Mode Selection-based Intra pre-
diction algorithm for SSHVC. Experimental results show
that the proposed algorithm can improve the coding speed
significantly with negligible coding efficiency losses.
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