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This paper introduces an emerging framework for integrating computational thinking 

into the teaching and learning of linear algebra. To achieve this, we refer to the notions 

of three teaching principles of linear algebra, theory of instrumental genesis and 

computational thinking. Through the emerging framework, we present a vignette 

involving a set of activities using GeoGebra’s specific commands, tools and functions. 

We approach the case of systems of linear equations and limit ourselves to a linear 

algebra course whose students do not have a strong background in a programming 

language (much like the one for lower secondary mathematics teacher education 

programs in different countries). We propose several further steps to ameliorate the 

emerging framework.  

Keywords: Teaching and learning of linear and abstract algebra, Digital and other 

resources in university mathematics education, Computational thinking, Three 

teaching principles, Instrumental genesis. 

INTRODUCTION 

The term computation is considered one of the basic skills in school curricula; 

therefore, it could sound familiar to every mathematics teacher and mathematics 

educator (Li et al., 2020). When we combine computation with thinking, it immediately 

leads to a certain meaning: the practices of computer science, such as coding and 

programming. However, the notion of computational thinking is a way of thinking that 

encompasses a number of interrelated thinking skills (e.g., algorithmic thinking and 

problem-solving) that are beyond computing/programming practices (Lockwood, 

DeJarnette & Thomas, 2019; Wing, 2006). As a result, a growing body of research has 

recently attempted to define and characterize computational thinking in mathematics 

and science education (i.e., Kallia et al., 2021; Weintrop et al., 2016). 

In addition to the growing interest in different levels of education (that involve various 

unplugged and plugged activities), a recent call for higher education has been raised 

by Lockwood and Mørken (2021). Lockwood and Mørken (2021) invite researchers to 

focus on machine-based computing activities in undergraduate mathematics education, 

especially those associated with practices of creating algorithms and running them 

through digital tools. However, this might require a certain level of maturity in 

programming languages (Buteau et al., 2020). Lockwood and Mørken’s (2021) call has 

motivated us to focus on an undergraduate linear algebra course. Our question is: How 

can computational thinking be integrated into teaching and learning linear algebra?  

We focus on linear algebra because it includes various mathematical notions (e.g., row 

reduction, echelon forms, linear independence, and rank), and different representations 
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(e.g., equations, vectors, matrices and so on) that are interrelated with algorithmic 

thinking and problem-solving. Students are often challenged when they encounter such 

unusual (and new) ideas/steps/representations after high school, and “for a majority of 

the students, linear algebra is no more than a catalogue of very abstract notions” (Dorier 

et al., 2000, p. 85). We believe that the integration of the computational thinking 

perspective would be beneficial for linking different representations specific to linear 

algebra. Consequently, the current paper introduces an emerging framework for 

integrating computational thinking practices into linear algebra by grounding the 

framework in three perspectives as described in the next section. 

CONCEPTUAL FRAMEWORK 

Three teaching principles of linear algebra.  

Learning linear algebra requires a certain level of coordination among different 

contexts, so designing the teaching setting for this has a core role in arranging the shifts 

and balance between the (new) notions and representations. Harel (2000) proposes 

three teaching principles that can be used for designing a teaching setting: 

concreteness, necessity and generalizability. The concreteness principle considers 

students’ cognitive backgrounds and readiness for learning the proposed concept(s); 

this is strongly connected to student difficulties. The students need to be equipped with 

the proposed notions/concepts, and they need to have “… mental procedures that they 

can take these objects as inputs” (Harel, 2000, p. 180).  

The necessity principle is about finding problematic situations that invite students into 

doing mathematics, and this should correspond to students’ intellectual needs. Harel 

(2000) suggests that considering a need for computation, which means providing 

contexts that ask students to compute objects and explore mathematical properties, is 

the most effective way to invite students to start a mathematical discussion. This could 

enable students to find their way by elaborating a number of core ideas from their own 

work. The generalizability principle is strongly connected to the previous two 

principles because it enables students to arrive at a generalization in the end. The 

classroom activities, argumentation and teachers’ orchestration of student learning 

should provide an environment where students move from their (own) work to 

generalization and the formation of ideas. 

Harel (2000) highlights the use of digital tools for student exploration and geometry as 

a pedagogical context to enter a problematic set of situations. Following the three 

principles above, this context with digital tools should include a particular emphasis on 

the notion of the “need for computation” and development of ideas and generalization 

of the mathematical concepts. However, this is based on the manner of “tool use”. The 

tool use shapes student thinking, and this process shapes tool use synchronously 

(Drijvers, 2019). Here, therefore, we point out the importance of estimation of student 

thinking (with tool use) to design the teaching-learning context. This brings us to the 

idea of “hypothetical [utilization] schemes” (Drijvers et al., 2010, p. 113) regarding 

tool use, which mainly comes from theory of instrumental genesis. 



  

Theory of Instrumental genesis. 

Theory of Instrumental Genesis (TIG) is based on the distinction between artifacts and 

instruments (Artigue, 2002). Here, an artifact can be any material, both physical and/or 

digital, but it is called a tool when used by the user for a particular aim. When the user 

develops one or more utilization schemes while using the artifact, we speak of 

instruments. Here, instruments involve the utilization schemes the user develops over 

time, in addition to the artifact(s). As a result, this can be simplified into the following 

formula: “Instrument = Artifact + Scheme” (Drijvers, 2019, p. 15). This process of 

scheme development is called instrumental genesis (Artigue, 2002). The process of 

instrumental genesis involves the development of both conceptual and technical 

elements. However, it is a subtle, continuous, and complex process. Techniques, which 

are the manner of tool use that lead to accomplishing a task (Artigue, 2002), are 

observable and explicit. The techniques give us clues regarding those utilization 

schemes that are invisible. Conceptual elements, on the one hand, convey the 

techniques that the user develops (over time); on the other hand, they are shaped by the 

artifact’s affordances and constraints (Drijvers, 2019).  

In the current paper, we focus on the hypothetical [utilization] schemes (Drijvers et al., 

2010), (under the umbrella of TIG) that capture the synergy between techniques 

regarding the artifact and conceptual elements and their development. We hypothesize 

that the estimation of student thinking with tool use could help us design classroom 

activities with a particular lens that links the three teaching principles. 

Computational thinking. 

Computational thinking is an “umbrella term” (Kallia et al., 2021, p. 180) that involves 

a number of overarching and sophisticated skillsets, such as algorithmic thinking, 

decomposition, modelling, and abstraction. Wing’s (2006) seminal description of 

computational thinking which “… involves solving problems, designing systems, and 

understanding human behaviour, by drawing on the concepts fundamental to computer 

science” (p. 33) opened the door to a growing body of research on computational 

thinking. Weintrop et al. (2016) define a four-category taxonomy regarding 

computational thinking in mathematics and science education (p. 135): “data practices, 

modelling and simulation practices, computational problem-solving practices, and 

systems thinking practices.” The commonalities between Wing’s (2006) and Weintrop 

et al.’s (2016) approaches concerning mathematics show a particular link to problem-

solving, which means breaking a problem down into subproblems.  

Recently, a particular characterization of computational thinking in mathematics 

education has been proposed by Kallia et al. (2021). This characterization has three 

main aspects (Kallia et al., pp. 179–180): 

• Problem-solving (like understanding the problem, developing a solution 

strategy, performing the strategy), 



  

• Cognitive processes (like abstraction, decomposition, pattern recognition, 

algorithmic thinking, modelling, logical and analytical thinking, generalization 

and evaluation of solution and strategies), 

• Transposition (like phrasing the solution of a mathematical problem in such a 

way that it can be transferred/outsourced to another person or a machine). 

The characterization above does not necessarily imply considering all aspects in a 

setting. For example, following a particular didactical aim, the topic and appropriation 

of the tools (both physical and digital) would not be practical if one tries to combine 

all the aspects described above. We concur with Kallia et al. (2021), who note: 

“… maybe some aspects of computational thinking are more critical than others and 

learning opportunities that consider computational thinking should provide opportunities 

for students to practice as many aspects as possible.” (Kallia et al., 2021, pp. 179–180) 

Therefore, based on the context, the teacher or educational designer can focus on 

specific aspects that invite students to perform (mathematical) explorations. Another 

fact is that the characterization above does not propose a particular set of tools, even 

though some of the aspects are directly related to computer science. If we go back to 

the context of linear algebra, there seem to be many topics related to computational 

thinking, for example, linear systems (particularly row reduction and echelon forms), 

matrix transformations and applications to computer graphics, the Gram-Schmidt 

process and so on. 

The emerging framework for task design. 

In this subsection, we relate the three teaching principles to those hypothetical 

utilization schemes with aspects of computational thinking. The first item that we need 

to address is that the backgrounds of the three teaching principles and TIG seem to be 

similar regarding students’ mental development. The three teaching principles come 

from a Piagetian perspective (Harel, 2000), while TIG has foundations in both 

Piagetian (i.e., schemes) and Vygotskian (i.e., tool use) perspectives (Drijvers, 2019). 

Our particular aim is not networking these lenses and checking their grand theories, 

but rather considering and combining them into design tasks with a computational 

thinking lens. Regarding the shared theoretical background, there exists a link between 

tool use and the notion of the need for computation. Before beginning to explain this 

link, let us address the function of the concreteness principle in the emerging 

framework. The concreteness principle is carefully specific to the choice of the context. 

In other words, this principle is something that we can think of as a point of departure 

to think/decide about the setting. We claim that the following (interrelated) questions 

would be beneficial in setting the scene: 

1) Which topic is going to be considered?  

2) What is the (tentative) didactical aim/goal? 

3) What do students know, what do they not know (perhaps this is the most 

important one), what would be concrete to the students’ eyes, and why? 

4) How to build on their existing knowledge/phenomenological experiences? 



  

These questions bring us to the necessity principle, indeed to the notion of the “need 

for computation.” To invite students into a rich context that is open to exploration, 

argumentation, conjecturing, and testing conjectures, we underline the role of tools 

(Harel, 2000) as mediators: 

5) Which tool(s) would be beneficial and why? 

6) How would these tools function to achieve the didactical goal? 

7) What kind of experience do the students have with the thought tools? 

8) Which conceptual elements would emerge when students use the tools? 

These four questions imply an estimation of the “manner of tool use” (Artigue, 2002) 

to design the teaching-learning environment, which brings us to the notion of 

hypothetical utilization schemes (Drijvers et al., 2010) and TIG. The main aim of these 

questions is to elaborate on the (hypothetical) techniques and associated conceptual 

elements that could help us picture/discuss the potentiality of the tools for the didactical 

aim. The responses to the questions (5 to 8) could be research-informed. A literature 

search for potential tools and manner of student use would be helpful here as well. The 

third point concerns embedding the aspects of computational thinking into the eight 

questions above. The designer could focus on certain aspect(s) in the sense of Kallia et 

al. (2021) by considering the following (general) question: 

9) How would the context and tool enable students to engage with a problem-

solving activity, cognitive processes, and transposition? 

The generalization principle plays a central role here, and it is linked to the cognitive 

processes (aspect) of computational thinking. The designer could focus on the function 

of the tools at stake, along with how this would create a mathematical sense, meaning-

making or would help students arrive at a conclusion. Hence, the designer could then 

finalize their didactical aim/goal. To conclude, we note that the combination and 

synergy among the nine questions above constitute the emerging framework for task 

design. Figure 1 summarizes the nine questions, which shows the components as the 

axes of a Cartesian view.  

The designer can refer to Figure 1 by considering ordered triples (from three teaching 

principles to aspects of computational thinking) while brainstorming. For example, 

point A represents the role of concreteness, the tool and problem-solving and how these 

three (the selection of the context/aim, student pre-knowledge and deciding on the tool 

and problem-solving activity) would be aligned. As another example, B represents the 

triple of necessity, conceptual elements, and transposition. Focusing on B would help 

the designer think about and discuss how the need for computation would interlace 

with the targeted conceptual elements after instrumented activity. Through this way, it 

can be discussed how the solution of a mathematical problem can be transferred to 

another person/machine. It may not be necessary to discuss all the possible (27) triples 

here, however, we believe that Figure 1 would guide the designer as they consider and 

decide on the function of each component considered here.  



  

 

Figure 1: A Cartesian view of the emerging framework 

A VIGNETTE 

We present an exemplary vignette by following the concreteness principle (particularly 

point A in Figure 1). We have decided on the topic of systems of linear equations (SLE) 

for two main reasons. The first is the topic (in itself), specifically because SLE is one 

of the core topics in elementary linear algebra, which has many applications in different 

fields (Anton & Rorres, 2014). The second reason is SLE’s dynamic geometry software 

availability. We have recently shown how a dynamic geometry environment creates 

coordination between algebraic and 3D geometric views regarding SLE (Turgut & 

Drijvers, 2021). The second question in the above subsection and notion for the need 

for computation help us consider the parameters in the task. As we have experienced 

(Turgut & Drijvers, 2021), the use of parameters in SLE creates a rich context to 

explore the geometry of lines and planes in ℝ3. Therefore, we formulate a tentative 

aim: making sense of the role of parameters in SLE. We believe that the topic is more 

relevant after the matrix algebra topic and after the students have learned to solve SLEs 

on paper-and-pencil activities. Therefore, we plan to build on matrix algebra and 

consider that the target group does not know the role of the parameters in SLE yet. 

The paragraph above can be summarized as addressing those questions from 1 to 4. 

Now, we focus on questions 5 to 8. In our exemplary case, we refer to GeoGebra based 

on three criteria. The first is GeoGebra.org’s classroom function, where the teacher can 

design a set of activities/tasks and share the interface of the activity by providing a 

code. The second is the commands and some tools of GeoGebra that have been recently 

considered part of the computational thinking activity (van Borkulo et al., 2021). The 



  

software is now popular in many countries, so we consider that the target group is 

familiar with the basic tools/functions. The third is that we focus on the case where the 

target group does not have a programming language background. 

Now, we briefly summarize hypothetical techniques and utilization schemes (based on 

Turgut & Drijvers, 2021) as follows. While exploring SLE solutions, students could 

refer to synchronic algebra and geometry windows that provides dynamic variations. 

The “Solve” command could be used to solve the given equations, and the software 

would provide different solutions where students could explore different values of the 

parameters. For example, in certain cases, there is a solution or no solution. Students 

could type and form matrices of given SLE through a spreadsheet window and attach 

sliders to matrices. The students later could also refer to the “Reduced RowEchelon 

Form” command to compute the echelon form of the matrices. This could enable 

students to see completely zero rows etc. in the matrix and its meaning in the SLE 

solution, helping them create a link between the role parameters of in row echelon 

forms. The latter command could also provide a meaning for infinite solution, single 

solution, or no solution. To plot lines and planes, the students could use the “Input” 

line and the “Intersect” command, which could provide a geometric feature of the role 

of parameters (like the intersection of planes and its meaning in the SLE solution).  

Regarding computational thinking, we focus on algorithmic thinking and 

generalization with a problem-solving activity for solving a set of SLEs. In light of 

this, we re-design a set of activities borrowed from literature (Anton & Rorres, 2014; 

Turgut & Drijvers, 2021), which are divided into three episodes. The first starts with a 

figure to overview and link some key notions about SLE and the associated commands 

of GeoGebra. The first step of the activity (Episode 1) is presented in Figure 2. 

  

Figure 2: The First Step of Episode I 

As a first step (Step 1 in Figure 2), the students discuss some key notions and associated 

commands of GeoGebra. They can also recall their knowledge by watching some topic-

related Khan academy videos (e.g., reduced row echelon form, as seen on the right-



  

hand part of Figure 2). Step 2 asks the students to sketch a tentative algorithm on an 

embedded (blank) GeoGebra applet to approach solving SLE (by keeping in mind the 

key notions and associated commands of GeoGebra, as in Figure 2).  

Figure 3 summarizes Steps 3 and 4. The third step asks the students to solve a system 

of linear equations, including a single parameter 𝑘: 𝑥 + 𝑦 + 𝑧 = 4, 𝑧 = 2 and 

(𝑘2 − 4) ∙ 𝑧 = 𝑘 − 2. We provide a blank GeoGebra applet that includes an algebra 

window, and 3D graphics window with a spreadsheet window by considering the 

hypothetical utilization schemes explained on the previous page. For example, the use 

of the slider 𝑘 could be referred to solve the proposed SLE. 

  

Figure 3: Steps 3 and 4 in Episode 1 

In this part, the use of a slider as 𝑘 is an estimated technique that could help to explore 

the dynamic effects of the parameter in the given SLE. As a fourth step, the students 

must discuss the initial algorithm after they have solved the given SLE with a single 

parameter. The final step of Episode 1 asks to discuss the role of 𝑘 in the given system 

(the left-hand-side of Figure 4).  

    

Figure 4: Step 5 of Episode 1 and Step 1 of Episode 2 

The second episode starts with another system (the right-hand-side of Figure 4) that 

has two specific parameters: a and b. The user is asked to use the (updated) algorithm 

while solving the given system. As in Episode 1, as a next step, the students are asked 



  

to review the algorithm after solving SLE, and then discuss questions to overview the 

role of parameters in SLE. However, the parameter(s) in the given two SLE appear 

both in coefficients and known parts. Therefore, in the final episode, a specific system 

is proposed: 𝑥 + 𝑦 + 𝑧 = 𝑎, 2𝑥 + 2𝑧 = 𝑏, and 3𝑦 + 3𝑧 = 𝑐, which has three 

parameters. In the final SLE, all three parameters are defined in the known part of the 

system. This episode also follows reviewing algorithms and making a generalization 

regarding the role of parameters in SLE by overviewing all episodes and (revisiting) 

all versions of algorithms.  

CONCLUSIONS 

In the current paper, we have introduced an emerging framework for integrating 

computational thinking into teaching and learning linear algebra. We present an 

exemplary case where the aim is to promote the knowledge and role of parameters in 

SLE and associated solutions. We note that the emerging framework needs further 

elaborations (e.g., through design-based research) to discuss its functioning in teaching 

learning settings. For example, the presented set of activities could be merged and 

field-tested with some come from matrix transformations and applications to computer 

graphics, and Gram-Schmidt process. As a limitation, the exemplary case is GeoGebra 

centric. Another context, such as R, Python or Trinket, could be focused on when 

designing machine-based computing activities (Lockwood & Mørken, 2021). These 

could be further steps to ameliorate the presented emerging framework. 
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