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Refutation feedback on student proofs beyond counter-examples 
Alon Pinto and Jason Cooper  

Weizmann Institute of Science, alon.pinto@weizmann.ac.il 
Feedback on students’ proofs is often intended to promote proof comprehension, yet 
formulating such feedback is a delicate task. In this study we investigate how refutation 
can be used for this purpose. We propose to extend Lakatos’ notion of heuristic 
refutation to feedback that contains a refutation argument, possibly incomplete. Such 
feedback is heuristic in the sense that interpreting and utilizing it invites mathematical 
reasoning that can contribute to development of proof comprehension. Based on data 
from a Real-Analysis course, we show the importance of considering different kinds of 
refutation that are not based only on counter-examples, and demonstrate the nuances 
and subtleties of formulating feedback based on such refutation. Our findings suggest 
how professors can purposefully tailor feedback for particular didactic goals.  
Keywords: Teachers’ practices at the university level, novel approaches to teaching, 
professor feedback, heuristic refutation, real-analysis.  
INTRODUCTION 
Students’ engagement with proof outside class is a central aspect of proof-oriented 
mathematics courses (Rasmussen et al., 2021). Students listen to their professors as 
they present proofs for the first time in lectures, and are expected to continue studying 
these proofs after class (Pinto & Karsenty, 2018; Weber, 2012). Weber (2012) observes 
that mathematics professors expect undergraduate students to do substantial work in 
order to understand a proof after it was presented in class, dedicating up to two hours 
to review proofs that are under ten lines long. In addition to reviewing the material that 
was presented in class, students are typically also expected to invest a substantial 
amount of time in writing their own proofs as part of their coursework, in order to 
promote further learning of proofs presented during the lectures (Rupnow et al., 2021). 
Feedback on students’ proofs is widely recognized as having a key role in shaping and 
facilitating student learning between lectures (Moore, 2016; Pinto & Karsenty, 2018; 
Rasmussen et al., 2021). According to Moore (2016), professors’ feedback on students’ 
proofs is important for conveying norms and expectations, and for directing students’ 
attention towards certain facets of the material, thus promoting proof comprehension.  
While there has a been surge of empirical research of undergraduate mathematics 
teaching practices over the last decade, most attention has been given to what transpires 
inside classrooms, and research of professors’ feedback on proofs that students submit 
as part of their coursework is fairly limited (Rupnow et al., 2021). Moore (2016) 
investigated professors’ grading of students’ proofs, and found that substantial 
variation in the scores assigned to similar proofs reflected to what extent flaws in the 
proofs indicated flawed comprehension. Moore’s findings were corroborated and 
elaborated by Miller et al. (2018), who also highlighted the link between proof grading 
and students’ apparent comprehension of the proof. Both Moore (2016) and Miller et 



  
al. (2018) concluded that when grading students’ proofs, instructors were assessing not 
only the correctness of the proof or whether it adheres to the norms of proof writing, 
but also (and mainly) students’ proof comprehension. 
There is preliminary evidence that, similarly, feedback on proof aims to promote proof 
comprehension (Byrne et al., 2018; Pinto & Karsenty, 2018, 2020). Evidently, 
professors often opt to leave the required revision – or even the flaw – implicit in their 
feedback, and instead highlight certain locations in the proof, ask eliciting questions or 
request elaborations (Moore, 2016; Byrne et al., 2018; Pinto & Karsenty, 2020). Such 
feedback may be viewed as an invitation for the student to engage with the flawed 
proof not only to correct it, but also to promote proof comprehension. However, Byrne 
et al. (2018) examined students’ interpretations of six types of feedback and found that 
when instructors’ feedback did not explicitly provide the required revision, students 
typically failed both to identify the flaw in their proof and to understand how they are 
expected to revise it. Conversely, Byrne et al. (2018) observed that when feedback was 
explicit regarding the desired revision, students often followed the prescription in the 
feedback without being able to explain what was flawed in their original proof or how 
the revision addressed flaws. 
In this paper we focus on a type of feedback not examined by Byrne et al. (2018), which 
was used extensively and specifically for promoting proof comprehension in a course 
we examined in previous studies (Pinto & Karsenty, 2018, 2020). The professor in this 
course, whom we call Mike, opted to provide students with incomplete refutations of 
their proofs, arguing that such feedback often enables students to identify and fix the 
flaw in their proof almost on their own, while also promoting comprehension of the 
proof. We recognize in student engagement with this kind of feedback an interesting 
and potentially useful extension of the notion of heuristic refutation (de Villiers, 2010; 
Komatsu & Jones, 2021; Lakatos, 1976; Pinto & Cooper, under review). Furthermore, 
we observed that Mike used various kinds of refutation arguments, suggesting that 
heuristic refutation can be extend beyond the case of counter-examples considered in 
the literature. In this paper we introduce the notion of heuristic refutation feedback 
(HRF) and explore the following question: What kinds of refutation, beyond counter-
example, can be formulated as HRF, and how?  
HEURISTIC REFUTATION FEEDBACK 
The intricate connection between proof and refutation has a long and respected history, 
originating from the works of Lakatos (1976) that highlighted how an interplay 
between proving and refuting can generate new mathematical knowledge (Komatsu & 
Jones, 2021). Drawing on works of Lakatos (1976) and de-Villiers (2010), Komatsu 
and Jones (2021) use the notion heuristic refutation for a mathematical activity that 
goes back and forth between conjecturing, attempting to prove, discovering counter-
examples, and revising the conjecture, its proof, or even the definition of mathematical 
objects at stake. Komatsu and Jones (2021) stress that the term heuristic comes to 
emphasize the revision activity that stimulates growth of knowledge following the 
refutation, not the refutation itself. Counter-examples play a key role in the heuristic 



  
refutation process by providing a trajectory for moving forward: the conjecture or the 
proof needs to be revised so as to neutralize the counter-example.  
Both Komatsu and Jones and de-Villiers follow Lakatos in addressing a process of 
discovery in which a statement is not known to be true and may end up being revised 
if refuted. Lakatos (1976) called refutation of the statement global refutation, as 
opposed to local refutations, which challenge only one step in the proof or some aspect 
of the domain of validity of a statement. We wish to extend the notion of heuristic 
refutation to students’ flawed proofs. Here, the global statement is known to be valid 
and will not be revised, yet we will claim that a particular kind of feedback on flawed 
proofs can invite students to engage in heuristic growth of knowledge when making 
sense of the feedback, reviewing their flawed proof with respect to the feedback, and 
attempting to revise their proof. To draw students into such heuristic activity, the 
feedback would need to unequivocally show that the proof is invalid, while leaving 
space for heuristic activity. Accordingly, we define heuristic refutation feedback 
(HRF) as any feedback on a flawed proof that contains a mathematical argument that 
indirectly implies that the proof is invalid. Here we extend the notion of global 
refutation to include cases where the refutation does not invalidate the statement, yet 
does reveal a structural failure in the proof, indicating that a local fix may not suffice, 
and that a different approach may be required. We emphasize that this definition 
extends Lakatos’s and de Villiers’ notion of heuristic refutation, which refers solely to 
engagement with counter-examples (local or global). While the literature recognizes 
different types of proof, which may have “diverse pedagogical properties and didactic 
functions in mathematics education” (Hanna & de-Villiers, 2008, p. 332), literature on 
refutation is generally restricted to counter-examples, and little is known about other 
kinds of refutation and how these may be utilized in teaching, particularly in the context 
of heuristic refutation. 
Our definition of HRF extends the notion of heuristic refutation also in how the 
refutation argument may formulated. By definition, HRF contains a (possibly 
incomplete) refutation argument. The reconstruction of an incomplete argument can be 
a challenging task that entails inference and invention of implicit connections between 
the feedback and the proof. As such, it can be seen as a case of abductive reasoning, 
and illustrated with Toulmin’s (1958) model of arguments, as discussed by Komatsu 
and Jones (2021). In this model, an argument includes, among other things, a claim 
(C), datum (D) that supports the claim, and a warrant (W) that describes how the datum 
supports the claim. Abductive reasoning, as discussed by Komatsu and Jones (2021), 
is a process that seeks to explain a surprising observation (claim) through inference of 
hypotheses (data) and recognition or invention of warrants. Komatsu and Jones (2021) 
distinguish between three types of abductive reasoning, according to whether students 
need to complete the missing datum or provide a missing warrant. While in the 
classroom activities Komatsu and Jones considered the teacher has a key role in 
orchestrating student reasoning, in the context of HRF, the only way to facilitate 
heuristic refutation is through careful formulation of the feedback. This includes not 



  
only selecting what to refute in the student’s proof, and constructing an adequate 
refutation, but also deciding which elements of the refutation argument to present and 
how. Thus, we extend Komatsu and Jones’s use of Toulmin model in two ways, by 
allowing each of the elements of the refutation argument, including the claim, to be 
stated implicitly, not only completely omitted. We exemplify and discuss these 
variations below.  
METHODOLOGY 
Data for this study were collected in a Real-Analysis course. The professor (Mike) is a 
mathematician who has been teaching for more than two decades and has taught this 
specific course several times. Prior research on Mike’s goals and expectations with 
respect to this course (Pinto & Karsenty, 2018) revealed that he intended his feedback 
on students’ proofs to be restricted as much as possible to refutations, stating that this 
kind of feedback affords opportunities for students to develop proof comprehension by 
looking for their own errors and for ways to correct them; develop the practice of 
testing their reasoning by trying to refute it; and develop a notion of validity of a proof 
that is absolute and independent of the professor’s personal inclinations. Every week, 
Mike assigned a list of propositions to prove and examples to construct. Students 
submitted these proofs and examples electronically every few weeks. Mike did not 
grade students’ submissions but provided written feedback. Seven students volunteered 
to participate in this study. The data corpus included a total of 57 submissions (5-12 
submissions per student), and Mike’s 2709 markings and comments.  
Our first step in the analysis was to review all Mike’s feedbacks to locate those that 
qualify as HRF and identify the refutation arguments therein. Often the feedback did 
not provide a fully argued refutation. In some cases, it was first necessary to identify 
what was being refuted, in particular in cases where the feedback refuted an implicit 
statement in the student’s proof. When disagreements between the authors arose, they 
were discussed until agreement was achieved. Drawing on Toulmin’s model of 
argumentation (1958) and on its application to heuristic refutation (Komtsu & Jones, 
2021), we decomposed refutation arguments into three components (Claim, Datum, 
Warrant). As refutation argument typically coincided to some extent with arguments 
in the students’ proof, we occasionally applied Toulmin’s model to arguments within 
the students’ proofs as well. Comparing the arguments in the feedback and in the proofs 
helped highlighting subtle and nuanced aspects of Mike’s formulation of HRF. In this 
paper we focus on HRFs in which the datum was not a counter-example and show how 
Mike used different kinds of refutation while formulating HRF.  
FINDINGS 
At the beginning of the course, Mike defined the real numbers (ℝ) as an extension of 
the rationale numbers (ℚ) that includes non-repeating decimals and asked that students 
will prove at home that this definition implies that every non-empty bounded subset of 
ℝ has a least upper bound (Proposition 1). Mike then showed in class how Proposition 



  
1 implies that ℝ is connected. One student, Alex, wrote a proof of Proposition 1 that 
relied implicitly on the connectedness of ℝ, and Mike provided the following HRF: 

HRF1 
Your argument is not only wrong, but it cannot be fixed, because you are not 
using any definition of real numbers, and hence whatever you write applies 
to ℚ [the rational numbers], for which the whole statement is false. 

In this feedback, Alex not only learns that the proof is flawed, but is invited to verify 
that the theorem does not apply to rational numbers, then retrace the line of reasoning 
in the proof, only with rational numbers instead of real numbers, recognize where the 
connectedness of ℝ is implicitly used, and realize that the proof of connectedness of ℝ 
relies on the proposition she is trying to prove. While we have not included Alex’s 
proof, we note that refuting it with a counter-example would not be straight-forward, 
since the proposition is correct, and the proof does not contain a false statement. Mike’s 
feedback does not specify the critical flaw in Alex’s proof or the required revision, but 
in inviting Alex to revisit the definition of real numbers, it provides her with a route 
for recognizing the flaw on her own. We refer to feedback that derives a false statement 
by adapting the proof or a part of it as refutation by false implication.  
We stress that HRF need not rely on global refutations, as can be seen for example in 
the case of the Extreme Value Theorem (EVT), which posits that if f is a real-valued 
continuous function on a closed bounded interval I then f attains both a maximum and 
a minimum in I. In the lecture, Mike emphasized that EVT is not as obvious as it may 
seem, noting that an analogous statement for rational-valued functions would not be 
true, even if restricted to polynomials. In the home assignment, students were asked to 
prove that there exists a polynomial f(x) with rational coefficients that does not achieve 
an extremum when restricted to rational values in the interval I=[0,1] (Proposition 2). 
All the students’ proofs of Proposition 2 roughly followed the same proof scheme, 
which can be described as follows:  

Step 1. Define a cubic polynomial f with rational coefficients.  
Step 2. Identify the critical points of f and ascertain that one or both are irrational. 
Step 3. Conclude that as a rational-valued function, f does not attain both a 

maximum and a minimum in I.  
Notably, Step 1 and Step 2 do not necessarily imply Step 3, since f may attain its 
(global) maximum or minimum in I at the rational endpoints of I. Moreover, in general, 
polynomials may have both rational and irrational critical points. Thus, Step 3 should 
be warranted by showing that the cubic polynomial f achieves its maximum or 
minimum in [0,1] at the irrational critical points identified in Step 2. Most students left 
the warrant for step 3 implicit, as illustrated for example in Bailey’s proof. Bailey 
defined 𝑓(𝑥) = !

"
𝑥# − 2𝑥$ + %

&
𝑥, calculated the roots of f’, and stated:  

Utilizing the quadratic formula, we see that the roots of the derivative of this function are 
[...] irrational. It is clear that the maximum and minimum occur at these irrational roots, 



  
and thus the polynomial does not achieve its maximum or minimum value for 𝑥 ∈ 𝑄 over 
the interval between 0 and 1. 

Mike responded on Bailey’s proof in the following way: 

HRF2 f(x)=x does not have roots of the derivative (even among real numbers!) but 
it does achieve its maximum and minimum values on [0,1]. 

Notably, the polynomial Bailey proposed achieves its extrema in I at irrational points, 
and therefore has no maximum or minimum when restricted to 𝐼 ∩ ℚ. Moreover, the 
proof does not contain an explicit false statement. Nonetheless, the implicit warrant 
may be incorrect. Mike’s feedback retraces Bailey’s line of reasoning, drawing on the 
same data – the derivative of f(x) has no irrational roots – while replacing the 
polynomial f proposed by Bailey with f(x)=x, thus seemingly reaching a proof to an 
analogous statement, which is nonetheless false. Unlike HRF1, here the refutation is 
local as the proof could be readily fixed by adding an explicit (correct) warrant. 
We note that formulating HRF to Bailey’s proof entails attributing a flawed warrant to 
the unwarranted claim “It is clear that the maximum and minimum occur at these 
irrational roots”. The warrant Mike’s feedback attributes is: For every polynomial f, if 
f’(x) has no rational roots then f(x) does not obtain a maximum or minimum in 𝐼 ∩ ℚ. 
We note that Mike could have chosen to attribute other warrants, for example: For 
every closed bounded interval [a,b], if f’(x) has no roots in [a,b] then f(x) does not 
obtain a maximum in [𝑎, 𝑏] ∩ ℚ. In fact, this alternative path is reflected in Mike’s 
HRF to Adrian’s proof, which presented a line of argument very similar to Bailey’s:   

HRF3 

These are critical points, but what makes you think that the maximum and 
minimum values of this f are achieved on [0,1] at these points? The points do 
not even depend on the interval! Do you mean that the maximum and 
minimum values on every interval [a,b] are the same? But this cannot be, 
because the polynomial is unbounded both above and below. 

Attributing a false warrant to justify an unwarranted claim in a student’s proof is not 
the only way to formulate HRF. In some cases, Mike’s feedback altered data used 
explicitly but invalidly in the student’s proof, as evident in his feedback to Dylan’s 
proof of Proposition 2. Dylan, defined 𝑓(𝑥) = $

#
𝑥# + 2𝑥$ + 𝑥 and stated: 

To show [Proposition 2] we can demonstrate that the maximum value of the polynomial in 
this interval has no corresponding point in the specified domain. Since neither solution [of 
the equation f’(x)=0] is rational, we conclude that no least upper bound exists. 

 Mike responded to Dylan’s proof in the following way: 

HRF4 
Note that both values of x [in which f’(x)=0] are outside the interval [0,1]. 
Thus, according to your logic, the range of your function does not have the 
least upper bound even over the real numbers. Contradiction? 

Dylan’s proof is different from Bailey and Adrian’s proofs in that the polynomial it 
proposed is in fact a non-example, as the roots of f’ reside outside the interval I, which 



  
implies that f is monotonic on I and thus obtains both its minimum and its maximum 
at the (rational) endpoints of I. Rather than refuting Dylan’s proof by a counter-
example, Mike’s feedback drew on the misused data – the critical points – highlighting 
that their irrationality plays no role in the proof, and therefore an analogous line of 
reasoning could be applied to the same data only with f as a real-valued function, and 
reach the same conclusion in contradiction to EVT.  
The cases considered so far admitted a wealth of refutation arguments. But, in some 
cases, formulating refutation feedback was not straight forward. For example, Charlie’s 
proof defined 𝑓(𝑥) = %

#
𝑥# − %

$
𝑥, found a root x of f’(x), and stated:  

You can see that the first derivative equals 0 at x (x is between 0 and 1). The second 
derivative is positive at x, indicating that we've found a minimum in this interval, and x is 
not rational. However, the second derivative equals 0 at x = 0. In order to ensure that we 
have found a minimum for the interval [0, 1], we still need to check that the value of f(x) 
is less than f(0). 

Unliked the proofs of Alex, Bailey and Dylan, Charlie’s proof provides an explicit 
warrant to why the irrationality of the critical point of f implies that f, as a rational 
function, does not obtain a minimum in the interval I. Charlie checks the sign of the 
second derivative of f at the irrational critical point 𝑥 ∈ 𝐼, and rightly concludes that x 
is a local minimum of f. However, Charlie also notes that the second derivative of f is 
negative at every point of I, except that it vanishes at zero, and wrongly argues that in 
order to show that x is a minimum of f in I it is necessary and sufficient that f(x)<f(0). 
Notably, whereas Charlie’s line or reasoning is not valid, its conclusion for the 
particular f and I is true: x is indeed the unique minimum of f in I, and 0 is the unique 
maximum. Thus, showing that Charlie’s reasoning is not always true entails the non-
trivial task of constructing (or suggesting the existence of) an example in which all the 
data Charlie drew on can be used in the same way, leading to a false conclusion. Mike’s 
feedback does just that: 

HRF5 

Apparently you see some connection between the sign of f''(0) and extremal 
values. Here is a counterexample: Consider f on the closed interval [0,10]. It 
has no local maxima, its 2nd derivative is positive on (0,10], and f(0)=0 is not 
a maximum, since, say f(2) = 5/3 > 0. Thus, according to your logic, the 
function does not achieve a maximum value on [0,10]. 

By expanding the interval from [0,1] to [0,10], Mike’s feedback demonstrates that the 
maximum of f is not necessarily achieved at a point where the second derivative is non-
negative. The warrant Mike’s feedback attributes to Charlie’s proof and refutes is: The 
minimum of f in I is achieved at points in which the sign of f’’ is not negative. Notably, 
this warrant is alluded to at the beginning of Mike’s feedback to Charlie: “Apparently 
you see some connection between the sign of f’’(0) and extremal values”.  



  
So far, we have examined HRF based on global and local refutations by false 
implication. Another type of refutation argument Mike used in his feedbacks is 
refutation by contradiction. This refutation argument, similarly to proof by 
contradiction, first assumed the student’s proof or some 
statement therein is correct, only to reach a contradiction 
to the theorem that needs to be proved (and that is known 
to be true). For example, in one of the lectures, Mike 
presented the Peano curve as the limit of a sequence of 
curves 𝜙': [0,1] → [0,1]$. The curve 𝜙% is defined as the 
curve that starts from the point (1,1), moves along the 
four edges of the unit square until it returns to (1,1), and 
then moves along the diagonal of the unit square to the 
point (0,0). The curve 𝜙'(% is defined reclusively by 
replacing every diagonal line in (the image of) 𝜙' with a 
curve that consisted of 8 parts, as illustrated in Figure 2. 
Points on the unit interval mapped to horizontal or 
vertical segments on the Peano curve were labeled by ‘s’. 
The students were asked to prove that the Peano curve is surjective. One student started 
the proof by claiming that “every point on the unit interval eventually falls into an 
interval labelled as s”. Mike responded with the following feedback: 

HRF6 All ‘s’ points are mapped to points of the square with one coordinate ra-
tional; so, they don't cover the square. This contradicts the theorem. 

Taking (implicitly) the student’s claim as data, HRF6 posits that points of type ‘s’ are 
mapped to plane points with one rational coordinate. Combining these two pieces of 
data together leads to the false conclusion that the Peano curve is not surjective.  
We conclude by pointing out that refutation by counter-example can be seen as a case 
of refutation by false implication. To illustrate this, we return to Proposition 1. One 
student stated in the proof that “every closed set [of the real numbers] can be written 
as the union of only finitely many closed intervals”. Mike addressed this statement: 

HRF7 This is bluntly wrong: The Cantor set does not contain a single interval, but it 
is uncountable. 

Here, the Cantor set is given as a counter-example to the false statement. At the same 
time, the argument can also be read as a false implication: applying the statement to 
the Cantor set implies that it is a finite union of closed intervals, which is absurd. We 
stress that the converse is not true, since, as demonstrated above, refutation by false 
implications can be used to refute proofs that do not admit false statements, and thus 
cannot be refuted by a counter-example. 
DISCUSSION 
This study, situated in the under-studied area of undergraduate mathematics teaching 
and learning outside class, aims to unpack nuances of a particular practice of 

Figure 2: Construction of 
the Peano Curve 



  
undergraduate mathematics teaching – providing written feedback on students’ flawed 
proofs. The work is guided by the premise that feedback on students’ flawed proof can 
support development of proof comprehension rather than merely support the writing of 
correct proofs. We have proposed heuristic refutation feedback (HRF) as an extension 
of heuristic refutation (de Villiers, 2010; Lakatos, 1976) to conceptualize the activity 
of interpreting and utilizing refutation feedback on flawed proofs, and have 
demonstrated that formulating such feedback can be a delicate and thoughtful practice. 
We have extended the notion of heuristic refutation (de Villiers, 2010, Komatsu & 
Jones, 2021) in two ways. First, we go beyond the notion of abductive reasoning 
(Komatsu & Jones, 2021), where a claim based on observation was taken as given and 
it is up to students to propose datum and/or a warrant, and consider the heuristic activity 
of completing a refutation argument that may contain only a claim, only datum, only a 
warrant, or any combination thereof. Second, we go beyond refutation by counter-
example to consider refutation by false implication. In this we are extending the space 
of pedagogical applications of refutation in mathematics education. 
Formulation of HRF was shown to involve several different pedagogical decisions that 
relate to the construction and selection of the refutation argument. Typically, students’ 
flawed proofs can be refuted in more than one way. There is often more than one flaw 
in a flawed proof, and different flaws may indicate different issues of proof 
comprehension. Thus, formulating HRF may entail a decision about what to refute. 
Presumably, and this needs to be studied further, highlighting different flaws can 
provoke different engagement of students with their proofs, their flaws, their revisions 
and their comprehension thereof. Formulating HRF entails also decisions about how to 
refute. We have delineated two kinds of refutation arguments – refutation by false 
implication and refutation by contradiction, in addition to the familiar refutation by 
counter-example. We have demonstrated that in some cases, more than one kind of 
refutation argument is applicable. The literature suggests that different kinds of proof 
have different pedagogical advantages and afford different opportunities for learning 
(Hanna & de Villiers, 2008), and further research is need to investigate whether and in 
what sense this is also is also true for different kinds of refutation. 
We have demonstrated how in some cases proofs may be flawed even if they do not 
contain an explicit invalid statement. Such proofs cannot be refuted directly by means 
of a counter-example, yet they may be refuted by identifying (or attributing) a flawed 
warrant and invalidating it. We have demonstrated how different warrants may be 
attributed to the same flawed proof, and lead to different HRF. We note that 
formulation of HRF entails also decisions about the extent to which different elements 
of the refutation argument (claim, datum, warrant) are explicated in the feedback 
(explicitly, implicitly or omitted). This aspect of the formulation of HRF is discussed 
in detail in a separate publication (Pinto & Cooper, under review). Thus far, the 
potential affordances of HRF for proof comprehension have only been substantiated 
theoretically (Pinto & Cooper, under review). Empirical research on how students 



  
engage with this kind of feedback, and how this engagement can contribute to the 
development of proof comprehension remains for future research.  
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