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Many engineering students find university mathematics courses challenging and tend 

to adopt an instrumental approach to their studies. One of the difficulties pertains to 

students’ inability to relate new material to their existing knowledge and skills. We 

employ anthropological theory of the didactic and the construct of the concept image 

for the analysis of two institutional praxeologies in Calculus and Differential 

Equations indicating potential conflict factors in students’ understanding of the 

concept of an exact differential equation. 

Keywords: teaching and learning of mathematics for engineers, curricular and 
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INTRODUCTION  

Engineering plays a significant role in the modern society; the demand for engineers 

with better interdisciplinary and specialist skills is continuously increasing (Kent & 

Nossum, 2003). Future engineers need a wide spectrum of mathematical competencies 

and should comfortably use mathematics as a medium for communicating and 

developing ideas and concepts – “we need engineers who are at ease with it 

[mathematics] and who can take advantage of new ideas and use them appropriately 

even if they are expressed using advanced mathematics” (Blockley & Woodman 2002, 

p. 15). However, educational research acknowledges difficulties with students’ 

conceptual understanding of mathematical disciplines which are often viewed as 

obstacles on the way to the engineering degree (Ditcher, 2001; Harris et al., 2015). 

University courses on differential equations (DEs) are included in most engineering 

programmes, but related educational research is scarce, with “fewer than two dozen 

empirical studies published in top journals [in mathematics education]”, which is quite 

surprising “given the centrality of differential equations (DEs) in the undergraduate 

curriculum, as well as the move away from a “cookbook” course to one that emphasizes 

modelling, qualitative, graphical and numerical methods of analysis” (Rasmussen & 

Wawro, 2017, p. 555). Exact differential equations (EDEs) is a classical topic; it is 

present in all traditional DEs courses and connects to many important concepts and 

methods in mathematics and physics including, for instance, integration of first-order 

linear DEs with variable coefficients, integrating factors, and first integrals. 

Rezvanifard et al. (2022) discussed difficulties with the learning of EDEs and a positive 

impact of a puzzle-based learning on students’ conceptual understanding of this topic.  
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Recently, anthropological theory of the didactic (ATD) was employed by González-

Martín and Hernandes-Gomes (2018, 2019) to analyse differences in mathematics and 

engineering courses. Hochmuth and Peters (2021) combined ATD with Weber’s 

construct of ideal type to address variations in institutional praxeologies and individual 

student work in mathematics and engineering discourses. In this paper, we combine 

ATD (Chevallard, 2019) with the constructs of concept definition and concept image 

(Tall & Vinner, 1981) to explore potential conflict factors in the learning and teaching 

of EDEs. In contrast with the previous research on engineering education employing 

ATD, both institutional praxeologies in our case are within mathematics domain. 

THEORETICAL FRAMEWORK / METHODOLOGY   

The anthropological theory of the didactic  

ATD furnishes an epistemological framework to describe mathematical knowledge as 

a human activity. A didactic system 𝑆(𝑋, 𝑌, 𝑘) includes a class of students 𝑋, a team of 

teachers 𝑌, and a piece of knowledge 𝑘 from a body of knowledge 𝐾 (a discipline 𝐷), 

in our case, mathematics. The theory of didactic transposition raises “the question of 

the precise nature of the piece of knowledge 𝑘 which is the “didactic stake” – the thing 

to be taught and learned – in 𝑆(𝑋, 𝑌, 𝑘)” (Chevallard, 2019, p. 72). Importantly, this 

theory views knowledge as “a changing reality, which adapts to its institutional habitat 

where it occupies a more or less narrow niche” (Chevallard, 2007, p. 132). 

ATD “hinges on an essential and founding notion: that of praxeology” posing that “all 

“knowledge” can be modelled in terms of praxeologies” (Chevallard et al., 2016, pp. 

2615-6) used as building blocks for didactic systems. A praxeology consists of a task 

𝑇, a technique 𝜏 (tau), a technology 𝜃 (theta), and a theory 𝛩 (big theta). In ATD, the 

task 𝑇 is performed using the technique 𝜏. The technology 𝜃  is “a way of explaining 

and justifying or even of “designing” the aforesaid technique 𝜏.” The theory 𝛩 “should 

explain, justify, or generate whatever part of technology 𝜃 may sound unobvious or 

missing” (Chevallard & Sensevy, 2014, p. 40). A praxeology is construed as the union 

of two “blocks,” the praxis part 𝛱 = [𝑇/𝜏] and the logos part Λ=[Ξ/θ]. Notably, “it is 

the theoretical block that makes it possible to preserve the activity as a practice and 

communicate it to others, so that they, too, can participate in it” (Hardy, 2009, p. 344). 

Didactic systems live in institutions understood as “any created reality of which people 

can be members” (Chevallard & Bosch, 2019, p. xxxi). For example, “a class, with its 

students and teachers, is an institution” (Chevallard & Sensevy, 2014, p. 2615). 

Institutional approaches significantly impact student inducting into mathematical 

practices (Hardy, 2009; Winsløw et al., 2014). Furthermore,  

It often happens that an object O lives permanently in an institution J and remains lengthily 

ignored by another institution I not unconnected with J, while being simultaneously 

unknown to the overwhelming majority of the persons subjected to I. … Consequently, for 

many teachers “the notion that inhabits “my” institution is exactly what this notion is, so 

that I can ignore all other institutions’ definitions of it.” (Chevallard, 2019, pp. 82-83) 



 

 

 

To tackle this problem, it is important to compare the description of praxeologies for 

the same object adopted by different institutions.  

An institutional reference model of praxeologies involving a mathematical notion can be 

built to describe the practices and knowledge that an institution aims for students to develop 

– with interconnections between subjects, themes, sectors and domains related to the notion 

in question. (Winslow et al., 2014, p. 103) 

Concept definition and concept image  

One of the learning difficulties acknowledged by ATD stems from “a universal belief 

that any notion has a unique definition, independent of the institution that uses it” 

(Chevallard, 2019, p. 82). Introducing the constructs of concept definition and concept 

image, Tall and Vinner (1981) also recognised that this expectation is not justified.  

Compared with other fields of human endeavor, mathematics is usually regarded as a 

subject of great precision in which concepts can be defined accurately to provide a firm 

foundation for the mathematical theory. The psychological realities are somewhat 

different. Many concepts we meet in mathematics have been encountered in some form or 

other before they are formally defined and a complex cognitive structure exists in the mind 

of every individual, yielding variety of personal mental images when a concept is evoked. 

(p. 151).  

The concept definition is usually regarded as a description of the mathematical notion 

accepted by the professional community, and this is what mathematics teachers strive 

to teach to students. However, “for each individual a concept definition generates its 

own concept image” (Tall & Vinner, 1981, pp.152-153) understood as “the total 

cognitive structure that is associated with the concept, which includes all the mental 

pictures and associated properties and processes.” The concept image “is built up over 

the years through experiences of all kinds, changing as the individual meets new stimuli 

and matures.” Distinct parts of the concept image, termed evoked concept images, can 

be activated at particular times, including images that may appear conflicting – “if 

“conflicting” parts of the concept image are called at the same time then a sense of 

confusion, or conflict may appear.” In this case, a potential conflict factor is defined as 

“a part of the concept image or concept definition which may conflict with another part 

of the concept image or concept definition” (Tall & Vinner, 1981, pp.152-153). “The 

pre-eminence of the concept image is clear when it is time to act or to solve a concrete 

problem” (Gascón, 2003, p. 47); it often replaces the concept definition. 

In general, it is postulated that in informal learning of concepts (which is the most 

common), the concept image is utilised instead of the concept definition and also when the 

concept definition has been constructed (parting from the terms of the definitions, if these 

have already been introduced), this will tend to stay inactive in the mind of the person and 

may even be forgotten. (Gascón, 2003, p. 47) 

The construct of concept image complements ATD in our analysis. ATD acknowledges 

possibilities for different institutional praxeologies built for the same mathematical 



 

 

 

concept and the concept image framework supports the evolution of concepts within 

institutions that creates potential conflict factors. Combining ATD with the concept 

image paradigm, we address “the challenge of empowering students with autonomy 

and insight into the raisons d’être and rationales of such [mathematical] work” 

(Winslow et al., 2014, p. 100). Focusing on praxeologies rooted in two mathematical 

institutions, a Calculus (C) class, and a Differential Equations (DE) class, we analyse 

two approaches to the concept of an EDE.  

The research question addressed in this paper is: What similarities and distinctions 

characterising C- and DE- praxeologies create potential conflict factors?  

TWO INSTITUTIONAL VIEWS OF EXACT DIFFERENTIAL EQUATIONS 

Multiple mathematical organisations in the engineering curriculum 

We explore mathematical organisations MO1 and MO2 in two courses, Mathematics 

2, and Mathematics for Mechatronics. Mathematics 2 is taught to first-year engineering 

students and is based on the text by Adams and Essex (2018). The module includes, 

among other topics, functions of several variables, vector calculus, and line integrals 

of vector fields. Mathematics for Mechatronics uses the textbook by Boyce and 

DiPrima (2013) and is taught in the first semester of a master’s program. The course 

focuses on the methods for the solution and analysis of DEs, stability, and applications. 

Vignette MO1 Conservative vector fields in Calculus (Adams & Essex, 2018, pp. 874-

880). A vector field �⃗�(𝑥, 𝑦) in two dimensions defined by  

 �⃗�(𝑥, 𝑦) = 𝐹1(𝑥, 𝑦)𝑖 + 𝐹2(𝑥, 𝑦)𝑗 = ∇𝜑(𝑥, 𝑦) =
𝜕𝜑

𝜕𝑥
𝑖 +

𝜕𝜑

𝜕𝑦
𝑗  

is called conservative, and the function 𝜑(𝑥, 𝑦) is called a (scalar) potential of �⃗�.  

The equation 𝐹1(𝑥, 𝑦)𝑑𝑥 + 𝐹2(𝑥, 𝑦)𝑑𝑦 = 0 is called an exact differential equation if 

its left-hand side is the differential of a scalar function 𝜑(𝑥, 𝑦).   

A necessary condition for a conservative vector field. If �⃗�(𝑥, 𝑦) = 𝐹1(𝑥, 𝑦)𝑖 +
𝐹2(𝑥, 𝑦)𝑗  is a conservative vector field in a domain 𝐷 of the 𝑥𝑦-plane, then 

𝜕

𝜕𝑦
𝐹1(𝑥, 𝑦) =

𝜕

𝜕𝑥
𝐹2(𝑥, 𝑦)   in 𝐷. 

If 𝜑(𝑥, 𝑦)  is a potential function for a conservative field �⃗�(𝑥, 𝑦), the level curves 

𝜑(𝑥, 𝑦) = 𝐶 of  𝜑(𝑥, 𝑦)  are called equipotential curves of �⃗�(𝑥, 𝑦).  

Example 1 (Adams and Essex, 2018, p. 877). Show that the vector field �⃗�(𝑥, 𝑦) =
𝑥𝑖 − 𝑦𝑗  is conservative, find a potential function and describe the equipotential curves. 

Solution Since 
𝜕

𝜕𝑦
𝐹1(𝑥, 𝑦) = 0 =

𝜕

𝜕𝑥
𝐹2(𝑥, 𝑦) in 𝑅2, �⃗� is conservative. For any 

potential function 𝜑(𝑥, 𝑦), one should have 
𝜕𝜑

𝜕𝑥
= 𝐹1(𝑥, 𝑦) = 𝑥  and 

𝜕𝜑

𝜕𝑦
= 𝐹2(𝑥, 𝑦) =



 

 

 

−𝑦.  Integrating  
𝜕𝜑

𝜕𝑥
= 𝐹1(𝑥, 𝑦) = 𝑥  with respect to 𝑥, we obtain 𝜑(𝑥, 𝑦) = ∫ 𝑥𝑑𝑥 =

1

2
𝑥2 + 𝐶1(𝑦),  where the “constant” of integration can depend on the variable 𝑦. Using 

𝜕𝜑

𝜕𝑦
= 𝐹2(𝑥, 𝑦) = −𝑦,   taking the derivative 

𝜕𝜑

𝜕𝑦
=

𝜕

𝜕𝑦
(

1

2
𝑥2 + 𝐶1(𝑦)) = 𝐶′1(𝑦) and 

equating it to −𝑦, we deduce that 𝐶1(𝑦) = −
1

2
𝑦2 + 𝐶2 . Therefore, for any constant 𝐶2,

𝜑(𝑥, 𝑦) =
𝑥2−𝑦2

2
+ 𝐶2  is a potential function for a vector field �⃗�(𝑥, 𝑦). Equipotential 

curves defined by  𝑥2 − 𝑦2 = 𝐶 represent a family of rectangular hyperbolas.  

Remark 1 A necessary condition is not formulated as a theorem and no proof is 

provided. However, restrictions on the topology of the domain are mentioned warning 

that a vector field may not be conservative in a domain that has holes (Adams & Essex, 

2018, p. 879). The following example is provided as an illustration of this possibility.  

Example 2 (Adams and Essex, 2018, p. 879-880). Verify that a vector field �⃗�(𝑥, 𝑦)  

defined for (𝑥, 𝑦) ≠ (0,0) by �⃗�(𝑥, 𝑦) = (
−𝑦

𝑥2+𝑦2) 𝑖 + (
𝑥

𝑥2+𝑦2) 𝑗  is not conservative on 

the whole real plane including the origin. 

Vignette MO2 EDE in Differential Equations (Boyce & DiPrima, 2013, pp. 95-100). 

Given a DE 𝑀(𝑥, 𝑦) + 𝑁(𝑥, 𝑦)𝑦′ = 0,  suppose that we can identify a function ᴪ(𝑥, 𝑦), 

such that 
𝜕ᴪ

𝜕𝑥
(𝑥, 𝑦) = 𝑀(𝑥, 𝑦),   

𝜕ᴪ

𝜕𝑦
(𝑥, 𝑦) = 𝑁(𝑥, 𝑦),   and such that ᴪ(𝑥, 𝑦) = 𝑐  

defines 𝑦 = 𝜑(𝑥) implicitly as a differentiable function of 𝑥. Then  

𝑀(𝑥, 𝑦) + 𝑁(𝑥, 𝑦)𝑦′ =
𝜕ᴪ

𝜕𝑥
+

𝜕ᴪ

𝜕𝑦

𝑑𝑦

𝑑𝑥
=

𝑑

𝑑𝑥
ᴪ[𝑥, 𝜑(𝑥)], 

and the DE assumes the form 
𝑑

𝑑𝑥
ᴪ[𝑥, 𝜑(𝑥)] = 0. In this case, the DE 𝑀(𝑥, 𝑦) +

𝑁(𝑥, 𝑦)𝑦′ = 0 is said to be an exact differential equation. Solutions are given 

implicitly by the equation ᴪ(𝑥, 𝑦) = 𝑐,   where 𝑐 is an arbitrary constant.  

Example 3 (Boyce & DiPrima, 2013, pp. 95). Solve the DE 2𝑥 + 𝑦2 + 2𝑥𝑦𝑦′ = 0. 

Solution One can guess that the function ᴪ(𝑥, 𝑦) = 𝑥2 + 𝑥𝑦2 has the property that 

𝜕ᴪ

𝜕𝑥
(𝑥, 𝑦) = 2𝑥 + 𝑦2 = 𝑀(𝑥, 𝑦),    

𝜕ᴪ

𝜕𝑦
(𝑥, 𝑦) = 2𝑥𝑦 = 𝑁(𝑥, 𝑦), 

and the given DE can be written as 

𝜕ᴪ

𝜕𝑥
+

𝜕ᴪ

𝜕𝑦

𝑑𝑦

𝑑𝑥
= 0,     or    

𝑑

𝑑𝑥
ᴪ(𝑥, 𝑦) =

𝑑

𝑑𝑥
ᴪ(𝑥2 + 𝑥𝑦2) = 0. 

Thus, solutions to this equation are defined implicitly by ᴪ(𝑥, 𝑦) = 𝑥2 + 𝑥𝑦2 = 𝑐.    

Theorem 1 (Boyce & DiPrima, 2013, p. 96). Let the functions 𝑀, 𝑁, 𝑀𝑦 and 𝑁𝑥  where 

subscripts denote partial derivatives, be continuous in the rectangular region 𝑅:  𝛼 <
𝑥 < 𝛽, 𝛾 < 𝑦 < 𝛿. Then the equation 𝑀(𝑥, 𝑦) + 𝑁(𝑥, 𝑦)𝑦′ = 0 is an exact differential 



 

 

 

equation in 𝑅 if and only if 𝑀𝑦(𝑥, 𝑦) = 𝑁𝑥(𝑥, 𝑦) at each point of 𝑅. That is, there exists 

a function ᴪ satisfying the equations ᴪ𝑥(𝑥, 𝑦) = 𝑀(𝑥, 𝑦), ᴪ𝑦(𝑥, 𝑦) = 𝑁(𝑥, 𝑦), if and 

only if 𝑀 and 𝑁 satisfy the equation 𝑀𝑦(𝑥, 𝑦) = 𝑁𝑥(𝑥, 𝑦). 

Remark 2 The necessity part of the proof (Boyce & DiPrima, 2013, pp. 96-98) is 

constructive; it provides a method for finding the function ᴪ(𝑥, 𝑦).  A footnote to the 

theorem explains that the region may not necessarily be rectangular, but should be 

simply connected (that is, with no holes in its interior).  

Example 4 (Boyce & DiPrima, 2013, pp. 98). Solve the DE (𝑦cos𝑥 + 2𝑥𝑒𝑥) +
(sin𝑥 + 𝑥2𝑒𝑦 − 1)𝑦′ = 0. 

Solution Observe that 𝑀𝑦(𝑥, 𝑦) = cos𝑥 + 2𝑥𝑒𝑦 = 𝑁𝑥(𝑥, 𝑦), so the given equation is 

exact, and there should exist a function ᴪ(𝑥, 𝑦) such that  

𝜕ᴪ

𝜕𝑥
(𝑥, 𝑦) = 𝑦cos𝑥 + 2𝑥𝑒𝑥 = 𝑀(𝑥, 𝑦),

𝜕ᴪ

𝜕𝑦
(𝑥, 𝑦) = sin𝑥 + 𝑥2𝑒𝑦 − 1 = 𝑁(𝑥, 𝑦). 

Integrating the first equation, one has  ᴪ(𝑥, 𝑦) = 𝑦sin𝑥 + 𝑥2𝑒𝑦 + ℎ(𝑦). 
Differentiation of the latter equation yields sin𝑥 + 𝑥2𝑒𝑦 + ℎ′(𝑦) = sin𝑥 + 𝑥2𝑒𝑦 − 1,     
or ℎ′(𝑦) = −1, ℎ(𝑦) = −𝑦. Then  ᴪ(𝑥, 𝑦) = 𝑦sin𝑥 + 𝑥2𝑒𝑦 − 𝑦, and solutions are 

defined implicitly by the equation 𝑦sin𝑥 + 𝑥2𝑒𝑦 − 𝑦 = 𝑐. 

Praxeological analysis  

Vignette MO1 Goal: Calculate the potential of a conservative vector field.  

Raison d’être: demonstrate independence of a line integral of a conservative vector 

field on a path and use it for finding the potential and describing equipotential curves.  

Steps in the concept definition for EDE in MO1.  

1) Using the gradient of a scalar field, define a conservative vector field and its 

potential. 

2) Using the differential of a scalar field, define an EDE in the 3D-space. 

3) Provide necessary conditions for a conservative vector in 2D and 3D-spaces.  

4) Define solutions of an EDE as equipotential curves. 

5) Use the procedure of partial integration to find the potential. 

6) Write the answer in the form of equipotential curves. 

Vignette MO2 Goal: Develop an integration method for solving an EDE.  

Raison d’être: use the total derivative for developing the integrating factor technique 

for solving first-order linear DEs and obtaining first integrals.  

Steps in the concept definition for EDE in MO2.  

1) Solve an EDE in Example 3 by rewriting its left-hand side as a total derivative.  

2) Define solutions implicitly by an algebraic equation 𝜓(𝑥, 𝑦) = 𝑐 and interpret 

the level curves of 𝜓(𝑥, 𝑦) = as integral curves of the given DE. 



 

 

 

3) Consider the general case of EDEs and give the formal definition.  

4) Formulate necessary and sufficient condition for a DE to be exact (Theorem 1).  

5) Prove Theorem 1. 

6) Use the constructive procedure in the necessity part of Theorem 1 to develop a 

solution guideline. 

7) Solve an EDE in Example 4 using the procedure developed in step 6) obtaining 

solutions defined implicitly by an algebraic equation. 

Both the object, an EDE, and the technique (solution method) are similar in MO1 and 

MO2, but the concept definitions differ. We argue that the concept images for EDE 

induced by two mathematical organisations are even more distinct. This signals 

possible conflict situations when students do not see important connections between 

mathematical notions and ideas. Note that the praxis parts in both mathematical 

organisations are well defined,  𝛱1 = [𝑇1/𝜏1, 𝜏2]  and 𝛱2 = [𝑇2/𝜏3, 𝜏2]. Partial 

integration technique 𝜏2 is exactly the same in both praxeologies, with minor variations 

in explanations. The technologies 𝜃1, 𝜃2 and 𝜃3 used in the two logos blocks for MO1 

and MO2 justify the same mathematical procedure differently. This is due to the fact 

that MO1 only postulates a necessary condition for conservative vector fields without 

proving it and the solution method is introduced in Example 1, whereas Theorem 1 in 

MO2 furnishes both the exactness test and the justification for the solution method 

through a constructive proof.  Finally, we observe that both logos blocks are incomplete 

and the theory 𝛩 is missing in logos parts, 𝛬1 = [∅/𝜃1, 𝜃2]  and 𝛬2 = [∅/𝜃3]. 
Therefore, the search for the theory takes us beyond these two mathematical 

organisations. Two theoretical results that can be used to fill in the gaps follow. 

Theorem 3 (vector fields; Protter & Morrey, 2012, p. 478). Suppose that �⃗� is a 

continuously differentiable vector field with curl �⃗� = 0⃗⃗ in some rectangular 

parallelepiped 𝐷 in space. Then there exists a continuously differentiable scalar field 𝑓 

in 𝐷 such that ∇𝑓 = �⃗�.  Any two such fields differ by a constant. 

Theorem 4 (mixed partials; Young, 1908-09, pp. 163-164). Suppose 𝑓(𝑥, 𝑦) is defined 

in a neighborhood of a point (𝑎, 𝑏). Suppose the partial derivatives 𝑓𝑥, 𝑓𝑦 are defined 

in a neighborhood of (𝑎, 𝑏) and are differentiable at (𝑎, 𝑏). Then(𝑓𝑥)𝑦(𝑎, 𝑏) =

(𝑓𝑦)𝑥(𝑎, 𝑏), sometimes stated as 𝑓𝑥𝑦(𝑎, 𝑏) = 𝑓𝑦𝑥(𝑎, 𝑏). 

An elegant example due to Peano illustrates that Theorem 4 does not provide a 

sufficient condition (cf. Example 2).  

Example 5 (Apostol, 1965, p. 358). Second-order mixed partial derivatives of the 

function 𝑓(𝑥, 𝑦) = {
𝑥𝑦(𝑥2−𝑦2)

𝑥2+𝑦2
, (𝑥, 𝑦) ≠ (0,0),

0, (𝑥, 𝑦) = (0,0),
 are distinct, that is, 𝑓𝑦𝑥(0,0) = 1,

𝑓𝑥𝑦(0,0) = −1. 

We summarise our praxeological analysis in the following table. 



 

 

 

 Task, 𝑇 Technique, 𝜏 Technology, 𝜃 Theory, 𝛩 

MO1 Find a poten-

tial of a con-

servative 

vector field 

𝑇1. 

Test for con-

servative vector 

fields 𝜏1.  

Partial integra-

tion 𝜏2. 

Necessary condition 𝜃1 

for conservative fields 

without proof. 

Partial integration proce-

dure 𝜃2 introduced in Ex-

ample 1. 

Theorem 3 

MO2 Solve an ex-

act DE 𝑇2. 
Exactness test 𝜏3.  

Partial integra-

tion 𝜏2. 

The exactness test and 

partial integration proce-

dure 𝜃3  in a constructive 

proof of Theorem 1. 

Theorem 4 

Table 1: Praxeologies associated with mathematical organisations MO1 and MO2 

CONCLUSIONS 

Both praxeologies serve their goals but praxeological analysis reveals two main 

reasons generating conflicting parts of the concept image. Firstly, the technique of 

partial integration 𝜏2 in both mathematical organisations is the same, but technologies 

𝜃1 and 𝜃2 justify the same solution method differently. Secondly, since the theory 𝜃 is 

missing in both mathematical organisations, the technology lacks justification. It is 

known that incomplete logos part makes the preservation and communication of the 

practice difficult (Hardy, 2009). Our list of potential conflict factors in the definition 

of an EDE in MO1 and MO2 includes four contrasting items. 

1) Defining an EDE, a DE-praxeology uses a derivative form under a default 

assumption that 𝑦 = 𝑦(𝑥). A C-praxeology uses a more flexible differential form 

where any of two variables can be viewed as independent. 

2) Solution of an EDE in a DE-praxeology is viewed as an implicitly defined function 

describing all solutions (integral curves). A C-praxeology defines them as equipotential 

surfaces or curves.  

3) An EDE is considered in a rectangular domain in a DE-praxeology, but it is 

mentioned that the region has to be simply connected. A C-praxeology emphasises that 

the existence of a potential for a vector field depends both on the topology of the 

domain of the field and on the structure of the components of the field itself. 

4) A DE-praxeology does not consider extensions to higher dimensions at all. A C-

praxeology allows an easy extension of the notion an EDE and the formulation of an 

exactness test to a 3D case (thanks to differential form used for a DE).  

These potential conflict factors induced by two institutional praxeologies may lead to 

significant variations in the construction and evolution of students’ own concept 

images for an EDE. Gascón (2003) pointed out that students often use the concept 

image instead of the concept definition; the latter tends to stay inactive and may be 



 

 

 

even forgotten. It is likely that students’ individual concept images of an EDE formed 

in a Calculus course will refer to one or more of the following: (i) conservative vector 

fields, potentials, and equipotential curves and surfaces, (ii) equal roles played by both 

variables and easy extension to higher dimensions, (iii) topological restrictions on the 

domain and components of a vector field. When students meet an EDE once again in 

an MS course on DEs, they may not recognise it because of quite significant differences 

in the two logos blocks 𝛬1 = [∅/𝜃1, 𝜃2]  and 𝛬2 = [∅/𝜃3].  

The increasing demands for advanced mathematical thinking of engineering graduates 

require both the high-quality teaching and agreement between mathematics disciplines 

in the study curricula. This paper exposes hidden conflict factors in learning differential 

equations pointing toward the need for the harmonisation of mathematics courses in 

engineering programmes. We hope that our contribution will stimulate further interest 

of mathematicians and mathematics education researchers to this important issue.  
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